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ABSTRACT. — We prove the existence of positive regular solutions of the Cauchy problem for
the nonlinear heat equatiofn = Au + |u|*u, with initial valueuV, for all u > 1 close enough
to 1, whereV is the singular stationary solution &Y. This result is obtained wheN > 2 and
ﬁ < a < o*, wherea™ is the critical power for the intersection propertiesiofvith regular
stationary solutions. Moreover, for as above, there exist at least two positive regular solutions
with initial value V. These results are optimal since it is known that no such solution exists if
o =>ak.
© 2003 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
MSC:35K15; 35K55

RESUME. — Nous montrons I'existence de solutions positives régulieres du probleme de
Cauchy pour I'équation de la chaleur non linéaire= Au+ |u|*u, avec donnée initialg v, pour
tout u > 1 assez proche de 1, dliest la solution stationnaire singuliére da¥. Ce résultat
est obtenu pouN > 2 et ﬁ <o < o, oua* est la puissance critique pour les propriétés
d’intersection dé/ avec les solutions stationnaires réguliéres. De plus, pa@amme ci-dessus,

il existe au moins deux solutions positives réguliéres avec donnée initial€es résultats sont
optimaux, car on savait déja que de telles solutions ne peuvent exister @i .
© 2003 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

1. Introduction
In this paper we study solutions of the nonlinear heat equation
u, = Au+ ul®u, t>0, xeRY, 1.1
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which have singular initial values. Here=u(t, x) € R, « > 0 and we sometimes write
u(t) for the spatial functioru(z, ). If N > 2 and « >—-=5, then (1.1) has a positive
singular stationary solutio’ (x) given by

N2’

V(x) =g x|, (1.2)
where
2
== (N 2--) (1.3)
o

V is a stationary solution of (1.1) in the sense of tempered distributions: each ternr
of (1.1) with u(r, x) = V(x) is in LYR") + L>(R"). Even thoughV is a stationary
solution, it turns out, for certain values @f thatV is not the minimal positive solution

of (1.1) whose initial value i¥/. Indeed, ifN > 10, let

4
- . 1.4
TN —4-_2/N -1 (14)

(We takea™ = oo if N < 10.) This number first appeared in [5] in the study of stationary
solutions of (1.1). Galaktionov and Vazquez [3] have proved th}'gyf_—y <a < a*, then
there exists &*°, positive solution(z, x) of (1.1), fors > 0, such thai(t) — V in &',
indeed inLY(RY) 4+ L>*(RY), ast — 0+.

The purpose of this paper is to improve the result of Galaktionov and Vazquez by
showing that initial valueg V are allowed for some > 1.

THEOREM 1.1. —-Let N > 2 and ﬂ < o < a*. There existg > 0 such that for all

w € (1,14 ¢), there is aC* positive solutioru of (1.1) such that
u(t) - pVv in LY(R") +L°°(]RN), ast— 0+.

Moreoveru € C(0, oo; L4(RV)) for all ¢ > %%, andlim,_ . u(t) =0in L7(R") for all
Na

q > —5

ThIS result calls for several remarks. First of all, the powe€ris optimal in
Theorem 1.1. By Theorem 10.4 in [3], no nonnegative solution of (1.1) with intial value
aboveV exists ifa > a*. On the other hand, Theorem 10.4 in [3] also states that if
sz <o < a*, then there is no solution of (1.1) with initial value aboveand which
remains above/ for ¢+ > 0. Theorem 1.1 shows that this cannot be improved. Also, it
should be pointed out that jf is sufficiently large, then there is no local nonnegative
solution of (1.1) with initial valuewV. See Theorem 1 in [9].

For the equation withu|*u replaced by & Vazquez [7] has shown that there exists
a regular solution whose initial value is equal to the singular stationary solpiisa
small positive constant.

Finally, the situation for singular stationary solutions contrasts markedly with that for
initial values which are multiples oégular stationary solutions. Indeed ¢fis a positive
regular stationary solution of (1.1) either BY or on a bounded domain (with Dirichlet
boundary conditions), then the solution of (1.1) with initial vajug, for anyu > 1 is
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nondecreasing in time, and therefore exhibits one of the following three behaviors: finite
time blow up, infinite time blow up, or convergence to another positive regular stationary
solution.

We prove Theorem 1.1 by proving the existence of a positive, radially symmetric
(forward) self-similar solution of (1.1) with the necessary properties. Such a solution is
given by

u(t, x) = f”“f(L (1.5)

7i)
wherer = |x|. The functionf : [0, co) — R is called the (spatial) profile of the solution
u; indeedu(l, x) = f(|x]). As is well-known, the functiom given by (1.5) is a solution

of (1.1) if and only if f is a solution of the profile equation:

N — 1 «
ro+ (S ) o+ I ol e <o (16)

The initial value problem associated with (1.6) was first studied in [4]. In particular
(Theorem 5in [4]), if f; is the solution of (1.6) such thg} (0) = A and £} (0) =0, then

L) = lim r2% £,(r) (1.7)

exists and is a locally Lipschitz function afe R. If u(z, x) is the resulting solution of
(1.1) given by (1.5) withf = f;, then itis easy to see that(z, x)| < M|x|~%* (for some
M > 0) andu(t, x) — L(A)|x|~%*, uniformly on any subset @&" bounded away from
0, and sa«(r) — L(A)|x|~%* in LYRY) + L>®°(R"N), ast — 0+. It is also easy to check
thatu(z) satisfies the integral equation associate(ilt(h) with u(0) = L(1)|x|~%/.

The point of [4] was to show that% <a< N w3, thenL(io) = O is attained for some
Ao > O suchthatf,,(r) > 0, Vr > 0. Moreover, the analysis in [4] shows (for these values
of «) that there exist infinitely many pairs;, A, such that O< A1 < Ax < Ag, L(A1) =
L(x), and bothf;, and f;, are everywhere positive. Indeed, thggshown to exist in the
proof of Proposition 3.7 in [4] has the property that k0. < A, thenf (r) > 0, Vr > 0.
Thus, L is a honnegative, continuous function @) o] with L(0) =0 and L(%) =
and soL attains every value in the interved, max,cjo,,; L(1)) at least twice. In other
words, for these values at(i), there are at least two positive, regular, self-similar
solutions of (1.1) with the same singular initial valdgi,)|x|~%/* = L(1,)|x|~%/*.
Furthermore, by Proposition 3.6 in [41,(1) > O if A > O is sufficiently small, and so
MaX, (0,0 L) > 0.

The point of the present paper is to show doin the range specified in Theorem 1,
that L()) = uBY“ is attained in (1.7) for somg’ > 0 such thatf;,(r) > 0, Vr >0
and for some value gfi > 1. In the subcritical case;, < N el Theorem 1.1 is a direct
consequence of Theorem 4.4 and Proposition 3.5 proved in the main body of this pape
Moreover, Dohmen and Hirose [2, Theorem 1.2] have shown thﬁff_—%fg o< ﬁ
and L > Aq, then f; assumes negative values, and so it must beithat(0, Ao). (In
fact, Dohmen and Hirose [2] show the uniqueness of ithgroved to exist in [4].
See Weissler [8] for the same result in the cas& 1 and Yanagida [10] in the case

o < %5.) Since as just noted, i€ < o < +%5, then L attains every value in the
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interval (0, max.¢jo,,, L(1)) at least twice, Theorem 1.1 has the following immediate,
but unexpected, consequence.

THEOREM 1.2. —If N > 2 and = 2 5 <o < W’ then there exists > 0 such that for
all e (0,14 ¢), there are at Ieastvvo differentC* positive solutions: of (1.1) such

that
u(t) - uV in Ll(RN)+L°°(RN), ast — 0+,
u e C(0,00; L4(RM)) forall g > 22, andlim,_, o u(t) =0in LI(R") for all g > %2

This result is all the more surprising since an existeace unlquenessresult
for solutions of the type described in Theorem 1.2 is already known. Specifically,
Theorem 6.1 in [1], says thatdf > = (W|th no upper limit) and ifu > 0 andM > 0 are
sufficiently small (and verify a certaln nonlinear relationship), then there exists a unique
(necessarily self-similar) solutian of the integral equation corresponding to (1.1) with
initial value ;|x|~%* such that

F
supte 2 ||u(r)||,, < M, (1.8)
t>0

where

q Na

o+ 1 < 7 <({.

It is clear that thesupremumn (1.8) is finite for the self-similar solutions which provide
the non-unique solutions in Theorem 1.2. Nonetheless, for one of the two solutions, thi:
supremummust stay bounded away from 0, evernyas> 0.

The situation for critical and supercriticalis more intricate. In the supercritical case,
we will show thatZ (1), which is known to be positive for > 0, oscillates aroung/*
infinitely often asi — oo. In the critical caseL (1) = g¥“ for at least two values of
A > 0. More precisely, we have the following results, which are proved in Section 4
below.

THEOREM 1.3.—Let N > 2 and o = Ni There existss > 0 such that for all

w e [l,14¢), there are at leastwo different C* positive solutions: of (1.1) such
that

u(t) = uV in Ll(]R{N) + L>®(R"), ast — O+,
u e C(0,00; L4(RM)) forall g > 22, andlim,_, o u(t) =0in LI(RY) for all g > %2

THEOREM 1.4.—-Let N > 2 and ﬂ < a < a*. For every positive integeln, there
existse = ¢(m) > 0 such that for allu € (1 — e(m), 1+ £(m)), there are at leastn
different C* positive solutions: of (1.1) such that

u(t) - pVv in LYRY) + L®(RY), ast — 0+,

u € C(0, 00; L(RN)) forall g > &2, andlim,_, o u(r) = 0in LY(R") for all ¢ > 2.
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Our basic approach to studying the attainable valueg @} is to transform (1.6)
so that the behavior as— oo is translated into the behavior near 0. Motivated by the
precise asymptotic behavior of solutions to (1.6) as given in Theorem 1 in [6], we set

1
$> =r?*f(r),  (1.9)

wheres = r~2. A straightforward calculation shows tht (0, oo) — R satisfies (1.6)
if and only if w: (0, c0) — R satisfies the following differential equation:

fr)=r"“w(r?) =s"w(s), w(s) = r”“f(

2
45w (s) + 4(

o

)sw’(s) —w'(s)

_E<N—2—E)w(s)+|w(s)|aw(s)=0. (1.10)
o o

We refer to (1.10) as thmverted profile equation, to reflect the fact that behavior at 0
andoo are interchanged in passing frofmto w. If u is a self-similar solution of (1.1)
with profile £, and if f andw are related by (1.9), then

u(t, x) :r‘”"’w(%). (1.12)
r

This shows thatw is in fact thetime profileof the self-similar solution, i.eu(t, 1) =
w(t), where by abuse of notation, we wrii€r, r) instead ofu (¢, x) with |x| =r.

It is important to note that iff andw are related by (1.9), and ib is continuous
ats =0, then lim_ . %% f(r) = w(0). Thus, studying solutionsy of (1.10) having
a specified initial valuew(0) is equivalent to studying solutiong of the original
profile equation (1.6) with lin, o 7% f(r) = w(0). If, in addition, f is the profile
of a self-similar solution: of (1.1), then the initial value of this solutianis given by
u(0, x) = w(0)|x|~%*. Hence the study of solutions to (1.10) having a specified initial
value w(0) is related to the study of solutions to (1.1) with a specified singular initial
valueu(0, x) = w(0)|x|~%/<.

Throughout this papeg, «* andV are as in (1.3), (1.4) and (1.2) above. Moreover,
we use the following notation:

2 N-4
VY= o 2
For future reference, we note that:
2
0 —
B > & o> N_2
1 & 4
> o< .
4 N_2

As is common practice, conditions sucheas ﬁ are meant to imply tha¥v > 2, and

conditions such ag < ﬁ are meant to be vacuoush =1 or 2. Also,g :R — R, and

its primitive G : R — R, are the functions given by:
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()= —pr+lfx,  Gy=-BE 4 B
g(x) = —Bx + |x|%x, X === Pl

We define
xeR
In the casex > ﬁ Eqg. (1.10) has a unique nontrivial positive constant solution, i.e.

w(s) = B¢, which corresponds to the singular stationary solutioaf (1.1).
With the above notation, the inverted profile equation (1.10) takes the following form:

45w (s) + Ay sw'(s) — w'(s) + g(w(s)) = 0. (1.12)
Given a solutionw of (1.12), we define its “energy” by
H(s) = Hy o (s) = 25°w'(s)* + G (w(s)). (1.13)

It is straightforward to check that

H'(s) =w/(s)?[1— 4y — Ds] = w/(s)? {1 — 25 (g — (N — 2))] . (1.14)

This last formula depends only on the fact tli&t= g and Eq. (1.12), and not on the
specific form of the functiong andG.

The rest of this paper is organized as follows. In the next section, we prove local
existence and uniqueness of solutions to the inverted profile equation (1.12) on a
interval [0, T']. Because of the strong singularitysat 0, one cannot specify boti(0)
and w’(0). See Proposition 2.4 and Theorem 2.5 below. In the following section, we
show that these solutions can be continued fos all0 and investigate their asymptotic
behavior ag — oo. In particular, Proposition 3.5 states thauifis a solution of (1.12)
such that lim_ ., w(s) = 0, then the resulting self-similar solution of (1.1) obtained
via (1.9) and (1.5) is regular. Finally, in the last section, we prove the main results
of the paper. In the subcritical case,< ﬁ, we use a shooting argument based on
the solutionsw of (1.12). See Theorem 4.4. In the supercritical and critical cases, we
use properties of solutions to (1.12) neas 0 (Proposition 2.7) to obtain detailed
information about the intersections of the solutighf (1.6) with the singular solution
V and the values attained liy(A). See Lemmas 4.5-4.8.

2. Local existence and uniquenesstheory for theinverted profile equation

The purpose of this section is to prove an existence and uniqueness theorem fc
solutions of (1.12) on an intervgD, T]. To accomplish this, we need first to re-write
(1.12) in various equivalent forms, and then transform it into an integral equation which
has solutions continuous at= 0. To this end, we consider the three following equations:

%(4sye%w’(s)) = —sy_ze%g(w(s)); (2.1)
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T
1
w'(s) = Ve H TV err w'(T) + Zs"’e_% /ay_ze%g(w(a)) do; (2.2)

N

t

w(r) =w(fo) + (Tye% /s"’e‘% ds) w'(T)

]

‘ T
1
+ Z/s_ye_%/ay_ze%g(w(a)) do ds. (2.3)

N

It is simple to verify that (2.1) is the same as (1.12). Moreowetis a solution of
(2.1) on some interval C (0, oco) if and only if w is a solution of (2.2) oy, as long as
T € J.In alike manner, ifp is also inJ, thenw is a solution of (2.3) oy if and only

if it is a solution of (2.2).
In order to study solutions which are continuous on [0,T], we need the following

elementary results.

LEMMA 2.1.—
T

. 1 1 1
lim ZsVe# /ay‘zeﬂ do =1
s—0+ 4

N

COROLLARY 2.2.-If h:[0, T] — R is a continuous function, then

T
1
lim —s—ye—%/ay—ze%h(a)da — h(0).
s—0+ 4

N

LEMMA 2.3.—

T
lim TV 2e4T/ Ve % ds =
T—0+ 4

0

Lemmas 2.1 and 2.3 are proved with 'Hopital’s rule. Corollary 2.2 is a straightforward
conseqguence of Lemma 2.1.

PROPOSITION 2.4. —If w € C%((0, T]) is a solution of(2.1), thenw e C([0, T]).
Moreover,

w'(0) = g(w(0)), (2.4)

andw is a solution of the following integral equation ¢, 7'1:

t

w(t) =w(0) + (Tyeﬁ /s"’e‘% ds) w'(T)

1 .
— -V 45 - E
+ 4/ e /g w(O’)) do ds. (25)
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Furthermore, ifw € C([0, T']) is a solution of

t

w(t) =w(0) + (Tye%/s_ye_% ds)v
0
¢ T

1
+ Z/s_ye_% /UV_Ze%g(w(o)) do ds,
0 s
thenw e CY((0, T1), with w'(T) = v, and is also a solution of2.2) (and therefore in
C2((0, T]) and a solution 0f2.1)).

Proof. —Without loss of generality, we may choo§é> 0 small enough so that
H'(s) > 0 on O, T]. Indeed, this is always true i > ;=. Otherwise, it suffices to

require thatT < ﬁ It follows that for alls € (O, T, G(w(s)) H(s) < H(T). In
particular, |w(s)| is bounded on(0, T]. The integral equation (2.3), witly = T for
example, along with Lemma 2.1, now shows that, lig. w(z) exists. Lettingrg — O+
in (2.3), we obtain (2.5).

Next, Eq. (2.2) and Corollary 2.2 imply that ljmg, w’(s) exists and equals(w(0)).
Thus,w extends to aC* function on[0, T], verifying (2.4). The last statement in the
proposition is obvious. O

In the above proposition, the continuity efatz = O corresponds to the existence of
lim,_o r%® £ (r), where f andw are related by (1.9), which is well known. The new
aspect of the above result is the differentiabilitywofat - = 0 and the fact that’(0) is
determined byw(0). This means in particular, that in proving local existence of solutions
to the inverted profile equation (2.1), we cannot hope to specify o0t andw’ (0).

Givenu, v e RandT > 0, we define a mapping,, , : C([0, T]) — C([0, T']) by

t
Fuow()=pn+ (T"e% /s"’e_% ds)v

0

t T
1
+ Z/s_ye_% /oy_ze%g(w(a)) do ds. (2.6)
0 K
Itis clear from what has come before ti#gt , does indeed ma@ ([0, 7']) into itself,
and that a fixed point af, , is a solution of (2.5), withw(0) = u andw’(T) = v, and
thus a solution of (2.1).
We denote byCy, ([0, T']) the set of functionsy € C ([0, 7']) such that supq 7w (t)]
<M.

THEOREM 2.5.—Let R > 0,M > 0 be such that5R < M. There existsTy =
To(R, M) > O such that if

() 0<T < Ty,

(i) |ul <R,

(i) T?v| <R,
then F,, , is strict contraction onCy ([0, T]), and so has a unique fixed point in
Cu ([0, T1), which is a solution 0f2.5) with w(0) = u andw'(T) = v.



P. SOUPLET, F.B. WEISSLER/ Ann. I. H. Poincaré — AN 20 (2003) 213-235 221

Furthermore, there exist€ = C(R, M, Ty) such that ifuq, v1 and us, v, are two
pairs of real numbers satisfying the above conditions for the sBme€0, Tp], and w1
and w, the two corresponding fixed points, then

sup |wi(t) — wa(t)| + sup |wy(t) — wy(1)|
t€[0,T] 1€[0,7]

< C(lur — pal + vy — v]) = C(|w1(0) — wo(0)| + |wi(T) — wi(T)|). (2.7)

Proof. —ForT > 0, set

T
Ky(T) = T? 2eir /s—ye—rlx ds,
0

T

1
K»(T)= sup —s‘}’e‘%/oy‘ze% do.

s€(0,T] .

By Lemmas 2.1 and 2.3 it is clear that bdth and K, can be considered as continuous
functions on[0, co), with K;1(0) = 4. (Indeed, K,(T) is a nondecreasing function
of T > 0, and so has a limit a§ — 0+.) Let w1, v1, u2, v2 € R. It follows that if
w1, wo € Cy ([0, T)) andt € [0, T], then:

|fu1,v1w1(t) - fuz,vsz(I)’
< |1 — ol + T2K1(T) vy — va| + TKo(T) s[gp]!g(wlm) — g(wa())]
te[0, T

< |1 — pol + T?Ko(T) vy — val + TKo(T)D ngp]!wl(t) —wa(n)|, (2.8)
tel0,T

whereD = sup, < 18" (x)!.

We first apply (2.8) in the case whetg =0, v, = 0, w,(#) = 0, and for simplicity of
notation, we suppress the subscriptsuin v; andw;. Suppose further that conditions
(i) and (iii) in the statement hold. It follows from (2.8) that

| Fuow@®)| <R+ Kiy(T)R+ TKo(T)DM.
In particular, if
R
M(l+ K1i(T)) + TK«AT)D < 1, (2.9)

then 7, , mapsCy ([0, T]) into itself. Next we apply (2.8) withu; = u, = n and
v; = v, = v. This gives

| Fuwwi(t) = Fuow2(n)| < TK(T)D s[gr;]!wl(t) — wa(1)].
t€[0,
Condition (2.9) thereby further implies tha, , is a strict contraction 0@’y ([0, T']).

Finally, suppose (2.9) holds and that, v1 and u,, v, are two pairs of real numbers
satisfying conditions (ii) and (iii) in the statement.uf andw, are the respective fixed
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points of 7, ,, and.F,, ,,, then (2.8) implies that

- T2K1(T)|vy —
SUp |wa (1) — wa(p)| < = K2l £ TR Db = v
t€[0,T] 1—TKy(T)D

To obtain a similar estimate for sy, 7, [wy(t) — w,(t)| we use (2.2):

sup |wy(s) — wi(s)| < ( sup s‘ye‘%TVeﬁﬂw’l(T) — wy(T)|
s€[0,T] s€[0,T]
+ K2(T)D sup |wi(r) — wa(2)|.
te[0,T]

To conclude the proof, we just have to observe that there eKistsO such that all
the conditions can be verified uniformly f@r € (0, Tp]. Indeed, sincek; and K, are
continuous o0, co), andK1(0) = 4, it is clear from the assumption that 5R < tHat
there existsT, > 0 such that (2.9) holds for alf € (0, Tp]. FurthermoreT?K+(T) is
bounded on0, T;], and since

. _, 1 1
lim sup sVesT"er =1,
T—0+5¢10,7]

. 1 1
SO is sup o s 7€ #TVer. O

Remark2.6. — It is clear from the previous proof that iR5< M1 < M>, then there
exists Tp = To(R, My, M5) such that the conclusions of Theorem 2.5 are valid for
all M € [M,, M,] with the same value ofy. Indeed, it suffices that (2.9) hold for
all T € (0,Tp] and all M € [My, M;], which is clearly possible. The advantage of
so choosingTy is that Theorem 2.5 thereby gives existence of solutions to (2.5) in
Cwm, ([0, T]) anduniquenes®f solutions in the larger spaa€y,, ([0, T']). We will use
this fact in the proof of the following proposition, which plays a fundamental role in the
proofs of Theorems 1.3 and 1.4 in Section 4 below.

PROPOSITION 2.7. —Let R > 0, M > 0 (with 5R < M) and Tp = To(R, M) > 0 be
as in the statement of TheoreP5, and supposéas per the previous remarkhat
the same value ofy is valid in Theoren2.5 with M replaced byM + 1. Let u, v
and T e (0, Tp] satisfy conditiongi), (ii), and (iii) in the statement of Theorek5.
Let w € Cp ([0, TT) N C3((0, T]) N CX([0, T]) be the resulting solution of2.5) with
w(0) = andw'(T) = v, and suppose thab is not an identically constant solution. It
follows that

() there is at most one value of [0, T'] such thatw’(s) = 0;

(i) it N>2 o> ﬁ and w(0) > O, there is at most one value ofe [0, T'] such

that w(s) = g¥«.

Proof. —(i) We consider first the case whegéw) = 0. By Proposition 2.4, we know
that w’(0) = 0. Suppose that there exists € (0, T'] such thatw'(7T;) = 0. We apply
the uniqueness part of Theorem 2.5 on the intef@all;] C [0, T]. Sinceg(u) = 0,
one solution of (2.5) withw(0) = © andw’(T;) = 0 is the constant solution equal to
w. It follows thatw must be that solution ofD, 71], and therefore by local uniqueness
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of solutions to (1.12) starting from any positive point,is identically constant for all
s [0, T].

We consider next the case wheyéu) # 0, and sow’(0) # 0. Suppose there exist
0 < Ty < T» < T such thatw'(Ty) = w'(T>) = 0, and thatw’'(s) # 0,Vs € (T, T>).
For everyt € (0, T], let w, be the solution constructed by the fixed point argument
in Theorem 2.5 withw, (s)| < M on [0, 7], w,(0) = u andw’.(r) = 0. By uniqueness,
it follows thatwy, = w on[0, T1] andwz, = w on [0, T»]. Itis clear thatw, (r) can never
be equal to a zero ¢f. Indeed, that would meag(w. (7)) = 0 andw’(r) =0, and so
by local uniqueness (starting at= 1) it would follow thatw, (s) = w.(t), Vs € [0, T].
Since (as we show below), (t) is a continuous function of € (0, T], it follows that
g(w.(t)) must all be of the same sign, and in particugtw (71)) and g(w(72)) have
the same sign. By (1.12), this implies that(71) andw”(T,) have the same sign; but
this is impossible sinc&; and T, are successive zeroeswf.

To prove thatw,(r) is a continuous function of € (0, T'], we fix 7o € (0, T'] and
suppose that — 1o in (0, T]. We claim that ifr is close enough ta, thenw,, can
be defined o0, r] and obtained from Theorem 2.5 using the data- w,,(0) and
V= w;O(r). This is clear in the case < 5. If T > 19 (and so necessarilyyg < T),
we note that by local existence and uniqueness starting, at,, can be continued as
a solution on[0, 1o + €] for somee > 0. Moreover, ife is small enough, it follows
that s?|w, (s)] < R,Vs € [to — &, 70 + &] and |wy,(s)| < M + 1, Vs € [0, 1 + €]. By
uniqueness of solutions i8,41([0, t]), it follows that w,, is indeed the solution
obtained from Theorem 2.5 d, ] with the datau = w,,(0) andv = w] (7). Next,
we write

wr(f) - wro(TO) = wr(f) - wro(f) + wro(f) - wro(TO)-

On the one hand, sinag,, is continuous, we know that,,(t) — w,(t9) ast — 1.
On the other hand, (2.7) applied#g andw,, on the intervalO, t] implies that

(e (7) — wry(1)] < Clwy (1)

k)

whereC depends only offy, not onr. Sincew;O(r) — 0 ast — 10, we conclude that
wr(f) - wro(TO)-

(i) Suppose first thatv(0) = g¥/%. The first part of the proposition implies thatis
either decreasing or increasing @ 7'], and thus cannot equal/® at anys € (0, T'].

Suppose next that @ w(0) < ¥, and that there exist @ s; < s, < T such that
w(s1) = w(sz) = BY%. Sincew’(0) < 0 (by Proposition 2.4), it follows that’ must
have a zero on each of the intervélls s1) and(s1, s2), contradicting the first part of the
proposition. The case (0) > ¥ is handled similarly. O

Remark2.8. — As used implicitly in the previous proof, a given solution of (2.5) can
be obtained from Theorem 2.5 on intervidsT'], with different values off'. Obviously,
the datav = w/(T) will change asT changes, in order to produce the same solution.
Furthermore, it is clear from Proposition 2.4 that any solution of (1.12) on an interval
(0, T") can be obtained via Theorem 2.5. In other words, given any solutid,dr),
the part of that solution oD, T), T < Ty, can be obtained as a result of the contraction
mapping argument used in the proof of Theorem 2.5 for sufficiently sfgalindeed,
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given finitely many such solutions, one can choose the paramgtend and Ty in
Theorem 2.5 so that all of these solutions will be produced in the same manner vie
Theorem 2.5, for all" € (0, Tp] with appropriate choices gf andv.

This is also true for any collectio& of solutions of (1.12) defined on a common
interval (0, 71) for which H, ,/(T) ranges over a bounded set fere &£, for some
fixed T € (O, T1). To see this note first that by continuous dependence starting at any
s > 0, it follows thatH (T") ranges over a bounded set for any fixe€ds (O, 7;). Thus,
by choosingT’ € (0, T1) small enough (in the case > 1), we may assume thd{ is
nondecreasing of0, 7']. Suppose tha#,, ,,(T') < D for all w € £. It follows that
G(w(s)) < D and 28w’ (s)? < s?(D — Gmin), for all w € € and alls € [0, T']. It is
therefore clear that there exiBt M and Ty (with 5R < M) such that for alw € £,

[w(O)| <R,
T?|lw'(T)| <R, VT €0, Tyl
|w(s)]<M, Vs € [0, To].

By choosingTy > 0 smaller if necessary, it is clear that all the solutieng £ can be
obtained from Theorem 2.5 for the same value®pM andTj, and on all subintervals
[0, T] C[O, To].

It is also worth noting that, with the exception of the second part of Proposition 2.7,
the results of this section are all validjf is considered as an arbitrary but fixed real
number and ifg is replaced by an arbitrary locally Lipschitz functighnR — R, with
primitive G such thatG(0) = 0 and lim,|_, o, G(x) = oo.

3. Global existence and asymptotic behvavior of theinverted profile

In this section we show that the solutionss) of (2.5), and therefore (1.12), shown to
exist in Theorem 2.5 can be continued forsa#t 0 and study their behvavior as— oc.

ProOPOSITION 3.1. —Let w:(0,T) — R be a solution of(1.12) Thenw can be
(uniquely continued as a solution @f..12)on (0, co).
(i) If @ <<%, then|w(s)| and |sw’'(s)| are bounded or0, cc).
(i) If @ > %5, then H(s) < C(1 4 s2¥7)) = C(1 4 s¥=27%), where H is the
functional defined by1.13) In particular, |s¥ w’(s)| is bounded as — oc.
Proof. —We need to obtain aa priori bound onw (s) andw’(s) on any finite interval.
We note that by (1.13) and (1.14),

1-4(y -1
H'(s) =w'(5)*[1— 4y — Ds| = [H(s) — G(s)] #
We consider first the case< ﬁ, and soy > 1.
) 1 1
H'(s) < [H(s) — G(S)]F < [H(s) — Gmin + 1]E,
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and so
H'(s) . i
H(s)— Gmin+1 = 252
Integrating this last relationship gives arp)riori bound onH (s) on any intervale, c0).
This completes the proof in the cage< . (We have already observed that(s) > 0

for smalls > 0, and soH (s) is bounded or(O €).)
If o > the above calculation is modified to give:

N2’

H'(s) o 1+41—vy)s
H(s) — Gmin+1 252 '

When integrated, this shows thHt(s) stays bounded on any bounded interval, proving
thatw(s) can be continued for all > 0, and gives the growth estimate claimed in the
statement. O

PrRoOPOSITION 3.2. —If w: (0, c0) — R is a solution of1.12)such thatim;_, ., w(s)
=/ € R exists, therg (1) = 0.

Proof. —The proof is based on Eg. (2.1), and we treat separately the three case
a<ﬁ,a—N 2,anda>ﬁ

In the first case, wherg > 1, if g(I) # 0, then the right-hand side of (2.1) is not
integrable as — oo. We deduce that” e w'(s) behaves likeCs”~! ass — oo for
someC # 0, and sow’(s) behaves likeCs~*. This contradicts the hypothesis that
liMm,_ o w(s) =1 € R exists.

In the second case, wheye= 1, if g(I) # 0, then the right-hand side of (2.1) is still
not integrable as — oo. We deduce thaje%w/(s) behaves likeClogs ass — oo,
and sow'(s) behaves likeC'°*  which is likewise not integrable as— oco. This again
contradicts the hypothesis that lim, w(s) =1 € R exists.

In the third case, sincg < 1, we see that the right-hand side of (2.1) is integrable
ass — 00. Thus, lim_ s”e4_lsw/(s) =m € R exists. This limit must in fact be 0, since
otherwisew’(s) would decay asns~", and itself would not be integrable as— oo,
contradicting the hypothesis that ljm,, w(s) =1 € R exists. Integrating (2.1) fromto
00, taking into account: = 0, we obtain

o]

4sye4_1-vw’(s) :/t”_zefltg(w(t)) dr

N

If g(1) # 0, then the above integral behaves lke’ ! ass — oo, and sow’(s) behaves
like Cs~1. This last contradiction proves that/) =0. O

PROPOSITION 3.3.—Letw: (0, 00) — R be a solution 0f1.12) wherea # =. If

N 2, suppose in addition thab is bounded or(0, co). (This is true automatlcally

if ¢ < m by Proposition3.1.) It follows thatlim,_, ., w(s) =1 € R exists and that
iMoo H(s) =G().

In the casex > ﬁ, it must be thatG() > G(w(0)); and if G(/) = Gnin, then
w(s)=1.

o >
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Proof. ~We will prove this result by proving in fact that lim., G(w(s)) exists
(and is finite). It follows from (1.14) tha# (s) is a monotone function for large,
4

nonincreasing itv < St nondecreasing itk > 3 Thus, the following limit exists:

lim H(s) = Hy.
§—> 00

In the former case, sincH is bounded below, we conclude immediately th&t € R.
The same is true in the latter case. IndeedJf = oo, sincew is bounded or0, co), it
would follow that lim,_, . s?w’(s)? = oo, contradicting the boundednessuwbn (0, co).
ThusH,, is finite. As a consequence, (1.13) implies tifat’(s)? is bounded ori0, co),
and (1.14) implies thatw’(s)? is integrable as — oo (sincea # ).

Itis also clear that

liminf s?w’(s)? =0,
§—> 00
since otherwisev could not be bounded. It follows that

limsupG (w(s)) = He.

§—>00

We now wish to show that liminf,, G(w(s)) = Hs. Suppose not. To fix the
notation, letM = sup 5o lw(s)l, D = MaX,<u [g(x)], andK = sup o s|w’(s)|. Since
liminf,_  G(w(s)) < Hw, there existg > 0 and a sequend8y };-1.2.3.... such that

(i) se1 > sk,

(i) G(w(sy) < Hoo — &,

(i) H(s)> Hy — 5 forall s > 1.
If s > s, it follows that

N N l
|G(w(s)) — G(w(sp)| < /!g(w(a))||w’(0)| do < DK/;da = DKlogss—k.

Thus, ifs € [sg, s €/*PK], then

&€ 3e
G(w(s)) <G(w(sk)) + 2 < Hg — =
and so
3 ¢
2620w (s)2 = H(s) — >Hoo—£—Hoo % _ €&
w(s) (s) — G(w(s)) i n =
It follows that
Sk4l spef/4DK sp€/ADK

/()2 > / YA > i / - —
/sw (s)“ds sw’(s)ds 2 sds 16DK

Sk Sk Sk

which contradicts the fact thatv’(s)? is integrable as — cc.
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We have therefore proved that
IIm G(w(s)) Hy,
which implies that lim_, ., w(s) =/ exists (and is finite). Moreover, we note that
Hy,=G(),

and
lim sw/(s)?=0.
§—>00

To prove the Iast statement in the proposition, we recall tHat) > 0 for all
s >0 whena > N w5 Thus G(w(0)) = H(0) < H(s) < Hy = G(I). Moreover, if

G() = Gmin, then G(w(s)) = Gmin = G(). Thus, 28w/'(s)? = H(s) — G(w(s)) <
G -G=0. O

It is worth noting that the conclusion of the previous proposition is false:i:fﬁ
Indeed,H is a nondecreasing function, which therefore has a limit_ligg H (s) = H,
If lim,_, . w(s) =1 €R, thensw’'(s) must also have a limit, which must be zero since
w is bounded. It follows thaH,, = G (/) € R. Furthermore, sincél is nondecreasing,
it is clear thatG (w(0)) = H(0) < Hy, = G(1). By Proposition 3.2, it must also be that
g() =0. This is impossible iiG(w(0)) is bigger than all the values @f on the zeroes
of g. Since all solutions are bounded in this case, it follows that there are indeed man
bounded solutions which do not convergesas oco.

The following proposition is not directly needed for the proof of Theorem 1.4 in the
next section. It is, however, of some independent interest, and played and important rol
in our investigations.

PROPOSITION 3.4. —If a > N 3 -€.y < 1, there is no solutionw of (1.12)such that
w(s) > 0andg(w(s)) > O for all sufficiently larges > 0. In particular, any unbounded
solution must have infinitely many zeroes.

Proof. —We prove the first statement by contradiction. Thus, we supposeuthsit
indeed a solution such that(s) > 0 andg(w(s)) > 0 for all sufficiently larges > 0.
We claim thatw’(s) > O for sufficiently larges. Indeed, at any point wherew’(s) =0
we havew” (s) = —g(w(s)), which is negative for large > 0. Sincew cannot have two
successive strict local maximums;(s) must either ultimately be positive or negative.
It w'(s) < O for larges > 0, thenw must be bounded (since it is positive) and have a
finite limit. By Proposition 3.3, since is not a constant solution, this limit must be 0,
contradicting the fact that(w(s)) > 0 for larges. This proves the claim.

Sincew’(s) > 0 for larges > 0, g(w(s)) is increasing for large. Integrating formula
(2.1) froms to T and lettingT — oo, we obtain (for large > 0)

o0

ssrebu ) > [ etg(wm)d > gw) [ 2dr=g(w()

y—1

1-—

N
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In other words, for large > 0,

w'(s) C
2 _
g(w(s)) = s
which implies thatw (s) blows up in finite time, contradicting Proposition 3.1.

To prove the second part of the proposition, consider an unbounded solution with
only finitely many zeroes. Without loss of generality, we may supposeuttsgt> 0 for
sufficiently larges. Sincew is unbounded, it follows tha# (s), which is nondecreasing,
tends tooo ass — oo, and soH (s) > 0 for sufficiently larges. In particular, fors
sufficiently largew’(s) cannot have a zero in the range whe&réw(s)) < 0. Since
w(s) > 0, this implies thatv’(s) can equal zero only i (w(s)) > 0, and sav” (s) would
be negative at such a point. Sineeis unbounded, this is impossible, andws@s) > 0
for sufficiently larges. It follows thatg(w(s)) > O for larges, contradicting the first part
of the proposition.

This proves the proposition. O

PROPOSITION 3.5. —Supposexr > ﬁ and letw be a solution of1.12)on (0, co)
such thatw(s) > Ofor all s > 0andw(s) — 0 ass — co. Thenlim,_, ., s¥*w(s) exists
and is finite. In particular, iff is related tow by (1.9)and ifu is the resulting self-similar
solution of(1.1) given by(1.5), thenu is regular fors > 0 andx € R".

Proof. —We set
swi(s) 1

his) = w(s) o

Sincew’(s) cannot have successive zeroes withgut (s)) changing sign, it follows that
w'(s) < Oforlarges. In particular,i(s) < % for larges. A tedious calculation shows that

Nz
Sl

e | —+

dos 4

E (s_NT_Ze%h(s)) =—s5"

< 1 |w(s)|*
ds

+ h(s)2>. (3.1)

ThUSs_¥e%h(s) is decreasing and

N-2 1

lim s~ 2 esh(s)=m <0

§—>00
exists. We claim that in faet = 0.

We can easily eliminate the case > 0, since theni(s) — co as s — oo,
contradicting the fack(s) < 1/« for larges. If m < 0, then clearlyr(s), and likewise
sw'(s)/w(s), converge to-oo ass — oo. Moreover, since both (s) andH (s) converge
ass — oo, it follows thats?w’(s)? must likewise converge; and its limit must be zero,
since otherwisav would not be bounded. Thusw’(s)/w(s) is indeterminant of the
form g ass — oo. If we then apply I'H6pital’s rule, we get thatw’(s)/w(s) converges
to a finite number. This contradiction eliminates the possibility that 0.

Thus

N-2

lim s~ 7" €% h(s) =0, (3.2)

5§—>00
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andh(s) > 0, Vs > 0. Integrating (3.1), taking (3.2) into account, we obtain
w2 w1l |wE 2)
t 2€4h(t)—/s 2 ga <4as+ 2 + h(s)” ) ds
ROk 2)7 y
<ew| —
e’ <4m + 2 +fg!oh(s) s”2ds

t

2 v2 1/ 1 |w()|* 2)
- ¢ ex | — Suph .
N-—-2 <4ozt + 4 +S>P )

Sinceh(s) < 1/« for larges > 0, we see that for large> 0,

h(t) < ! + [w©OF + 2 Suph(s)
S2N—-2at 2(N—-2) (N-2u« 5; i
and so
1
T+ alw(@)]®
<t .
SUPRS) S 2N 20— 4 59

We immediately conclude thai(s) — 0 ass — oo. From this fact it follows that
sw'(s) + (% —&)w(s) <O for larges > 0, i.e. (sY* D w(s)) < 0, from which we see
that w(s) = O(s~¥/*~®) ass — oo. Putting this estimate back into (3.3), we get that
h(s) =O(s~19) ass — oo, i.e.

This implies that lim_ ., s¥/*w(s) exists and is finite. It follows thaf () has a finite
limit as »r — 0, and the regularity off atr = 0 follows from the integral equation
corresponding to (1.6), as in Section 3 of [4]a

4. Existence of theregular self-similar solutions

PROPOSITION 4.1. —SupposeV > 2 anda > ﬁ and lety > BY¢. There exists a
solution of(2.5) with w(0) = u, such that for som&, ands; with 0 < sg < 51,
(i) w(s)>0, Vs e (0,s0);
(i) w'(s) <0, Vs € (sg, 51];
(i) w(s) =0;
(iv) so=0& u=pY*
(v) w has precisely one intersection ¢ s1] with the constant solutiog/*.

Proof. —Let R > 0, M > 0, andT, be as in the statement of Theorem 2.5, whth .
In addition, ifa < N‘iz we requireTy < so that by (1.14)H'(s) > 0 for any
solution of (2.5) o0, T'] C [0, To].

We apply Theorem 2.5 withe > g¥%, and we impose the following additional

restrictions onl" € (0, Tp) andv:

1
-0
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R? 2TEM?
>72 + Gmin—max0, G(M)] > To—T)2"
So2r?

Let w be the resulting solution of (2.5), i.e. with(0) = u, w'(T) = v, and|w(s)| < M
on [0, T']. By Proposition 2.4, we also know that (0) > 0, with equality if and only if
w = BY«. Ifin fact u = /¢, it follows from Propsition 2.7 thab’(s) <0, Vs € (0, T].
On the other hand, ifu > g¥¢, then sincew’(0) > 0 and w(7) < 0, it follows
from Proposition 2.7 that there existge (0, T) such thatw’(s) > 0, Vs € (0, sg) and
w'(s) < 0,Vs € (sg, T1. In either case, ifv(T) < 0, we are done. Thus, we suppose that
w(T) > 0.

It is clear that if for someTy € (T, To], w(s) = 0 on (sg, T1], thenw/(s) < 0 on
(so, T1]. Indeed, suppose € (T, T1] is the smallest value where’'(t) = 0. Then
0 < w(s) < w(sg) < M on (0, t]. By Proposition 2.7 we cannot have bathi(sg) =0
andw’(t) = 0. It also follows thaiG (w(s)) < maX0, G(M)] on (sg, T1]. Since

2 RZ

H(T):2T2w’(T)2+G(w(T))>2 s+ G(w(T)) > > 573 + Grin,

it follows that,

2

272
Suppose now thab(s) > 0 on[0, Tp]. It follows that fors € [T, Tp],

H(s) > + Gmin, Vs el[T, Tol.

M2
(To—T)?

1 1 / R?
w'(s)? = o (H(s) — G(w(s))) > 2T2 <2T2 + Gmin — max|0, G(M)]) >
In other words,
-M
To — T

w'(s) <
Finally, we see that

w(Tp) Kw(T)+ (To—T) yerPTaY)"é] w(s)<M—-M=0.

This concludes the proof. o

LEMMA 4.2. —Suppose— <a< N 3, and letw be a solution o{1.12)such that

w(s) > Ofor large s > 0. It follows thatlim,_, ., w(s) = g% if and only if H (s) < 0 for
sufficiently larges > 0.

Proof. —It follows from Propositions 3.2 and 3.3 that either Jim, w(s) = g¥¢, in
which case

lim H(5) = G (5%) = Gin <0

or lim,_, o, w(s) =0, in which case lim., ., H(s) = 0. The result follows sincél (s) is
nonincreasing for large> 0. O
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COROLLARY 4.3. —Assume— <a < - There existg > 0 such that for every

w, BY* < < (1 + &)pYe, there is a solutlonw of (1.12) with w(0) = x such that
w(s) > Oforall s > 0andlim,_, . w(s) = pY*.

Proof. ~We return to the context of the contraction mapping argument (proof of
Theorem 2.5) as described at the start of the proof of Proposition 4.1. We claim tha
the set of dataw = w(0) andv = w’(T") which give rise to positive solutions converging
to pY« ass — oo is open. Indeed, let be such a solution. Fif; > m such that
H(Ty) < 0. If z is another solution with;(0) close tou and z/(T) close tov, then
z(s) >0 on 0, 71] and H, . (T1) < 0. SinceT; > Vl_l) it follows that H/ ,(s) < 0,
and thusH, . (s) < O, for all s > T;. This implies that:(s) # O for all s > T; and that
lim,_, o z(s) = pY¥*. This proves the claim.

The result now follows by applying the claim to the solution identically equal to
ﬁl/a' 0

THEOREM 4.4. ~AssumeN > 2 and -%5 < « < 5. There existg > 0 such that

for everyu, BY% < u < (1+¢)pYe, there |s a solutiorw of (1.12)with w(0) = u such
thatw(s) > Oforall s > 0andlim,_, ., w(s) =0

Proof. —-We again use the context of the contraction mapping argument of Theo-
rem 2.5 as specifically described in the proof of Proposition 4.1, and we use the same
as in Corollary 4.3. For a fixed, with Y < u < (14 ¢)pY*, the set ofv for which
the solution withw(0) = u andw’(T) = v is of the type described in Corollary 4.3 is
open. Likewise, for a fixed value qf > g%, the set ofv = w’(T) which give rise to
solutions becoming negative at some point is clearly open, and non-empty by Propostio
4.1. Thus, there exists a solution with0) = . which is of neither of these two types: it
must be positive but not converge &/“. By Propositions 3.2 and 3.3, it must converge
to0ass > o00. O

We now turn to the critical and supercritical cases. We need to use the properties O
solutions to the profile equation (1.6) with a specified initial value. More precisely, let
f» denote the solution of (1.6) such that0) = A and f; (0) = 0. We refer the reader to
Section 3 and Theorem 5 of [4] for the facts about such solutions which we use below
In particular, the limit

L= lim r2% f,(r)

exists and is a locally Lipschitz function afe R. Moreover, given anyA > 0, there
existsM = M(A) > 0 such that for alh e [—A, A] andr > 0,

A+nZ £ < M, (4.1)
L+ f()| < M. (4.2)

While it is not explicitly stated, the proof of Proposition 3.1 in [4] shows tifat M (A)
can be taken arbitrarily small ik > 0 is sufficiently small. Since > N42 Theorem 5
in [4] tells us that ifA > O, then f;.(r) > 0,Vr > 0 andL () > 0. It follows in particular
that for smallr > 0, O< fi.(r) < V() for all » > 0, whereV is the singular stationary
solution given by (1.2), considered as a function ef |x|.
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We next setw; (s) = s~ £,(1/4/5), and sow; and f, are related by formula (1.9).
Eachw, is a solution of (1.12) withw; (0) = L()). Also, w,(s) > 0,Vs > 0,VA > 0
and lim_, ., wy,(s) = 0. Since the constant solution of (1.12) identically equaBtt
corresponds under (1.9) to the singular solutigrwhich as a function of > 0 is also a
solution of (1.6), it follows that ift. > 0 is sufficiently small, them; (s) < ¥, Vs > 0.
The estimates (4.1) and (4.2) translate fordheas

M
wi(s) < At )l (4.3)
, M
s|wi ()| < m7 (4.4)

for all s > 0 and allx € [—A, A], where perhaps a different value tf = M(A) is
used. It follows from Remark 2.8 that for any fixéd> 0, the collection of solutions,
w;, A € [—A, A], can all be obtained from Theorem 2.5 with the same valugg, @i
and Ty, and also withM replaced byM + 1. This allows us to apply the conclusion of
Proposition 2.7 for all such solutions on one common intef®al’].

LEMMA 4.5. —Supposex > ﬁ. If 0 < Ay < A, are such thatw,, and w;, have

a different number of intersections with the constant solugdf¥, then there exists
X € [A1, A2] such thatw, (0) = Y.

Proof. —Suppose the conclusion is false. Without loss of generality, we assume tha
w, (0) < Y« — ¢ forall A e [A1, Ao]. Let T > 0. The integral equation (2.5) implies that
fors € [0, T] andA € [Aq, A2],

wi(s) < Y — & + T2K(T)|w) (T)| + TK2(T) DM,

whereK1(T) andK»(T') are as in the proof of Proposition 2.5, abd= max, <o, 18" (x)].
It follows from (4.4) that one can chooge> 0 small enough so that

&

T2K(T)|w)(T)| + TK2(T)DM < 5

and sow; (s) < g1/* — & for all s € [0, T] and i € [A1, A,]. Thus, no intersections with
the constant solution can occur on the intef@all']. By the estimates (4.3) and (4.4), no
intersections with the constant solutisBi® can occur fos sufficiently large, uniformly
for A € [A1, A2]. Since no intersections can be introduced at some fixed, finitd, it
must be that thev,, for A € [A1, A,] all have the same number of intersections with the
constant solutiorg'/*. This contradiction proves the lemmagn

LEMMA 4.6. —Supposex > ﬁ and letk > 0 be an integer. Lekg > 0 be such
that w,,(0) = B¥* and w,, has preciselyk intersections with the constant solution
BY*, including the one at = 0. It follows that there exists > 0 such that ifA €
(Mo — &, Ao + ©), thenw, has either exactly or exactlyk — 1 intersections with the

constant solutior/«.

Proof. —By the second statement in Proposition 2.7, there eXists 0 such that each
solutionw,, A € [Lo/2, 210] has at most one intersection with the constant soluysitf
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on the intervall0, 71]. Sincew,, indeed has an intersection with the constant solution
on [0, Ty], i.e. ats = 0, it follows that the other solutions have either the same number
or one less intersection 40, 7;]. Next, by (4.3) and (4.4) there exists > 0 such that

the solutionswy, A € [Ao/2, 21o] have no intersections with the constant solution for
s > T,. Note that thatw,,(T1) # BY* andw,,(T2) # pY*. The result follows since we
can choose > 0 so that all the solutions,, A € [Lg — ¢, Ao + €] have the same number

of intersections with the constant solution on the intef¥al 7>]. O

LEMMA 4.7.-Supposer > ﬁ and letk be a positive integer. lf; > 0andi, > 0

are such thatw,,(0) = w,,(0) = Y% and thatw;,, and w;, have respectively at most
k and at leastk + 2 intersections with the constant solutigt/* (including the one at
s = 0), then there exists between; and A, such thatw, (0) = fY/* andw;_has exactly
k + 1 intersections with the constant solutigiv®.

Proof. —(We may assume that; < 1,.) We claim first that there exists e (A1, A7)
such thatw, (0) = g¥*. Suppose not. It follows from Lemma 4.5 that all the,
A € (A1, A2) have the same number of intersections with the constant solution. But this
is impossible by Lemma 4.6: foxr close toi;, w, can have at most intersections
with the constant solution, and farclose toi,, the w, must have at least + 1 such
intersections. This proves the claim.

If none of thew, with A e (A1, A») andw; (0) = BY* have precisely + 1 intersections
with the constant solution, then by choosing an appropriate subinterval, we are reduce
to the previous situation, witty, (0) # Y for all A € (A1, A0). O

LEMMA 4.8. —-Supposer > ﬁ and letk be a positive integer. if; > 0andi, > 0
are such thatw,, (0) = w,,(0) = gY* and thatw,, and w;,, have respectively exactly
k and k + 1 intersections with the constant solutig/* (including the one at = 0),
then there exists. betweeni; and X, such thatw, (0) # ¢ and w, has exactlyk

intersections with the constant solution.

Proof. —As above, we suppose thet < 1., and we argue by contradiction. Suppose
thatw, (0) = B¢, VA € [A1, A2]. By the second statement in Proposition 2.7, there exists
T1 > 0 such that these, all have the same number of intersections with the constant
solution on[0, T1]. Indeed, these intersections all take place-at0. The estimates (4.1)
and (4.2) and continuous dependence easily imply thabthall have the same number
of intersections with the constant solution[@noo). This contradiction proves that there
existsi betweeni; andx, such thatw; (0) # g¥¢. If it happens that; (0) # g/ for all
A € [A1, A2], then it follows from Lemmas 4.5 and 4.6 that tlag must all have exactly
k intersections with the constant solution. In fact, we can always reduce to this case b
replacingx, anda, respectively by} and’, where

Ay =sup{x € [Ag, A2]: wy(0) = BY* andw; has exactly intersections with
the constant solutio'/*},

Ly =inf{x € [A], A2]: wy(0) = BY* andw, has exactlyk + 1) intersections with
the constant solutio®*}.

This proves the lemma. O



234 P. SOUPLET, F.B. WEISSLER / Ann. I. H. Poincaré — AN 20 (2003) 213-235

Proof of Theorem 1.4. By the (proof of) Proposition 3.8 in [4], rescaled versions
of the £, given by A~1 £, (A~%/?r) converge uniformly on compact subsets[6foo)
as) — oo to the regular stationary solution of (1.2) which satisfies the initial value
problem:

N

-1 o
v (r) + . V() + o) Tv(r) =0,

v(0) =1, v/(0) =0.

Joseph and Lundgren [5, Sections VII and VIII] have shown thq{,i_ig <a < af,
thenv has infinitely many intersections with the singular stationary solution of (1.1),
V(r) = pY*r=2/«_|t follows that for larger > 0, f, has an arbitrarily large number of
intersections with the singular solutidn. Thus, for largex > 0, w; has an arbitrarily
large number of intersections with the constant soluiétf of (1.12). Since foi > 0
small enoughw; has no intersection with the constant solution, it follows from the
Lemmas 4.5, 4.6, and 4.7 that there exists a sequenée=1, 2, 3, ..., such thaty;, <
Mir1, wy, (0) = pY%, andw,, has precisely intersections with the constant solution.
It then follows from Lemma 4.8 that there exists a second sequende=1,2,3, ...,
such that; < A; < Ar1, wy (0) # Y%, andw,, has precisely intersections with the
constant solutiof8'/*. Since the parity (even or odd) of the number of intersections that
w;, can have with the constant solution depends on whethe(0) is greater than or

less thang'/¢, it follows that thewk;c (0) are alternately greater than or less tigdrt .

This implies thatZ (1) is greater than (respectively less thg@t* on an infinite set of
disjoint open intervals separated by points whe() equalsg®/®.
This proves Theorem 1.4.0

Proof of Theorem 1.3. Fhe proof of Theorem 1.3 uses the same reasoning as in the
proof of Theorem 1.4. The only difference is that the singular stationary solutiand
the regular stationary solution which is known explicitly in this case, intersect each
other precisely twice. O
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