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ABSTRACT. — In this paper we deal with critical groups estimates for a functigfnézV&”’(Q)
— R (p > 2), 2 bounded domain dR”, defined by setting

f(u):l/|Vu|l’dx+%/|Vu|2dx+/c(u)dx
p
Q Q

Q

whereG(t) = fé g(s)ds andg is a smooth real function dR, growing subcritically. We remark

that the second derivative gfin each critical poini: is not a Fredholm operator froiwé”’(sz)

to its dual space, so that the generalized Morse splitting lemma does not work. In spite of the
lack of an Hilbert structure, we compute the critical groupg ah « via its Morse index.
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RESUME. — Dans cet article, nous estimons les groupes critiques pour une fonctionnelle :
f: Wol”’(sz) — R (p > 2), 2 ensemble borné d&", définie par

1 1 )
f(u):;/qulpdx—i—E/qul dx+/G(u)dx
Q

Q Q

ouG(r) = fé g(s)ds et g est une fonction réelle et réguliére SRy avec une croissance sous-
critique. On observe que la dérive secondefden chaque point n'est pas un opérateur de
Fredholm entreWé”’(Q) est son espace dual et la généralisation du Lemme de Morse ne peul
étre appliquée. Bien que la structure d’espace d’Hilbert n’existe pas, on est capable de calcul

les groupes critiques dg enu grace a I'index de Morse.
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1. Introduction and statement of the results

Since its infinite dimensional generalizations, carried out independently by Palais [17]

and Smale [18], Morse theory has been widely used in the study of multiplicity of
solutions for semilinear elliptic boundary value problems, arising in the calculus of va-
riations. It is standard that the solutions of such a differential problem can be seen a
critical points of a suitable smooth energy functiorfaldefined on a Hilbert spacH.
The basic idea of Morse theory is that the number of solutions of the differential problem
can be estimated by investigating the variations of the topological structures of the leve
sets of f. Therefore it becomes crucial to describe locally the behavior of the energy
functional near its critical points. A way to investigate such a behavior is to evaluate the
critical groups at the isolated critical points (see Definition 2.1 in Section 2 below).

We recall here that a critical pointof f is classically said to be nondegenerate if the
second order differentiaf” (1) : H — H* is an isomorphism. Such definition ensures
that any nondegenerate critical point is isolated and the Morse splitting lemma holds
As a consequence the local behavior of the functional near any nondegenerate critici
point is quite clear and computing the critical groups of a nondegenerate critical point is
possible via its Morse index, namely the supremum of the dimensions of the subspace
on which f”(u) is negative definite (see Theorem 2.4). Successively, these ideas ar
generalized by Gromoll and Meyer for computing the critical groups of an isolated
critical point u, possibly degenerate, with finite Morse index, in the cés&:) is a
Fredholm operator (see Theorem 2.5). The generalized Morse lemma is a basic tool fc
the effective computation of the critical groups and the theory of Fredholm operators
provides a natural setting for this lemma. Moreover we emphasize that such critica
groups estimates seem to require an Hilbert space structure.

However, in the study of nonlinear partial differential equations, sometimes we are
led to work on Banach spaces rather than Hilbert spaces. This is the case when w
deal with quasilinear elliptic equations involvinglaplacian(p > 2). Then, it seems
rather natural to ask whether it is possible to extend Morse theory to Banach space
and describe locally the behavior of the energy functional associated to the quasilines
elliptic problems through the estimates of its critical groups.

In order to give an answer to this question, some conceptual difficulties arise. A main
difficulty is the lack of a proper definition of nhondegenerate critical point. Indeed, if
X is a Banach space anfl: X — R is a C? functional, any critical point off is
degenerate, according to the definition given in a Hilbert spacgjsfnot isomorphic to
the dual spac& *. Moreover, it is possible to prove that the existence of a nondegenerate
critical point u € X of f having finite Morse index, which is the most interesting
case in Morse theory, implies the existence Xrof an equivalent Hilbert structure
(see [16]). Furthermore, iX is a Banach space, which is not isomorphic to its dual,
a second difficulty arises. In such a case, generalized splitting Morse lemmas fail (see
for example, Theorem 2.5), &8’ (1) cannot be a Fredholm operator.

As the definition of nondegenerate critical point given in a Hilbert space does not
work in a Banach space, in literature some authors have introduced different weake
nondegeneracy conditions for the critical points of functionals defined on a Banach spac
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(seee.g.,[4,22,23]). However these nondegeneracy conditions seem to be rather involve
and in general not easy to be verified.

In this paper we aim to estimate the critical groups of some functionals associated t
a class of quasilinear elliptic problems, involvipglaplacian. Hence we shall focus on
a class of Banach spaces which are the natural variational setting for several quasiline
elliptic problems. Precisely, we shall work on the Sobolev spﬂlée”(sz), where
2 < p<ooandQ is a bounded domain dRY (N > 1), with sufficiently regular
boundaryd 2. We shall consider the functiongl: W(}”’(Q) — R defined by setting

f(M)Z%!|Vulpdx+%Q/IVulzdx—i—Q/G(u)dx (1.1

whereG(r) = fé g(s)ds andg € C1(R, R) satisfies the following assumption:

(g) 1g'(®)| < ci)t|? + co with ¢q, ¢, positive constants and< g < p* —2if N > p,
while g is any positive number, ¥ = p.

Otherwise, ifN < p, no restrictive assumption on the growthgois required.
Clearly, critical points of the functionaf in W&”’ (2) correspond to weak solutions
of the quasilinear elliptic problem
{—Apu—Au—i-g(u):O in, ®)
u=20 on 9%2,

where A u = div(|Vu|"~2Vu), p > 2, arising in the mathematical description of
propagation phenomena of solitary waves (cf. [2,3]).

We point out that, asW&”’(Q) is not isomorphic to the dual spa#é—17'($2), where
1/p+1/p' =1, any critical pointu of f is degenerate, in the sense already given for
Hilbert spaces. Furthermore, #§(u) is not a Fredholm operator, we cannot apply the
generalized splitting Morse lemma in order to describe the behavipmefar the critical
points.

In spite of these difficulties, we are able to obtain critical groups estimates for
functional f in u, in the spirit of the generalized Morse lemma.

Before stating the main results, let us denotedgy, u) the Morse index off in u and
by m*(f, u) the sum ofm( f, u) and the dimension of the kernel ¢f' (x) in Wol”’(Q).
Moreover letC, (f, u) be thegth critical group off in u with respect to a fieldK, which
is well defined according to Definition 2.1.

THEOREM 1.1. —Letu be an isolated critical point of the functionél.1) such that
f"(u) is injective. Them (£, u) is finite and
C(fiw =K, if g=m(f,u),
Co(fiu)=A{0}, if g#m(f u).

This theorem extends a classical result in Hilbert spaces for nondegenerate critice
points (cf. Theorem 2.4), showing that the critical groupsfdh « depend only upon
its Morse index. It is interesting to observe that the usual nondegeneracy condition
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namely f”(u) is an isomorphism, can be weakened by requiring only the injectivity.
As mentioned by Uhlenbeck in [23], in an unpublished article Smale conjectured that
the nondegeneracy conditioff' («) has no kernel could be sufficient to develop Morse
theory. Theorem 1.1 shows that the Smale’s conjecture is true for the functional (1.1)
So this suggests a new definition of nondegenerate critical point for the class of func.
tionals (1.1), i.e.,

u is a nondegenerate critical point gf if £”(u): Wa" () — Wy 27 (Q) is

injective.
In the case in whicly” () is not injective, we shall prove that the number of nontrivial
critical groups off in u is finite. Precisely, we state the following result.

THEOREM 1.2. —Let u be an isolated critical point of the functiondll.1). Then
m( f,u) andm*(f, u) are finite and

Cq(f,u)={0}

foranyg <m(f,u)—1andqg >m*(f,u) + 1.

In the proof of Theorems 1.1 and 1.2, the computations of the critical grougs of
in the isolated critical poinit is reduced to a finite dimensional problem. The main
used tool is the spach, = W01’2(§2) equipped by an auxiliary Hilbert structure, which
depends on the critical poimt, being suggested by” (1) itself. In such wayW&”’(Q)
is continuously imbedded oA, and f”(«) can be extended to a Fredholm operatgr
from Wy'2(2) to its dual space, so that the dimension of the kerndl,oih W,*(%2) is
finite. Furthermore we can consider the natural splitting

Wil Q) =H & H°@H*

whereH~, H°, H are, respectively, the negative, null, and positive spaces, according
to the spectral decomposition bf, in L2().

By regularity arguments, we can also split the Banach spﬁ}:é(ﬂ), yielding that
m(f,u) andm*( f, u) are finite.

In the caseN < p, we also enhance a kind of uniform convexity pfnearu along
the positive spacél/* N W&”’ (£2), with respect to a weaker norm than the usual one of
W&”’(Q). This is enough to obtain a suitable reduction to finite dimension.

In the caseN > p we lose the “uniform weak convexity” of nearu, but we are
able to prove a sort of local convexity in the bounded sets®{<2) along the direction
of HT N Wol”’(Q). In this case the reduction to a finite dimensional problem is more
complicated and require some arguments strictly related to the Second Deformatio
Lemma (cf. [5,6]).

For reader’s convenience, in many points of this work, we prefer to distinguish the
two casesV < p andN > p.

We quote that in a recent paper [14], a finiteness result on the nontrivial critical
groups for continuous functionals, defined on a Hilbert space, is obtained by mean
of a reduction to a finite dimensional problem. Concerning critical groups estimates we
also mention the papers by [6,8].
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In a forthcoming paper, the critical groups estimates, obtained in Theorems 1.1
and 1.2, will be applied to get a multiplicity result for a quasilinear elliptic problem
of the type

{ —ePA,u—e?Au+gu)=0 ing,
u=0 on 9Q2

for smalle > 0. Such a quasilinear problem arises when looking for static solutions for
a model equation, which admits soliton-like solutions, in the spirit of [2].
The results of the present paper have been announced in [7].

2. Critical groupsin Morse Theory

In this section we recall some notions and results in Morse Theory.
Let X be a Banach space arfdbe aC? real function onX. For anya € R, we will
use the following notations:

ff={xeX: f(x)<a},
K ={xeX: f'(x)=0}.
DEFINITION 2.1.-LetK be a field. Let« be an isolated critical point off, and let
c= f(u). We call
Co(fyw)y=HI(f, [\ {u})
the gth critical group of f atu, ¢ =0,1,2,..., where H1(A, B) stands for thegth
Alexander—Spanier cohomology group of the @air B) with coefficients ifk (cf. [19]).

Remark?2.2. — By excision property, we have also thatl/ifis a neighborhood a,
then

C,(fLu)ZEHI(fNU, (f\{u}) NU).
Now let us fixu € X a critical point of f. We recall the following definition.

DEFINITION 2.3.-The Morse index off in u is the supremum of the dimensions
of the subspaces of on which f”(u) is negative definite. It is denoted by(f, u).
Moreover, the large Morse index ¢f in u is the sum ofn( f, u) and the dimension of
the kernel off”(u). It is denoted byn*(f, u).

Now we consider a Hilbert spadé and aC? functional f on H. As mentioned in the
introduction, a critical pointz € H of f is said hondegenerate, ff'(«) has a bounded
inverse. As showed in the following result, it is possible to compute the critical groups
of a nondegenerate critical point via its Morse index, using the Morse Lemma (see, fol
example, [5,15]).

THEOREM 2.4. —SupposeH a Hilbert space andf € C?(H,R). Let u be a
nondegenerate critical point of with Morse indexn. Then

C,(ffw)=K if g=m, C,(fiu)={0} if g#£m.
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Nevertheless, il = +00, we always have

Cq(f u) =10}

These ideas are extended by Gromoll and Meyer for computing the critical groups o
isolated critical points, possibly degenerate, of functional defined on a Hilbert space. Fo
completeness, we recall the generalized Morse lemma (see, for example, [5]).

THEOREM 2.5. —Supposéd a Hilbert space andf € C2(H, R). Letu be an isolated
critical point of f with Morse indexn and large Morse index:*. Suppose thay” ()
is a Fredholm operator and lelv be the kernel off” (u). If u is a local minimum of
f = fiv, then

Cy(fiu) =6, K.

Moreover ifu is a local maximum of = f,y, then
C,(f,u) =8, K.
If u is neither a local maximum nor a local minimumf),fthen
Co(f,uw) =10} if g <m, Co(fiw)={0} if g=>m".

Finally we recall the following result proved by Lancelotti [14] concerning critical
groups estimates.

THEOREM 2.6. —Let X be a Banach space,: X — R a continuous function an@
a subspace oK of finite dimensiom:. We assume that
(i) for everyu e X, the functionf is of classC? onu + V and for everyw € V the
functionsu — (f'(u)v) andu +— (f”(u)v, v) are continuous orx;
@iy (f"(m)v,v) <0foreveryv eV \ {0}.
Then we have, (f, u) = {0} for everyg <m — 1.

3. An auxiliary Hilbert space

In what follows, we denote by-|-) the scalar product ifR"Y, by || - [l @and || - |
the usual norms INL*°(2) and Wé”’(Q), respectively. Here Z p < +o00, Q is a
bounded domain iRY with sufficiently regular boundary. Let us denois (1) =
{ve W(}”’(Q): lv—u| <r}, whereu e W(}”’(Q) andr > 0. Moreover we denote by
() : WP (Q) x WP (Q) — R the duality pairing.

Let us consider the functiondl : W&”’(Q) — R defined in(1.1) by setting

1 1 )
f(u)z—/qul”dx—i—é/IVul dx+/G(u)dx
p
Q Q Q

where G(t) = [y g(s)ds and g € CY(R,R) satisfying the assumptiorig) in the
introduction. Standard arguments prove tlids aC? functional onW(}”’ ().
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Let us fix an isolated critical point € W&”’(Q) of f and setc = f(u). Itis easy to
prove that the second order differential 6in « is given by

<f”(u)v,w>:/(1+ |VulP~2)(Vo|Vw) dx
Q
+/(p—2)|Vu|”_4(Vu|Vv)(Vu|Vw)dx+/g’(u)vwdx
Q Q

for anyv, w € Wy " ().

As mentioned in the introduction, sincW&”’(Q) (p > 2) is not isomorphic to its
dual space, the operatgr’(«) is not a Fredholm operator, thus any generalized splitting
Morse lemma fails. To overcome this difficulty, we introduce a Hilbert space, depending
on the critical pointx, in which Wol”’(Q) can be embedded, so that a natural splitting
can be obtained.

To this aim we need to prove some regularity result on the critical poikite point
out that in the cas&/ < p, the Sobolev spacwol”’(ﬂ) is continuously embedded in
L (), and thusu € L*>°(2). Conversely, in the cas¥ > p, we can also derive the
L°°-boundedness of the critical poimt arguing as in Lemma 1.4 in [1].

LEMMA 3.1.-Letu € W&”’(Q) be a critical point of f. Thenu € L* ().

Proof. —The caseV < p is trivial, asW(}”’(Q) is continuously embedded b ($2).
Now we focus on the cas® > p. For j € N let us consider the real functions defined
by xj(x)=z+jifz<—j, x;@)=0if —j<z<j, x;(0=z—jif j <z

Takingv = x;(u) € W(}”’(Q) as test function in the equatiofi(x) = 0, we deduce

/]VXj(u)’pdx+/]VXj(u)|2dx—I—/g(u)xj(u)dx:0,
Q Q

Q

Consequently, taking into account that ()| < |#| and by assumptiofg), we obtain

/|W|de <c1/|u|q+2dx+cz/|u|dx

Qj Qj Qj

where2; = {x € Q: |u(x)| > j} andcy, c; are suitable positive constants. Applying
inequality (3.4), Chapter 5 in [13], we conclude that L*°(2). O

Furthermore, since € W&”’(Q) N L>®(), we can infer tha: € C1(Q). The local
result can be found in [9,20]. The proof thahas locally Holder continuous derivatives
at the boundary is given in [21] (see also [10]).

At this point, letb(x) = |[Vu(x)|?~Y/2Vu(x) € L>®(Q). Let H, be the closure of
C5°(€2) under the scalar product

(v, w) = /(1 +1b1%) (Vo|Vw) dx + (p — 2)(b|Vv) (b|Vw) dx.
Q
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Let us defing] - ||, the norm induced by, -),. Clearly || - ||, is equivalent to the usual
norm of Wy%(2), denoted by - 22, and soH, is isomorphic toWy2(2). Thus

W(}”’(Q) C H, continuously.
Now let us defineL,, : H, — Hj by setting

(Lyv, w) = (v, w), + (Kv, w)

where(Kv, w) = [, g'(w)vwdx for anyv, w € H,.

LEMMA 3.2.-L, is a compact perturbation of the Riesz isomorphism fi@mto
Hj. In particular, L, is a Fredholm operator with index zero.

Proof. —In order to prove the assert it is sufficient to show tkias a compact operator
from H, to H;. Let {v,} be a bounded sequence #y. Then there exists € H, such
that{v,} converges, up to a subsequencey tweakly in H, and strongly inL2($2). By
Lemma 3.1 and the continuity @f, there is a constant> 0 such that, for anw € H,,
lw], =1 we have

12
[ g, = vwdi| < [Igw]iu, sliwldx <c( [0, vPdx)
Q Q Q

which tends to zero as — +o0, uniformly with respect tav. This implies thatX is a
compact operator. O

Now let us denote by:(L;,) the maximal dimension of a subspaceHf on whichL,
is negative definite. Obvioushy (f, u) < m(Ly). Furthermore let us denote by*(L,)
the sum ofm(L,) and the dimension of the kernel &f,. By Lemma 3.2 we conclude
thatm(L,) andm*(L,) are finite.

SinceL, is a Fredholm operator if,, we can consider the natural splitting

H,=H ®H°®H™

whereH~, H°, H™ are, respectively, the negative, null, and positive spaces, according
to the spectral decomposition bf, in L?(R).
Furthermore, it is obvious that there exists 0 such that

(Lpv, v)p +c/v2dx > ||v||§ Yv € H,.
Q

Therefore, one can easily show that
>0 st (Lyv,v)=ulv)? YveHT (3.1)

andm(L,), m*(L}) are, respectively, the dimensions@f andH~ @ H°.
Sinceu e C1(R2), we can deduce from standard regularity theory (see Theorems 8.15,
8.24 and 8.29 in [11]) that

H™ @ H°C Wy () N L¥(RQ).
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Consequently, denoted B = H™ N W(}”’(Q) andV = H- @ H°, we get the splitting
Wol @) =vVaew

and, by (3.1)
(f"wyv,v) = plvlZ YveW,
so that

m(Ly) =m(f,u), m*(Ly) =m"(f,u). (3.2

4, Some useful lemmas

We start to recall an abstract result, contained in [12], which gives a description of
integrands generating integral functionals which are sequentially lower semicontinuous
with respect to mixed strong—weak convergence.

THEOREM 4.1. —Let®: L7(Q2, R x L1(Q,R™) —] — 0o, +00] be a functional of
the form

D, v)= [ ¢(x,u,v)dx
/

where¢ (x, u, v) is a nonnegative, continuous function apd, u, -) is convex. Thed
is lower semicontinuous with respect to the strong convergence of the compoiment
L? and with respect to the weak convergence of the compan@eni?.

The above abstract theorem is useful in order to prove some lemmas concerning, i
some sense, the uniform convexity pfnear the critical poink in the direction ofWw.
We need to distinguish the two casés< p andN > p. We start to prove the following
lemma.

LEMMA 4.2.-Let N < p. There existop > 0 and C > 0 such that for anyz e
1,p
Wo' " (), llz — ull < ro, we have

(f"@v,v) = Clvll; 4.1)

foranyve W.

Proof. —By contradiction, we assume that there exist two sequem,pesWé”’ (2)

andv, € W\ {0}, ||U,1||Wg.2 =1, such that|z,, — u|| — 0 and

liminf( f"(z,)va, va) <O. (4.2)
Since{v, } is bounded irH,, there exists € W such thaty, converges te weakly in H,

and strongly inL?(2), up to subsequences. Firstly we prove tiet 0. By contradiction
we assume that = 0. For simplicity, we denoté (&) = %|§|P, £ e RM. We notice that
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(F" (2n) 0ms v = / Vo, 2dx + / (H'(V22)Vou| V) dx + / ¢ (z)v2dx
Q Q Q
> 1+/g’(zn)v3dx. (4.3)
Q

By letting n — +o0, we get [, g'(z,)v2dx — 0 and by (4.2) and (4.3) we obtain a
contradiction.
Moreover, sincgh”(Vu)Vv|Vv) is convex with respect t& v, by Theorem 4.1, we
infer
/(h”(vu)wwu) dx <liminf /(h”(Vzn)anwv,,) dx. (4.4)
Q Q
Then (4.2) and (4.4) imply

0= iminf (£ (2,)Vu, va) = (Lpv, v) = pllv|2,
n—oo

which is a contradiction. O

We remark that itV > p we are not able to prove Lemma 4.2. Nevertheless a weaker
result can be obtained concerning, in some sense, the uniform convexitpedru in
the bounded set af*°(R2), along the direction oV (see Lemma 4.4). We firstly need
the following regularity result.

LEMMA 4.3.—Leta >0.1fz € B,(u) N W&”’(Q) is a solution of

/(VzIVw)dx+/|Vz|”_2(Vz|Vw)dx+/g(z)wdx:0 (4.5)
Q Q Q

for any w € W, thenz € L*°(Q2). Moreover there exist& > 0 such that|z|. < K,
with K depending om.

Proof. —Let {es, . .., ¢,+} be anL?-orthonormal basis iV, wherem* = m*(f, u). For
anyv € Wy”(), we can choose — Y ([qeivdx)e; € W as test function in (4.5).
Therefore, we get

/(Vlev)dx+/|Vz|”_2(Vz|Vv)dx+/g(z)vdx
Q Q Q

= Z(/emdx) (/(VZIVe,-) + |Vz|p_2(Vz|Ve,-) + g(2)e; dx). (4.6)
=1 g Q

i=1

Let us define

r(x) = Z(/(Vzwm +|Vz|P73(Vz|Ve;) + g (2)e; dy)e,-.

i=1 g
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By (4.6), z(x) solves the equation

/(VzIVv)dx—i—/|Vz|”_2(Vz|Vv)dx—I—/g(z)vdx:/rvdx 4.7
Q Q Q Q

for anyv € Wol”’(Q). SinceV C L*(R2), we haver(x) € L>®(2). Moreover||r|l, < C
whereC is a positive constant depending enNow as in Lemma 2.1, we can choose
v=yx,(2) € W(}”’(Q) as test function in (4.7) and then we get

/lelpdx <01/|Z|q+2dx+02/lzldx
Qj Qj Qj

where Q; = {x € Q. [z(x)| > j}. Applying inequality (3.4) in [13], we conclude
z € L*(Q2) and that there exist& > 0 such that|z||oc < K, With K = K(a). O

LEMMA 4.4.—LetN > p. ForanyM > 0 there existy > 0 and C > 0 such that for
anyz € W' () N L™®(Q), with [|z]|eo < M, ||z — u|| < ro, we have

(f"@wv.v) = Clvll} (4.8)

foranyve W.

Proof. —By contradiction, we assume that there exist- 0 and two sequences €
Wé’p(Q) N L>(2) andv, € W\ {0}, such that|z, |l < M, [lv,
and

a2 =1,z —ull >0

IiImiorlf<f”(zn)vn, v,) < 0. (4.9)

There existe € W such thatv, converges ta weakly in H, and strongly inL?(Q), up
to subsequences.
Since(z,} is bounded inL>*(Q) andg € C1(R, R), we derive

n—oo

lim g/(zn)v,f: g (u)v?. (4.10)
[#eri=]

Hence, arguing as in Lemma 4.2, by (4.9) and (4.10) we deri¢ed and
0> liminf (/" @) vn, vn) = ullvl,

which is a contradiction. O

In the next lemma we shall prove thatis a strict minimum point in the direction
of W. Precisely the following result holds.

LEMMA 4.5. -There existt > 0 such that for anyw € W \ {0}, with ||w]| < §, we
have

fw+w)> fu). (4.112)
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Proof. —In the caseN < p the thesis immediately follows from Lemma 4.2, with

8 = ro. Indeed, for anyw € W, w # 0 with ||w| < rg there existx € Wol”’(Q) with
llz — u|| < ro such that

1 "
flut+w) = fa)=S{f"@w,w) > Cllw|; > 0.
We consider the cas& > p. By assumption(g), there exist a constant(u) > 0,
depending on the critical point, and a constand > 0 such that for anyx € Q and
for anys € R we have

18'®)| < cu) +d|s —u@)|” (4.12)

Now let us define for any € ©2 and for anys € R

3(x,8) =g(s) + s —u()|” (s — ulx))

pr—1
and
G =Gs) + — s —u()|”
x,5)=G(s — |5 —u(x .
pe(p*—1
By (4.12) it is immediate to check that
Dgg(x,s) = —c(u). (4.13)

As in Lemma 4.3, sek(§) = %|§|1’ for any £ € RY. Obviously there exis€; > 0 and

C, > 0 such thath”(£)| < C1||7~2 for any & € RN and|h”(&1 — &)| < Co(|&117 2 +
|£2]7~2) for any &, & € RV,
Now let us fixe > 0 such that

1— Coe — Cag||Vu| 22 >1/2, w—2C2¢ || Vu |22 > /2. (4.14)

Moreover let us define the functional: Wol”’(RN) — R by setting
& d * lp
1.(v) = —/|Vv — Vul|P dx — 7/“; —ul”dx, veW,"(Q)
pJ prpr=1J

and let us set

f)=f) —t.(v), veWr ().
Firstly, we observe that there exist> 0 ande’ > 0 such that

t.(v) = 8// Vv — Vu|? dx (4.15)
Q

for anyv e W&”’(Q) such thatjv — u|| < y.
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Now we shall prove that there exist> 0, C > 0 such that for any € W&”’(Q) with
llz — ul|| <o we have

(f"(2)v,v) = C|vl||? (4.16)

foranyv € W. By contradiction, we assume that there exist two sequa;;oesW&”’(Q)
andv, € W\ {0}, such thaﬂ|v,,||wg,z =1,|z, —ul]l > 0and

liminf ( F" ) vn, va) <O0. (4.17)

There existe € W such that, converges ta weakly in H, and strongly inL2($2), up
to subsequences. Firstly we prove thag 0. By contradiction we assume that= 0.
By (4.13) we have

<f”(zn)vn7 vn> =/|an|2dx +/(h//(VZn)vvnlvvn)dx
Q Q
_ 3/(h”(Vzn — Vu)Vu,|Vv,) dx +/§’(x,zn)v3dx
Q Q
>14 1= Coe) [ V27| Vu,Pdx
Q
—czs||W||go—2/|w,,|2dx —c(u)/vfdx
Q Q

>1—eCo||Vu |22 — c(u) / v2dx. (4.18)
Q

Sincev, — 0 in L?(Q) and (4.14) holds, we derive that (4.18) contradicts (4.17) as
n — +oo and thusy # 0.
Furthermore by (4.13), we also infer that

/g’(u)vzdx < IiIETliorlf/g/(x,zn)vs. (4.19)
Q Q

Applying Theorem 4.1, by (4.19) and (4.14) we have

0> liminf (/" (z,)vn, va)

n—o0

> liminf (/(1 — £Co|VulP™?)|Vu, [2dx + /(1 — £C5)|Vzu|P 72|V, [P dx
Q Q

+@—b/WaWﬂW@WMFM+/§WQMWQ
Q Q

> (1—2scz||wngg2)/|Vv|2dx+/(h”(wwv|w) dx+/g’(u)v2dx
Q Q Q
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—(L — 26| Vull?2 [ Vo > 2_ K [iguzs B2
=(Lpv,v) — 26C3||Vu|L] Vvl = pllvll; > Vvl > 2||U||;,

Q Q

which is a contradiction.
At this point, for anyw € W with ||w| < min{y, o} we have

Fu+w) — f@)=te(u+w)+ fu+w) — f). (4.20)

Moreover for anyw € W with ||w] < min{y, o} there existx € W&”’(Q) with ||z —
ull < min{y, o'} such that

r 3 1 1
Ju+w) — fu)= §<f (2w, w)

and by (4.16)
fu+w) = fw = Clwl} (4.21)
where C is a suitable positive constant. Finally by (4.15), (4.20) and (4.21) we get
(4.11). o
Now we are ready to prove the following crucial result.

LEMMA 4.6.—There exist- €10, §[ and p €10, r[ such that for anyw € V HF,,(O)
there exists one and only omec W N B,(0) N L>($2) such that for any € W N B,.(0)
we have

f+w+u) < fo+z+u). (4.22)
Moreoverw is the only element dv N B, (0) such that

(ffu+v+w),z)=0  VzeW.

Furthermoreu is the only critical point ofB, (1) and B, (u) C f<*2.

Proof. ~We begin to consider the cagé > p. Sinceu is an isolated critical point
of f and f is continuous, we can fix & a < § such that: is the only critical point off
in B,(u) and B, (u) C f<**. By Lemma 4.3, if; € B,(u) is a solution of( f'(z), w) =0
for anyw € W, thenz € L*>°(Q2) and ||z]l.c < M WhereM > 0 is a positive constant,
depending om. Now by Lemma 4.4, in correspondence of 2iflere existsy €10, a[
andC > 0 such that (4.8) holds.

Now letr €0, [. Firstly, we notice thaff is sequentially lower semicontinuous with

respect to the weak topology Wol”’ (R2). Therefore let us fix € V N B,(0), there exists
a minimum pointw € W N B,.(0) of the functionw € W N B,(0) — f(u + v+ w).
We shall prove that there exists< 10, r[ such that for any € V N B,(0) we have

inf{fu+v+w):weW,|wl=r}> fu-+v). (4.23)

Arguing by contradiction, we assume that there exist a sequiangein W N d B, (0)
and a sequendg, } in V with ||v,|| — 0 asn — o0 such that

S +v, +w,) < fu+v,). (4.24)



S. CINGOLANI, G. VANNELLA / Ann. I. H. Poincaré — AN 20 (2003) 271-292 285

Since {w,} is bounded, there existy € W such thatw, weakly converges tav in
Lp
Wy (). _
By Lemma 4.5, 0 is the unique minimum point of the functione W N B, (0)
f(u + w), therefore we have

fw) < flu+w). (4.25)
By (4.24) and (4.25), it follows that

fw=fu+w)= nﬂToof(” + v, + wy). (4.26)
In particular by (4.26)

IiT |Vu + Vv, + Vw, |’ dx = / |Vu + Vw|P dx (4.27)
n—+00
Q Q

and thus{w,} converges taw strongly in W&”’(Q). It follows that ||w|| = r which
contradicts (4.26).

As a consequence we infer that there exists]0, r[ such that for any € V ﬁEp (0,
(4.23) holds. Therefore we have that for amye V N B,(0) the minimum pointw
belongs toWw N B,(0) and then{f’'(u + v + w), z) = 0 for anyz € W. Moreover by
Lemma4.3w € L*(R2) and|ju + v + w| . < M. Now we shall prove that for any fixed
v € V N B,(0), the minimum pointv is unique.

In fact, we shall prove even more, namely thats the only element ofV N B, (0)
such that

(fu+v+w),z)=0 VzeW.

By contradiction, we suppose that there exist w, € W N B, (0) N L (), w1 # ws
such that f'(u + v+ w1),z) =0 and({f'(u + v+ wy), z) =0 foranyz e W.

We notice thatjv + wy + t (wo — w1) || = |lv + w1 (1 —¢t) + wy|| < 3r for anyt € [0, 1]
and then|jv + wy + t (w2 — w)|| < 3r < rg for any ¢ € [0, 1]. Furthermore we have
lle + v+ wy 4+t (we — w1)lleo < 2M. Therefore, by (4.8), we deduce

O=(f'(u+v+wy) — f'u+v+w), w—wy)
1
=/<f”(u + 0+ wi 1 (w2 — wy)) (w1 — wa), w1 — wg)di > 0.
0

The claim is proved.
In the caseV < p the proof is easier and the thesis immediately follows by Lemma
4.2, arguing as before.O

5. Proof of the main result

We can define the map :v € V. N B,(0) > w € W N B,(0) wherew is the unique
minimum point of the functionv € W N B, (0) — f(u + v + w).
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By Lemma 4.6, for anw € V N B,(0) andw € W N B,(0), w = ¥ (v) if and only if
(ffu+v+w),z)=0foranyze W.

Now we shall prove thay is a continuous map. Lét,} be a sequence ivi N B ,(0)
such thatv, converges strongly te@ € V asn — 4o00. Since v (v,) is bounded in

W(}”’(Q), theny (v,) weakly converges ta € W. Let us prove thatv = v (v). Firstly
we notice that

flu+v,+v @) < flu+v,+2) (5.1)
for anyn e N andz € W N B,.(0). Therefore, by (5.1), we have
f(u+v+w)<|’£n_jjrf£ flu+v,+ v )
Llimsupfu+v,+2)=fu+v+z) (5.2)

n——+00

for anyz € W N B,(0). As a consequence we deduee= v (v). Moreover by (5.2) we
deduce

Jimf (v + ) = fut v+ v ) (5.3)

and so||y (v,) | = l¥ (v) ||, asn — +o0, which proves that/ is a continuous map.
At this point we define the map: V N B,(0) — R settingp (v) = f(u + v+ ¥ (v));
¢ is a continuous map. Furthermore let us set

Y={u+v+¢@):veVNB,0)}.

Sincey is a continuous map ang (0) = 0, it follows that the pair(¢, ¢¢ \ {0}) is
homeomorphic ta@( fiy), (fiy)°\ {u}), where

¢°={veVNB,0): flu+v+y¥®)<c}
and
(fir)={u+v+vy@:ve VNB,O), f(u+v+y(@)<clh
Therefore we have

Ci(¢,0)=C;(fly.u). (5.4)
Now our aim is to show that

Ci(f,w)=Cj(fiy,u) (5.5)

since this permits to complete the proof of Theorems 1.1 and 1.2 as follows.

Proof of Theorem 1.1. First of all Lemma 3.2 and Eq. (3.2) assure thatf, u) is
finite. Moreover a% is a local isolated maximum gf along the finite dimensional space
V = H~, we deduce, by construction, that O is a local maximurg @ V. Therefore
Ci(¢,0) =K, if j =dimV =m(f,u) andC;(¢,0) = {0} for any j # m(f, u). Finally,
by (5.4), (5.5) we deduc€;(f, u) = C;(¢, 0) and the thesis follows. O
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Proof of Theorem 1.2. temma 3.2 and Eq. (3.2) assure thatf, u) andm*(f, u)
are finite. From Theorem 2.6, due to Lancelotti [14], we have @atf, u) = {0} for
anyq < m(f,u) — 1. On the other hand, we inf&r; (¢, 0) = {0} for any j > dimV =
m*(f,u). By (5.4), (5.5) we deduc€;(f, u) = C;(¢, 0) and the thesis follows. O

In order to prove relation (5.5) it is useful to distinguish again between the two cases
N < p andN > p, treating them separately in the two following subsections.

51 CaseN <p

For convenience, let us set
U=u+ (VNB,0)+ (WnNB,(0)).

We shall prove that
(A (fir)\ {u})

is a deformation retract of

(fNU, F U\ {u)).
SetA= f°NU andB = f°NU \ {u}, let us define

yGut+tv+w)=u+v+w+t(y@) —w)

wherer € [0,1]andx =u+ v+ w € A. By (4.1), f(y(¢,x)) < c foranyt € [0, 1] and
x € A, sothaty:[0,1] x A — A is well posed. Moreover it is easy to see thats
continuousyy (0, -) =id4, ¥ (1, A) C (fiy)“ and for anyr € [0, 1], y (¢, -)|(fiy)e = idfy)e-
Furthermore, since 0 is the minimum point of the function— f(u + w), we can
deduce that for any< [0, 1], y (¢, B) C B, and thaty (1, B) C (fjy)° \ {u}.

Thus we can conclude that

H(fiy. fiy \{u})
is isomorphic to
HI(f°NU, fNU\ {u})
and by the definition of critical groups and Remark 2.2 we derive (5.5).

52 CaseN=p

In this case (4.1) is not verified, so that, following the notations of the previous
subsection, it can happen thaty (z, x)) > ¢ for some(z, x) €10, 1[x(f° N U).

In order to overcome this difficulty, we basically follow the ideas of Second
Deformation Lemma (cf. [5,6]), modifying them for our use. We report here the main
passages for the convenience of the reader.

First of all, for each; € U let us define

Ol(Z): Sup M
weW\{0} ”w”
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From continuity off” we get thatx: U — R is continuous too. Moreover we know from
Lemma 4.6 that, foreache U, x(z) =0&z €Y.

By standard arguments, concerning the construction of a pseudogradient vector fielc
we can obtain the following lemma (see e.g., [15]).

LEMMA 5.1. -SetU* = U \ Y, there exists a locally Lipschitz continuous vector field
X :U* — W such that, for each € U*

(1) IX@I < 22(2),

) (f'@), X(2) = a?(2).

The existence of the vector field gives a decreasing flow fof which is in the
direction of W. In fact the following Cauchy problem

{c’r(t)z—X(o(t)),
0(0)=2z0€U*

is locally solvable, and the function— f (o (¢)) is decreasing, as

%f(a(t)) ={f'(c®),6(®))=—{f'(c®),X(c®)) < —a?(a(1)). (5.6)

Next lemma states a sort of (P.S.) condition foin the direction ofW'.

LEMMA 5.2. —For any sequencéz,} C U such thatw(z,) — 0, asn — +o0, there
is a convergent subsequence.

Proof. —Let {e1, ..., e~} be anL?-orthonormal basis irV, wherem* = m*(f, u),
and letPy : Wy¥ () — W be the projection of. For anyz € Wy'” ()

*

(F'@z)=(f @ Pu@) + 3 [ alezdx,

i=1%

whereo! = (f'(z,), e;). As {z,,} is bounded and(z,) — 0, we have thatf'(z,) con-
verges toh: Wo'”(Q) — R, defined byh(z) = 7 a; [, eizdx for anyz € Wy’ (),
wherea! — «; € R. Moreover we notice thaf’ = A + B where A, B: W(}”’(Q) —
WL (Q) are defined as follows

(A(2),¢) = /(|vZ|P‘2(vZ|v;~) + (Vz|V{)) dx,

Q

(B(z),¢)= /g(z){dx, Vz,¢ € Wé’p(Q).
Q

As A is an invertible map with continuous inverse (cf. Theorem 5 in [2]) &b
compact, we obtain the convergence up to subsequendes}of

COROLLARY 5.3.-If A c U*, then there exists > 0 such thatinf ., a(z) > ¢
whereA is the closure ofd.
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Proof. —By contradiction, letA be a set such that c U* and {z.} C A a sequence
such thata(z,) — 0, asn — +o0o. By Lemma 5.2z, — z € A C U*, while, by
continuity of«, a(z) = 0, which contradicts the definition &f*. 0O

Now let us definey :[0,1] x (f*NU) - U so thaty(t,u + v+ w)=u + v +
(1—1w + ty(v). The following theorem will be proved.

THEOREM 5.4. —There exist®; €10, p[ such that introducing the following sets
Ui=u+ (VNB,(©0)+ (WnB,(0),
M=y ([0,1] x (f*NU)),
M=y ([0,1] x (f°NUy)),

we have f¢ N U, is a retract of M; in the direction of W. Namely, there exists a
continuous map : M1 — f N Uy such thatr| seny, = id reny, and

VzeMiir(z)—zeW. (5.7)
Proof. —First of all we will show that there ig; €10, p[ such that
fu+v+w) < fu+v+z) (5.8)

for eachu + v+ w € M with v € V. N B, (0), and for each; € W with ||z|| = r.
Indeed, reasoning by contradiction, we assume that there exist three sequghce¥,
{w,} c W and{z,} c W such that, — 0, u +v, + w, € M, ||z,|| =r and

fu+v,+z)< fw+v, +w,) VnelN (5.9)

First notice that the definition a8/ and the fact that 0 is the minimum point for the
functionw — f(u + w) give thatw,, — 0, asn — +o0.

As {z,} is bounded, it converges weakly to a certaig W and by (5.9) we have
fu+2) = f(u), thusz = 0. Moreover by (5.9) we can also infer that,| converges
to ||z|| and||z|| = r, in contradiction withy = 0.

We recall thatMy, c f<*t, as M, C U; C B,(u) and last assertion of Lemma 4.6
assuresB, (u) C fe+i.

Now letzo be an element abf, N f~[c, c+ 1]\ Y. This means thafy = u + vo + wo,
wo # ¥ (vg) and f (u + vo + ¥ (vg)) < ¢. Thus the Cauchy problem

o (1) =—X(o())
{O_(O) — ZO (PZO)

is locally solvable.

Thus, reasoning as in Second Deformation Theorgff}, > 0 such that solution
o (t, zo) to (P,,) is defined at least if0, 7.,] and f (o (T%,, z0)) = ¢ (notice that7., =0,
if f(z0) =0).

We point out that relations (5.6) and (5.8) assure #h@t,, zo) € Us.

Moreover the functionz — 7, is continuous. Indeed, let, be an element of
MiN f e, e +1]\ Y, so thatzg = u + vo + wo and f(u + vo + ¥ (vg)) < c. By
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continuity of f and, there exists a closed neighborhobid of zo such that, writing
z=u+v+w, we have thatf (v + v+ ¥ (v)) < c for eachz € U,,.

Hence the sefA = {o(t,2): z € U,y, t € [0, T,]} is a closed subset df* and, by
Corollary 5.3, there existsy > 0 such thatv(z) > ¢¢ for eachz € A. Now ¢ =T, is the
solution of f (o (¢, z)) = ¢, where by (5.6),

)
5/ (0.D) < —a?(a(t,2)) < —&,
so continuity ofz — T, is assured by implicit function theorem.
Now we are ready to define the functionM; — f N U, as follows

_lz if ze f,
r@) = {U(Tz, z) elsewhere.

Relation (5.7) comes from the definition &fgiven in Lemma 5.1.

Moreover it is clear that is continuous in the interior of ¢ N Uy, while continuity
in M1\ f¢andinf~1{c}\ Y derives from ODE theory, thus it remains only to verify
continuity ofr in f~{c}NY.

So let us fixzg in f~Yc} NY, so thatzg = u + vy + ¥ (vo), and let{z,},cn be
a sequence such that — zo. If z, eventually belongs tgf¢, then the assert easily
comes, so let us supposg¢ f¢ for eachn. This means that, = u + v, + w, where
v, — v by continuity of Py, andr(z,) = u + v, + ¢, where f (u + v, + ¢,) = ¢ and
{¢u} CW N B.(0).

Thus, denoting by the weak limit ofz,, we have that

flutvo+o) < lim flutvn+8)=c=f(u+vo+ V(o))
Consequently = v (vg) and¢, — ¥ (vg) strongly.

Sor(z,) — zo =r(z0) and the assert is completely proveda

In order to prove relation (5.5), which is the aim of this subsection, it is sufficient to
show that

((fID N UL (fIY) NUL\ {u})
is a deformation retract of
(fNUL fCNUL\ {u})

and the previous theorem makes possible to obtain the desired homotopy equivalen
between the two pairs.
We write the previous sets as

A= f°NUy, A = f NUL\ {u},
B = (fly) NU, B = (fly)*NU\ {u}.
Now let us define

ntut+v+w)=rw+v+w+1(y () —w))
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wherer € [0,1] andx =u + v + w € A. By Theorem 5.4,f(n(t, x)) < ¢ for any
t €[0,1] andx € A, so thatp: [0, 1] x A — A is well posed. Moreover it is easy to see
thatn is continuousy (0, ) =id4, n(1, A) C A" and for anyr € [0, 1], n(¢, )4 = id 4.
Furthermore by Lemma 4.5 and relation (5.7) we can deduce;thaB) c B’ and that
n(t, B) C B foranyt € [0, 1].

Thus (A’, B’) is proved to be a deformation retract ¢f, B) and, by Remark 2.2,
relation (5.5) comes.
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