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ABSTRACT. – In this paper we deal with critical groups estimates for a functionalf :W1,p
0 (�)

→ R (p > 2),� bounded domain ofRN , defined by setting

f (u)= 1

p

∫
�

|∇u|p dx + 1

2

∫
�

|∇u|2dx +
∫
�

G(u) dx

whereG(t)= ∫ t
0 g(s) ds andg is a smooth real function onR, growing subcritically. We remark

that the second derivative off in each critical pointu is not a Fredholm operator fromW1,p
0 (�)

to its dual space, so that the generalized Morse splitting lemma does not work. In spite of the
lack of an Hilbert structure, we compute the critical groups off in u via its Morse index.

Keywords:Morse theory; Critical groups estimate; p-Laplacian

RÉSUMÉ. – Dans cet article, nous estimons les groupes critiques pour une fonctionnelle :
f :W1,p

0 (�)→ R (p > 2),� ensemble borné deRN , définie par

f (u)= 1

p

∫
�

|∇u|p dx + 1

2

∫
�

|∇u|2dx +
∫
�

G(u) dx

oùG(t) = ∫ t
0 g(s) ds et g est une fonction réelle et régulière surR, avec une croissance sous-

critique. On observe que la dérive seconde def en chaque pointu n’est pas un opérateur de
Fredholm entreW1,p

0 (�) est son espace dual et la généralisation du Lemme de Morse ne peut
être appliquée. Bien que la structure d’espace d’Hilbert n’existe pas, on est capable de calculer
les groupes critiques def enu grâce à l’index de Morse.
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1. Introduction and statement of the results

Since its infinite dimensional generalizations, carried out independently by Palais [17]
and Smale [18], Morse theory has been widely used in the study of multiplicity of
solutions for semilinear elliptic boundary value problems, arising in the calculus of va-
riations. It is standard that the solutions of such a differential problem can be seen as
critical points of a suitable smooth energy functionalf , defined on a Hilbert spaceH .
The basic idea of Morse theory is that the number of solutions of the differential problem
can be estimated by investigating the variations of the topological structures of the level
sets off . Therefore it becomes crucial to describe locally the behavior of the energy
functional near its critical points. A way to investigate such a behavior is to evaluate the
critical groups at the isolated critical points (see Definition 2.1 in Section 2 below).

We recall here that a critical pointu of f is classically said to be nondegenerate if the
second order differentialf ′′(u) :H → H ∗ is an isomorphism. Such definition ensures
that any nondegenerate critical point is isolated and the Morse splitting lemma holds.
As a consequence the local behavior of the functional near any nondegenerate critical
point is quite clear and computing the critical groups of a nondegenerate critical point is
possible via its Morse index, namely the supremum of the dimensions of the subspaces
on which f ′′(u) is negative definite (see Theorem 2.4). Successively, these ideas are
generalized by Gromoll and Meyer for computing the critical groups of an isolated
critical point u, possibly degenerate, with finite Morse index, in the casef ′′(u) is a
Fredholm operator (see Theorem 2.5). The generalized Morse lemma is a basic tool for
the effective computation of the critical groups and the theory of Fredholm operators
provides a natural setting for this lemma. Moreover we emphasize that such critical
groups estimates seem to require an Hilbert space structure.

However, in the study of nonlinear partial differential equations, sometimes we are
led to work on Banach spaces rather than Hilbert spaces. This is the case when we
deal with quasilinear elliptic equations involvingp-laplacian(p > 2). Then, it seems
rather natural to ask whether it is possible to extend Morse theory to Banach spaces
and describe locally the behavior of the energy functional associated to the quasilinear
elliptic problems through the estimates of its critical groups.

In order to give an answer to this question, some conceptual difficulties arise. A main
difficulty is the lack of a proper definition of nondegenerate critical point. Indeed, if
X is a Banach space andf :X → R is a C2 functional, any critical point off is
degenerate, according to the definition given in a Hilbert space, ifX is not isomorphic to
the dual spaceX∗. Moreover, it is possible to prove that the existence of a nondegenerate
critical point u ∈ X of f having finite Morse index, which is the most interesting
case in Morse theory, implies the existence onX of an equivalent Hilbert structure
(see [16]). Furthermore, ifX is a Banach space, which is not isomorphic to its dual,
a second difficulty arises. In such a case, generalized splitting Morse lemmas fail (see,
for example, Theorem 2.5), asf ′′(u) cannot be a Fredholm operator.

As the definition of nondegenerate critical point given in a Hilbert space does not
work in a Banach space, in literature some authors have introduced different weaker
nondegeneracy conditions for the critical points of functionals defined on a Banach space
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(see e.g., [4,22,23]). However these nondegeneracy conditions seem to be rather involved
and in general not easy to be verified.

In this paper we aim to estimate the critical groups of some functionals associated to
a class of quasilinear elliptic problems, involvingp-laplacian. Hence we shall focus on
a class of Banach spaces which are the natural variational setting for several quasilinear
elliptic problems. Precisely, we shall work on the Sobolev spaceW

1,p
0 (�), where

2 < p < ∞ and� is a bounded domain ofRN (N � 1), with sufficiently regular
boundary∂�. We shall consider the functionalf :W 1,p

0 (�)→ R defined by setting

f (u)= 1

p

∫
�

|∇u|p dx + 1

2

∫
�

|∇u|2dx +
∫
�

G(u) dx (1.1)

whereG(t)= ∫ t
0 g(s) ds andg ∈ C1(R,R) satisfies the following assumption:

(g) |g′(t)| � c1|t|q + c2 with c1, c2 positive constants and0 � q < p∗ − 2 if N > p,
while q is any positive number, ifN = p.

Otherwise, ifN < p, no restrictive assumption on the growth ofg is required.
Clearly, critical points of the functionalf in W 1,p

0 (�) correspond to weak solutions
of the quasilinear elliptic problem

{−�pu−�u+ g(u)= 0 in�,

u= 0 on ∂�,
(P)

where �pu = div(|∇u|p−2∇u), p > 2, arising in the mathematical description of
propagation phenomena of solitary waves (cf. [2,3]).

We point out that, asW 1,p
0 (�) is not isomorphic to the dual spaceW−1,p′

(�), where
1/p + 1/p′ = 1, any critical pointu of f is degenerate, in the sense already given for
Hilbert spaces. Furthermore, asf ′′(u) is not a Fredholm operator, we cannot apply the
generalized splitting Morse lemma in order to describe the behavior off near the critical
points.

In spite of these difficulties, we are able to obtain critical groups estimates for
functionalf in u, in the spirit of the generalized Morse lemma.

Before stating the main results, let us denote bym(f,u) the Morse index off in u and
by m∗(f, u) the sum ofm(f,u) and the dimension of the kernel off ′′(u) in W 1,p

0 (�).
Moreover letCq(f,u) be theqth critical group off in u with respect to a fieldK, which
is well defined according to Definition 2.1.

THEOREM 1.1. –Let u be an isolated critical point of the functional(1.1) such that
f ′′(u) is injective. Thenm(f,u) is finite and

Cq(f,u)∼= K, if q =m(f,u),
Cq(f,u)= {0}, if q �=m(f,u).

This theorem extends a classical result in Hilbert spaces for nondegenerate critical
points (cf. Theorem 2.4), showing that the critical groups off in u depend only upon
its Morse index. It is interesting to observe that the usual nondegeneracy condition,
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namelyf ′′(u) is an isomorphism, can be weakened by requiring only the injectivity.
As mentioned by Uhlenbeck in [23], in an unpublished article Smale conjectured that
the nondegeneracy conditionf ′′(u) has no kernel could be sufficient to develop Morse
theory. Theorem 1.1 shows that the Smale’s conjecture is true for the functional (1.1).
So this suggests a new definition of nondegenerate critical point for the class of func-
tionals (1.1), i.e.,

u is a nondegenerate critical point off if f ′′(u) :W 1,p
0 (�)→W

−1,p′
0 (�) is

injective.

In the case in whichf ′′(u) is not injective, we shall prove that the number of nontrivial
critical groups off in u is finite. Precisely, we state the following result.

THEOREM 1.2. –Let u be an isolated critical point of the functional(1.1). Then
m(f,u) andm∗(f, u) are finite and

Cq(f,u)= {0}
for anyq �m(f,u)− 1 andq �m∗(f, u)+ 1.

In the proof of Theorems 1.1 and 1.2, the computations of the critical groups off

in the isolated critical pointu is reduced to a finite dimensional problem. The main
used tool is the spaceHu =W

1,2
0 (�) equipped by an auxiliary Hilbert structure, which

depends on the critical pointu, being suggested byf ′′(u) itself. In such wayW 1,p
0 (�)

is continuously imbedded onHu andf ′′(u) can be extended to a Fredholm operatorLu
fromW

1,2
0 (�) to its dual space, so that the dimension of the kernel ofLu in W 1,2

0 (�) is
finite. Furthermore we can consider the natural splitting

W
1,2
0 (�)=H− ⊕H 0 ⊕H+

whereH−,H 0,H+ are, respectively, the negative, null, and positive spaces, according
to the spectral decomposition ofLu in L2(�).

By regularity arguments, we can also split the Banach spaceW
1,p
0 (�), yielding that

m(f,u) andm∗(f, u) are finite.
In the caseN < p, we also enhance a kind of uniform convexity off nearu along

the positive spaceH+ ∩W 1,p
0 (�), with respect to a weaker norm than the usual one of

W
1,p
0 (�). This is enough to obtain a suitable reduction to finite dimension.
In the caseN � p we lose the “uniform weak convexity” off nearu, but we are

able to prove a sort of local convexity in the bounded sets ofL∞(�) along the direction
of H+ ∩W 1,p

0 (�). In this case the reduction to a finite dimensional problem is more
complicated and require some arguments strictly related to the Second Deformation
Lemma (cf. [5,6]).

For reader’s convenience, in many points of this work, we prefer to distinguish the
two casesN < p andN � p.

We quote that in a recent paper [14], a finiteness result on the nontrivial critical
groups for continuous functionals, defined on a Hilbert space, is obtained by means
of a reduction to a finite dimensional problem. Concerning critical groups estimates we
also mention the papers by [6,8].
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In a forthcoming paper, the critical groups estimates, obtained in Theorems 1.1
and 1.2, will be applied to get a multiplicity result for a quasilinear elliptic problem
of the type {−εp�pu− ε2�u+ g(u)= 0 in�,

u= 0 on ∂�
for smallε > 0. Such a quasilinear problem arises when looking for static solutions for
a model equation, which admits soliton-like solutions, in the spirit of [2].

The results of the present paper have been announced in [7].

2. Critical groups in Morse Theory

In this section we recall some notions and results in Morse Theory.
Let X be a Banach space andf be aC2 real function onX. For anya ∈ R, we will

use the following notations:

f a = {
x ∈X: f (x)� a

}
,

K = {
x ∈X: f ′(x)= 0

}
.

DEFINITION 2.1. –Let K be a field. Letu be an isolated critical point off , and let
c= f (u). We call

Cq(f,u)=Hq
(
f c, f c \ {u})

the qth critical group off at u, q = 0,1,2, . . . , whereHq(A,B) stands for theqth
Alexander–Spanier cohomology group of the pair(A,B) with coefficients inK (cf. [19]).

Remark2.2. – By excision property, we have also that, ifU is a neighborhood ofu,
then

Cq(f,u)∼=Hq
(
f c ∩U, (f c \ {u}) ∩U)

.

Now let us fixu ∈X a critical point off . We recall the following definition.

DEFINITION 2.3. –The Morse index off in u is the supremum of the dimensions
of the subspaces ofX on whichf ′′(u) is negative definite. It is denoted bym(f,u).
Moreover, the large Morse index off in u is the sum ofm(f,u) and the dimension of
the kernel off ′′(u). It is denoted bym∗(f, u).

Now we consider a Hilbert spaceH and aC2 functionalf onH . As mentioned in the
introduction, a critical pointu ∈H of f is said nondegenerate, iff ′′(u) has a bounded
inverse. As showed in the following result, it is possible to compute the critical groups
of a nondegenerate critical point via its Morse index, using the Morse Lemma (see, for
example, [5,15]).

THEOREM 2.4. –SupposeH a Hilbert space andf ∈ C2(H,R). Let u be a
nondegenerate critical point off with Morse indexm. Then

Cq(f,u)∼= K if q =m, Cq(f,u)= {0} if q �=m.
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Nevertheless, ifm= +∞, we always have

Cq(f,u)= {0}.
These ideas are extended by Gromoll and Meyer for computing the critical groups of

isolated critical points, possibly degenerate, of functional defined on a Hilbert space. For
completeness, we recall the generalized Morse lemma (see, for example, [5]).

THEOREM 2.5. –SupposeH a Hilbert space andf ∈C2(H,R). Letu be an isolated
critical point of f with Morse indexm and large Morse indexm∗. Suppose thatf ′′(u)
is a Fredholm operator and letN be the kernel off ′′(u). If u is a local minimum of
f̃ = f|N , then

Cq(f,u)∼= δq,mK.

Moreover ifu is a local maximum off̃ = f|N , then

Cq(f,u)∼= δq,m∗K.

If u is neither a local maximum nor a local minimum off̃ , then

Cq(f,u)= {0} if q �m, Cq(f,u)= {0} if q �m∗.

Finally we recall the following result proved by Lancelotti [14] concerning critical
groups estimates.

THEOREM 2.6. –LetX be a Banach space,f :X→ R a continuous function andV
a subspace ofX of finite dimensionm. We assume that:

(i) for everyu ∈ X, the functionf is of classC2 on u+ V and for everyv ∈ V the
functionsu �→ 〈f ′(u)v〉 andu �→ 〈f ′′(u)v, v〉 are continuous onX;

(ii) 〈f ′′(u)v, v〉< 0 for everyv ∈ V \ {0}.
Then we haveCq(f,u)= {0} for everyq �m− 1.

3. An auxiliary Hilbert space

In what follows, we denote by(·|·) the scalar product inRN , by ‖ · ‖∞ and ‖ · ‖
the usual norms inL∞(�) andW 1,p

0 (�), respectively. Here 2< p < +∞, � is a
bounded domain inRN with sufficiently regular boundary. Let us denoteBr(u) =
{v ∈W 1,p

0 (�): ‖v − u‖ < r}, whereu ∈W 1,p
0 (�) and r > 0. Moreover we denote by

〈·, ·〉 :W−1,p′
(�)×W 1,p

0 (�)→ R the duality pairing.
Let us consider the functionalf :W 1,p

0 (�)→ R defined in(1.1) by setting

f (u)= 1

p

∫
�

|∇u|p dx + 1

2

∫
�

|∇u|2dx +
∫
�

G(u) dx

where G(t) = ∫ t
0 g(s) ds and g ∈ C1(R,R) satisfying the assumption(g) in the

introduction. Standard arguments prove thatf is aC2 functional onW 1,p
0 (�).



S. CINGOLANI, G. VANNELLA / Ann. I. H. Poincaré – AN 20 (2003) 271–292 277

Let us fix an isolated critical pointu ∈W 1,p
0 (�) of f and setc = f (u). It is easy to

prove that the second order differential off in u is given by

〈
f ′′(u)v,w

〉 =
∫
�

(
1+ |∇u|p−2)(∇v|∇w)dx

+
∫
�

(p− 2)|∇u|p−4(∇u|∇v)(∇u|∇w)dx +
∫
�

g′(u)vw dx

for anyv,w ∈W 1,p
0 (�).

As mentioned in the introduction, sinceW 1,p
0 (�) (p > 2) is not isomorphic to its

dual space, the operatorf ′′(u) is not a Fredholm operator, thus any generalized splitting
Morse lemma fails. To overcome this difficulty, we introduce a Hilbert space, depending
on the critical pointu, in whichW 1,p

0 (�) can be embedded, so that a natural splitting
can be obtained.

To this aim we need to prove some regularity result on the critical pointu. We point
out that in the caseN < p, the Sobolev spaceW 1,p

0 (�) is continuously embedded in
L∞(�), and thusu ∈ L∞(�). Conversely, in the caseN � p, we can also derive the
L∞-boundedness of the critical pointu, arguing as in Lemma 1.4 in [1].

LEMMA 3.1. –Letu ∈W 1,p
0 (�) be a critical point off . Thenu ∈L∞(�).

Proof. –The caseN < p is trivial, asW 1,p
0 (�) is continuously embedded inL∞(�).

Now we focus on the caseN � p. Forj ∈ N let us consider the real functionsχj defined
by χj (z)= z+ j if z <−j , χj (z)= 0 if −j � z� j , χj (z)= z− j if j < z.

Takingv = χj (u) ∈W 1,p
0 (�) as test function in the equationf ′(u)= 0, we deduce

∫
�

∣∣∇χj (u)∣∣p dx +
∫
�

∣∣∇χj (u)∣∣2dx +
∫
�

g(u)χj (u) dx = 0.

Consequently, taking into account that|χj(u)| � |u| and by assumption(g), we obtain

∫
�j

|∇u|p dx � c1

∫
�j

|u|q+2dx + c2

∫
�j

|u|dx

where�j = {x ∈ �: |u(x)| > j} and c1, c2 are suitable positive constants. Applying
inequality (3.4), Chapter 5 in [13], we conclude thatu ∈ L∞(�). ✷

Furthermore, sinceu ∈ W 1,p
0 (�) ∩ L∞(�), we can infer thatu ∈ C1(�). The local

result can be found in [9,20]. The proof thatu has locally Holder continuous derivatives
at the boundary is given in [21] (see also [10]).

At this point, letb(x) = |∇u(x)|(p−4)/2∇u(x) ∈ L∞(�). Let Hb be the closure of
C∞

0 (�) under the scalar product

(v,w)b =
∫
�

(
1+ |b|2)(∇v|∇w)dx + (p− 2)(b|∇v)(b|∇w)dx.
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Let us define‖ · ‖b the norm induced by(·, ·)b. Clearly‖ · ‖b is equivalent to the usual
norm of W 1,2

0 (�), denoted by‖ · ‖
W

1,2
0

, and soHb is isomorphic toW 1,2
0 (�). Thus

W
1,p
0 (�)⊂Hb continuously.
Now let us defineLb :Hb →H ∗

b by setting

〈Lbv,w〉 = (v,w)b + 〈Kv,w〉
where〈Kv,w〉 = ∫

� g
′(u)vw dx for anyv,w ∈Hb.

LEMMA 3.2. –Lb is a compact perturbation of the Riesz isomorphism fromHb to
H ∗
b . In particular,Lb is a Fredholm operator with index zero.

Proof. –In order to prove the assert it is sufficient to show thatK is a compact operator
from Hb to H ∗

b . Let {vn} be a bounded sequence inHb. Then there existsv ∈ Hb such
that {vn} converges, up to a subsequence, tov weakly inHb and strongly inL2(�). By
Lemma 3.1 and the continuity ofg′, there is a constantc > 0 such that, for anyw ∈Hb,
‖w‖b = 1 we have

∣∣∣∣
∫
�

g′(u)(vn − v)w dx
∣∣∣∣ �

∫
�

∣∣g′(u)
∣∣|vn − v||w|dx � c

(∫
�

|vn − v|2dx
)1/2

which tends to zero asn→ +∞, uniformly with respect tow. This implies thatK is a
compact operator. ✷

Now let us denote bym(Lb) the maximal dimension of a subspace ofHb on whichLb
is negative definite. Obviouslym(f,u)�m(Lb). Furthermore let us denote bym∗(Lb)
the sum ofm(Lb) and the dimension of the kernel ofLb. By Lemma 3.2 we conclude
thatm(Lb) andm∗(Lb) are finite.

SinceLb is a Fredholm operator inHb, we can consider the natural splitting

Hb =H− ⊕H 0 ⊕H+

whereH−,H 0,H+ are, respectively, the negative, null, and positive spaces, according
to the spectral decomposition ofLb in L2(�).

Furthermore, it is obvious that there existsc > 0 such that

〈Lbv, v〉b + c
∫
�

v2dx � ‖v‖2
b ∀v ∈Hb.

Therefore, one can easily show that

∃µ> 0 s.t. 〈Lbv, v〉 �µ‖v‖2
b ∀v ∈H+ (3.1)

andm(Lb),m∗(Lb) are, respectively, the dimensions ofH− andH− ⊕H 0.
Sinceu ∈ C1(�), we can deduce from standard regularity theory (see Theorems 8.15,

8.24 and 8.29 in [11]) that

H− ⊕H 0 ⊂W 1,p
0 (�)∩L∞(�).
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Consequently, denoted byW =H+ ∩W 1,p
0 (�) andV =H− ⊕H 0, we get the splitting

W
1,p
0 (�)= V ⊕W

and, by (3.1)
〈
f ′′(u)v, v

〉
�µ‖v‖2

b ∀v ∈W,
so that

m(Lb)=m(f,u), m∗(Lb)=m∗(f, u). (3.2)

4. Some useful lemmas

We start to recall an abstract result, contained in [12], which gives a description of
integrands generating integral functionals which are sequentially lower semicontinuous
with respect to mixed strong–weak convergence.

THEOREM 4.1. –Let. :Lp(�,Rk)×Lq(�,Rm)→] − ∞,+∞] be a functional of
the form

.(u, v)=
∫
�

φ(x,u, v) dx

whereφ(x,u, v) is a nonnegative, continuous function andφ(x,u, ·) is convex. Then.
is lower semicontinuous with respect to the strong convergence of the componentu in
Lp and with respect to the weak convergence of the componentv in Lq .

The above abstract theorem is useful in order to prove some lemmas concerning, in
some sense, the uniform convexity off near the critical pointu in the direction ofW .
We need to distinguish the two casesN < p andN � p. We start to prove the following
lemma.

LEMMA 4.2. –Let N < p. There existr0 > 0 and C > 0 such that for anyz ∈
W

1,p
0 (�), ‖z− u‖< r0, we have

〈
f ′′(z)v, v

〉
�C‖v‖2

b (4.1)

for anyv ∈W .

Proof. –By contradiction, we assume that there exist two sequenceszn ∈ W 1,p
0 (�)

andvn ∈W \ {0}, ‖vn‖W1,2
0

= 1, such that‖zn − u‖ → 0 and

lim inf
n→∞

〈
f ′′(zn)vn, vn

〉
� 0. (4.2)

Since{vn} is bounded inHb, there existsv ∈W such thatvn converges tov weakly inHb
and strongly inL2(�), up to subsequences. Firstly we prove thatv �= 0. By contradiction
we assume thatv = 0. For simplicity, we denoteh(ξ)= 1

p
|ξ |p, ξ ∈ R

N . We notice that
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〈
f ′′(zn)vn, vn

〉 =
∫
�

|∇vn|2dx +
∫
�

(
h′′(∇zn)∇vn|∇vn)dx +

∫
�

g′(zn)v2
n dx

� 1+
∫
�

g′(zn)v2
n dx. (4.3)

By letting n → +∞, we get
∫
� g

′(zn)v2
n dx → 0 and by (4.2) and (4.3) we obtain a

contradiction.
Moreover, since(h′′(∇u)∇v|∇v) is convex with respect to∇v, by Theorem 4.1, we

infer ∫
�

(
h′′(∇u)∇v|∇v)dx � lim inf

n→∞

∫
�

(
h′′(∇zn)∇vn|∇vn)dx. (4.4)

Then (4.2) and (4.4) imply

0� lim inf
n→∞

〈
f ′′(zn)vn, vn

〉
� 〈Lbv, v〉 �µ‖v‖2

b,

which is a contradiction. ✷
We remark that ifN � p we are not able to prove Lemma 4.2. Nevertheless a weaker

result can be obtained concerning, in some sense, the uniform convexity off nearu in
the bounded set ofL∞(�), along the direction ofW (see Lemma 4.4). We firstly need
the following regularity result.

LEMMA 4.3. –Leta > 0. If z ∈ Ba(u)∩W 1,p
0 (�) is a solution of

∫
�

(∇z|∇w)dx +
∫
�

|∇z|p−2(∇z|∇w)dx +
∫
�

g(z)w dx = 0 (4.5)

for anyw ∈ W , thenz ∈ L∞(�). Moreover there existsK > 0 such that‖z‖∞ � K ,
withK depending ona.

Proof. –Let {e1, . . . , em∗} be anL2-orthonormal basis inV , wherem∗ =m∗(f, u). For
anyv ∈W 1,p

0 (�), we can choosev − ∑m∗
i=1

(∫
� eiv dx

)
ei ∈W as test function in (4.5).

Therefore, we get
∫
�

(∇z|∇v) dx +
∫
�

|∇z|p−2(∇z|∇v) dx +
∫
�

g(z)v dx

=
m∗∑
i=1

(∫
�

eiv dx

)(∫
�

(∇z|∇ei)+ |∇z|p−2(∇z|∇ei)+ g(z)ei dx
)
. (4.6)

Let us define

r(x)=
m∗∑
i=1

(∫
�

(∇z|∇ei)+ |∇z|p−2(∇z|∇ei)+ g(z)ei dy
)
ei .



S. CINGOLANI, G. VANNELLA / Ann. I. H. Poincaré – AN 20 (2003) 271–292 281

By (4.6),z(x) solves the equation
∫
�

(∇z|∇v) dx +
∫
�

|∇z|p−2(∇z|∇v) dx +
∫
�

g(z)v dx =
∫
�

rv dx (4.7)

for anyv ∈W 1,p
0 (�). SinceV ⊂ L∞(�), we haver(x) ∈ L∞(�). Moreover‖r‖∞ � C

whereC is a positive constant depending ona. Now as in Lemma 2.1, we can choose
v = χj (z) ∈W 1,p

0 (�) as test function in (4.7) and then we get

∫
�j

|∇z|p dx � c1

∫
�j

|z|q+2dx + c2

∫
�j

|z|dx

where�j = {x ∈ �: |z(x)| > j}. Applying inequality (3.4) in [13], we conclude
z ∈L∞(�) and that there existsK > 0 such that‖z‖∞ �K , withK =K(a). ✷

LEMMA 4.4. –LetN � p. For anyM > 0 there existr0> 0 andC > 0 such that for
anyz ∈W 1,p

0 (�)∩L∞(�), with ‖z‖∞ �M , ‖z− u‖< r0, we have

〈
f ′′(z)v, v

〉
�C‖v‖2

b (4.8)

for anyv ∈W .

Proof. –By contradiction, we assume that there existM > 0 and two sequenceszn ∈
W

1,p
0 (�)∩L∞(�) andvn ∈W \ {0}, such that‖zn‖∞ �M , ‖vn‖W1,2

0
= 1, ‖zn−u‖ → 0

and

lim inf
n→∞

〈
f ′′(zn)vn, vn

〉
� 0. (4.9)

There existsv ∈W such thatvn converges tov weakly inHb and strongly inL2(�), up
to subsequences.

Since{zn} is bounded inL∞(�) andg ∈C1(R,R), we derive

lim
n→∞

∫
�

g′(zn)v2
n =

∫
�

g′(u)v2. (4.10)

Hence, arguing as in Lemma 4.2, by (4.9) and (4.10) we derivev �= 0 and

0� lim inf
n→∞

〈
f ′′(zn)vn, vn

〉
� µ‖v‖2

b,

which is a contradiction. ✷
In the next lemma we shall prove thatu is a strict minimum point in the direction

of W . Precisely the following result holds.

LEMMA 4.5. –There existδ > 0 such that for anyw ∈W \ {0}, with ‖w‖ � δ, we
have

f (u+w) > f (u). (4.11)
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Proof. –In the caseN < p the thesis immediately follows from Lemma 4.2, with
δ = r0. Indeed, for anyw ∈ W , w �= 0 with ‖w‖ < r0 there existsz ∈ W 1,p

0 (�) with
‖z− u‖< r0 such that

f (u+w)− f (u)= 1

2

〈
f ′′(z)w,w

〉
� C‖w‖2

b > 0.

We consider the caseN � p. By assumption(g), there exist a constantc(u) > 0,
depending on the critical pointu, and a constantd > 0 such that for anyx ∈ � and
for anys ∈ R we have

∣∣g′(s)
∣∣ � c(u)+ d∣∣s − u(x)∣∣p∗−2

. (4.12)

Now let us define for anyx ∈� and for anys ∈ R

g̃(x, s)= g(s)+ d

p∗ − 1

∣∣s − u(x)∣∣p∗−2(
s − u(x))

and

G̃(x, s)=G(s)+ d

p∗(p∗ − 1)

∣∣s − u(x)∣∣p∗
.

By (4.12) it is immediate to check that

Dsg̃(x, s)� −c(u). (4.13)

As in Lemma 4.3, seth(ξ)= 1
p
|ξ |p for any ξ ∈ R

N . Obviously there existC1 > 0 and

C2 > 0 such that|h′′(ξ)| � C1|ξ |p−2 for any ξ ∈ R
N and |h′′(ξ1 − ξ2)| � C2(|ξ1|p−2 +

|ξ2|p−2) for anyξ1, ξ2 ∈ R
N .

Now let us fixε > 0 such that

1−C2ε−C2ε‖∇u‖p−2
∞ � 1/2, µ− 2C2ε‖∇u‖p−2

∞ � µ/2. (4.14)

Moreover let us define the functionaltε :W 1,p
0 (RN)→ R by setting

tε(v)= ε

p

∫
�

|∇v − ∇u|p dx − d

p∗(p∗ − 1)

∫
�

|v − u|p∗
dx, v ∈W 1,p

0 (�)

and let us set

f̃ (v)= f (v)− tε(v), v ∈W 1,p
0 (�).

Firstly, we observe that there existγ > 0 andε′ > 0 such that

tε(v)� ε′
∫
�

|∇v− ∇u|p dx (4.15)

for anyv ∈W 1,p
0 (�) such that‖v − u‖ � γ .
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Now we shall prove that there existσ > 0, C̃ > 0 such that for anyz ∈W 1,p
0 (�) with

‖z− u‖ � σ we have 〈
f̃ ′′(z)v, v

〉
� C̃‖v‖2

b (4.16)

for anyv ∈W . By contradiction, we assume that there exist two sequenceszn ∈W 1,p
0 (�)

andvn ∈W \ {0}, such that‖vn‖W1,2
0

= 1, ‖zn − u‖ → 0 and

lim inf
n→∞

〈
f̃ ′′(zn)vn, vn

〉
� 0. (4.17)

There existsv ∈W such thatvn converges tov weakly inHb and strongly inL2(�), up
to subsequences. Firstly we prove thatv �= 0. By contradiction we assume thatv = 0.
By (4.13) we have

〈
f̃ ′′(zn)vn, vn

〉 =
∫
�

|∇vn|2dx +
∫
�

(
h′′(∇zn)∇vn|∇vn)dx

− ε
∫
�

(
h′′(∇zn − ∇u)∇vn|∇vn)dx +

∫
�

g̃′(x, zn)v2
n dx

� 1+ (1−C2ε)

∫
�

|∇zn|p−2|∇vn|2dx

−C2ε‖∇u‖p−2
∞

∫
�

|∇vn|2dx − c(u)
∫
�

v2
n dx

� 1− εC2‖∇u‖p−2
∞ − c(u)

∫
�

v2
n dx. (4.18)

Sincevn → 0 in L2(�) and (4.14) holds, we derive that (4.18) contradicts (4.17) as
n→ +∞ and thusv �= 0.

Furthermore by (4.13), we also infer that

∫
�

g′(u)v2 dx � lim inf
n→∞

∫
�

g̃′(x, zn)v2
n. (4.19)

Applying Theorem 4.1, by (4.19) and (4.14) we have

0� lim inf
n→∞

〈
f̃ ′′(zn)vn, vn

〉

� lim inf
n→∞

(∫
�

(
1− εC2|∇u|p−2)|∇vn|2 dx +

∫
�

(1− εC2)|∇zn|p−2|∇vn|2dx

+ (p− 2)
∫
�

|∇zn|p−4|(∇zn|∇vn)|2dx +
∫
�

g̃′(x, zn)v2
n dx

)

�
(
1− 2εC2‖∇u‖p−2

∞
)∫
�

|∇v|2dx +
∫
�

(
h′′(∇u)∇v|∇v)dx +

∫
�

g′(u)v2dx
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= 〈Lbv, v〉 − 2εC2‖∇u‖p−2
∞

∫
�

|∇v|2 � µ‖v‖2
b − µ

2

∫
�

|∇v|2 � µ

2
‖v‖2

b

which is a contradiction.
At this point, for anyw ∈W with ‖w‖ � min{γ,σ } we have

f (u+w)− f (u)= tε(u+w)+ f̃ (u+w)− f̃ (u). (4.20)

Moreover for anyw ∈ W with ‖w‖ � min{γ,σ } there existsz ∈ W 1,p
0 (�) with ‖z −

u‖ � min{γ,σ } such that

f̃ (u+w)− f̃ (u)= 1

2

〈
f̃ ′′(z)w,w

〉

and by (4.16)

f̃ (u+w)− f̃ (u)� C̃‖w‖2
b (4.21)

where C̃ is a suitable positive constant. Finally by (4.15), (4.20) and (4.21) we get
(4.11). ✷

Now we are ready to prove the following crucial result.

LEMMA 4.6. –There existr ∈]0, δ[ and ρ ∈]0, r[ such that for anyv ∈ V ∩ Bρ(0)
there exists one and only onēw ∈W ∩Br(0)∩L∞(�) such that for anyz ∈W ∩Br(0)
we have

f (v+ w̄+ u)� f (v+ z+ u). (4.22)

Moreoverw̄ is the only element ofW ∩Br(0) such that
〈
f ′(u+ v + w̄), z〉 = 0 ∀z ∈W.

Furthermoreu is the only critical point ofBr(u) andBr(u)⊂ f c+1.

Proof. –We begin to consider the caseN � p. Sinceu is an isolated critical point
of f andf is continuous, we can fix 0< a < δ such thatu is the only critical point off
in Ba(u) andBa(u)⊂ f c+1. By Lemma 4.3, ifz ∈ Ba(u) is a solution of〈f ′(z),w〉 = 0
for anyw ∈W , thenz ∈ L∞(�) and‖z‖∞ �M whereM > 0 is a positive constant,
depending ona. Now by Lemma 4.4, in correspondence of 2M, there existsr0 ∈]0, a[
andC > 0 such that (4.8) holds.

Now letr ∈]0, r03 [. Firstly, we notice thatf is sequentially lower semicontinuous with

respect to the weak topology ofW 1,p
0 (�). Therefore let us fixv ∈ V ∩Br(0), there exists

a minimum pointw̄ ∈W ∩Br(0) of the functionw ∈W ∩Br(0) �→ f (u+ v +w).
We shall prove that there existsρ ∈]0, r[ such that for anyv ∈ V ∩Bρ(0) we have

inf
{
f (u+ v +w): w ∈W,‖w‖ = r}> f (u+ v). (4.23)

Arguing by contradiction, we assume that there exist a sequence{wn} in W ∩ ∂Br(0)
and a sequence{vn} in V with ‖vn‖ → 0 asn→ +∞ such that

f (u+ vn +wn)� f (u+ vn). (4.24)
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Since {wn} is bounded, there exists̃w ∈ W such thatwn weakly converges tõw in
W

1,p
0 (�).
By Lemma 4.5, 0 is the unique minimum point of the functionw ∈ W ∩ Br(0) �→

f (u+w), therefore we have

f (u)� f (u+ w̃). (4.25)

By (4.24) and (4.25), it follows that

f (u)= f (u+ w̃)= lim
n→+∞f (u+ vn +wn). (4.26)

In particular by (4.26)

lim
n→+∞

∫
�

|∇u+ ∇vn + ∇wn|p dx =
∫
�

|∇u+ ∇w̃|p dx (4.27)

and thus{wn} converges tow̃ strongly inW 1,p
0 (�). It follows that ‖w̃‖ = r which

contradicts (4.26).
As a consequence we infer that there existsρ ∈]0, r[ such that for anyv ∈ V ∩Bρ(0),

(4.23) holds. Therefore we have that for anyv ∈ V ∩ Bρ(0) the minimum pointw̄
belongs toW ∩ Br(0) and then〈f ′(u + v + w̄), z〉 = 0 for any z ∈ W . Moreover by
Lemma 4.3,w̄ ∈ L∞(�) and‖u+ v+ w̄‖∞ �M . Now we shall prove that for any fixed
v ∈ V ∩Bρ(0), the minimum pointw̄ is unique.

In fact, we shall prove even more, namely thatw̄ is the only element ofW ∩ Br(0)
such that 〈

f ′(u+ v+ w̄), z〉 = 0 ∀z ∈W.
By contradiction, we suppose that there existw1,w2 ∈W ∩ Br(0) ∩ L∞(�), w1 �= w2

such that〈f ′(u+ v +w1), z〉 = 0 and〈f ′(u+ v+w2), z〉 = 0 for anyz ∈W .
We notice that‖v+w1 + t (w2 −w1)‖ = ‖v+w1(1− t)+w2‖ � 3r for anyt ∈ [0,1]

and then‖v + w1 + t (w2 − w1)‖ � 3r < r0 for any t ∈ [0,1]. Furthermore we have
‖u+ v +w1 + t (w2 −w1)‖∞ � 2M . Therefore, by (4.8), we deduce

0= 〈
f ′(u+ v+w1)− f ′(u+ v +w2),w1 −w2

〉

=
1∫

0

〈
f ′′(u+ v +w1 + t (w2 −w1)

)
(w1 −w2),w1 −w2

〉
dt > 0.

The claim is proved.
In the caseN < p the proof is easier and the thesis immediately follows by Lemma

4.2, arguing as before.✷
5. Proof of the main result

We can define the mapψ :v ∈ V ∩ Bρ(0) �→ w̄ ∈W ∩ Br(0) wherew̄ is the unique
minimum point of the functionw ∈W ∩Br(0) �→ f (u+ v +w).
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By Lemma 4.6, for anyv ∈ V ∩ Bρ(0) andw ∈W ∩ Br(0), w = ψ(v) if and only if
〈f ′(u+ v+w), z〉 = 0 for anyz ∈W .

Now we shall prove thatψ is a continuous map. Let{vn} be a sequence inV ∩Bρ(0)
such thatvn converges strongly tov ∈ V as n → +∞. Sinceψ(vn) is bounded in
W

1,p
0 (�), thenψ(vn) weakly converges tow ∈W . Let us prove thatw = ψ(v). Firstly

we notice that

f
(
u+ vn +ψ(vn)) � f (u+ vn + z) (5.1)

for anyn ∈ N andz ∈W ∩Br(0). Therefore, by (5.1), we have

f (u+ v+w)� lim inf
n→+∞ f

(
u+ vn +ψ(vn))

� lim sup
n→+∞

f (u+ vn + z)= f (u+ v+ z) (5.2)

for anyz ∈W ∩Br(0). As a consequence we deducew = ψ(v). Moreover by (5.2) we
deduce

lim
n→+∞f

(
u+ vn +ψ(vn)) = f (

u+ v+ψ(v)) (5.3)

and so‖ψ(vn)‖ → ‖ψ(v)‖, asn→ +∞, which proves thatψ is a continuous map.
At this point we define the mapφ :V ∩Bρ(0)→ R settingφ(v)= f (u+ v+ψ(v));

φ is a continuous map. Furthermore let us set

Y = {
u+ v+ψ(v): v ∈ V ∩Bρ(0)}.

Sinceψ is a continuous map andψ(0) = 0, it follows that the pair
(
φc,φc \ {0}) is

homeomorphic to((f|Y )c, (f|Y )c \ {u}), where

φc = {
v ∈ V ∩Bρ(0): f (

u+ v+ψ(v)) � c
}

and

(f|Y )c = {
u+ v +ψ(v): v ∈ V ∩Bρ(0), f (

u+ v+ψ(v)) � c
}
.

Therefore we have

Cj(φ,0)=Cj(f|Y , u). (5.4)

Now our aim is to show that

Cj(f,u)= Cj(f|Y , u) (5.5)

since this permits to complete the proof of Theorems 1.1 and 1.2 as follows.

Proof of Theorem 1.1. –First of all Lemma 3.2 and Eq. (3.2) assure thatm(f,u) is
finite. Moreover asu is a local isolated maximum off along the finite dimensional space
V =H−, we deduce, by construction, that 0 is a local maximum ofφ in V . Therefore
Cj(φ,0)∼= K, if j = dimV =m(f,u) andCj(φ,0)= {0} for anyj �=m(f,u). Finally,
by (5.4), (5.5) we deduceCj(f,u)= Cj(φ,0) and the thesis follows. ✷
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Proof of Theorem 1.2. –Lemma 3.2 and Eq. (3.2) assure thatm(f,u) andm∗(f, u)
are finite. From Theorem 2.6, due to Lancelotti [14], we have thatCq(f,u) = {0} for
anyq �m(f,u)− 1. On the other hand, we inferCj(φ,0) = {0} for any j > dimV =
m∗(f, u). By (5.4), (5.5) we deduceCj(f,u)=Cj(φ,0) and the thesis follows. ✷

In order to prove relation (5.5) it is useful to distinguish again between the two cases
N < p andN � p, treating them separately in the two following subsections.

5.1. Case N < p

For convenience, let us set

U = u+ (
V ∩Bρ(0)) + (

W ∩Br(0)).
We shall prove that (

(f|Y )c, (f|Y )c \ {u})
is a deformation retract of (

f c ∩U,f c ∩U \ {u}).
SetA= f c ∩U andB = f c ∩U \ {u}, let us define

γ (t, u+ v +w)= u+ v +w+ t(ψ(v)−w)

wheret ∈ [0,1] andx = u+ v +w ∈A. By (4.1),f (γ (t, x))� c for any t ∈ [0,1] and
x ∈ A, so thatγ : [0,1] × A → A is well posed. Moreover it is easy to see thatγ is
continuous,γ (0, ·)= idA, γ (1,A)⊂ (f|Y )c and for anyt ∈ [0,1], γ (t, ·)|(f|Y )c = id(f|Y )c .
Furthermore, since 0 is the minimum point of the functionw �→ f (u + w), we can
deduce that for anyt ∈ [0,1], γ (t,B)⊂ B, and thatγ (1,B)⊂ (f|Y )c \ {u}.

Thus we can conclude that

Hj
(
f c|Y , f

c
|Y \ {u})

is isomorphic to

Hj
(
f c ∩U,f c ∩U \ {u})

and by the definition of critical groups and Remark 2.2 we derive (5.5).

5.2. Case N � p

In this case (4.1) is not verified, so that, following the notations of the previous
subsection, it can happen thatf (γ (t, x)) > c for some(t, x) ∈]0,1[×(f c ∩U).

In order to overcome this difficulty, we basically follow the ideas of Second
Deformation Lemma (cf. [5,6]), modifying them for our use. We report here the main
passages for the convenience of the reader.

First of all, for eachz ∈U let us define

α(z)= sup
w∈W\{0}

〈f ′(z),w〉
‖w‖ .
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From continuity off ′ we get thatα :U → R is continuous too. Moreover we know from
Lemma 4.6 that, for eachz ∈U , α(z)= 0⇔ z ∈ Y .

By standard arguments, concerning the construction of a pseudogradient vector field,
we can obtain the following lemma (see e.g., [15]).

LEMMA 5.1. –SetU ∗ =U \Y , there exists a locally Lipschitz continuous vector field
X :U ∗ →W such that, for eachz ∈U ∗

(1) ‖X(z)‖ � 2α(z),
(2) 〈f ′(z),X(z)〉 � α2(z).

The existence of the vector fieldX gives a decreasing flow forf which is in the
direction ofW . In fact the following Cauchy problem

{
σ̇ (t)= −X(σ(t)),
σ (0)= z0 ∈U ∗

is locally solvable, and the functiont �→ f (σ (t)) is decreasing, as

d

dt
f

(
σ (t)

) = 〈
f ′(σ (t)), σ̇ (t)〉 = −〈

f ′(σ (t)),X(
σ (t)

)〉
<−α2(σ (t)). (5.6)

Next lemma states a sort of (P.S.) condition forf in the direction ofW .

LEMMA 5.2. –For any sequence{zn} ⊂ U such thatα(zn)→ 0, asn→ +∞, there
is a convergent subsequence.

Proof. –Let {e1, . . . , em∗} be anL2-orthonormal basis inV , wherem∗ = m∗(f, u),
and letPW :W 1,p

0 (�)→W be the projection onW . For anyz ∈W 1,p
0 (�)

〈
f ′(zn), z

〉 = 〈
f ′(zn),PW(z)

〉 +
m∗∑
i=1

∫
�

αineiz dx,

whereαin = 〈f ′(zn), ei〉. As {zn} is bounded andα(zn)→ 0, we have thatf ′(zn) con-
verges toh :W 1,p

0 (�) → R, defined byh(z)= ∑m∗
i=1αi

∫
� eiz dx for anyz ∈W 1,p

0 (�),
whereαin → αi ∈ R. Moreover we notice thatf ′ = A + B whereA,B :W 1,p

0 (�) →
W−1,p′

(�) are defined as follows

〈
A(z), ζ

〉 =
∫
�

(|∇z|p−2(∇z|∇ζ )+ (∇z|∇ζ ))dx,
〈
B(z), ζ

〉 =
∫
�

g(z)ζ dx, ∀z, ζ ∈W 1,p
0 (�).

As A is an invertible map with continuous inverse (cf. Theorem 5 in [2]) andB is
compact, we obtain the convergence up to subsequences of{zn}.

COROLLARY 5.3. –If A ⊂ U ∗, then there existsε > 0 such thatinfz∈A α(z) > ε
whereA is the closure ofA.
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Proof. –By contradiction, letA be a set such thatA ⊂ U ∗ and{zn} ⊂ A a sequence
such thatα(zn) → 0, as n → +∞. By Lemma 5.2zn → z ∈ A ⊂ U ∗, while, by
continuity ofα, α(z)= 0, which contradicts the definition ofU ∗. ✷

Now let us defineγ : [0,1] × (f c ∩ U) → U so thatγ (t, u + v + w) = u + v +
(1− t)w+ tψ(v). The following theorem will be proved.

THEOREM 5.4. –There existsρ1 ∈]0, ρ[ such that introducing the following sets

U1 = u+ (
V ∩Bρ1(0)

) + (
W ∩Br(0)),

M = γ ([0,1] × (f c ∩U)),
M1 = γ ([0,1] × (f c ∩U1)

)
,

we havef c ∩ U1 is a retract ofM1 in the direction ofW . Namely, there exists a
continuous mapr :M1 → f c ∩U1 such thatr|f c∩U1 = idf c∩U1 and

∀z ∈M1: r(z)− z ∈W. (5.7)

Proof. –First of all we will show that there isρ1 ∈]0, ρ[ such that

f (u+ v+w)< f (u+ v+ z) (5.8)

for eachu + v + w ∈ M with v ∈ V ∩ Bρ1(0), and for eachz ∈ W with ‖z‖ = r .
Indeed, reasoning by contradiction, we assume that there exist three sequences{vn} ⊂ V ,
{wn} ⊂W and{zn} ⊂W such thatvn → 0, u+ vn +wn ∈M , ‖zn‖ = r and

f (u+ vn + zn)� f (u+ vn +wn) ∀n ∈ N. (5.9)

First notice that the definition ofM and the fact that 0 is the minimum point for the
functionw �→ f (u+w) give thatwn → 0, asn→ +∞.

As {zn} is bounded, it converges weakly to a certainz ∈ W and by (5.9) we have
f (u+ z)= f (u), thusz = 0. Moreover by (5.9) we can also infer that‖zn‖ converges
to ‖z‖ and‖z‖ = r , in contradiction withz= 0.

We recall thatM1 ⊂ f c+1, asM1 ⊂ U1 ⊂ Br(u) and last assertion of Lemma 4.6
assuresBr(u)⊂ f c+1.

Now letz0 be an element ofM1 ∩f −1[c, c+1] \Y . This means thatz0 = u+v0 +w0,
w0 �=ψ(v0) andf (u+ v0 +ψ(v0)) < c. Thus the Cauchy problem

{
σ̇ (t)= −X(σ(t))
σ (0)= z0

(Pz0)

is locally solvable.
Thus, reasoning as in Second Deformation Theorem,∃Tz0 � 0 such that solution

σ (t, z0) to (Pz0) is defined at least in[0, Tz0] andf (σ (Tz0, z0))= c (notice thatTz0 = 0,
if f (z0)= c).

We point out that relations (5.6) and (5.8) assure thatσ (Tz0, z0) ∈U1.
Moreover the functionz �→ Tz is continuous. Indeed, letz0 be an element of

M1 ∩ f −1[c, c + 1] \ Y , so thatz0 = u + v0 + w0 and f (u + v0 + ψ(v0)) < c. By
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continuity off andψ , there exists a closed neighborhoodUz0 of z0 such that, writing
z= u+ v +w, we have thatf (u+ v+ψ(v)) < c for eachz ∈ Uz0.

Hence the setA = {σ (t, z): z ∈ Uz0, t ∈ [0, Tz0]} is a closed subset ofU ∗ and, by
Corollary 5.3, there existsε0> 0 such thatα(z) > ε0 for eachz ∈A. Now t = Tz is the
solution off (σ (t, z))= c, where by (5.6),

δ

δt
f

(
σ (t, z)

)
<−α2(σ (t, z))<−ε2

0,

so continuity ofz �→ Tz is assured by implicit function theorem.
Now we are ready to define the functionr :M1 → f c ∩U1 as follows

r(z)=
{
z if z ∈ f c,
σ (Tz, z) elsewhere.

Relation (5.7) comes from the definition ofX given in Lemma 5.1.
Moreover it is clear thatr is continuous in the interior off c ∩ U1, while continuity

in M1 \ f c and inf −1{c} \ Y derives from ODE theory, thus it remains only to verify
continuity ofr in f −1{c} ∩ Y .

So let us fixz0 in f −1{c} ∩ Y , so thatz0 = u + v0 + ψ(v0), and let {zn}n∈N be
a sequence such thatzn → z0. If zn eventually belongs tof c, then the assert easily
comes, so let us supposezn /∈ f c for eachn. This means thatzn = u+ vn + wn where
vn → v0 by continuity ofPV , andr(zn) = u+ vn + ζn wheref (u+ vn + ζn) = c and
{ζn} ⊂W ∩Br(0).

Thus, denoting byζ the weak limit ofζn, we have that

f (u+ v0 + ζ )� lim
n→+∞f (u+ vn + ζn)= c= f (

u+ v0 +ψ(v0)
)
.

Consequentlyζ =ψ(v0) andζn →ψ(v0) strongly.
Sor(zn)→ z0 = r(z0) and the assert is completely proved.✷
In order to prove relation (5.5), which is the aim of this subsection, it is sufficient to

show that (
(f |Y )c ∩U1, (f |Y )c ∩U1 \ {u})

is a deformation retract of (
f c ∩U1, f

c ∩U1 \ {u})
and the previous theorem makes possible to obtain the desired homotopy equivalence
between the two pairs.

We write the previous sets as

A= f c ∩U1, A′ = f c ∩U1 \ {u},
B = (f |Y )c ∩U1, B ′ = (f |Y )c ∩U1 \ {u}.

Now let us define

η(t, u+ v +w)= r(u+ v+w+ t (ψ(v)−w))
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where t ∈ [0,1] and x = u + v + w ∈ A. By Theorem 5.4,f (η(t, x)) � c for any
t ∈ [0,1] andx ∈A, so thatη : [0,1] ×A→A is well posed. Moreover it is easy to see
thatη is continuous,η(0, ·)= idA, η(1,A) ⊂ A′ and for anyt ∈ [0,1], η(t, ·)A′ = idA′ .
Furthermore by Lemma 4.5 and relation (5.7) we can deduce thatη(1,B)⊂ B ′ and that
η(t,B)⊂ B for any t ∈ [0,1].

Thus (A′,B ′) is proved to be a deformation retract of(A,B) and, by Remark 2.2,
relation (5.5) comes.
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