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ABSTRACT. — This paper concerns with two issues. The first issue is the existence and the
uniqueness of the ergodic type humberhich appears in the oblique boundary condition. The
second issue is the application of the number for the study of homogenizations of oscillating

Neumann boundary conditions.
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RESUME. — Dans cette article, nous traitons deux problémes. Le premier est I'existence e
l'unicité d’'un nombre du type ergodiquiqui apparait dans la condition oblique sur le bord.
Le second est I'application de ce nombre pour la recherche des homogénéizationses conditio

Neumann sur des bords oscillants.
© 2003 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

1. Introduction
First, we are concerned with the existence and unigueness of the ndnibbehe
following problem.
F(x,Vu,Vzu):0 in Q, 1)
d+(Vu,y(x)) —gx) =0 onaQ, (2

where( is a domain inR", F is a fully nonlinear uniformly elliptic Hamilton—Jacobi—
Bellman (HJB in short) operator:

F(x,Vu,Vz ) =su Z au(x) —Zba(x)—} 3)

aeA l] 1

satisfying the following conditions. A is a set of controls, and by denotisg: matrices
= (af% (x))ij (o € A), there exisiz x m matriceso® such that
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A%(x) =0%(c%) (x) anyxeQ, a €A,
Ml <AY(x) <Al anyx e, a €A, ()

where 0< A; < A, positive constantd, then x n identity matrix. There exists a positive
constantL > 0 such that

]a,‘-"j(x) — a,‘-"j(y)] <Lix—y|l anyl1l<i,j<n, xef, ae€A,
|b¥(x) —b¥ ()| <Llx —y| anyl<i<n, x€Q, a€A. 5)
There also exists a positive constagt such that for the outward unit normal vector
n(x) (x € 092), y (x) satisfies
(y(x),n(x)) =>yo>0 anyx €. (6)

The domain is assumed to be either one of the following:

Bounded open domain iR" with C** boundary 7)
or
Half space irR", periodic in the firsiz — 1 variables withC** boundary:
{(', x,)| periodic inx’ = (x1, ..., x,_1) € (R/Z)"Y, x, > fi(x))},
where f; € C*((R/Z)" ™). (8)
(In the latter case (8), a supplement boundary conditiar), at oo will be added to
(1)-(2).)

The following example implies the qualitative meaning of the nunaber

Example1.1. — LetQ2 be a domain ir{7), andg(x) be a Lipschitz continuous function
on 02. Assume that there exists a numbkésuch that the following problem has a
viscosity solution.

—Au=0 ing,
d+ (Vu,n(x)) —g(x)=0 onaQ.
Then,

~ el /g(x)ds

Proof of Example 1.1. ¥ the Green’s flrst identity:
/Auvdx+/Vu Vvdx—/v—dS
Q2
we putv =1, and get/|3Q2| = [, g(x)dS. O

Thus,d is a kind of the averaged quantity @2. For general Hamiltoniang', the
way to construct the numbdrandu (x) in (1)—(2) is the following. Here we assume that
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(7) holds. (The case (8) is more complicated, and will be treated in Section 3 below.) Fol
anya > 0, consider

F(x,Vu,\,Vzu,\)zo in Q, 9)
duy + (Vu, y(x)) —g(x) =0 onag. (10)

The regularity ofu; (A € (0, 1)) which will be shown in Section 2 yields, for any fixed
Xo € Q

Iirjg/\u,\(x) =d uniformly in Q, (11)
and by taking a subsequenke| 0,

!\i’To(uk/(x) — uy(x0)) =u(x) uniformly in Q. (12)

The limit numbe is unique in the sense that with which (1)—(2) has a viscosity solution.
The above limit function:(x) is one of such solutions. (The solution of (1)—(2) is not
unique, foru + C (C constant) is also a solution.) We shall show in Section 2 these
facts. Now, the meaning of the numbércan be stated by using (11). For any fixed
measurable functioa(z) : [0, co) — A (control process), letX?, A¥) be the stochastic
process defined by

_x+/ (X) dW, +/b“ X ds—/y X%)dA,, 120,

A7 _/1(,9 ) d A, is continuous, nondecreasingrige 0, (13)

whereb® = (b¢);, 1yo(-) a characteristic function o#2, W, (r > 0) anm-dimensional
Brownian motion. The study of the existence and the uniquenegk;ofA?) is called

the Skorokhod problem, and its solvability is known under the preceding assumptions
We refer the readers to Lions and Sznitman [30], Lions, Menaldi and Sznitman [28], anc
Lions [27]. Let

J"‘(x) E / Xa 1(952 )dA;,

and define
u (x) = Ir(]f) JP(x) inQ, (14)

where the infimum is taken over all possible control processes. It is known:that
is the unique solution of (9)—(10). (See, Lions and Trudinger [31], and Freidlin and
Wentzell [21].) Thus,

o]

d =liminf E, / &7 g (X) Lo (X*) dA,, (15)
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if the right hand side of (11) exists, which represents the fact that the nudnisethe

long time averaged reflection force on the boundary. (Each time the tragectory reaches
9%, it gains the force (x) and is pushed back in the direction-ef (x).) We remark the
similarity of the convergence (11) to the so-called ergodic problem for HIB equations.
That is, by considering,

)\u,\(x)—i-F(x,Vuk,Vzu,\):O inQ,
<Vuk(x),y(x)>=0 onog2,

it is known that an unique numbéf exists such that

lim A =d’ uniformly in Q.
m u,(x)=d uniformly

We refer the readers to Arisawa and Lions [6], Arisawa [1,2], Bensoussan [10] for the
various types (operators and boundary conditions) of ergodic problems. As the abov
ergodic problem “in the domain”, the existencedbin (2) “on the boundary” relates to
the ergodicity of the stochastic process (13). Even for some classes of degenerate ellipt
operatorsF, the numbet/ in (2) exists. We remark this in Section 4, below.

Next, we turn our interests to the homogenization. The unique existentend(fL)—
(2) plays an essential role to study the homogenization of oscillating Neumann boundar
conditions. The simplest example is as follows.

Examplel.2. —Letc, g, fi(x,&1) be functions defined inx, &) € R?2 x R\Z
(periodic in&; with period 1). Assume thaf; > 0, and that there exists a constagnt- 0
such that > ¢o > 0. For anye > 0, let

X
Q= {(xl,Xz) | 8f1<x, —1> <x2< b, |xq] <a},
)

T, = {(xl,xz) |xo=¢f1 (x, %)} N9Q,.

Letu,(x) (¢ > 0) be the solution of

—Au, =0 ing,, (16)

(Vue(x),n.(x)) + c(x, ﬂ)us = g(x, ﬂ) onl,, (17)
& &

u,=0 onaQ\I,, (18)

wheren, (x) is the outward unit normal t&.. Then, as | 0, u. converges to a unique
functiontu (x) uniformly in €, which is the solution of
—Au=0 inQy,
(Vu(x),v(x)) + L(x,u, Vu) =0 onTy, (19)
u=0 o0ndQ\lo,

wherev is the outward unit normal tby, andL is defined as follows.
Let O(x) = {(§1.82) | &2 > fi(x,&1), & € R\Z}. Then, for any fixed(x,r, p) €
Q x R x R?, there exists a unique numbéfx, r, p) such that
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A <82v+32v> 0 ino®)
— v=—| — —_— = X),
¢ 982 " 082

af1 f1 f1
d(x.r. p) + (Vev. v (§)) — (J 1+ <351> \ll+ (a&) T 8§1> 0

ondo(x), wherey (¢) = (3fl —1) (¢ €90(x)), and

L(x,r, p)=—d(x,r, p). (20)

In Friedman, Hu, and Liu [22], a similar problem to the above example (linear, three
scales case) was treated by the variational approach. (See also [13].) We shall extel
the result (including Example 1.2.) to nonlinear problems by using the existence of
the long time averaged reflection numbiin (1)—(2). As Example 1.2 indicates, the
effective limit boundary condition (19) is defined by using the long time averaged
number in (20). Our present approach was inspired by the classical method of forma
asymptotic expansions of Bensoussin, Lions, and Papanicolaou [11]. This approach |
closely related to the ergodic problem for HIB equations described in the preceding
part of this introduction. For the application of the ergodic problem [6,1,2] to obtain
the effective P.D.E. in the domain, we refer the readers to Arisawa [3,4], Arisawa and
Giga [5], Evans [18,19], and Lions, Papanicolaou, and Varadhan [29]. As far as we
know, there is no existing reference which treats the homogenization of the oscillating
Neumann boundary conditions from the view point of the ergodic problem.

The plan of this paper is the following.

Section 1. Introduction.

Section 2. Existence and uniqueness of the nunileithe case of the bounded domain.
Section 3. Existence and uniqueness of the nuriberthe case of the half space.
Section 4. Some remarks on the degenerate elliptic operators case.

Section 5. Homogenization of the oscillating Neumann boundary conditions.

Throughout of this paper, the gradient and the Hesse matrix(of (x € Q C
R") (respectivelyv(¢) (¢ € Q' C R")) are denoted byu(x), VZu(x) (respectively
Vev(§), VEu(§) or DZvu(§)). Foru(x) (x e Q C R"), the partial derivatives in;, x;
(1<, j < n)are denoted b}% = Dju, W = D;;u, etc., and the derivatives in the

directions ofy, z € R" are denoted byD,u =37 ; yia—x[, Dyu =37 injW,
etc. When a functionw(x, &) depends on both variables af e R* and £ € R",

and when we consider the derlvatlvég‘% etc., we denote them by, w(x, &)
(1<i,j<2n), etc. For the twice continuously differentiable functiarix) (x €
Q Cc R"), we denote|u|;x@q) = sugeg|u| |Vl (@) = SUP.eqSUPLG; <, |2 (0l

|V M|L°°(Q) - SUQCEQ Sup.l.<1 ,j<n |3X13X,( )|1
|u(x) —u(y)l
ulpo= Sup o

(x,y)EQXQ |X - y|ﬂ

() — i8]
|Vu|ﬂ;9 = Sup sup L
1<i<n (x,)eQxQ lx — )’|ﬂ

’

) O<ﬁ<1v
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; IVIu(x) — Viu(y)l
luljpi0 = ’vj“’LW(sz)er:;stz lx —ylf

We consider the solvability of PDEs in the framework of viscosity solutions, and treat the
second-order sub and super differentials of upper and lower semi continuous function
u(x) andv(x) (x € D ¢ R") at a pointx in the domainD. We denote them byf;*u(@
(the second-order superjets:oft x) and Jg"v(i) (the second-order subjets ofat x)
respectively. (See Crandall and Lions [16], Crandall, Ishii and Lions [15], and Fleming
and Soner [20].) We use the notati@ix, r) (x € 2, r > 0) for the open ball centered
at x with radiusr > 0.

, 0<B<] j=12

2. Existence and uniqueness of the long time aver aged reflection forcein the
bounded domain

In this section, the existence and uniqueness of the numioe(1)—(2) is shown in
the case thaf satisfies (7). The Hamiltonia# (x, Vu, V2u), given in (3), positively
homogeneous in degree one, is assumed to satisfy (4) and (5); the vector dielg2
is assumed to satisfy (6). For the existence, we further assume that

Ve V3| <K anyxeQ, 1<i,j<n, a €A,
(21)
whereK > 0 is a constant, and that, ¢ can be extendable in a neighborhoddf 92

to twice continuously differentiable functions so that

o o
|aij vaij

b

Vb

’ k) ’ k) ’

IVyl, [V2y], |V%], [V?%¢| <K inU, (22)

’ ’

whereK > 0 is the constant in (21). For the existenceipfve approximate (1)—(2) by
(9—(10) @ € (0,1)) and examine the regularity af,, uniformly in A. In order to have
(11)—(12), we need the following estimates.

THEOREM 2.1. —Assume thaf2 is (7), and that(4), (6), (21) and (22) hold. Then
there exists a unique solution e C+1(Q) N C%#(Q) of (9)—(10), wherep > 0 depends
onn and A;/x1. Moreover, for any fixedg € €2, there exists a constaut > 0 such that
the following estimates hold.

|u)» - MK(XO)’LOO(ﬁ) g C any)\' € (07 1)7 (23)
Vi) | e < C  anyi e (0,1), (24)
Virlyg <C anyhe(0,1). (25)

Remark2.1. — One can replace the conditions (21)—-(22) to other conditions, for
example those in [24], to have

s (x) —u,(»)| < Clx —y|° anyx,y e, A€ (0,1),

whereC > 0, 6 € (0,1) are independent oa > 0. The proof of this inequality can

be done in a similar way to [24], but by taking account of the Neumann type boundary
conditions, and also by using the estimate (23). We do not write the proof in this direction
here, but shall use the method in a future occassion.
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Proof of Theorem 2.1.For eachi > 0, the existence and uniqueness gf
Ccri(Q) N c?#(Q) is established in Lions and Trudinger [31]. We are to show the
uniform (in A € (0, 1)) regularity (23)—(25) in the following two steps. In Step 1, (23)
will be shown, and in Step 2, (24) and (25) will be shown.

Stepl. We prove (23) by a contradiction argument. kg Q be fixed. Assume, as
A>0goesto0

|uk - uk(xo)’Loo(ﬁ) — Q.
Set
-1
&= | —u(x0)| g, *€(0,1),

and lety, = &x(uy —u; (xp)). Then,
|v}»|L°°(§) == 1, Uy (.xo) == 0 any)\. € (O, 1)
From (3), v, satisfiesF(x, Vv,, V2v,) =0 in @, and from (4) the Krylov—Safonov

inequality (see [12] for instance) leads: for any compact set <2, there exists a
constantMy > 0 such that

VUil ooy S My anya e 0, D). (26)
We denote
v (x) = limsupv; (y), v, (x) = liminf v, (y).
20, y—>x 20, y—>x

Then, sinceav, (xg) = 0 (VA € (0, 1)), from (26) we have
v*(x0) = v« (x0) =0, (27)
|v*|L00(§) =1 or |v*|L°0(§) =1 (28)
From (2),v, satisfies
(Vur, y(x)) = €18 — A(va + €21 (x0)),
and by the comparison result for (9)—(10)
|)\'u}»(x0)|L00(§) < c any)\’ € (05 1)5

whereC > 0 is a constant. By letting | 0, v* andv, are viscosity solutions of
(Vv*,y(x)) <0 o0nae, (29)
(Vu,, y(x)) >0 0naQ, (30)
andv*(x) (respectively, (x)) (x € Q) satisfies

F(x,Vv*,V2*) <0, (respectivelyF (x, Vu,, V?v,) >0) inQ. (10)

(We refer the readers to [15] and Barles and Perthame [9] for this stability result.)
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Now we employ the strong maximum principle of Bardi and Da-Lio [7]. Remark that
F(x, p, R) given in (3), satisfying (4) and (21) enjoys the following two properties of
(31) and (32).

(Scaling property) For anyy € €2, for anyn > 0, there exists a functiog: (0, 1) —

(0, 00) such that

F(x,6p,ER) > ¢(§)F(x, p,R) any§ e (0,1), (31)

holds for anyx € B(xg,7), 0< |p| <n,|R| < 1.
(Nondegeneracy property) For amy € 2, for any small vectow # 0, there exists a
positive numberg such that

F(xo,v, [ —rv®@v)>0 anyr > ro. (32)

We cite the following result for our present and later purposes.

LEMMA A [7] (Strong maximum priciple). et Q2 C R" be an open set and latbe
an upper semicontinuous viscosity subsolution of

F(x,Vu,V2u) =0 inQ,

which attains a maximum i®. Assume thaf® satisfies(31), (32) and for anyxp € Q
there existsog > 0 such that for any € B(0, po)\{0}, (32)

holds for some rg > 0. (33)

Then,u is a constant.

We go back to the proof of (23). Assume that|, . g, = 1 holds in (28). (The another
case of|v,|;«g = 1 can be treated similarly.) Thus from (27, is not constant, and
from (10) and the strong maximum principle (Lemma AJ, attains its maximum at a
point x; € 9

vi(x1) > v*(x) anyx e Q.

Since dQ is €31, the interior sphere condition (see Gilbarg and Trudinger [23]) is
satisfied: there exists € Q2 such that forR = |x; — y|

B(y,R) €, x1€0dB(y,R).

Let
pr) =K —eh P xeq,
wherec > 0 is a constant large enough so that
F (x1, V@ (x1), V2 (x1))
= F (x1. 2c(xy — )& 1P 2ce (1 — 2e(x; — 3) @ (31— 1))
= 2ce_clxl_y|2F(x1, x1—y, 1 —2c(x1—y)®@(x1—y)) >0
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holds. (Here, we used (3), (32) and (33).) By the lower semicontinuity of x, there
existsr € B(0, R) andC’ > 0 such that

F(x,Vo(x), V2 (x)) = C'>0 inB(xy,r)NQ. (34)

We claim that
vE(x) —v*(x) —d(x) <O inB(x,r)NQ. (35)

In fact, if x € B(y, R)¢, ¢(x) > 0 and (35) holds. Assume that faf € B(xy,7) N
B(y, R) (35) does not hold, and

V) — vt (r) — ¢ ()= max  v*(x) — v (x) — ¢ (x).

B(x1,r)NB(y.R)

Then by the definition of the viscosity solution,

F(x', Vo (x), V2o (x)) <0,

which contradicts to (34). Therefore, (35) holds. By remarking that;) = 0, (35)
indicates that* — ¢ takes its maximum at; € 92. Sincev* satisfies (29) in the sense
of viscosity solutions, either

(¢(x1), ¥ (x1)) <0,
or

F (x1, V§ (x1), V9 (x1)) <O

must be satisfied. However from the definitionggf(6) and (34), both of the above are
not satisfied. We got a contradiction, and proved (23).

Step2. To obtain (24) and (25), we appply (23) in the argument of [31]. First, we
regularlize the Hamiltoniatr. Let p be a mollifier orR" (p > 0, p € C*(R"), [ p = 1).
For anys$ > 0, set

R y—z .
hs(y) =36 /,0(—8 )(lgllrgiNzk)dz,
RN

F¥[ul = hs(Lu, ..., L*u),
where

n

L%y = — 1<ILN.
“ l.;l i 8x18x1 Z L ax;’

Remark that for any € (0, 1), the operatongN (x, p, R) satisfies

oFN
k11<< 5(x,P,R)> <A1l, xeQ, ReS', (36)
drij 1<i,j<n
F'(x, p, R) <po(l+pl+1IR[), x€Q, ReS, 37)
8FBN 3F5N aFaN
< 1 R R|}, Q. ReS', (38
‘816 ‘81? 9R pa{ (L +Ipl+IRl)Ix|+Ipl+IRI}, xe€ €S, (38)
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?FN| |92FN| |9%FY
0x2 0xdp | |0x0R
Spa{ (T+1pl +IRI) x|+ |pl+ R} x x|, x€Q, ReS', (39)

whereu; (i =0, 1, 2) are positive constants, ang| = max<;<, |pil (P = (Pi)i<i<n)s
[R| =maxig; j<n l7ij| (R = (rij)1<i.j<n)-
We need the following a priori estimates.

LEMMA 2.2.-Letu] € C*(R2) N C3(Q2) be a solution of

FY (x,Vu y, VUl y) =0 inQ, (40)
Aty 4+ (Vul . y(x)) —g(x) =0 ondg. (41)

Then, there exist€ > 0 such that
Vil y | @ V2l Le@ SC anys, ae(0,1), NeN, (42)

whereC > 0 depends om, A1, A1, i; (i =0,1,2), 2, andK.

Remark?2.2. — In the estimates of [31], Theorem 2.1, the above constatgpends
alsoonx € (0, 1).

By delaying the proof of Lemma 2.2, we shall show how (42) leads (24) and (25). By
the method of continuity, for each> 0 the a priori estimate (42) yields the existence of
uj y € C3(2)NC?*(Q) of (40)—(41). Putws y =uj y —u} y(xo). The same argument
as in Step 1 works fow? ,, and

[w) y| @ <C anys, 1€(0,1), N eN.

From (42), by extracting a subsequence’af 0, there existsv, y € C11(Q) such that

IBi/T”(n) w) y =wyy uniformly in 2,

IBi/rl% Vw; y=Vuw; y uniformly in ,
and
lwinlpo@, [Vwinlieg, [Vuinligs<C anyie(0,1), N>0.

On the other hand, from (36) and the Evans—Krylov interior estimate (see, e.g..
Evans [17], Cabre and Caffarelli [12], Krylov [25,26], and [31]) leads for @ng @

V2w y oo SC anys e (0, ),
whereC > 0 depends o’ anda < (0, 1). Thus, we obtainw;, y € C*1(Q) N C2#(Q)
of

max { L*w =0 InQ,
1g1<N{ X’N}

rw; v+ (Vw; v,y (x)) —g(x) =0 0naQ.
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Letting N — oo, we obtain (24) and (25) from the preceding estimates.
In the following, we shall prove Lemma 2.2.
Proof of Lemma 2.2. Set

”i N~ ”i ~ (X0)

R o T “3)
From (23), there exists a constavt > 0 such that
]vA N|L°°(Q)’ VvA N|L°°(Q) M; anys,Ac(0,1), N eN. (44)
It is clear that
FY (x, V) v, V2 ) =0 inQ, (45)
Ay 4+ (Vo) v y())—g=0 onaQ, (46)

where

7= 8§~ )\”i,N(xO) 0
V@) v —ud yxo)| =)

We need the following lemma.
LEMMA 2.3.-Letv; , be defined in43). Then, there exist§ > 0 such that

V) y | e@ < C anys, 1 e(0,1), NeN. (47)
Lemma 2.3 will lead our present goal (42) in Lemma 2.2. In fact, from (43), (47), we

have
suqv2u ]<C(1+suﬂVuk V- (48)

We use the following interpolatlon inequality in the above.

LEMMA B ([23], Lemma 6.35). -Supposej + 8 < k + «, wherej =0,1,2,...;
k=1,2,...,and0< a, B < 1. LetD be aC** domain inR", and assume € C*%(D).
Then, for any > 0 and some constart = C(e, j, k, D) we have

[l p.p < Clulp=py + €lut|i,a:p-
By putting j =1,k =2, =8 =0 in Lemma B, (48) leads (42) in Lemma 2.2.
Finally, we are to prove Lemma 2.3.

Proof of Lemma 2.3. For simplicity, write F' = Fs, v = vi,N. First, we examine the
regularity ofv on 92. By differentiating (45) twice with respect to a vectbre R”,

&l =1,
"C9F 92

_1 8rl-j 8x,~8xj

IF 9 a
Dev —0,
Dev +Za o T e T
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" 9F 92 " 9F
l]z: DSSU—F;a—pla

—1 Brij 8x,-8xj
whereFy is the derivarives of” with respect toX = (£, V(D;v), V?(D;v)). Using the
structure conditions (36)—(39), we obtain from above inequalities

" 9F 92
2

] aT,-,axiax,

=0,

Dev| < C(1+ V), (49)

OF 02
< 2 2
; T e Dev < C(1+ V2| + |V

), (50)

where C > 0 depends om, My, u; and u,. By the usual argument of flattening
the boundary, we may assume thgR = {(x’, x,) | x, = 0} in a neighborhood of
x =0 e 9Q. Although by the change of variables, (45)—(46) is transformed fhte 0
(F is the new Hamiltonian) etc., we keep to dendte= F, etc., for simplicity. Denote
B ={x € B(0,r) | x, > 0}, and for = (&, ...,&,.1,0) e R"1, || < 1, consider

w(x, §) = n°(x, §) (z(x,§) + AV'), (51)
wheren is a smooth cut-off function to be precised in beloa constant,

n—1 2

v
[
515]7 v —; a'Xi

2(x, £) = Degv(x) _Z

ax, axj
By introducing (36), (37), (44) and (45) into (49), we obtain

Z(E)F 9%z +C 92
o 8r,-j axiaxj Y axiaxj

i,j=1

ng) <C(1+ ]V2v|/)

where the coefficient€’;; are such thaC;, =0, |C;;| < C depending om, A1, u;

(i=0,1,2), My, and|V?|' = (3,4 -2 |3fiza’;j 2)Y/2_ Using the relations

9? b b ) 9%v
v, £.0 = ,
8x,~ a)Cj d EIEIZ axiaxj

D:z=2
8)Ci ;/Z

we can take constant§y and C such that the following2n — 1) x (2n — 1) matrix
(FDij:

2n—1 ) n oF 822 1 — n—1
> Fi;Djjz = > 5 E E ij7—Dgz+ Co > Dgg 2
— A~ Or;; Ox;0X; 2 8 —
i,j=1 i,j=1""4 J =1 j= j=1

C(1+|V2])
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is uniformly elliptic with minimum eigenvalug’ > % From (49),

“OF 0%v 9 19F 9%
=1 Brij Bxiaxk ijaxk 28r,-j 8x,-8xj

<C(1+|V%|).

By combining the above two inequalities, we arrive at

2n—1 2n—1
n* Y FijDijw =2 F;Din*Djw
ij=1 i,j=1
' 2n—1 2n—-1
< —2KA(|V2|) n* + 6( > F,-}Dijn> w— 277( > F,-}Dim> w
ij=1 i,j=1

—CL+K)n*(1+ V%)
< —A w? 4 Cy, (52)

where the constar®, depends om, A1, u; (i =0, 1, 2) andM;. (Remark thatC 4, does
not depend on € (0, 1), for we have not yet used the boundary condition (46).)
Next, by differentiating (46) in the direction &f, &,

ADgv + (V(Dgv), v) + (Vv, Dy y) = Dg, g, (53)
ADg g v + (V(Dggv), v) + (V(Dgv), Dgy) + (V(Dgv), Dey)
+ (Vv, DEkS/V) = Dékézg' (54)
Since
ow w an

0z ov’
2

A ,
MK <3xi * 3xi>

Vi, y) =n%(Vz,y) + n?A(VV, y) + anP(z + AV)),

ax; n ox;

w
Aw + (Vw, y) —2—(

n
and from (54),

= n?A(VV, y) +an?Av' = 12(Vv, Dy y) — 20°(V(Dgv), Dy y).

From (22) and (44),

[V, |Dg, vl |Dgey| <K any 1<k, l<n—1,

and by (53)XVv', y) and(V(Dgv), Dg, y) are bounded. Therefore, we can fixso that
w 2
Aw+ (Vw, y) — 2;<Vn, y) < Cn?,

where C; > 0 depends om, Ay, u; (i =0,1,2), K and M;. (In particular, C; is
independent of € (0, 1).) Now, fix

n(x, &) = [L— 4{|x' P+ (x, —er)2}/r2 — )77,
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where for

T ={x € B,, x, =0}, N ={(x,&) eR* | n(x,&) >0},

g=C¢/\/1+¢2, ;:supmgc.

T Vn
Then,onT NN N{w > 0}

(Vw, y) + 2w < Cy,
whereC; is independent of € (0, 1). We takew = w + C3A1 x, so that
C C
(VW,y) = (Vw, y) + ya—y < C2 — hw + y,— <O,
MM MM
From the definition ofw, the above constardi; can be taken uniformly in € (0, 1). By
applying the maximum principle t@, instead ofw, we obtain

Dg:v(0) < C, (55)

forany & = (&1,...,&,21,0) (|| = 1), whereC > 0 depends only om, Ay, u; (i =
0,1, 2), M, QandK. (C is independent of € (0, 1).) As for the remaining inequalities,
the same argument in [31] is available. That is, by regarding

G(x)=rv+(Vu,y) —gx)

as a function inB(0,r) (0 € 092, y and g are extendable to some neighborhood of
382 (22)),

" 9F 3%G

2

ij=1 al",’j Bxiaxj

<C(A+My) (Mp=sugV%]|) inB(@O,r),
Q

G=0 o0no<,

whereC depends om, My, 11, K, and does not depend ane (0, 1). From this, the
barrier argument leads

|IDG(0)| < Cv/1+ Mo, (56)

and we can extend the inequality (55) to
Dgv(0)<C anylg|=1, & eR". (57)
Then, by the uniform ellipticity (36), the usual argument leads

sugv| < C anylg|=1, £ eR", (58)
Q2

where C is independent of. € (0,1). From (36), by coupling (58) with the global
Dirichlet bound for (45)—(46) leads (47), and Lemma 2.3 was proved.
We complete the proof of Theorem 2.10
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THEOREM 2.4. —Assume thaf2 is (7), and that(4), (6), (21) and (22) hold. Then
there exists a numbet and a functionu(x) € C*1(Q) N C%*(Q) (« € (0, 1)) which
satisfy(1)—(2).

Proof. —=From (23)—(25) and the Evans—Krylov estimate, we can extract a subse-
quencer’ | 0 such that there exist a numbheandu(x) € C1(Q) N C%#(Q), and

y/rﬂ)k uy(x)=d, kl/rﬂ)(uk/ — uy)(xp) =u(x) uniformly on<. (59)

From the usual stability result [15], it is clear that the p@iru) satisfies (1)—(2). O

As for the uniqueness of the numh&rwe give the following theorem in which we
consider (1)—(2) in the framework of viscosity solutions.

THEOREM 2.5. —Assume thaf2 is (7), and that(4), (5), (6) and (22) hold. Then,
the numbew such that(1)—(2) has a viscosity solution is unique.

Proof. —We argue by contradiction. L&t/;, u1) and (ds, u,) be two pairs satisfying
(1)-(2) in the sense of viscosity solutions. We assuine- d,. First, we show the
following lemma.

LEMMA 2.6. —Letv =uq — us. Then,v satisfies

—M* (V) + mf{ } inQ, (60)
(Vv,y)gdg—d1<0 onog, (61)
where
MT(X)= sup Tr(AX), XeS. (62)
MISALAT

Proof. —Let ¢ € C%(Q) be such that: — ¢ takes its local strict maxixum &t € .
From the definition of viscosity solutions, we are to show the following.
() If x € ,

M* (V2% (¥)) + Inf {(—b"(¥). ¢ ())} <O.
(i) If ¥ €9,
M* (V29 (D) + inf {(~b (). ()} <O,
or
(p(X),y (X)) <d2 —di.
Stepl. We shall show (i) by the contradiction argument. Thus, assume
—M* (V9 (D)) + inf {(=0"(X). (X))} > O, (63)
and we shall look for a contradiction. Define, for= 0

x+y

Wy (r. ) = ua(x) — uz(y) — ¢< :

)—ﬂ|x—y|2 in Qx Q,
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and let(xg, yg) be the maximum point ob;. It is well known (see [15]) that
(X, yp) — (X, %), Blxg—ysl°— 0 asp— oo,

and that for any > 0, there exisiX, Y € S’ such that

( v¢(x'3 +yﬂ> +2B(xs — yp), X) € J2 Uy (xp),

(——w»(x“ Y ) +28(x5 — vp). Y) € J2 Ur(yp),
and

1
—(=+1Al)I< X0\ cayen? (64)
£ 0O -Y

where by denoting/ (x, y) = ¢ (*%>) + Blx — yI?,

A=D*(xs,y5) €S™, Al =sup{|(A&, £)]: |&] < 1}.

Now, by using the definition of viscosity solution foy (i = 1, 2),

1 Xxg +
F<xﬁ,§v¢< $ Zyﬁ>+2ﬁ(xﬂ—yﬂ),x) <o,

1 Xg +
F(y,e,—éw( ’ Zyﬁ) 1 28(x; —yﬂw) >0,

and by taking the differences of two inequalities, using the form of (3), for any small
3 > 0 there exists a contral’ € A such that

{—Tr(A“’(xﬁ)X) —< v¢<xﬁ +yﬂ> b“’(x,g)>}
- {—Tr(A“’(yﬂ)Y) —~ < V¢><xﬁ +yﬁ) b""(y,e)>} <3 (65)

in (64), and multiplying the rightmost inequality in (64) by the

By taking ¢ =
symmetric matrix

—‘CQI»—\

(o“;(x,sya“;(xﬁ) oaj(y,sya“;(x,s))
o (xp) 0% (yg) % (yp)'o® (yp)
and taking traces, we have

Tr(A% (xp) X) — Tr(AY (yp)Y) — Tr(V2p(X) A% (X)) < L2Blxg — ysl> +0(72)

asp — oo, whereL > 0 is the Lipschitz constant in (5) (d€ in (21)). (See [15], Ishii
and Lions [24] for this techniques.) Therefore from (65), for any 0 there existe’ € A
such that

—Tr(V2p(¥) A% (X)) — (Vo (%), b (X)) <8 +0(B71),
which contradicts to (63), singe> 0 is arbitrary. Thus, we showed (i).
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Step2. We shall prove (ii). First of all, from the usual technique to treat the Neumann
boundary condition in the theory of viscosity solutions, we may replace the conditions
to

di+ (Vug,y) —gx) <=8 0nae, (66)
d2+ (Vuz, y) —g(x) 25 0no, (67)

whereé > 0 is a small number. (See [15].) Then, we assume that (ii) does not hold, and
shall look for a contradiction. So, let

—MT (V3¢ (x)) + inf {(—b*(X). V¢ (@)} > 0, (68)
(Vo@), 7 (X)) > dz — du. (69)
It is well known, [27] that sinc& 2 is C31, by putting

1

Lix,y)= inf{ /cl-j (60)éé;dr | & e CH([0,1:R"), £0) =y, &D) =x},

0

wherec;; (x) is a smooth function, say i@3(2) such that fom = (n;);

D )y (x) =ni(x) any1<i<n, x €09,
J

we have:

<J/(x),VxL(x,y)><%|y—x|2 anyx € 0Q, y e Q, (70)
whereC > 0 is a constant. Define, fg > 0

_.l_
W, y) = ua(x) — waly) — ¢(%) — BL(x. y)
i L1, .

+(d1— &) (y(X),x —y)+ |x = x|+ §<V¢>(x),x —y) inQxQ.

Set
v =9(*5) 4 ALY @ = Oy Eox =) — b — 51

1
- §<V¢(i), x—y).

Let (xg, yg) be the maximum point ob/s. As in Step 1, it is known (see [15]) that
(xp, yp) = (X,%), Blxg—ys)°—0 asp— oo,
and that for any > 0, there exisiX, Y € S’ such that

(Ve (g, vp). X) € IS T ua(xp), (—=Vy ¥ (g, yp), Y) € JG " ua(yp),
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which satisfy (64) withA = D%y € S,
If (x5, yp) € 02, by using (70) we calculate

(Vi (xg, yp), v (xp)) + d1 — g(xp)
= (gve(#5) rem)
T 28(y (), VL (x5, 3p)) — (i — ) (y (5, 7 ()
= Al = 3y (xp). 50 = ) = (v o). %V¢(2>> .
>~ Lbs — 2+ Oy — 29 > 01) asp — oo,
(=Vr (g, yp), v () + d2 — &(3p)
= (50252 ). vom)
— 280y (9p). V, L(xg. y)) — (1 — ) (y (3. ¥ (D))

1
+ <V()’ﬂ)» §V¢>(i)> +dr—g

'B|xﬂ—)’ﬂ| +d,—di+0(1) <0o(l) asp— oc.

(In the last mequallty, we used the assumptin- ds.)
Therefore, by taking account of (66) and (67), regardless the fackthal € €2 or
€ 022, we have the following.

F(xg, V{r(xp, ), X) <0(1) asp— oo,
The rest of the argument to obtain a contradiction from the above two inequalities is
similar to that of Step 1, and we omit it here

Now, we go back to the proof of Theorem 2.5, which is immediate from Lemma 2.6.
From the strong maximum principle (Lemma A), which is not constant, attains its
maximum at some point; € 9Q2

v(x1) > v(x) anyx e Q.

However, as we have seen in the proof of Theorem 2.1 in Step 1, this is not compatible
with (Vu, y) < d> — dy 0n 9L, in the sense of viscosity solutions. Thus, we have proved
d1 = d> must be hold. O

If we consider the uniqueness dfin the framework of theC'1(Q2) solutions, the
proof is much simpler. We add this as follows.

ProOPOSITION 2.7. —Assume thaf2 is (7), and that(4), (5) and (6) hold. Moreover,
assume thaf satisfies the following comparisofor a subsolutioru and a supersolu-
tion v of (1) such thaty < v on 9, u < v in Q. Then, the numbet such that(1)—(2)
has a solutioru e C+1(Q) is unique.
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Proof. —We assume that there are two pdig, u1) and(d,, u») which satisfy (1)—(2)
such that/; > d» andu; € C*1(Q) (i =1, 2). By adding a constant if necessary, we may
assume that there is a poinf € 92 such thatu; (xg) = u2(xg) and

ui(x) <uz(x) onog2.
Putv = u» — u1, which satisfies
(Vo(x),y(x))=d1—d»>0, v(x)>=0 onox.
From the comparison for (1),
v(x) >0 anyx e Q.

However, atxg € 02, v(xg) = 0 and(Vuv(xg), ¥ (xg)) > 0 in the classical sense. Thus,
we get a contradiction andf =d,. O

3. Longtime averaged reflection force in half spaces

In this section, the existence and uniqueness of the nuaingl)—(2) is shown in the
case thaf2 satisfies (8), with a supplement boundary condition,at co. We denote

Q={(,x) | x, > fx), x' € R\Z)" 1},
Fo=0Q2={(" x)|x, = f(x), ¥ € (R\Z)"},
wheref (x') is periodic inx’ € (R\Z)"~* and isC3*. Our goal is to find a unique number
d which admits a viscosity solutiom of (1)—(2) such that
u is bounded and periodic . (72)

We begin with the uniqueness af

THEOREM 3.1. —Assume thaf2 is (8), and that(4), (5), (6) and (22) hold. More-
over, assume that

bi(x) <0 anyx e, acA. (72)
Then, the numbet such that(1)—(2) and (71) has a viscosity solution is unique.

Proof. ~-We argue by contradiction. Assume that there exist two p@isu;) and
(d2, uz) which satisfy (1)—(2) and (71), and thét > d,. By using a similar argument to
the proof of Lemma 2.6y = u; — u» is a subsolution of

—M* (V?v) +inf{(~b*(x), V0)} <O ing, (73)
(Vu,y(x))=d,—d1 <0 0naQ, (74)

whereM ™ is the Pucci operator defined in (62) (see [14]). Rar 0 large enough, let

Qp= {(X/, Xn) | f(x/) <X < R},
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and define

My = sup|v].
[T

(Remark thaw is periodic inx’ € (R\Z)"* and the above supremum is well-defined.)
Let xo € [ be a point such that(xo) = sup,.r, v(x) = Mo. Let (x/, ¢) € I'o be a point
such that

c<x, any(x’,x,) el
We take

Mg —M
TR 0, — o)+ Mo, (x,x,) €. (75)
C

wR(x/, xn)E R—

Since&=o > 0, from (72)
—M*(V2wg) +inf{(=b"(x), Vwg)} >0 inQp,
Mpr — My
WRry=———(x, —¢) + Mg = Mo,
R—c¢
WRITg :MR.

Thus, by using the comparison argument, we get
v<wg IinQg, anyR > 0 large enough.
By (71), tendingR — o0, this yields
v< My inQ.

Thereforep takes its maximum oiiry. Finally, by using the strong maximum principle
(Lemma A), (73) and (74) yields a contradiction as we argued in the proof of
Theorem 2.1, Step 1. Thug, = d, must hold. O

Remark 3.1 (Counter example — If we do not assume the boundary condition at
infinity (71), d is not unique in general. For example, consider

—Au=0 in{x,>0}CR", (76)
d+ (Vu,n(x))=0 on{x,=0}CR", (77)

wheren is the outward unit normal, and the soluti@iis periodic inx’ = (x1, ..., x,_1).
Then, for anyc, d € R, u = —dx, + c is the solution of (76)—(77). Thus, the numlkr
in (77) is not unique. (Green'’s first identity does not hold in the half space.)

Next, for the existence af we approximate (1)—(2) and (71) by

F(x, Vuf, vZ2uf)y =0 inQr={(" x| f(x') <x, <R},
(Vuf,n(x))=0 onTg={(,x,)|x, =R},
g+ (Vuf, y(x)) —g(x) =0 ondQ=To={x, = f(x)}, (78)

whereR > 0 is large enough so th&zy andI'g do not intersect, saR > Ry. We examine
the regularity ofu® uniformly in A € (0, 1) andR > Rj.
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ProPOSITION 3.2. —Assume thaf2 is (8), and that(4), (6), (21) and (22) hold. Let
R > Ro be fixed, and letX be the solution of78). Then, there exists a numbés and
a functionu  such that

Ixiir(l) Auf(x) =dg,

Ixi’To(uf/(x) - uf,(xo)) =ur(x) uniformly inQg, (79)
where)” — 0is a subsequence af— 0, andxg is an arbitrarily fixed point in2,. The
pair (dg, ug) satisfies

F(x,Vug, V?ug) =0 in Qg,
(Vug,n(x))=0 onTk,
dg + (Vug,y(x)) —g(x) =0 onaQ2=T. (80)

The numbetly is the unique number such thé0) has a viscosity solution. Moreover,
there exists a consta > 0 such that

lug — uR(xo)’LOO(Q_R) <M anyR > Ry, (81)
[Vuglpor <M anyR > Ro. (82)

Proof. —~We devide the proof into three steps.
Stepl. First, we shall see

uf (x) —uf(x0)| <M anyre(0,1), R> Ro. (83)
SO, putvg = ug — ur(xg). Assume that
AN V| e@my = 00 @Sh— 0, R— o0,

and we seek a contradiction. Puf = efvX which satisfies
F(x, Vwf, V2wR) =0 inQ;,
(Vw,n(x))=0 onTkg,
(Vwf y(x)) =& (g —ru)) onTy.

Since|w)| @y =1 (WS (xo) =0),

w*(x)= limsup wR(y), w,(n) = _liminf wi(y),

R—00,110,y—>x —00,A}0,y—>x

are well-definded. From the uniform ellipticity (4) and the Krylov—Safonov interior
estimate, for any € Q there exists a constaMy > 0 such that

[Vwl|,wiyy <My anyie(0,1), R> Ro.
Thus, sincew; (xo) =0 (VA € (0, 1)),

w*(x0) = wy(xg) = 0. (84)
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Moreover from the strong maximum principle (Lemma A), for aRy> Ry and A €
0, 1), wf must take its maximum and minimum dry. (If it takes a maximun or a
minimum onI'g, we have a contradiction tea wa, Nn(x) >=0 (x € ') in the sense
of viscosity solutions as we have seen in the proof of Theorem 2.1, Step 1.) Hence,

W'l e@m =1 OF |Wilo@p =1 anyR > Ro. (85)
Hereafter, we assume that*|, ~ g, = 1. (The case ofw.|;« g, =1 can be treated
similarly.) The upper semicontinuous functiart is a viscosity solution of
F(x, Vw*, V2w*) <0 inQ, (86)
(Vw*, y(x)) <0 onTy. (87)

We remark thatw* takes its maximum o, aSwf (R > Ro, A € (0,1)) does so.
(w* is periodic inx’ € (R\Z)"~1.) Then, by the strong maximum principle (Lemma A)
and the fact thatv* is not constant ((84), (85)), (86)—(87) lead a contradiction. (See the
proof of Theorem 2.1, Step 1.) Therefore, there exists a conafantO such that

’uk(x)—uk(xo)’ M anyi e (0,1), R > Ro.

Step2. Next, we shall show (79) and (82). For this purpose, we are to have the a prior
estimates of VuX| and|VZuf|. Put

uf —u,\ R (x0)

Wy = (88)
FIVE —uf o)l @y
Remark thatw§ is a solution of
F(x, Vwf, V2wl =0 inQ;,
(Vwf,n(x))=0 onTk, (89)
awf 4+ (Vwf y(x))—g=0 onTy, (90)

where

_ 8

IV @f = uf (0| e

Taking account of the periodicity i i =1, ...,n — 1), the above problem is reduced

to the case of bounded domains treated in Section 2. Despite the existence of the differe

boundary condition (89) ofg, the argument in Section 2 (and [31]) works with a minor
modification. (We do not rewrite it here.) Thus, the a priori estimate:

ol

V2wR| w@m <M anyie(0,1), R> Ro,

whereM > 0 is a constant, which leads

|v2 ymg ) < (]wﬂmg ,+1) anyre(0,1), R > Ro. (91)
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As in Section 2, we use the interpolation inequality in Lemma B, with the function
uf —uf(xp), D=Qpg, j=1,k=2ande = g =0. That is, the interpolation inequality
becomes:
|V”§|L°°(Q_R) < C8|uf — uf(xo)|Lw(Q—R) + 8|V2uf|Lw(Q—R). (92)
By combining (81), (91) and (92),
VeS| o <M anyre(0,1), R> Ry,
IViuy| e SM anyire(0,1), R> Ro.

Thus, by extracting a subsequerice| 0, there exists a numbely and a functioru g
such that

Nub — dg, ul — ul (xo) — ug,
and
Vitglpoigm <M anyR > Ro.

Thus, we proved (79) and (82).

Step3. We shall complete the proof by showing that the above lifpits the unique
number such that (80) has a viscosity solution (and is independent of the choice o
A" — 0). We argue by contradiction, and assume that there exist two (@airs ) and
(dg, uy) (dg > dy) satisfying (80). Denote = uy — us. A similar argument used in the
proof of Lemma 2.6 leads

—M" (V%) + inf {(—b%(x), Vo)} <O inQ,
ae
(Vu,n(x)) <0 onlk,
(Vv,y(x))<dp—dr onTg.

Sincevw is not constant, from the strong maximum principle (LemmaAttains its
maximum atxg € I'p:

v(xg) > v(x) anyx e Qg.

However, as we have seen in the proof of Theorem 2.1 Step 1, gjneedr <0, itis
not compatible with the preceding boundary conditiong’@andTl . Therefore, we get
a contradiction and = d must hold. O

THEOREM 3.3. —Assume thaf2 is (8), and that(4), (6), (21) and (22) hold. Then,
there exists a unique numbeérsuch that(1)—(2) and (71) has a viscosity solution.

Proof. —By comparison, there exists a constaht- O such that

|Auf <C anyre(0,1), R > R,

|L°°<Q_R)

and thusldg| < C for any R > Ry. Therefore, by using (81) and (82), we can extract a
subsequenc®’ — oo such that there exist a numhéland a functior: such that

dg —d asR — oo,
ugp —u asR’ — oo, locally uniformly in Q.
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From the stability results,
F(x,Vu,V2u) =0 ingQ,
d+(Vu,y(x))—g(x)=0 onTy,
Ul ooy < M.
The uniqueness af was proved in Theorem 3.1, and we can end the proaf.

Remark3.2. — From the view point of the stochastic process (13), the approximating
system (80) gives a kind of boundary condition at infinity. It forces the admissible
trajectories of (13) (corresponding to (1)—(2) and (71)) to be pushed back inward at som
finite x, = R. Therefore, the condition (72) is quite reasonable. (In [10], the ergodic
problem in unbounded domain (not on the boundary like (2)) is solved with the condition
lim,_ o b2 (x) = —o0, which is stronger than (72).)

4. Remarkson some degener ate cases

The numbed in (1)—(2) exists even for degenerate operators. In this section, we give
a sufficient condition for the existence (in a weeker sense) and two classes of operatol
satisfying the sufficient condition. The following two examples illustrate the existence
and non-uniqueness df. In the case of degenerate operators, the uniqueness does no
hold in general.

Example4.1. — Consider
[Vu|=0 ing,
d+ (Vu,n(x)) —g(x)=0 o0naQ, (93)

whereQ2 C R” is a bounded open domain with a smooth bounddey n is the outward
unit normal toS2, andg is Lipschitz continuous 08$2. Then, anyd such that

d < min
= xEGQg(X)

andu = C (constant) satisfies (93) in the sense of viscosity solutions. In fact, it is clear
thatu satisfies the equation @. To see the boundary condition in the viscosity sense,

max{|Vul,d + (Vu,n(x)) — g(x)} >0 onae,

shows that: is a supersolution 0AR2. For any¢ € C* such that: — ¢ takes its strict
maximum atxg € 9L, if d < minyg g then

(Vo,n(x)) <0 < g(x)—d onaQ.

Thus,
min{|Vu|,d + (Vu,n(x)) — g(x)} <0 ond<,

in the sense of viscosity solutions, amds a subsolution 0d<2.
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Example4.2. — LetQ = (R/Z) x (0, 1) Cc R? (periodic inx;). Consider

9%u ou .
——+|7—|=0 inQ,
8)61 axz
d+ (Vu,n(x)) —g(x)=0 o0naQ, (94)

wheren is the outward unit normal t€, g is Lipschitz continuous 042. Then, any/
such that

d < min
= xeaﬂg(X)

andu = C (constant) satisfies (94) in the sense of viscosity solutions. In fact cleasly,
a viscosity solution ir2. To see that is a supersolution 0A<2, suppose for e C1,
u — ¢ takes its strict minimum atg € Q2. Sinceu = C onx; = 0, 1, we remark that

such¢ € C? must not satisfy—g%’(xo) < 0. Thus,
1

82¢ d¢
- — >0,
932 (x0) + ‘ oz (x0)

andu is a viscosity super solution dif2. The fact thai: is a subsolution 0A<2 is same
to Example 4.1.

Remark4.1. — In the above examples the numhéie not unique.

The operatorgr studied here are given in (3) with degenerate coefficients. For such
operators, we approximate (1)—(2) by

—8Au£—|—F(x,Vu£,V2u8) =0 inQ, (95)
de + (Vue, y(x)) —g(x) =0 0nag, (96)
wheree € (0, 1). The domair is either (7) or (8), and in the case of (8) the condition

at infinity (71) is added. For any > 0, the existence and the uniquenesg.0éind the
existence oft, come from Theorems 2.4, 2.5, and 3.3, for (95) is uniformly elliptic.

PrROPOSITION 4.1. —Let Q2 be a domain eithe(7) or (8). In the case of7), assume
all conditions but(4) in Theorem2.4 and2.5. In the case 0ot8), assume all conditions
but (4) in Theoren3.3. (Thus, F is possibly degeneratelLetd. (¢ > 0) be the number
such that(95)-(96) (and (71) in the case 01{8)) has a viscosity solutiom,. Assume
that there is a numbed/ > 0 such that

|u8 - ug(xo)|Loo(Q) <M anyee€(0,1). (97)

Then, there exists a numbér(not necessarily unigyesuch that(1)—(2) (and (71) in
the case 0f8)) has a viscosity subsolutianand a supersolutiot.

Proof. —Put v, = u, — u.(xg). Sinced, is bounded ins € (0,1), we can take a
subsequence — 0 such that lig_, o d, = d holds for a constani. From (97),

v*(x) = limsup v.(y),  v.(x) = liminf v,(y)
8/‘LO, y—x 8/‘LO, y—>x
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are well-definded. Then, from the usual stability result (see [18]y*) and(d, v,) are
respectively viscosity sub and super solutions of (1)—(2) (and (71) in case of (8)).

Remark4.2. — In the above proposition* # v, in general, and thus the result is
weaker than uniformly elliptic cases.

Next, we give a class of operators satisfying (97). The first class admits the existenc
of the uniformly elliptic part:

there exists a pointy € 2 such that in a small neighborhod@{xo, r) C 2 (r > 0),
there exist constants, and A, such that O< A, < A, and
)\21 < (Cl?j)

1<ij<n SN2 anya € A, x € B(xg, r). (98)

The second class admits the existence of the “controllability” part (see [2]):

there exists a pointy € €2 such that for a small neighborho@®{xg, r) C  (r > 0),

| Ilim F(x,p,X)— oo uniformlyinx € 2, X € S". (99)
pl—=>o0

THEOREM 4.2. —Let Q2 be a domain eithe(7) or (8). In the case of7), assume all
conditions but(4) in Theorems2.4 and 2.5. In the case 0f8), assume all conditions
but (4) in Theorem3.3. (Thus, F is possibly degenerateAssume also thak satisfies
(31), (32) and (33), and that either98) or (99) holds. Then, the solutions. (¢ > 0) of
(95)-(96) (and (71) in the case 0f8)) satisfy(97). Moreover, there exists a number
(not necessarily unigyesuch that(1)—(2) (and (71) in the case 0f8)) has a viscosity
subsolutioru and a supersolution.

Proof. —Assume that (97) does not hold, and we shall look for a contradictionxg_et
be a point satisfying (98) or (99), and assume that— u, (xg)| .~ — 00 ase >0
goes to 0. Put

U — Ug(Xo)
lue — us(xO)lLOO(Q)'

Ve =

The functionv, satisfies
—eAv, + F(x, Vu,, V2v8) =0 inQ,
g(x) - d&

(Vug, y) = onax.
lug — us(x0)|L°O(S2)

Since|U8|Loo(Q) = 1,

v¥(x) = limsupv.(y), v (x) = liminf v,.(y),
el0, y—x el0, y—>x

are well definded. Now, in the case of (98), we use the Krylov—Safonov inequality as
before to have

v*(x0) = vy (x0) = 0. (100)
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In the case of (99), by using the argument in [24,27] we have also the uniform continuity
of u, (¢ € (0,1)) in B(r, xg), and (100) holds. In conclusion, (100) holds in both cases
of (98) and (99).

We continue the proof, and see easily eithel; . g; =1 or |v.]; g = 1 holds. If
V| o = 1, since

F(x,Vv*, V®*) <0 inQ,
(Vv*, ) <0 onog,

the strong maximum principle (Lemma A) leads a contradiction, #bris not
constant (100). (See the proof of Theorem 2.1, Step 1|).Mfi~) = 1, the same
argument works, too. Therefore, satisfies (97), and Proposition 4.1 leads the remained
claim. O

As for the uniqueness af, we do not have the general result, and shall give the
following example in which the uniqueness holds.

Example4.3. — LetQ = {(x1, x2) | x1 € R\Z, x» > 0} ¢ R? (periodic inx;). Assume
that there exists a numbérsuch that

9%u au

Coxd on

d+ (Vu,n(x)) —g(x)=0 o0naQ,

=0 InQ,

whereu is bounded, and is the outward unit normal t®. Then,d = folg(xl, 0)dx;.
In fact, by integrating the above problem in € [0, 1], u(xy) = folu(xl,xz) dxq
satisfies
02i1(x2)

8x2

=0 in(0, 0c0),

8u(0)

/g(xl, 0)dx1=0 onx,=0,

andu is bounded. From Theorem 3.3, we know that such a nuribgmunique. Since
d= fol g(x1) dx, andu = C (constant) satisfy the above, we proved the claim.

5. Homogenization of oscillating Neumann type boundary conditions

In this section, we study the following homogenization problem.

G(x, Vue, VZu,) _sup{ Zau(x) “F —Zba()au’f}:o (101)

aeA l] =1

in 98={<x1,x2>|—a<x1<a fo(x1)+8f1<x1,x><x <b}cR2,

(Vie, N} + c(xl, ﬁ) —g (xl, ﬁ) (102)
£ £
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X
on I'e= {(xla x2) | —a < x1<a, x2= folx1) +8fl<'xl7 f) }’
u,=0 onaQ\rI, (103)

wheree > 0, aj;(x), b (x) are Lipschitz inx satisfying (5),n.(x) is the outward unit
normal toQ2,,

c, g, fi(x1, &) are defined in2, x R, periodic in&; € R\Z, (104)
0< fi(x1,81), 0<C <c(x, &) InQ: xR\Z, (105)

whereC > 0 is a constant,

foEay =0, zagy=o, (106)
081
denotingA, = (af; (1<, j<ns
M<K AL <A anya e A. (207)

We are interested in the limit of, of (101)-(103) ag goes to 0. Remark that this
problem is a straightforward generalization of Example 1.2, a similar case of which was
treated in [22] by the variational method. For our nonlinear problem, we need further
assumptions listed in the following. These assumptions come from the formal asymptotic
expansion otz which we describe in below. (See also Remark 5.1 and Lemma 5.1 in
below.)

b =0, b5=ajfy anya €A, xe€Q,, (108)
(a8 (1+ f32) — 2a8, f + a%,) = A(aSyaly — a%?) foralla € A, x € Q.. (109)
and for
O(x1) = {(1,&) | &2 > fi(x1, &), periodic ing},
30 (xy) is C>1, (110)
The existence and uniqueness igf (¢ > 0) is established in the general viscosity

solutions theory. (See [15].) Our goal is to show the existeneg&0f such that

Iimoug(x) =u(x) uniformlyin Q, (111)

where Q@ = {(x1, x2) | —a < x1 < a, fo(x1) < x2 < b}, and to find the effective limit
P.D.E. and B.C. fou. As for (111), we remark that our convergence igify, while

in [22] the convergence was iH*. The limit (effective) P.D.E. and B.C. are given by
using the long time averaged result in Section 3. Let us begin by deriving the cell problern
for (101)—(103) by the formal asymptotic expansions method:

X1 Xo— fo(n))
’ e

e = u(x) +8v<? +0(&?), (112)
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where we are assuming that “the correctodepends only o8, = ! andé, = ”‘f;ﬂ
(&1, & are rescaled variables). From (112), we obtain

ou, ou n ov ¢ ) +O( ),
=— 4 —- — €
ox, ox o0& O Vg
ou, ou ov
L %0 113
oxy ~ oxp T ag, TOE (113)

%u, 02 1(0% 3% 3%
O Fwa 2 { 2f3xn) o+ () }+O(e>,

xz  ox? 02 9EZ 0E10E7 92
0%u 0%u 1/ 8%
- - (eae ~ S0 )+O(e>,
8)618)62 8)618)62 8%’1852 852
0%u, 82u 19%
= @] 114
2 + e 082 + O(e). (114)
First, by introducmg (113) and (114) into
ij=1 “ ax,ax, -1 O
0%u 0%u 0%u
_{“gla_forzagziaxlaszr 225 2 2 —ajifo (xl) E

+b‘i‘<§—;+§—;—fé§;) <8x2 3-‘?2)}
2 2 2
ﬂ““{gsl 215 l)as %, (f0)2§-§2} 2"(8; a5, o l)asz>

82
+ azzag2 }

and by using (108),

. 0%u . 0%u . %u
- (alla—xf + 2alziaxlax2 +ay 8x2>
I . 3%v
{‘111852 +2(at; — af1 fo(x) 7o 910, + {af1(f0)? — 2a3, f5 + azz} 852 - (115)

Remark5.1. — The condition (108) was used to efface the dependenée(micro-
scopic variable) in the ordinary order (D) part in (115).
Let (x,r, p) € Q x RxR? (p = (p1, p»)) be arbitrarily fixed, and define the following
operators.
Py, (Dfv(1. &)

02 92y 520
allagg +2(aly — ai1 /o) 7o 05105, + {a$1(f)? — 2a$, 5+ a22} 782 (116)
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in O(x71), and

Py, (DZv (&, &))—sup{ Py, (Dfv(51, &)} in O(x). (117)

Next, by introducing (113) into (102), we have

1 AL

V31 (f+ %)2{<f0+ 351) ox;  dx2
= _ _ 1 3f1)< av) B a_v}
§L0 1) el Sau \/W‘i‘%)z{ (f * 081/ \ 081 foBSz 3&2 )

By denoting the outward unit normal to the boundary of

Q={(x1,x2) | —a <x1<a, x2> folx1)}

as

1
v=——=(f5—D.

1+ (f9)?

the above equation on the boundary becomes

1 [ won 25 -
0 0 0
<—>—{<—>H
Let
(fo+ 32 —(f3fo+ 22 + 1))

v(1,82) =
V314 (f0)?

and for(x, r, p) € 2 x R x R?

ond 0 (xy), (119)

f1

1 af1\°
H s Iy 9 - - 1 ! . 5 - - 120
(.7 poE) 1+(f6)2{ \l +<fo+asl> (c(x. EDr — g) — plag} (120)

Then, (118) becomes
(Vu,v) =—{(y, Vev) — H(x,r, p,§)}. (121)
From (115), (116), (117) and (121), the cell problem for (101)—(103) should be the

following: for any fixed(x, r, p) € Q x R x R", find a uniqgue numbe#(x, p,r) such
that the following problem has a viscosity solution (correciagy, &;).
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Py p(DEv(61,£2) =0 in O(xp),
dx,r,p)+ (Vev,y) —H(x,r,p,§) =0 0ndO(x1),
v is bounded inO (x;). (122)

LEMMA 5.1. -Let(109)hold. Then, the operatorB{, »(&1, &) are uniformly elliptic
operators uniformly inx € A: there exist constan® < A} < A’ such that

/\/1<< a1 ajp — diy fo ><A’I anya € A
VS \a—atify as,—2affo+atife) Tt '

Proof. —The claim can easily confirmed by an elementary calculation. And we leave
it to the readers. O

LEMMA 5.2. —Leta € A and (x, r, p) be fixed, and leO (x;), P;’{r,p(Dé?), y (&) and
H(x,r, p, &) be defined in(110), (116), (119) and (120). Assume thaf104)-(110)
hold. Then, there exists a unique numbe(x, r, p) such that the following problem has
a viscosity solution (&, &2).

P¢, ,(DZv(1,62)) =0 in O(xy),
d*(x,r,p)+(Vev,y) —H(x,r,p,E)=0 0ndO(x1),
v is bounded inO (x;). (123)

Proof. —From (119), we confirm easily that there exists a positive constant 0
such that

(¥.)>y1>0 0ndOo(x),

where ¢ = ("f1 1)/ (a§1)2+1 the outward unit normal t&O(x;). Then from

Theorem 3.3, there exists a unique numb&x, r, p) such that (123) has a viscosity
solutionv. O

LEMMA 5.3. -We assume the same assumptions as in LeBgaror any fixed
(x,r, p), there exists a unique number such that(122) has a viscosity solution
v(&€1, &). Moreover,

dx,r,p) <d%(x,r,p) anya e A. (124)

Proof. —From Theorem 3.3, there exists a unique number, r, p) such that (122)
has a viscosity solutiom. The inequality (124) comes from the construction of the
numberd andd” in the proofs of Proposition 3.2 and Theorem 3.3. That is,

d=fim dr. d*= Jim di.
whered anddy (R € N) are characterized by the following: f@z(x1) = O(x1) N
{62 < R}

Px,r,p(Dg?vR(gla ) =0 inOg(xy),
dr(x,r, p) + (Vevg,¥) — H(x,r,p,E)=0 0ndO(xy),

(Vevg,n)=0 on{§ =R},
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and
Py, ,(Divg(€1,6)) =0 in Og(xy),
dg(x,r,p) +(Vevg,y)— H(x,r,p,§) =0 0ndO(x1),
(Vevg,n)=0 on{&= R},
where n is the outward unit normal t@Oz(x1) on {& = R}. From the stochastic
representations (15) @z andd$ in the approximating problems (78), we see that
dr <dg anyReN.

Therefore, (124) was proved.O

Since the oscillating Neumann boundary condition prevent us from obtaining the
uniform gradient bounds of, (¢ > 0), we need to treat the upper and lower envelopes.

LEMMA 5.4. —Assume that5), (104)—~(110) hold. Letu, be the solution 0f101)-
(103). Then, there exists a constamt > 0 such that

lus| <M anye e (0,1). (125)
Proof. —Let xo = (0, b + r) € R?, wherer > 0. Define
v(x)=A(r" —|x —x0|") x€Q..

Then, forA > 0 large enoughy is a super solution of (101)—(103) for amye (0, 1).
From the comparison result for (101)—(103), we get (125).

From (125),

u*(x) = limsupu,(y), u.(x)= liminf u,(y) xeQ,
£l0, y—>x el0, y—x

are well-definded. Moreover, from (107) and the Krylov—Safonov inequality we can
extract a subsequeneé— 0 such that

Iirﬂ)ug/ =u locally uniformly inQ, u* > u > u,. (126)
8/

We claim the following.

LEMMA 5.5. —Assume that(104)-(110) hold. Then,u* and u, are respectively
viscosity sub and super solutions of the following problem.

supl — 3 Vu S l_o ing (127)
— a:. — ; = ,
acA Q=1 K 8)Ciaxj' i1 ! 8x,~
(Vu,v) +L(x,u,Vu)=0 onTy, (128)

wherev is the outward unit normal t& defined on

o= {(x1,x2) | —a <x1<a, x2= fo(x1)},
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and for (x,r, p) € @ x R x R?,
L(x,r,p)=—d(x,r, p), (129)

whered (x, r, p) is defined in(122).

Proof. —From (126) and by the usual stability results of the viscosity solutions, it is
clear that (127) holds. In the following, we shall see (128).
Stepl. We shall show that* satisfies

(Vu*,v) + L(x, Vu*, Vzu*) <0 onTy,
in the sense of viscosity solutions. Remark atc Q for anyes € [0, 1). Let¢ € C%(RQ)
be such that* — ¢ takes its strict maximum at = (xg1, x02) € g With u*(xg) = ¢ (x0).

From the definition of the Neumann type boundary condition in the sense of viscosity
solutions, we are to show either

f{ Zwa a - (x0) —

} <0, (130)

or

(V¢ (x0), v) + L(x0, Vep(x0), V¢ (x0)) <O. (131)

We shall assume that both (130) and (131) are not true, and shall seek a contradictiol
Thus, assume there exist consta@1tand92 such that

5{ Z,Ja a (x0) — Zb"‘

(Vo (xg),v) + L(xo, Vo (xg), V ¢(xo)) =6, > 0. (133)

For (xo, 70, po) = (x0, (x0), Vo (x0)), from Lemma 5.2 there exists a number
d(xo, 0, po) andv of

Pyy.ropo(DFv(€1, £2)) =0 in O (x01),
d(xo, ro, po) + (Vev, y) — H(xo, 70, p0,§) =0 0n9dO(x1). (134)
Sinceé; > f1(xy, &) for any (&1, &) € O(x1), we may define

} 6, > 0, (132)

uta1,x2) = p o, ) e (2, 2L iy
We claim thatyp, is the viscosity supersolution of
9%, o 0Pe 1 .
f{ Z Y o ox, —Z } —91 in B(xo, r) N2, (135)
oe 1

1
(Vo,ng) +c<x, ﬂ)q&g — g(x, ﬂ) > Z@z on B(xg,r)NT, (136)
P €
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in the sense of viscosity solutions in some small neighborhood, a8 (xg, 7) (r > 0 is
uniform ine € (0, 1)). To see this, assume fgr € C2(Q), ¢, — ¥ takes its minimum at
(x1, x2) With ¢, (X1, ¥2) = ¥ (¥1, X2).

First, let us assume théty, x7) € Q.. We write

1
n(1, é2) = E(I/f — @) (&1, €62+ fo(e&1))  (§1,62) € O(xy),

5=X1’ g_x_2_f0(x_l) (137)
& &

Hence,

(=G, &) < (v =11, &),

in a neighborhood of, 202=lolien)y — (o, £5,). Now, from (137),

im 9 d :

8&—a—xl(‘ﬁ_¢)+a—xz(w—¢)fo(351),

om _ 9o

agz—axz(w ), (138)
8%n 92 2 2 2
@=e{@(w—¢>+2axlax2<w—¢>fo+a—)é<w—¢><fo>

8 "
+ a—xz(‘/f -9 fo },

9%n 52 52 /
0E10E, 8{ LAl 1 ¢>(fo>},
%y 92
3—522—8@(1//—@. (139)

Sincev(&1, &) is the viscosity solution of (134), by (137), (138) and (139), for &ny0
there exists a contraf € A such that

a 82 2 82 / 82 N2 0 ”
- [‘111{@(1// =0 25 =D ok g S = O+ G = }
_ _ 82 82
+2(af, - aflfé){m(lff -+ —W— ¢)(f6)}

dx3
_ _ _ 92
+ (= 2055+ B fo)7) 5 W — 9D | > .
2
We can simplify the above by using, f§' = b3 ((108)) to

@ %y N2 -
(— %:aij (x0) 9x0%, — z{:bl‘ (x0) ox, + %:aij (x0)

9%
axiaxj

— 0
+> b (x0) af- ) (71, 72) > 6.
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Thus, sinceS > 0 is arbitrary,

f{ Zal](xo) _Z }(xl,xz)
2( > afi(x o) —Z )(xl,xz)
ij
%
=5+ (- Do g - D)6 > 5

for (x1, X2) is near taxg, and forr > 0 small enough. Therefore, (135) was shown.
Next, we assume

(x1,x2) € I'e. (140)
Again, we use the same functigndefined in (137) and denotg = %, & = oot

&€

Go= (L5209 G- (T L)

&
Thus,

( —n) (&1, &) < (v —n) (1 &), (141)
in a small neighborhood akoy, £0p). By (140)% = fo(X1) + efi(¥, ), and

&= f1(X. &), (§1.8)€d0(x).
Sincev satisfies (134), from the definition of the viscosity solution

Pro.p(0). V9 (o) (DEN) (1. 82) 2 0, (142)

or

d(x0, ¢ (x0), Vo (x0)) + (Ven, v) (1, &2) — H (x0, ¢ (x0), V@ (x0), §1,&2) > 0. (143)

In the case of (142), as before we obtain

2
sup{ - Sz i - TG L) g0 (144)

In the case of (143), from (129), (120) and (143),

1

—L(x0, ¢ (x0), Vo (x0)) + \/ﬁ<vw, (fo 08, fo<fo 8?) 1>>

1 f1
m(\l (fo‘i‘g) c(x,§1)¢
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3¢ df1 A
Introducing (138) to (145)
_ 1 d
T (x0, & (x0), Vo (x0)) + 7<V<w — $)(x0), (fé Y —1)>
VU241 981

1 oA
. \/(fa)2+1<_Jl+(f°+3_€i) “

2
—a—¢%+\ll+ <f6+%> g> > 0(e),

081

and deviding the both hands sides of the abon/ﬁw (fo+ %)2, by remarking that

/4 on
n=< Jot 5 1

—, —— + 0(¢),
V1+(fo+ 38y \/1+(fé+%)2>

we have

L (Vyo).n,) - L0000, Vo)

V(02 +1 1+ (fo+ 52

1 1

1
> —— (V¢ v) cp +
1+ (fo+ 302 JUZ+1 (2 +1

By using (133) and multiplying the both hands sides of the abovg %)% + 1, we get

g+ 0(e).

(V¥ (x0), Ne) + g (x0) — & = L(x0, ¢(x0), Vo (x0)) + (V¢ (x0), v) =62 > 0,

and forr > 0 and ¢ >0 small enough,

1
(Vi (x1),ne) +cp(x1) — g = 502, (146)

We have proved (136). Thus, iB(xo,r) N ., we have (135)—(136) and (1)—(2).
Therefore,

max (u; —¢,)= max (u, — o).
Boonna BN

From (102) and (136), by using a similar argument in the proof of Lemma 2.6,

1
<V(I/£8 —@e), n£> +c(ue — @) < _ZQZ <0 onT, N B(xg,r),
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in the sense of viscosity solutions. By lettingends to zero, max, — ¢.) goes to zero
and there existsy > 0 such that

1
(Ve — ¢e)Ne) < —562 <0 onT; N B(xg,r)anye € (0, &y).

From this, ifu, — ¢. (¢ € (0, &g)) takes its local maximum oR, N B, (xg) the strong
maximum principle (Lemma A) leads a contradiction. Thus,— ¢. must take its
maximum ona B (xq, r) N 2:\T'¢, that is ond B(xg, ). However this contradicts to the
fact thatu — ¢ takes its strong maximum iB(xg, r) N 2 atxg. Thus, we proved (130)—
(131).

Step2. The fact thai, is a supersolution of

(Vu,, v) +Z(x, Vu,, Vzu*) <0 only,

in the sense of viscosity solutions can be shown similarly to (and slightly easier than)
Step 1. We omit the details, since the argument is parallel.
From the above, we complete the proof of Lemma 5.5.

LEMMA 5.6. —Assume thaf104)-(110) hold. Then,
uw=u,=0 xe€dQ\l.

Proof. —Let xo € 0Q2,\I"; be arbitrarily fixed. We can take andv, sub and super
solutions of

9%v
8x,-8xj

v
Bxi

su —Za;’j > by }go in .,
acA ij i

(Vu,n)+cv<g only,,
v(xp) =0, w(x) <0 ondQ\I,,

and

0%v v .
Y } >0 in Q,,

av
fgf{_ %:af‘j 0x;0x; B zl:b? ox;
(Vu,n;)+cv>g onTl,,
V(xg) =0, v(x)>=0 onoQ\Il,.
From the comparison,
v<u, <v anyee(01),
and thus
v<u, <u*<v anyxeQ.
In particular, atyo,
v(x0) = u4(x0) = u*(x0) =0(x) =0. O

LEMMA 5.7.-The functionL (x, r, p) is increasing irv.
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Proof. —From the definition of_, we are to show that(x, r, p) is decreasing in. As
we mentioned in the proof of (124) in Lemma 5.3, this fact is clear from the construction
of d and its meaning in (15). O

From Lemmas 5.5-5.7, we arrive at the following result.

THEOREM 5.8. —Assume that104)-(110) hold. Then, there exists a unique function
u(x) such that

Ii% u.(x) =u(x) locally uniformly ing,

which is the unique solution ¢127), (128), and (103).

Proof. —=From Lemmas 5.5, 5.6 and 5.7, the linmt = u, = u is unique and is a
solution of the above problem. Moreover, since from Lemma 5.7 the uniqueness hold:
for (127)—(128) and (103 is the unique solution. (We refer the readers to [15] and
Barles [8] for such uniqueness results.) And, we proved the claim.

Remark5.2. — The effective boundary condition (128) is in general nonlinear.
However, for the linear problem as in Example 1.2, (128) is lenear and matchs to the
result in [22].

Example5.1. — Letf; =0, and assume that; = azp =1, a12=0. Then,

L(x,r, p)=—d(x,r, p),

is obtained by the following long time averaged problem:

92 92 ,
Py (D?v(E1, &) = _é—‘ - Ez-‘ —0 inO(x),
9 3
=50 () (o () - )
in O(x1),
where

O(x1) = {(&1, &) | periodic ing; e R\Z, & > fi(x,£1)}.

By integrating the above problem i € [0, 1], and by remarking thay; andv are
periodic in&;, we have

d(x.r, p) = —r/ 1+ ( {;1) c(x. sl>dsl+/ 1+ ( {;l) gdér

Therefore,L(x, r, p) is linear inr.

Remark5.3. — Although in this paper we considered a particular example of the
oscillating Neumann condition (102) iR?, we can apply the same method to more
general homogenization of the oscillating boundary conditiof'inVe shall give more
general formulation of this kind of problem in the future occassion.
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