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ABSTRACT. – We give an alternative proof of a theorem by Brothers and Ziemer concerning
extremal functions in the Pólya–Szegö rearrangements inequality for Dirichlet type integrals.
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RÉSUMÉ. – Nous donnons une autre démonstration d’un théorème de Brothers et Ziemer
qui concerne les fonctions extremales dans l’inégalité de Pólya–Szegö pour les intégrales de
Dirichlet.

1. Introduction

Let � be an open, bounded subset ofR
N and letW 1,p

0 (�), 1 � p < +∞, be the
Sobolev space of those functions whose extention by or outside� has weak derivatives
summable to the powerp in R

N .
The classical Pólya–Szegö principle states that ifu is a nonnegative function from

W
1,p
0 (�), then its spherically symmetric rearrangementu
 belongs toW 1,p

0 (�
) and

‖Du
‖Lp(�
) � ‖Du‖Lp(�). (1.1)
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Here,�
 is the ball inR
N centered at the origin and such that|�
|N = |�|N , where| · |N

denotes the Lebesgue measure inR
N (in the caseN = 1, we will omit the dimension),

andu
 :�
 → [0,+∞) is defined as follows. Denote byµu thedistribution function of
u given by

µu(t)=
∣∣{x ∈�: |u(x)|> t}∣∣

N
for t � 0,

and letu∗ be thedecreasing rearrangement of u defined by

u∗(s)= inf
{
t � 0: µu(t)� s

}
for s ∈]0, |�|N ],

thenu
 is defined as

u
(x)= u∗(CN |x|N )
for x ∈�
,

whereCN is the measure of theN -dimensional unit ball. Formulated in [20], many
authors gave proofs and generalizations of this principle (see, for instance, [2,4–6,8,10,
14,16–18,21,23–26]). Here, we deal with the problem of characterizing those functions
for which equality holds in (1.1). Partial results are contained in [15] and [27]. The
problem was also discussed by Friedman and McLeod in [13] whenu is of classCn.
However, as observed in [7], the proof in [13] contains an error which can be only
repaired under additional assumptions. A general answer was given later by Brothers
and Ziemer in [7], where the following theorem is proved.

THEOREM 1.1. –Let � be an open, bounded subset of R
N , N � 1, and let u be a

nonnegative function from W 1,p
0 (�), 1< p <+∞, such that

∣∣{|Du
| = 0
} ∩ (u
)−1(0,esssupu)

∣∣
N

= 0. (1.2)

If

‖Du
‖Lp(�
) = ‖Du‖Lp(�), (1.3)

then � is equivalent to a ball and u= u
 a.e. in �, up to a translation.

If p = 1, then the result is false, since every functionu from W
1,1
0 (�) whose level

sets are (not necessarily concentric) balls satisfies (1.3). Hypothesis (1.2) is equivalent
to the absolute continuity ofµu in (0,esssupu) (see [7, p. 157, Lemma 2.3]). Ifµu
is not even assumed to be continuous in(0,esssupu), a situation occurring if and
only if |{u = t}|N > 0 for somet ∈ (0,esssupu), then simple counterexamples to the
conclusion of the theorem can be constructed. A subtle counterexample involving a
functionu whose distribution functionµu is continuous but not absolutely continuous is
produced in [7].

The proof of Theorem 1 in [7] can be split into two steps. The first one consists in
showing that, for a.e.t ∈ (0,esssupu), the level sets{u > t} are equivalent to balls and
that on their boundaries|Du| = |Du
|{u
=t}, a constant depending only ont . This step
does not require (1.2) and its proof is based on the observation that all the inequalities
over the level sets ofu which lead to (1.1) must hold as equations in the case where (1.3)
is in force. Basic tools here are the isoperimetric theorem and the coarea formula. Proofs
of this part can be found also elsewhere (see [13,27]).
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The really delicate task in the proof of Theorem 1 is the second step, where the balls
{u > t} are shown to be concentric. Even if based on a geometrically clear approach,
the rigorous justification of the arguments of [7] for this part is accomplished after
overcoming serious technical difficulties by means of results from geometric measure
theory.

The aim of this note is to give an alternative proof of this second step, based on the
explicit relation betweenu andu∗, given by

u(x)= u∗(µu(u(x))) for x ∈�,

and on arguments from the classical theory of Sobolev spaces, that eventually allow us
to apply the method of the steepest descent introduced by Aronsson and Talenti in [3].

2. Proof of Theorem 1

As pointed out in the introduction, the first step in the proof of Theorem 1 is
the following characterization of those functions that verify (1.3) (see [7, p. 161,
Lemma 3.1]).

LEMMA 2.1. –Let 1 � p < +∞ and let u ∈ W 1,p
0 (�) be a nonnegative function

satisfying

‖Du
‖Lp(�
) = ‖Du‖Lp(�).
Then

HN−1
({
x: u(x)= t}) = HN−1

({
x: u
(x)= t})

for a.e. t ∈ (0,esssupu), (2.1)

and, if p > 1, then

|Du|(x)= |Du
| for HN−1-a.e. x ∈ {y: u(y)= t}. (2.2)

Here, |Du
| denotes the constant value of |Du
| on {x: u
(x) = t} and HN−1 denotes
(N − 1)-dimensional Hausdorff measure.

Eq. (2.1) and the Isoperimetric Theorem of De Giorgi [9] imply that for a.e.t ∈
(0,esssupu), and hence for everyt ∈ (0,esssupu), the sets{x: u(x) > t} are equivalent
to balls. In particular� is a ball, that without loss of generality, we will suppose to be
centered at the origin; namely�=�
, up to set of measure zero.

In the following we will suppose, without loss of generality, that|{u= esssupu}|N =
|{u= 0}|N = 0.

Our aim is to accomplish the proof of Theorem 1 on applying the method of
the steepest descent introduced by Aronsson and Talenti in [3]. This method cannot
be applied directly tou, sinceu is not Lipschitz continuous. Nevertheless, sinceu
satisfies (1.2), then its distribution functionµu is a one-to-one function on(0,esssupu)
which is absolutely continuous. This fact allows us to regard the level sets ofu as the
level sets of a Lipschitz continuous function to which we can apply the method of the
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steepest descent. Indeed, define the function

σ (x)= µu(u(x)) for a.e.x ∈�
. (2.3)

Sinceµu is a one-to-one function on(0,esssupu) andu∗ is its inverse, thenu∗(µu(t))= t
for everyt ∈ (0,esssupu). Hence,

u(x)= u∗(σ (x)) for a.e.x ∈�
.
The functionsu and σ have the same level sets, in the sense that, for everyt ∈
(0,esssupu) there existsτ ∈ (0, |�|N), such that

{
x: u(x) > t

} = {
x: σ (x) < τ

}
up to set of measure zero. (2.4)

Furthermore,σ is a measure preserving map, in the sense that, for every measurable
subsetA of [0, |�|N ], we have

∣∣σ−1(A)
∣∣
N

= |A|. (2.5)

Indeed, it is easily verified thatσ has the same distribution function as the identity map
on [0, |�|N ]. Namely, |σ−1(t, |�|N)|N = |�|N − t . Therefore|σ−1(a, b)|N = b − a,
for every a, b ∈ [0, |�|N ], a < b, which by a limiting argument clearly implies (2.5)
(see [22]). As a consequence of (2.5), we get that for every measurable subsetA of R

such that|A| = 0, |u−1(A)|N = 0. Actually, letA be a measurable subset ofR such that
|A| = 0, then by (2.3),x ∈ u−1(A) if and only if σ (x) ∈ µu(A).

Thus, by (2.5) and by the absolutely continuity ofµu, we have

∣∣u−1(A)
∣∣
N

= ∣∣σ−1(µu(A))∣∣N = ∣∣µu(A)∣∣ = 0. (2.6)

In the last equation, we have used the fact that the image of a set of measure zero by an
absolutely continuous function has measure zero. Property (2.6) is needed to show that
σ ∈W 1,∞(�
). Indeedσ ∈ L∞(�
), sinceµu ∈ L∞(0,esssupu). Therefore, in order
to prove thatσ is Lipschitz continuous, it remains to prove that the restriction ofσ to
almost every straight line parallel to the coordinate axes is absolutely continuous and
that |Dσ | ∈ L∞(�
) (see [19]).

First we prove that the restriction ofσ to almost every straight line parallel to a
coordinate axes, has bounded variation. Letȳ ∈ R

N−1 be such that, if� is the straight
line defined as� = {(t, ȳ): t ∈ R}, then� ∩ �
 �= ∅ and letσ|� be the restriction ofσ
to �. Since the level sets ofu are balls, then there existst̄ ∈ R such that,u(t, ȳ) is strictly
increasing fort � t̄ and strictly decreasing fort > t̄ . This implies that, on denoting
by V (σ|�), V t̄−∞(σ|�) andV +∞

t̄ (σ|�) the variations ofσ|� on R, (−∞, t̄) and (t̄ ,+∞),
respectively, then

V (σ|�)= V t̄−∞(σ|�)+ V +∞
t̄ (σ|�)= 2

∣∣{u(·, ȳ)� u(t̄ , ȳ)∣∣
N

� 2|�
|N.
Analogously, one can deduce thatσ has bounded variation on almost all straight lines
which are parallel to the other coordinate axes.
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Sinceu ∈W 1,p
0 (�
), then the restriction ofu to almost every straight line parallel to

the coordinate axes is absolutely continuous (see [19]). Then, also the restriction ofσ to
almost every straight line parallel to the coordinate axes is absolutely continuous, since it
is the composition of two absolutely continuous functions and it has bounded variation.

Therefore, ifDσ is the usual gradient ofσ , applying the chain rule to (2.3), we get

Dσ(x)=µ′
u

(
u(x)

)
Du(x) for a.e.x ∈�
 \ u−1(I ), (2.7)

whereI = {t : does not existsµ′
u(t)}. Since|I | = 0, we deduce, by (2.6) that|u−1(I )|N

= 0. Hence, (2.7) holds for a.e.x ∈�
.
On the other hand, by the coarea formula (see [11,12]), we have that

−µ′
u(t)=

HN−1({x: u
(x)= t})
|Du
|{u
=t} for a.e.t ∈ (0,esssupu)

where|Du
|{u
=t} is the constant value of|Du
| on the set{x: u
(x)= t}.
Since the level set{x: u
(x) = t} is the boundary of the ball{x: u
(x) > t} whose

measure isµu(t), by (2.2) we have

−µ′
u(t)=

NC1/N
N µu(t)

1−1/N

|Du|{u=t} for a.e.t ∈ (0,esssupu) (2.8)

where|Du|{u=t} is the constant value of|Du| on the set{x: u(x)= t}.
Combining (2.7) and (2.8), yields

Dσ(x)= −NC1/N
N µu

(
u(x)

)1−1/N Du(x)

|Du(x)| for a.e.x ∈�


hence, by the definition ofσ ,

∣∣Dσ(x)∣∣ =NC1/N
N σ (x)1−1/N for a.e.x ∈�
. (2.9)

By (2.9) and by the fact thatσ ∈L∞(�
), we deduce that|Dσ | ∈ L∞(�
).
Let us, now, consider the functionF defined as

F(x)= C−1/N
N σ (x)1/N for x ∈�
.

The function defined above is that one we are looking for, in order to apply the method of
the steepest descent, introduced by Aronsson and Talenti in [3] (see also [1]). By (2.4)
F andu have the same level sets in the sense specified above. Furthermore, by (2.9),
|DF | = 1 a.e. in�
, and thenF ∈ W 1,∞(�
). Let s → x(s) be any solution to the
dynamical systemdx

ds = X(x), whereX(x) is the outer normal to∂{y ∈ �
: F(y) <
F(x)} at the pointx, or equivalently, to∂{y ∈ �
: u(y) > u(x)} (notice that, under
our assumption,x ∈ ∂{y ∈ �
: u(y) > u(x)} for a.e. x ∈ �
). The fact that∂{y ∈
�
: F(y) < F(x)} is a sphere ensures thatX is locally Lipschitz continuous, this implies
the local existence and uniqueness of the linex = x(s) defined as above. Moreover
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X(x)=DF(x) if F is differentiable atx; for this reason, we say that the linesx = x(s),
are the lines of steepest descent ofF . We want to prove that such lines are straight. Since
|dx

ds | = |X(x(s))| = 1 thens is the arclenght. Therefore,

d

ds
F

(
x(s)

) =
〈
DF

(
x(s)

)
,

dx

ds
(s)

〉
= 〈
X

(
x(s)

)
,X

(
x(s)

)〉 = 1.

Thus,

|s2 − s1| =
∣∣∣∣∣
s2∫
s1

d

ds
F

(
x(s)

)
ds

∣∣∣∣∣ = ∣∣F (
x(s2)

) − F (
x(s1)

)∣∣. (2.10)

On the other hand, sinceF is Lipschitz continuous and|DF | ≡ 1, then

∣∣F (
x(s2)

) −F (
x(s1)

)∣∣ �
∣∣x(s2)− x(s1)∣∣. (2.11)

From (2.10) and (2.11) we get

|s2 − s1| �
∣∣x(s2)− x(s1)∣∣,

that is the lenght of the arc is less or equal then the lenght of the chord throughx(s1) and
x(s2). Hence, the line in question must be straight. This implies that the level sets ofF ,
and hence the level sets ofu, are concentric balls, thereforeu= u
 up to set of measure
zero.
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