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ABSTRACT. — The main results of this paper establish, via the variational method, the
multiplicity of solutions for quasilinear elliptic problems involving critical Sobolev exponents
under the presence of symmetry. The concentration-compactness principle allows to prove th:
the Palais—Smale condition is satisfied below a certain level.
© 2003 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

Keywords:Elliptic PDE; p-Laplacian operator; Critical Sobolev exponent; Critical growth

RESUME. — Les résultats principaux de cet article établissent, via la méthode variationnelle,
la multiplicité de solutions pour des problémes elliptiques quasi-linéaires qui font intervenir
I'exposant limite de Sobolev en présence de symétrie. La méthode de concentration-compaci
permet de montrer que la condition de Palais—Smale est satisfaite au-dessous d’un certain nive:
© 2003 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

1. Introduction and main results

In this paper we study the existence and multiplicity of solutions for the quasilinear
elliptic problem

{—Apu:u|u|1’*_2u+f(x,u), x €9, (1.1)
u=20, x €08,

where A ,u = div(|Vu|?~2Vu) is the p-Laplacian ofu, 1< p <N, N >3,Q is a
bounded smooth domain®", 1 is a real positive constant apd = Np/(N — p) is the
critical Sobolev exponent. We assume thfat2 x R — R is a Carathéodory function
satisfying sug| f(x, s)|: x € @, |s| < M} < oo, for every M > 0, and the subcritical
growth condition
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(f1) limy o0 f(x,5)/]s|P"~1 =0, uniformly a.e. inQ.

The first results for nonlinear critical problems have been obtained in a celebratec
paper by Brezis and Nirenberg [6]. This pioneering work has stimulated a vast amoun
of research on this class of problems. For a more complete reference on this subject w
refer the interested reader to the articles [8,7,3,16,14,25,9,17,11,1,15,24] and referenc
therein.

Our approach to study (1.1) is variational and uses minimax critical point theorems.
The main difficulty in dealing with this class of problems is the fact that the associated
functional does not satisfy the Palais—Smale compactness condition [2] since th
embedding oiW&”’(Q) into L”" () is no longer compact.

The main goal of the present work is to establish multiplicity results for (1.1) when the
subcritical termf (x, s) is odd ins. Such solutions for (1.1) will follow from a version of
the symmetric mountain pass theorem due to Ambrosetti and Rabinowitz (see [2,5,22];

ConsideringF (x, s) = [, f(x,t)dt, for our first theorem we suppogeésatisfies

(f2) there arer € [0, p) anday, a, > 0 such that

%f(x, s)s — F(x,s) > —a1 — ay|s|?, for everys e R, a.e. inQ;
(f3) there are constants, b, > 0 andd < (p, p*) such that
F(x,s) < bi|s|? + by, for everys e R, a.e. inQ;
(fs) there arer; > 0, hy € LY(Q) andQq C Q with |Qq| > 0 such that
F(x,s) = —hi1(x)|s|? — c1, for everys e R, a.e. in2, and
liminf o F(x,s)/|s|” = oo, uniformly a.e. inSo.
Note that (f>) is a weaker version of the Ambrosetti-Rabinowitz condition [2].
This condition combined with the hypothesig,) and the concentration-compactness
principle of Lions [19] will allow us to verify that the associated functional satisfies the
Palais—Smale condition below a fixed level for- 0 sufficiently small. The conditions
(f3) and( f4) provide the geometry required by the symmetric mountain pass theorem.
It is worthwhile mentioning that to establish a lower bound for the minimax levels
we exploit the existence of a Schauder basisWﬁT” (2) and the compactness of the
embeddingVy? () < L'(Q), p <r < p*.
Now we may state our first result.

THEOREM A.— Supposef (x,s) is odd ins and satisfies( f1)—(fs). Then, given
k € N, there existgu, € (0, oo] such that(1.1) possesses at leaktpairs of nontrivial
solutions for allu € (0, ).

One of the main motivations for the study of (1.1) is the following problem:

{—A,,u:|u|P*—2u+/\|u|P—2u+ﬁ|u|q—2u, x €, (1.2)
u=0, x €09, '

wherei € R andg > 0. The problem (1.2) with = 0 was considered by Garcia Azorero
and Peral Alonso in [14]. In that work the authors proved the existence of infinitely many
solutions for (1.2) when. =0, 1< g < p and 8 > 0 is sufficiently small. They also
established the existence of one nontrivial solution when0O, p < g < p*andg > 0
is sufficiently large.

As a direct consequence of Theorem A, we obtain
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THEOREM B. — Supposep < g < p*. Then, giverk € N, there exist$8; > 0 such
that the problem(1.2) possesses at leaktpairs of nontrivial solutions for alB > g;.

Actually, we note that is a solution of (1.2) if, and only ify = ﬂﬁu is a solution

of (1.1) with e = (1/8) 77 and f(x, s) = Als|?~2s + |s]9~2s.

We point out that we may consider a more general term fhgn?u in the problem
(1.2) (see Theorem F in Section 7). Fer= 2 the Theorem B and its generalization
provide a partial complement to the results in [6] under the presence of symmetry.

The Theorem B extends the multiplicity of solutions in [14] to the caseq < p*
andx € R. We also remark that, under some restrictioryptihe existence of one positive
solution for p > 1, and two positive solutions fop > 2, for the problem (1.2) with
A=0andg > 0 is a consequence of a recent result due to Ghoussoub and Yuan [15]
Finally we mention the article [8] where the authors establish multiple solutions for the
Laplacian operator in (1.2) witA = 0 and appropriate value af(see also [7,3,9,17] for
the existence of one nontrivial solution for the Laplacian operator).

In our next result we establish the multiplicity of solutions for (1.1) without supposing
the condition( f3). For doing that we assume an additional hypothesis on the behavior
of the primitive F at the origin:

(fs) limsup,_ o pF(x,s)/|s|” =a(x) <3 i1, uniformly a.e. in<2,
whereA; is the first eigenvalue for thg-Laplacian with zero boundary conditions and
a(x) < A1 means that(x) < Aq a.e. in2, with a(x) < A1 on a set of positive measure.

THEOREM C. — Supposef(x,s) is odd ins and satisfies( f1), (f2), (fa), (fs).
Then, giverk € N, there existsu; € (0, co] such that(1.1) possesses at leaktpairs
of nontrivial solutions for allu € (0, 1tx).

The Theorem C is related to an earlier result by Wei and Wu [25]. In that work, the
condition corresponding tof>) is f(x,s)s — pF(x,s) > 0. Also, in [25] it is assumed
a stronger version affs) with a € L*°(2).
In the casep = 2, we establish the multiplicity of solutions for (1.1) by considering
the following versions of f4) and( fs).
(fa) there is a constar® > 0 such that
F(x,s) > xk% — B, for everys € R, a.e. inQ,

(fs) limsup,_,o2F (x,s)/s> = a(x) <# A, uniformly a.e. in%2,
wherel ; < A, are eigenvalues of A on Q under the Dirichlet boundary conditions.

THEOREM D. — Consider the problenil.1) with p = 2. Supposef (x, s) is odd ins
and satisfies f1), (f2), (fa) with p =2 and (f5). Then there ist; € (0, o] such that
(1.1) possesses at leakt- j + 1 pairs of nontrivial solutions for alj € (0, ).

We observe that in Theorems A and C, for a givea N, the existence of pairs of
nontrivial solutions may be obtained by supposing limjnt, F(x,s)/|s|? > L, for L
sufficiently large, instead aff,) (see the proof of Lemma 4.3 in Section 4).

It is worthwhile mentioning that, althoug}fi is subcritical, we may not guarantee the
existence of multiple solutions for (1.1) when= 0 since, under the conditio€ys),
the functional associated with (1.1) may not satisfy the Palais—Smale condition, as it i
shown in Section 5, Example 5.4.
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When f does not possess odd symmetry with respect to the second variable, we
establish the existence of one nontrivial nonnegative and one nontrivial nonpositive
solution to(1.1) by supposing fs) and( f3) with A; = A;.

THEOREM E. — Supposef satisfiesf (x,0) =0, (f1), (f2), (ﬁ) with A, = A, and
(fs). Then there existg; > 0 such that(1.1) possesses a nontrivial nonnegative and a
nontrivial nonpositive solution for evepy € (O, 1).

The above theorem is related to the result of Brezis and Nirenberg [6] for the Laplaciar
operator (see also [1,14,24]). We note that the result of Theorem E is not true withou
the hypothesis f3) as it is shown in Section 6, Example 6.2.

We organize this work as follows: in Section 2, for the sake of completeness, we
state some preliminary results. In Section 3, we verify that the functional associatec
with the problem (1.1) satisfies the Palais—Smale condition below a given level for
w > 0 sufficiently small. The proofs of Theorems A and C are presented in Section 4.
Theorems D and E are proved in Sections 5 and 6, respectively. Finally, Section 7 i
concerned with a result related to a generalized version of problem (1.2).

2. Preliminary results

We start this section by recalling the variational framework for the problem (1.1). Con-
sidering the Sobolev spad¥)"” () endowed with the norru|| = (fq IVul? d)V/7, the
functional associated with (1.1) is given by

1 ,
Iu(u)=—/|Vu|”dx— ﬂ*/w’ d.x—/F(x,u)d.x, 2.1)
pQ p Q Q

for everyu € W&”’(Q). Standard arguments [21,10] show that, under the assumption
(f1), 1, belongs toCl(W(}”’(Q),R). Furthermore, the (weak) solutions of (1.1) are
precisely the critical points of this functional.

We recall that giverE a real Banach space aiice C1(E, R), we say thatl satisfies
the Palais—Smale condition on the levek R, denoted by(PS., if every sequence
(u,) C E such that/ (u,) — ¢ and I'(u,) — 0, asn — oo, possesses a convergent
subsequence. In this article we shall be using the following version of the symmetric
mountain pass theorem (see [2,5,22]).

THEOREM 2.1.— Let E =V & X, whereE is a real Banach space and is finite
dimensional. Supposkee C1(E, R) is an even functional satisfying(0) = 0 and
(I1) there is a constanp > 0 such that/ |;5,nx > O;
(Iy) there is a subspac®# of E withdimV < dimW < oo and there isM > 0 such
thatmax,cw I (1) < M;
(I3) consideringM > 0 given by(I,), I satisfiegPS. for0<c< M.
Then! possesses at leagim W — dim V pairs of nontrivial critical points.

Next, we enunciate the concentration-compactness principle due to Lions [19]. This
will be the keystone that enable us to verify thatsatisfies thgPS. condition. First
we recall a measure theory result (see, e.g., [12]).
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LEMMA 2.2.— Let (u,) C W&”’(Q) be a bounded sequenceé,< p < N. Then,
there exist two nonnegative and bounded measure€,om and v, and there exists a
subsequence of,,), still denoted byu,,), such that Vi, |” dx — wu, |u,|?” — v weakly
in the sense of measures.

We also recall that the best Sobolev constant for the embeddiﬂ@&d’f(sz) into
L7 (Q) is given by

Vu|? dx
s= it JalVu . (2.2)
ueWy (@) (Jg lulP™ dx)r/r
u#0

LEMMA 2.3.— Supposel < p < N and let(u,) C Wol”’(Q) be such that:, — u

weakly inW(}”’(Q) and|Vu,|? dx — u, |u,|?" dx — v weakly in the sense of measures,
where and v are nonnegative and bounded measuresniThen there exist some at
most countable index sdtand a family{x;: j € J} of points inQ such that
(@) v=|ul” dx + > jes Vidx;, where{v;: j € J}is a family of positive numbers
(0) = IVulPdx + ;) 1jdy;, Where{u;: j € J} is a family of positive numbers
satisfyingS(v;)?/7" < p; for all j € J. In particular, 3., (v/)P/?" < co.

3. The Palais-Smale condition

In this section we verify that the functiond), satisfies thePS, condition below
a given level wheru > 0 is sufficiently small. In order to do this, we need some
preliminary results. By sufi f (x, s)|: x € , |s| < M} < oo for everyM > 0, and(f1),
givene > 0 we may find a constarti, > 0 such that

| f(x,8)s| <C.+els|P”, foreverys eR, a.e.ing, (3.1)
|F(x,s)| <Cs+ ilsl”*, for everys e R, a.e. inQ. (3.2)
p*

LEMMA 3.1.—Supposef satisfieq f1). Let(u,) C W&”’(Q) be a bounded sequence.
Then, there is € W&”’(Q) such that, up to subsequence,

/|f(x, u ), — f(x,u)uldx > 0, asn— oo. (3.3)
Q

Proof. —Taking a subsequence if necessary, we may suppose:that u weakly
in W&”’(Q) andu, — u a.e. inQ. Since f is a Carathéodory functiory, (x, u,)u, —
f(x,u)u a.e. inQ. Furthermore, by the embeddim@l”’(sz) < LP" (), we haveC > 0
such that

lull’- <C and fu,|l> <C, foreveryn eN. (3.4)

Now, givens > 0, we choose G< ¢ < §/(4C) and apply the Egorov's theorem to
obtaig a measurable s&t c Q such thatf (x, u,)u, — f(x,u)u uniformly on Q and
|2\ Q| < §/(4C,), whereC, is the constant in (3.1). Therefore, using (3.1) and (3.4),
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we have

0< /!f(x, )ity — f Cry )] dr < /!f(x, )ity — f Cry )] dx + 5.
Q@ Q

The lemma is proved by taking — oo and considering thag > O is arbitrarily
chosen. O

By argument similar to the one used in the proof of Lemma 3.1, we may verify that if
(u,) is a bounded sequence then there 65W01”’(Q) such that, up to subsequence,

/f(x,un)vdx%/f(x,u)vdx, asn — oo, (3.5)
Q Q

and

/lunlp*_zunvdx%/|u|p*_2uv, asn — 00, (3.6)
Q Q

for everyv e W&”’(Q). Furthermore, using Lemma 3.1 and Lemmas 2.2—-2.3, we obtain
the following results (see e.qg. [25,24]).

LEMMA 3.2. — Suppose f satisfigs). Let (u,,) C W(}”’(Q) be a bounded sequence
satisfying//, (u,) — 0'in W17 (Q) asn — oo. Then, considering;, j € J, given by
Lemma2.3, we have either; > (S/u)"/? or v; = 0.

As a consequence of Lemma 3.2, the seif Lemma 2.3 is finite. Using this fact, we
may show

LEMMA 3.3. — Supposef satisfieq f1). Let(u,,) be a bounded sequenceWﬁ”’(Q)
satisfying/;, (u,) — 0 asn — oo. Then, up to a subsequence,

Vi, P2V, — [VulP"2Vu  weakly in[L” (2)]",

wherep’ = p/(p — 1).
Now we may state the main result on this section.

PrRoOPOSITION 3.4. — Supposef satisfies(f1) and (f2). Then, givenM > 0, there
exists u, > 0 such that/, satisfies the(PS, condition for all ¢ < M, provided
0< < y.

Proof. —-Given M > 0, set
SN/p W=
g} @

=S, [ e
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where S is given by (2.2 = a1|Q2| + a2|Q|*, @ = (p* — o)/ p* anday, az, o are the
constants ir( f2). Considering O< n < ., by (3.7), sincer < p, we have

N/p
1< (5> (3.8)
"
and

{N(M +A)]1/°‘ (S)N/”
_— < .

5 5

(3.9)
Now, givenc < M, let (u,) C Wol”’(Q) be such that (iY,, (u,) — ¢, and (ii) I}, (u,) — O
in W=7 (Q), asn — oco. We must show the existence of a subsequendea,0fwhich

converges strongly iW&”’(Q). First, we claim thatu,,) is bounded irWOL”(Q). Indeed,
by (i) and (ii), forn sufficiently large,

e 1 gl > L) — %u,;(un), n). (3.10)
Also, invoking (f2) and Hoélder’s inequality,
awa—%@uwxM>>%wwﬁ—aMH—@mwww?“” (3.11)
Furthermore, by Young’s inequality, we may write

*1_ *
e 1547 < 8llun 15 + Cs,

with § =
give us

o and Cs = a(52)A-2/* The previous inequality, (3.10) and (3.11)

it 122 < C + Cllugl, (3.12)

for some positive constart > 0. Now, by (i), (3.2) and (3.12) we obtaifi’ > 0 such
that |ju, ||” < C'+ C'|lu,||. This prove the claim. Hence, without loss of generality, we
may assume that thereris= Wol”’(Q) such thaiu,,) satisfies (3.3), (3.5), (3.6) and, from
Lemmas 2.2-2.3 and 3.3,

Vi, P2V, — |VulP"2Vu  weakly in[L” ()]", (3.13)
lua|”" dx = v =ul” dx + ) v;8,,. (3.14)
jeJ

weakly in the sense of measures, whelis a Donnegative bounded measur&inJ is
afinite set{x;: j € J} is afamily of points inQ, and{v;: j € J} is a family of positive
numbers.
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We claim that [, dv < (S/w)"/?. Indeed, if [,dv < 1, this follows by (3.8).
Otherwise, taking: — oo in (3.11), we obtain

%/dv <o+ a2 +a2|§2|“(/dv>
Q Q

Therefore, by (3.9), the claim is proved. As a consequence of this fact and Lemma 3.2
we conclude that; =0 for all j € J. Consequently, by (3.14),

l1-«

-«
< (M+a1|52|+a2|52|°‘)</dv) .
Q

/|u,,|1’*dx—>/|u|1’*dx. (3.15)
Q Q

Now, from {1/, (u,), u,) = o(1) and (/) (u,), u) = 0(1), takingn — oo, we obtain,
using (3.15), (3.3), (3.13), (3.6) and (3.5),

nli_)moo/Wunlpdx:M/|u|”*dx+/f(x,u)udx and
Q Q

Q

/|Vu|”dx:u/|u|”*dx+/f(x,u)udx.
Q Q Q

Hence, sincaVy "’ (2) is uniformly convex, we have that, — u strongly in Wy " ().
The proof of Proposition 3.4 is completen

4. Proofsof TheoremsA and C

In this section we prove Theorems A and C by verifying that the functigndefined
in (2.1) satisfies the hypotheses of Theorem 2.1. First, we recall that eachdygsis
for a real Banach spacg is a Schauder basis fdt, i.e., givenn € N, the functional
er E — R defined by

o
e,(v) =ay, fOI’v:ZaieieE, (4.1)
i—1

is a bounded linear functional [20,18]. We observe that the existence of a Schauder bas
for the spaceWé”’(Q) was proved by Fucik, John and Necas in [13].

Now, fixing a Schauder bas(g;);n for W(}”’(Q), for j € N we set

Lp N . .
Vi = ueWy'(R): e;(u)=0,i>jj,
)= uew; } .
X; = {ueWy (Q): ew)=0,i </}

It follows by (4.1) thatW()l”’(Q) = V; ® X;. The next lemma exploits the existence of

a Schauder basis f(W(}”’(Q) and the fact that the embeddim_zj&’”(sz) — LP(Q) is
compact.
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LEMMA 4.1. - Givenp <r < p*andé > 0, there isj € N such that, for allt € X,
luelly < 8 llull”

Proof. —First, we prove the lemma for= p: arguing by contradiction, we suppose
that there exisé > 0 andu; € X;, for everyj e N, such thaﬂlujllﬁ > & |luj||”. Taking
vi =u;/|lujll,, we havelv;|l, =1, for everyj e N, and|v;||” < 1/5. Hence,(v;) C
W&”’(Q) is a bounded sequence and we may suppose, without loss of generality, the
v; — v weakly in Wé”’(Q). Furthermoreg’ (v) = O for everyn € N sincee(v;) =0
for all j > n. This shows thab = 0. On the other hand, by the compactness of the
embeddingW(}”’(Q) — L?(2) we conclude thajv||, = 1. This proves the lemma for
r = p. As a consequence of this fact and the Gagliardo—Nirenberg inequality, the lemm:e
is also true forp <r < p*. O

LEMMA 4.2. — Supposef satisfies(f3). Then there exisi > 0, j e Nandp,« >0
such thatl,, [3p,nx, > a forall 0 < u < f.

Proof. —By ( f3) and the Sobolev embedding theorem, we figd- 0 such that
1. 0 p o
I, (u) = ;Ilull — ballully — b2| 2| — bapulul|” .
Consequently, consideriny> 0 to be chosen posteriorly, by Lemma 4.1, we have
p 1 0-p r*
L, (u) 2 lull ;—b18llull = b2|Q2| = bpulull”,

for all u € X; and; sufficiently large. Now, takingju| = p = p(8) such thab,8p? 7 =
1/(2p) and noting thap (§) — oo as§ — 0, we choosé > 0 such thap?”/2p —b,|2| >
o?/4p. Next we takeir > 0 so that

1 :
1,(u) > —pp” bsip” >0,

for everyu € X, |lull = p. The proof is complete. O

LEMMA 4.3. — Suppose f satisfiesf,). Then, giverm € N, there exist a subspace
W of W0 P(Q) and a constantM,, > 0, independent of:, such thatdimW = m and
max,cw IO(M) < Mm

Proof. —Let xp € Q9 andrg > 0 be such thatBB(xg, rg) C 2 and O< |B(xg, rg) N
Qol < |R0]/2. First, we takevl e Cg(2) with suppvy) = B(xo, ). Considering
Q1= Q0 \ [B(XO, ro) N Qo] C QQ =Q\ B(XQ, ro), we have|521| > |Qo|/2 > 0. Let
x1 € 1 andry > 0 be such thatB(xl,rl) C Qo and O< |B()C1, riy) N Q| < |Q]_|/2
Next, we takev, € C§°(£2) with supp(v2) = B(x1, r1). After a finite number of steps, we
getuy, ..., v, such that supf;) Nsuppv;) =¥, i # j and|supgv;) N Q| > 0, for all
i,jell,...,m}. LetW =sparfvy, ..., v,}. By construction, dinW =m and

/|v|1’dx >0, foreveryve W\ {0} (4.3)

Qo
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Since

ueW\{0} >0 p
ved B1(ONW

1 1
max Ip(u) = max {t”[— — t—p/F(x,tv)dx} }
Q
to prove the lemma it suffices to verify that

1 1
lim —/F(x,tv)dx . (4.4)
t—>o0 P p

Q
uniformly for v € dB1(0) N W. By sup{|f(x,s)|: x € 2, |s| < M} < oo for every
M > 0, and( f4), givenL > 0, there isC > 0 such that

F(x,s) > L|s|? — C, foreveryseR, a.e.inQq.

Consequently, for € 9B1(0) N W andt > 0,

/F@me>Lﬂ/wwm—meﬂ”/|MWV¢—&M\%I
Q

Qo Q\Qo

and

.1

fm 2 [ P> L= R,

Q

wherer = min{fQO [v[Pdx: v e dB1(0) N W} and R = max{||v||2,: v e dB1(0) N W}.
Observing thatw is finite dimensional and invoking (4.3), we have that oo and
r > 0. The inequality (4.4) is obtained by takidg> (1/r)(1/p + ||k1]l2R). The proof
is complete. O

Proof of Theorem A. First, we recall thaWy'” () = V; @ X; whereV; andX; are
defined in (4.2). Invoking Lemma 4.2, we firice N andpx > 0 such that,, satisfieq(/;)
with X = X; for all 0 < < 2. Now, by Lemma 4.3, there is a subspateof W&”’(Q)
with dimW =k 4 j =k 4+ dimV; and such thaf,, satisfies(/»). By Proposition 3.4,
taking ft smaller if necessary, we also have tiatsatisfies(/3) for 0 < u < ji. Since
1,(0) =0 and], is even, we may apply Theorem 2.1 to conclude thapossesses at
leastk pairs of nontrivial critical points fop > 0 sufficiently small. O

Before proving the Theorem C, let us remember thais the smallest positive real
numberu such that the problem

{—A,,u =MMul?, xeg,
u=20, x €08,

has a nontrivial weak solution. In [4], Anane proved that the eigenvajuean be
characterized by

A1=inf{/|Vw|pdx: we WyP () and/|w|”dx=1}.
Q Q
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Furthermore, ifp; is an eigenfunction associated with, then eithekp; is positive orgp;
is negative ine.

LEMMA 4.4.— Leta:Q — R be a measurable function such that{z 1. Then
there exist®8 > 0 such that

/(qul’7 —a™|ul?)dx > ,3/|u|”d.x, for everyu € Wol’p(Q),
Q Q

whereat = maxa, 0}.

Proof. —Arguing by contradiction, we suppose that for every N there exists
u, € Wol”’(Q), such that

1

/(|Vun|f’ ) ug|P) e < = / ] dlx.
n

Q Q

Consideringu, = 2, from a < A1, we obtain

(1728 ”p !

1 1

x1</|wn|f’dx</a+(x>|vn|f’dx+—<xl+—. (4.5)

n n
Q Q

In particular, we have thatv,) C W&”’(Q) is a bounded sequence. Therefore, up to
subsequencey, — v, weakly in Wol”’(Q), v, — v strongly inL?(2), v, — v a.e. in

Q and|v,(x)| < h(x) € LP(2) a.e. inQ. Thus,||v|, = 1. Takingn — oo in (4.5) and
applying the Lebesgue’s dominated convergence theorem, we get

/(Al—a+)|v|pdx:0. (4.6)
Q

Furthermore, by (4.5) and the characterization of

/|Vv|”dx<Iiminf/|an|1’dx:A1</|Vv|1’dx.
n—oo
Q Q Q

Hence,v is an eigenvalue associated with Consequentlyy > 0 orv < 0 in Q. This
contradicts (4.6) and <z A;. The proof is complete. O

The proof of the next result is based on the previous lemma and on an argumer
from [25]. We sketch it here for the sake of completeness.

LEMMA 4.5.— Supposef satisfies(f1) and (f5). Givenu > 0, there are constants
p,a > 0such thatl,|;p, > «a.
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Proof. —Using that su| f (x, s)|: x € 2, |s] < M} < oo, for everyM > 0, (f1) and
(fs), we may verify that, giver > 0 there exists”, > 0 such that

C.ls|” € .
F(x,s) < els| + a() + Is|?, foreverys e R, a.e.inQ. 4.7
p

*

Now, considering3 > 0 provided by Lemma 4.4, we také> 0 such thag — &’'A; >
0. Sincea™ (x) < A1 a.e. in2, we have

Q/(|Vu|1’_a|lxl|"’) > /(1+8)/ |Vu|p—a+|u| )
1
_ g/ p ’ p
/1+S,[9/[ﬂ &' hallul dx+sz|vu| |

8/
> Vu|? dx.
1+E,Q/| ul

Using the last expression, (4.7), the Sobolev embedding theorem and taking
sufficiently small, we obtain a constait > 0 such that/, (u) > K||ul||” — Cllull”".
This completes the proof of the lemman

Proof of Theorem C. Fhe proof is similar to the proof of Theorem A with = {0},
X= W&”’(Q) and Lemma 4.5 replacing Lemma 4.20

5. Proof of Theorem D

LetO< i1 <Ap<--- < A; < --- be the sequence of eigenvalues-oi on € under
the Dirichlet boundary condltlons We denote pythe corresponding eigenfunctions
with [lg; | = 1. Consideringk; < A, given in (fs) and (fs), we setV = {0} if j =1,

V =sparfes,...,@;—1} if j > 1, andW = spane, ..., ¢}. In order to apply the
Theorem 2.1, first we verify that/,) holds for the subspac®. By the variational
characterization of the eigenvalu@s); <y, and the definition of ,, we have

LEMMA 5.1.— Supposef satisfies(f4). Then there isM, > 0, independent of:,
such thatmax,cw 1, (1) < M.

Furthermore, using the unique continuation property for the eigenfuncignae
may establish the following version of Lemma 4.4.

LEMMA 5.2.-Leta:Q2 — R be a measurable function such that<s ;. Then
there exists8 > 0 such that, for alls € W2 N VL,

/(IVuIZ—a+u2)dx>,8/u2dx,
Q

Q

whereat = maxa, 0}.
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The next result, based on the above lemma, is analogous to Lemma 4.5.

LEMMA 5.3. — Supposef satisfieq( f1) and (ﬁ). Then, there are constants o > 0
such that/, [yp,nvi> .

Proof of Theorem D. By Lemmas 5.3 and 5.1, satisfies(/1) and (/). Moreover,
by Proposition 3.4, there jg, > 0 such that/, satisfies(/3) for everyu € (0, ). Since
1,(0) =0 and]/, is even, we may invoke Theorem 2.1 to conclude thial) possesses
at leastt — j + 1 pairs of nontrivial solutions for ajk € (O, ux). O

As mentioned in the Introduction, we don’t know if the problgthl) possesses
multiple solutions whenw = 0 since in this case the functional may not satisfy the
Palais—Smale condition. The following example illustrates this fact.

EXAMPLE 5.4.— Consider(1.1) with u =0, p=2, N=3and f:Q xR >R
given by

kls, |s| g 11
f(x,s) =< kos +kzsign(s), 1<|s| <2,
)\'k+1s7 |S| > 21

where0 < k1 < Aq, ko = 2h4 41 — k1, ks = 2k; — 2); 1. The hypotheses of Theordin
are satisfied byf, but the functionally does not satisfy théPS . condition forc =
(M1 — k1)|€2]. Indeed, letu,, = ng; 1, Whereg,, 1 is an eigenfunction associated with
Ak+1. For all n large enough, we havi(u,) = c and I5(u,) = O, butu,, does not possess
a convergent subsequence.

6. Proof of Theorem E

In order to prove the Theorem E, we will apply the following version of the mountain
pass theorem [22,23]:

THEOREM 6.1. — Let E be a real Banach space. Suppose CY(E,R) satisfies
I1(0)=0and

(I1) there is a constanp > 0 such that/ [;5,> 0;

(/I\z) there arev; € 9 B1(0) and M > 0 such thatsup .,/ (t v1) < M and

(I3) consideringM > 0 given by(I/;), I satisfies(PS,.for0 <c < M.
Thenl possesses a nontrivial critical point.

Proof of Theorem E. We will show that(1.1) possesses a nontrivial solutian= 0
(the existence of a nontrivial solutian< 0 can be established in a similar fashion). By
standard arguments it suffices to verify that the problem

—A,,u:,uuf’*_l—i-f(x,u), x € 2,
u>0, x € 2, (6.1)
I,{:O, x€3§2,
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where f(x,s) = f(x,s) if s >0, f(x,s) =0 if s <0, possesses a nontrivial solution.
The functionall, € Cl(Wé”’ (), R) associated witli6.1) is given by

- 1 " . ~
— _ 14 _ = +\p _
Iﬂ(u)—pSZqul dr - -~ Q/(u )7 dx !F(x,u)dx,

with F(x,s) = [y f(x,)de. In view of the above remarks, we need to show that
possesses a critical poimt£ 0. For doing this, we apply the Theorem 6.1. First, we note
that, by Lemma 4.5], satisfies(I;). Now, letg, > 0 be the eigenfunction associated
with A;. By a direct application o(ﬁ), for everyr > 0, we get

. 1P 1P
Ty (te1) < ;/|V§01|pdx - ;M/I(ﬂll”derBIQI = B[]
Q Q

Hence(/l\z) holds. In order to show that there exigts such thatiu satisfies(/3) for
all u € (0, u,), we adapt the proof of Proposition 3.4 for the functionfgl Taking
(un) C Wy () with I,(u,) — ¢ and I (uy) — 0 in W=L7(Q), we first assert that
u, — 0 asn — oo. Indeed, by the definition ofu, we have,

g 17 = (T, ), ) < |\ T, )|ty |1

Sincefl;(un) — 0, we obtain the assertion. By the Sobolev embedding, we also have
llu, Il » — 0. Next, we proceed in a similar fashion to Proposition 3.4 wjthreplacing

u, to conclude that/z) holds. Applying the Theorem 6.1, we conclude tﬁapossesses

a nontrivial critical point foru € (0, u,). The proof of Theorem E is complete

We note that the result of Theorem E is not true without the hypottigisis Indeed,
consider the example:

EXAMPLE 6.2.— In the problem(1.1), let p =2, N =3, f(x,s) = 8s with 8 <
A1/4, and a ball inRY, i.e., consider the problem

_ — 1 yd
{ Au = pu>+ pu, x €€, 6.2)

u=20, x €092

In this case, every hypothesis of TheorEnare satisfied, exceptfs). Assuming by
contradiction that the thesis of Theordtiis true, we fingi > 0 such thai(6.2) possesses
a solutionx > 0 for all u € (0, t). Consequently, taking < /i, we have that = u**u
solves the problem

—Av=1+pv, xeQ,

v >0, X €82,

v=0, x €082,
for B < A1/4. However, this contradicts the Theordn?2 in [6].
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7. A generalization of Theorem B

In this section we study a version of problem (1.2) for a term more general than
|u|7~?u. More specifically, we consider the problem
_ — |y |P" 2 p—2
{ Apu = |ul u+AMulP~“u+ Bg(x,u), xeg, (7.1)

u=20, x €082,

where 8 >0, . € R and g:Q2 x R — R is a Carathéodory function satisfying
sup{lg(x,s)|: x € Q, |s| < M} < oo, for every M > 0. Furthermore, considering
G(x,s) = [y g(x, 1) dr, we suppose that satisfies
(g1) iMoo lfl(jj—j)l =0, uniformly a.e. in2;
(g2) %g(x, s)s — G(x,s) >0, for everys e R, a.e. inQ;
(g3) there argy € (p, p*), a € L*(R), a(x) > 0 such that
g(x,s)s = a(x)|s|?, for everys € R, a.e. in;
(g4) there are constants;,c, > 0 and re [q, p*), ¢ given by (g3), such that
G(x,s) <cils|” +cals|?, for everys € R, a.e. inQ2.
The next theorem establishes the existence of multiple solutions to (7.1) providec
B > 0 is sufficiently large.

THEOREM F.— Supposeg(x,s) is odd ins and satisfies(g1)—(g4). Then, given
k € N, there exists8; > 0 such that the probleni7.1) possesses at leagt pairs of
nontrivial solutions for allg > B;.

In order to prove Theorem F we note thas a solution of(7.1) whenevew = ﬂﬁu,
g given by(gs), is a solution of

_ — p -2
A[?U /J,|U| v+f(xv vvlu’)v xEQ, (72)
v=0, x €08,

*_ -1

wherep = (1/8) 7 and f(x, s, ) = Als|P~2s + (/1) "7 g(x, w77 s). Hence, our
goal is to verify that, giverk € N, the problem (7.2) possesses at lelagbairs of
nontrivial solutions fo sufficiently small. The functional associated with (7.2) is given

by
1 7 .
By == [1vorrde =2 [ de— [ Fev e,
pQ p Q Q

where

I N 1 p*qu 1
s = [ fenmd =21+ (2) 7 6T @9)
p M
0

In order to apply Theorem 2.1, first we verify that satisfies th&PS . condition below
a given level whem > 0 is sufficiently small.

LEMMA 7.1.— Supposeg satisfies(g;) and (g2). Then, givenM > 0, there exists
ws > 0such that/, satisfies th€PS). condition for allc < M, provided0 < u < ..
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Proof. —The argument applied is similar to the one used in the proof of Proposi-
tion 3.4. GivenM > 0, we set
SN/p NL—p

where S is given by (2.2). Fixed O< u < u., we take (u,) C W&”’(Q) such that
(1) Ju(u,) — c and (i) J, (u,) — 0'in W-Lr(Q), asn — oo. Using (i), (i) and(g,) we
may show that

lunllP” < C 4 Cllugll, (7.4)

for some positive constaut > 0. Considering (i), (7.4) an¢k,) we may verify thau,,)
is bounded irifVol”’(Q). Consequently, since is fixed, by(g;) and Lemma 3.1, we may
suppose that

/g(x,uﬁun),uﬁundx% /g(xup*—lfpu)uﬁudx
Q Q

and

1 1 1 .
/g(x,uﬁun),uﬂudx — /g(x,,uﬂu)uﬂudx’
& Q
asn — oo. Moreover, from Lemmas 2.2-2.3,

|I’ln|[7 dx — V= |M|[7 dx +Zvj8)(ja

jeJ

weakly in the sense of measures, wherés a nonnegative bounded measureSin
{x;: j e J}is a family of points inQ, {v;: j € J} is a family of positive numbers.
Sincep is fixed, we may uség;) to conclude, as in Lemma 3.2, that either= 0 or
v; > (S/w)N'?. Hence,J is a finite set. Consequently, invokirig;) one more time and
applying Lemma 3.3, we may suppose that

Vi, |”~2Vu, — |Vu|’"2Vu weakly in [L”/(Q)]N.

Furthermore, byg>),
1, 7 *
D) = (), ) > 5 [
p NJ

Takingn — oc in the previous inequality, we havg [, dv < c. By our choice ofu,, we
conclude thav; = 0 for every je J, sincec < M andu < u,.. Now we may complete
the proof of this lemma as we have done in the proof of Proposition 34.

Now we verify the geometry required by Theorem 2.1.
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LEMMA 7.2. —Suppose; satisfies(g4). Then there exist > 0, j e Nandp,o >0
such that/, |3p,nx, > a forall 0 < u < .

Proof. —For an arbitraryug > 0, let 0< u < uo. Considering (7.3) antg,), we have

r—q

A 5
F(x,s,u) < ;Mﬁ +eipg "Is|” + cals|? < bils|” + b,

for everys e R, a.e. inQ2, whereb1, b, are positive constants independeniuofHence,
F(x,s, ) satisfies(f3) for all 0 < u < ug and we may proceed as in Lemma 4.2 to
conclude the proof of this lemma.O

LEMMA 7.3.— Suppose g satisfiggs). Then, givenn € N, there is a subspac®
of Wol”’(Q) and a constantM,, > 0, independent ofx, such thatdimWw = m and
max,cw IM(I/!) <M,.

Proof. —~We have, for every, > 0,
1
J.(v) < —/lel”dx —/F(x, v, u)dx.
p Q Q

Furthermore, considering (7.3) aqgk), we have

A a(x .
F(x,s,u) > —|s|” + lelq, for everys e R, a.e. in{.
p q

Letting ©2¢ be the subset of2 wherea(x) is strictly greater thamg for someag > 0,
we see thatF'(x, s, u) satisfies(fs) independent oft.. Hence, we may proceed as in
Lemma 4.3 to complete the proof of this lemmaz

By invoking Lemmas 7.1-7.3, we may conclude, as in the proof of Theorem A, that
givenk € N, there isu, > 0 such that the problem (7.2) possesses at legstirs of
nontrivial solutions for allu € (0, ;). Theorem F is a direct consequence of this fact.
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