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ABSTRACT. - We construct a family of quasiperiodic Schrodinger oper-
ators in dimension one and in the tight binding approximation, having
purely absolutely continuous spectrum. We work in momentum space
and use a superconvergent approximation scheme to construct a unitary
transformation that diagonalizes these operators on L2 (B), 
being the first Brillouin zone of the unperturbed part. The transformed
operators are multiplications by a function which might
have a dense set of jump discontinuities and is the uniform limit as n - 00
of functions En (k) with a finite number of discontinuities. Our control on
the functions En (k) and its first two derivatives is good enough to ensure
the absence of pure point and singular continuous spectrum.
Key words : Quasiperiodic Schrödinger, small divisors, Spectral analysis.

RESUME. - Nous construisons une famille d’operateurs de Schrodinger
en dimension un et avec interaction a courte portee, ayant un spectre
purement absolument continu. Nous travaillons dans l’espace de Fourier
et utilisons un schema d’approximation super-convergent pour construire
une transformation unitaire qui diagonalise ces operateurs sur L2 (B),
B = [ - ~, Tc] etant la premiere zone de Brillouin de la partie libre. Les
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2 C. ALBANESE

operateurs transformes sont des multiplications par une fonction

qui peut avoir un ensemble dense de sauts et est la limite
uniforme quand n ~ oo de fonctions En (k) avec un nombre fini de disconti-
nuites. Le controle sur les fonctions En (k) et leur deux premieres derivees
est suffisant pour impliquer l’absence de spectre ponctuel et singulier
continu.
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3QUASIPERIODIC SCHRÖDINGER OPERATORS

1. INTRODUCTION

In this paper, we construct a class of finite-difference Schrödinger
operators in dimension one with a weak quasi-periodic potential, whose
spectrum is purely absolutely continuous. The operators we consider act
on l~ (Z) and have the form

To explain the notations, let B = ~ - ~, ?c) and let (7~~ --~ ~,,~ (B) be the
Fourier transform operator such that if M E /2 (Z) we have

The operator is the generalized Laplacian given by

where Eo : L2 (B) - L2 (B) is the operator of multiplication by the function
Eo (k) on B. If Eo {k) =1- cos k, then (1.3) is the usual Laplacian opera-
tor. We assume that Eo (k) belongs to the space of the functions
on B satisfying periodic boundary conditions and having r bounded deriva-
tives, for some fixed r >_ 2. We refer ~p (B) to the topology induced by the
norm

The frequencies 03C9i, i =1, ... , s, in (1.1) are numbers in [-03C0, 03C0] satisfying
the following Diophantine conditions

for all (s + 1 )-ple of integers q, pI, i =1, ..., s, for some Do >0 and some
~o > s + 1. The set of these frequencies has full Lebesgue measure in

[ - ~, In ( 1.1 ), vi and vi are numbers in [ -1, 1 j . Finally, the coupling
E is our small perturbation parameter.
Our aim in this paper is to diagonalize the operator Ho in momentum

space and to prove the following result:

THEOREM 1. - For all choices of the parameters vi, v~ {i =1, ..., s)
satisfying the conditions above and for all integers r >__ 3, there is a dense
subset E of Lrp(B) such that f E0 ~ L then the operator Ho in ( i . 1 ) has
purely absolutely continuous spectrum for at least one value of the coupling ~
and all eigenfunctions are uniformly bounded.

Vol. 10, n° 1-1993.



4 C. ALBANESE

In the rest of this introductory section we review preceeding results on
this class of problems and explain our motivations to study the specific
question of the existence of quasiperiodic Schrodinger operators with pure
absolutely continuous spectrum with direct diagonalization methods. Then,
we give an outline of the method we use to construct a family of such
operators.
The first results obtained on one dimensional Schrodinger operators

with weak quasi-periodic potentials concern the Floquet theory for

operators with standard laplacian in the continuum of the following form

where

The eigenvalue equation can be seen as the ordinary differential
equation

where t = x and

Equation ( 1. 8) is said reducible if there is a matrix R) and an
analytic matrix valued function Y : TS -~ GL (2, R), TS = [o, 21t]S being the
S dimensional torus, such that

If is periodic, then the system ( 1. 7) is reducible for all energies,
see for instance [RS4]. On the other hand, the quasiperiodic case is

not so straightforward. In case the frequencies i = l, ... s, satisfy a
Diophantine condition as (1.5), reducibility depends on the arithmetic
properties of the rotation number

where v E R2. One can show [JM] that this limit exists, it doesn’t depend
on v and p (E) is a monotone continuous function of E. Moreover, the

spectrum of H is given by

Annales de l’Institut Henri Poincaré - Analyse non linéaire



5QUASIPERIODIC SCHRODINGER OPERATORS

U = {pi03C9i, pi ~ Z} being the frequency module. Thus, if p (E) then

E is in the closure of a gap. In this case, Moser and Poschel [MP] prove
that the system ( 1. 7) is reducible and that A = 0 if { E ~ is a collapsed
gap, A is nilpotent and ~ 0 if E is the endpoint of a gap and det A ~ 0 if
E is inside a gap. The opposite case in which p (E) is Diophantine with
respect to the frequency module ~, i. e.

for some c, a > 0 and all is studied in the pioneering work [DS]
by Dinaburg and Sinai, who show the existence of a subset of o (H) of
large but not full Lebesgue measure for which p (E) is Diphantine and
system (1.8) is reducible. Finally, Eliasson [E] improved these results by
showing reducibility for all energies for which p (E) is either Diophantine
or rational.

Eliasson also proves that if p (E) is Liouville, i. e. neither Diophantine
with respect to U nor in U, then we have

and

This is far from implying reducibility. On the contrary, Eliasson can also
show that for a generic quasiperiodic potential there exists an energy for
which p (E) is Liouville and X (t) is unbounded. Finally, by using an idea
in the paper by Delyon and Sinai [DS], Eliasson also proves that the
spectrum is purely absolutely continuous. Hence, in the one dimensional
case Floquet theory gives a complete description of the spectral properties
of quasiperiodic operators with small potential or for large energies.
However, these methods are genuinely one-dimensional and they cannot
be extended to higher dimensions.
A result that may prove more useful to understand the two dimensional

case is the one proven by Chulayevskij and Delyon [CD] according to
which the Schrodinger operator

has purely absolutely continuous spectrum for small E. Here, A is the
standard discretized laplacian and co is a Diophantine number. By means
of an Aubry [AA] duality transformation, the problem can be reduced to
the localization result in the strong coupling regime for large E obtained

Vol. 10, n° 1-1993.



6 C. ALBANESE

by Sinai [S] and by Fröhlich, Spencer and Wittwer [FSW]. It turns out
that the information provided by Sinai’s constructive proof of localization
suffices to exclude the presence of the point and singular continuous
components from the spectrum of H. Unfortunately, Aubry’s transforma-
tion has a quite limited range of validity and applies only to the case of
one frequency only. In this paper, we make use of ideas similar to those
in Sinai’s paper to set up a superconvergent algorithm that allows one to
diagonalize the operator in (1.1) with an arbitrary number of frequencies
and without using any mapping to the strong coupling regime. The interest
of the problem is that, unlike Floquet theory, such constructions can be
generalized to higher dimensions. The new difficulty one finds as one tries
to extend this construction to dimension two is that the resonances are
not isolated points in the Brillouin zone, but they are lines that can

generically have pairwise intersections. Very interestingly, this problem
resembles very closely the problem of overlapping singularities that Chu-
layevskij and Sinai solved in [DS] where they extend the proof of localiza-
tion to the case with two independent frequencies. It is thus conceivable
that by combining their ideas with the KAM theory in momentum space
developed in this paper one may be able to control the spectrum of two
dimensional quasiperiodic Schrödinger operators.

Our method to study the spectrum of the operator (1.1) is based on a
superconvergent algorithm of KAM type in momentum space by means
of which we diagonalize the Hamiltonian operator. In order the iteration
scheme to proceed, a large number of non-resonance conditions have to
be fulfilled at each step of the inductive construction. This forces us to

play with the dispersion law Eo (k) itself as we try to avoid resonances by
excluding a set of function Eo (k) at each step. More precisely, to prove
Theorem 1 we fix a small E> 0, an integer r >_ 3 and a dispersion law

and we define a family indexed by z in a set
00

Z = (~ [0, 1]. By varying z in Z we can change Eo (z; k) on intervals of
n= 1

arbitrarily small size so that the ~’r norm doesn’t vary too much. At
each iteration step we eliminate a subset of parameters z in Z for which
resonances occur. In this way, we obtain a decreasing sequence of sets

The set

containing the values of z for which the diagonalization can be completed,
turns out to be a Canto.r set depending on E and of measure 1 - 0 (E).
The algorithm we use to diagonalize our operator is a KAM type

superconvergent algorithm with an infinite number of adjustable parameter

Annales de l’Institut Henri Poincaré - Analyse non linéaire



7QUASIPERIODIC SCHRODINGER OPERATORS

by means of which we construct a unitary operator U that diagonalizes
our Hamiltonian. Since we work in the momentum representation, QJ is
defined on the space L2 ([ - ~, ~)), where [ - ~, ~) is the first Brillouin
zone. Our algorithm produces U as an infinite product

where is the unitary operator computed at the n-th iteration step. After
n iterations, the renormalized Hamiltonian

has the form

where En is the renormalized coupling

and vn k) are functions such that vn (o; k) = 0 if ~ I > Cn, where

At the n-th interation, we eliminate the non diagonal terms of order En by
means of a two steps procedure. First, we consider the singular values of
k for which

for some o such that vn (~; k) ~ 0. By restricting the set of allowed disper-
sion laws, we can assume that there are no overlapping divergences. This
allows us to eliminate the matrix elements v~ (~;  k ~ correspond-
ing to resonant transitions by means of a unitary operator given by a
direct intergral of 2 x 2 matrices. At this point, one can eliminate the other
terms of order En by means of a unitary transformation determined by an
homology equation, as is commonly done in KAM theory. During this
process, the functions En (k) aquire jump discontinuities each time we
eliminate a resonant transition. At the end we obtain a function

with a dense set of jump discontinuities which gives the diagonalization
ofH. As a corollary of all the information we have to accumulate on
En (k) in order to control the iterative procedure, we finally obtain the
following result which implies Theorem 1:

THEOREM 2. - Let us fix the parameters vi, v~, i =1, ..., s, satisfying
the conditions above, let r be an integer _> 3 and let E~ E ~~ (B). For all

Vol. 10, n° i-1993.
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~, > 0 there is an Eo > 0 and for all E E (0, Eo] there is a Eo E ~p (B) such that
I I Eo - Eo  ~,, the operator ( 1 .1 ) has purely absolutely continuous spectrum
and all its generalized eigenfunctions are bounded in configuration space.
More precisely, in this case there is a unitary opera tori ~J on L2 (B) such
that QJ -1 Ho QJ is an operator of multiplication by an L°° (B)-function E~ (k)
such that

The fact that condition (1.7) implies that the operator of multiplication
by the function E~ (k) has no singular continuous spectrum, is a conse-
quence of Stone’s formula (see [13] for details).

2. NOTATIONS, STRATEGY OF THE PROOF AND INDUCTION
HYPOTHESIS

2.1. Introduction and Basic Notations

To prove the theorems in section 1, we fix an s-uple of frequencies
a== 1, ..., s, satisfying the Diophantine conditions ( 1. 5) and, for all

integers Y >_ 2, all E > 0 small enough and all Eo E ~p (B), we give a fairly
explicit construction of a dispersion law Eo E ~p (B) which is close to Eo
in ~p (B)-norm and of a unitary operator U on L2 (B) which diagonalizes
the Hamiltonian ( 1. 6). Our construction is iterative and at each step we
establish several induction hypotheses. The purpose of this section is to
introduce some basic notations, to illustrate the strategy of the construction
and to state the induction hypothesis.

Notations. - In the following we introduce several positive constants
denoted with D;, 8i where i is an integer ~ 1. There is also a constant
a > 0. The value of these parameters is given in subsection 2 . 8.

Let

be our choice for the first Brillouin zone. If co E R, let B -~ B be the

map such that

for all k E B. It is convenient to think of B as of the circle S 1. If

a, bE B  S 1 are not antipodal points, let [a, b] denote the shortest closed
arc joining a to b and let dCa, b) denote its length.

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Let us introduce the set

If

let

denote its order. By convention, we also set

If co E R, let I ro denote the modulus of the number co’ E B such that

Finally, if n >_ 0 let us define the set

2.2. The unperturbed dispersion law

Let us fix a function Eo (k) E ~p+ 1 (B). Without restricting the generality,
we can assume that Eo (k) is a Morse function (see [M]) and that

for all kEB. We consider a family Eo (z, k), z ~ Q, of functions in

~p+ 1 (B) close to Eo (k) with respect to the ~p (B) topology. The index set
Q has the following form

where

and vp, Pp are given by

Vol. 10, n° 1-1993.
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where { . } denotes the integer part plus one. A typical element of Q is a
double sequence

ot numbers zp E [- 1, I]. The function Eo (z; k) has the following
form:

Here, is an integer _ ~~ depending on z and (v; k) and

~~ (z, ~; k) are functions in ~p (B) whose definition requires some new
notations.

Notations. - If t e R, let kp(t)EB be the point such that

Let us introduce the following arcs of B

and

Finally, be a nonincreasing function such that/(;-)=! if

for all An example of such a function is given by the convolution

where

and

Annales de Poincaré - Analyse non linéaire
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Here, N is a normalization factor such that

The functions ~p (v; k) have the form

In (2.2.16) and in the following, the arithmetic operations on B are
defined mod 2 vc. Let us remark that we have

for all k E B. The first inequality in (2 . 2 .17) is saturated for k E (v)
and the second one for kEKp(v). Moreover, we have

for all m such that 1 

The functions cpp (z, v; k) have the form

The definition of the points hp (z, ~) and of the integer Rp (z) in (2. 2. 7) is
given in Section 3. This definition is such that the distance among two
points hp (z, ~3), hp (z, P’) with and (3, ~i:p (z), is not less than

D~ 2’~p, Moreover, we have

for all m such that I - m _ r.

This proves the first part of the following lemma:

LEMMA 2 . .1. - The function Eo (z; k) belongs to ~p (B) for all z ~ ~ and
for all there are constants D 2 ( ), D3( )  ©o such that if D2 ~ D3( )
and D3 > D3 (~),. then. we have

(it) Let k;. (z), I= I , . , , , co, be the critical points of Eo (z; . ). If £o (k) is
generic and y > 0 is small enough, then c0 does not depend on z and there

Vol. to, n° 1-1993.
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are two constants 03BB1, 03BB2 > 0 such that for all z ~ Q we have

for all k with k - k. (z) _ 1 03BB1 for some i =1 ... co and

otherwise.

(iii ) Under the hypothesis in (ii ), we have

where

Proof (The following proof can be skipped in a first reading).
(ii) A generic Eo E ~p+ 1 (B) is a Morse function. In particular, it has a

finite number co of critical points k~, ~’== 1, ..., co, and we have

for all i =1, ... , co and some ~,1 > o. Thanks to (2 . 2 . .1 ), if k - ki (z) (  ~, ~
for some i =1, ..., co, we have

for all k such that k - k. z _ 1 ~, . Let us define ~ as follows:i 4 4 1 2

If

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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then for all zeQ, all critical points ~(z) of the function Eo (z; ~) are at a

distance  - ~ from a critical point of Eo (~) and (2.2.22) and (2.2.23)
8

hold.

(iii) Let us define the set

~(z;;c)={~Eo(z;~)-~po} (2.2.30)

for all z ~ Q and x e R A (z; x) is the union of a family of disjoint intervals

j~(z; x) of length ~ -~. If (x is such that the distance between J~(z; ~)
8

and the closest critical point of is ~-~i, then the function
8

Eo (z; ~) takes the value a in ~(z; x) and, if 86(0, 1), we have

Otherwise, if ~ z~ x) is at distance ~-~i from a critical point of
8

Eo (z; k) and y = Eo (z; ki (z)) - x, we have

Hence we have

2.3. An Outline of the Strategy

If n >__ 0, the n times renormalized Hamiltonian operator 0-~ n (z) is defined
for z restricted to a subset Zn of Q. If n = 0, we have Z= Q. At the
(n + 1 ) st iteration step we construct a set

Vol. 10, n° 1-1993.
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and, for all z E Zn+ 1, we define a unitary transformation ~Jn (z) on L2 (B)
which gives Hn+ 1 (z), i. e.

The operator Hn (z) has the form

where

is the renormalized coupling, En (z) is a multiplication operator by a
function E~ (z; k) that we call the n-th renormalized dispersion law and

(z), Hn N (z), N ~ 2, are operators of the form

If n = 0, we have

Let us remark that at each renormalization step we perform a resumma-
tion in E. Consequently, the functions En (z; k), vn (z, co; k) and hn N (z, 03C9; k)
depend on E. Also the set Zn c Q depends on E. However, we are going
to neglect this dependency in our notations.
The unitary operator [Un (z) is defined in such a way as to diagonalize

the truncated Hamiltonian

up to terms of order ~n . If let us consider the function

and the corresponding zero set

The regions of B close to An (z, require a special consideration because
there the non-diagonal matrix elements in can dominate. Let us

remark that the resonances we have to consider at the n-th step correspond
to frequencies co in the set ~n defined in (2.1. 8). In fact, these are the
only frequencies entering in the expansion (2. 3. 5) for ~/~ (z). This is one
of the basic features of our construction.

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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As a consequence of the resonances, the function E~ (z; k) is piecewise
differentiable and has a finite number of jump discontinuities located on
the "jump set" In (z) c B. Such a set has the form

where "p" stands for principal and "s" for secondary. We have

where ~ _ ~ _ ~. The nonresonance conditions we impose to define Zn
imply that

for ml, m2 __ m, ~1 E ~mlB~ml _ 1, c~2 E ~m2B~m2 _ i, c~l ~ ~2 and c~o 
or for 03C91 =03C92 and In particular, we see that 
then there exists one and only one frequency

such that

for some m _ n. Let us remark that in this case we have

The two jumps j (z) and of Jn (z) are said to be mutually
conjugated. Finally, the secondary jump set is defined as follows:

Also the functions 03BDn (z, co; k) have only jump discontinuities which are
located inside In (z). If N >__ 2, the functions hn N (z, co; k) have two deriva-
tives for k E (z) and jump discontinuities in the set

2.4. The Nonresonance Conditions

Let us introduce some notations

Notations. - If p is an integer ~ 1, be the least integer >_ 0 for
which we have

If n is an integer >_ 0, let 03B4-10 (n) be defined as the least integer such that

Vol. 10, n° 1-1993.
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Let us remark that we have

Let

be the map such that if (zp,)p, > 1 E Q, then

Finally, let (Q) - ~ (Q) be the map such that if A c Q is a subset,
then

At the (n + l)-st iteration step, n >_ o, we define the sets c Q for all
where

Let us set

The set Zn + 1 is defined as follows:

In Section 3 we prove that it is possible to define the sets so

that the following induction hypothesis holds:

where

(ii ) If z E Fp Znp, we have

for all j (z) E J~ (z) and all

(iii ) we have

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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and

for all (~ E ~p~~p _ 1, and all points ko E B such that

for all ~, (z) E An (z, with c~o E ~p _ l ~~n ~
v If p >_ b0 1 (n 1), zEFpZnp, ~1 ~2 and

~,1 (z) E An (z, ~1), ~,2 (z) E An (z, c~2) are two distinct and not mutually conju-
gated zeros, then we have

for all 03C90 E Un ~ { 0}.
(vi ) If ZEZnp, ~ 1 E ~ p~~ p _ 1, ~ 2 and ~,1 t~ 1 ),

~,2 (z) E An (z, t~2) are two distinct and not mutually conjugated zeros, then
we have

and

for all ~a E 
(vii ) If are two distinct and not mutually

conjugated jump points in Jn + 1 (z), then we have

for all COo such that

2.5. The Singular Sets

Notation. - In the rest of this section and in sections 4, 5 and 6, we
fix a Z E Zn + 1 and drop it from our notations, unless otherwise stated.

Let us introduce the singular sets of order n

where and are open arcs centered at j~Jpn+1 and of length cn
and 2 cn, respectively, where

Vol. 10, n° 1-1993.
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The formalism of singular sets we use reminds quite closely the one

developed by Frohlich and Spencer to prove localization for large disorder
for the Anderson model, see [FS]. We introduce also a family of "semi-
distance" functions dn (k, k’) on B, where n = o, 1,... If for all

we set dn (k, k’) = oo, while if k = k’ we set dn(k, k) = o. Otherwise,
if n = 0 we define

for 0 ~ . If n >_ 1, d" (k, took) is defined inductively in n so that

where the infimum is taken over all m-tuples ..., such that

In (2.5.4), we set and define gn as the function such that

k) _ ~ in case and in case ~l + 
and both t03C9l k and Otherwise, we get -1.

Let us notice that the function dn (k, k’) presently defined is not a
distance on B because dn (k, k’) can be zero Moreover, let us remark
that dn (k, k’) must not be confused with the euclidean distance d(k, k’)
introduced in subsection 2.1. In section 4 prove that the following induc-
tion hypothesis holds:

~2 (n + 1 ). Properties of the Singular Sets ~n and 
For all we have

for 

for all pairs of distinct, non-conjugated jump points j, j’ E 1 and all c~o 
such that

in case and in case 

(iv) i is of order m [see Definition after ~2 . ~ . 6)~ and k E ~,~ ( j),
then we have

(v) For all ~T >_ ~ , we have

de l’Institut Henri Poincaré - Analyse non linéaire



19QUASIPERIODIC SCHRODINGER OPERATORS

Before concluding this subsection, let us introduce some notations con-
cerning singular sets.

Let

and

Let

be the function such that

for all Let

be the map such that

for all 
let J; (B) be the function such that

where em is defined in (2. 5. 2) and the function f in (2. 2.12). We have

for all k E B. The first inequality is saturated for k E (~~ and the
second one for Moreover, we have

and

2.6. The Singular Part of U~

The unitary transformation in (2.3.2) that we construct at the (K+I)-st
iteration step, has the form of a product of two unitary operators

Vol. lar n° 1-1993.
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Sn is named the "singular" part exp (En Rn) is the "regular" part
of QJ n. In this and the next subsection we state the induction hypothesis
fulfilled by these two operators.
The singular part ~n is defined in such a way as to kill most of the

matrix elements in Hn corresponding to transitions k ~ ~ k ] with both
k and tro k in the singular set ~n. More precisely, for all jump points

let us introduce the operator

where

and ( j; k) is defined in (2 . 5 . 20). Since

the right hand side of (2. 6. 3) is well defined. Thanks to ~2 (n + 1 ) (i ),
any two operators and commute. Moreover,
each operator ( j) is the direct integral over B of 2 x 2 matrices. Hence,
it is possible to find a rather explicit expression for a unitary operator
diagonalizing on L2 (B). We introduce a modification of such
an operator and define Sn as the product

Definitions. - The jump point j~Jpn+1 is said to be (n + I)-regular if
n > 1, j E J~ and j is n-regular or if n >_ 0 and we have

Otherwise we say that j is (n + I)-degenerate. Furthermore, we say that
the order of j is the least integer m such that j~Jpm+1 and the height of j is
the least integer n’ such that j~Jpn’+1 and it is (n’ + 1 )-regular.
Remark. - This definition makes sense because, as we discuss below,

if j~Jpn+1 is not an n-regular jump point of Jpn, then k) is continuous
at k=j.

Notation. - let and be the subsets such

that 
_

in case j is (n + I)-regular and

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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in case j is (n + 1 )-degenerate of order m __ n. We also introduce the sets

the operator has the form

where k) is an O (2) operator of the form

The function 8n U; .): Cn ( j) -~ S is a real valued function defined mod 2 x.
It is twice differentiable for k ~ j in case j is regular, and for all 

if j is degenerate. If j~Jp+n+1 and let k) be the symmetric
operator

If j is (n + 1 )-regular, then we define k) so that k) diagonalizes
for all Otherwise, if j is (n + 1 )-degenerate we define
so that diagonalizes k) for all and we

extend this definition to the rest of Cn ( j) in such a way that

if

and the induction hypothesis below holds. See section 5, Lemma 5. 7 for
the details.
The renormalized Hamiltonian

can be split as follows:

Here, E~ is the operator of multiplication by the function

~/n is the operator

Vol. 10, n° 1-1993.
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where, if k~BBJn and if k~Jn and 03C9~03C9n(k) we have

while if k E ~n and o = c~~ (k) we set

Finally, the operators N >_ 2, have the form

If N~3, N=2 and or if N=2, and we

define

Otherwise, if k~Jn we set

In Section 5, we prove that the following three induction hypotheses
are fulfilled:

~3 (n + 1) Properties of En (k).
For all z E Z~, + 1, the following are true

for all k E and all k such that d k  ~ ~’~4 2832 ~2 for some./ B n ~ ~ .~ ) 
2 

n 3 2 ./

(n + 1 )-degenerate jump poin t j E J~ + 1.
For all k~Jn/Jpn+1 we have

(v) For all (n + 1 )-regular jumps j E 1 of height n’  n and all k E Cn ( j),
we have

(vi ) For all (n + 1 )-degenerate jumps o~ order m _ n, j E J+ 1, the func tion
En (k) is continuous at k = j and we have
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for all k ~ Cn J) and

for all k such that

(vii) Let j E 1 be (n + 1)-regular of order m and height n’ and let m’ = m
if n’ = n, m’ = n otherwise. If k ~ Cn J) is such that

we have

Otherwise, if (2. 6. 32) fails, we have

and

(viii ) For all (n + 1)-degenerate jumps j E of order m, we have

for all k E Cn (j).

~4 (n + 1 ) Properties of ~/n.
For all the following are true

for k E B such that

for all 03C9~U and and for all and

for all k E ~n.
For all j~Jpn+1 and all we have
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~5 (n + 1 ) Properties of Hn ~, N >_ 2.
For all and all N >_ 2, we have

for all t~ E k E B such that

(ii ) Let t~ E ~ll. ~~’ N >__ 3, if N = 2 if N = 2,
k E B/(Jn ~ t-03C9Jn) and 03C9~03C9n (k), we have

For all j~Jpn+1, we have

where U’ = Wt if N ~ 3 or f N = 0 and k G Cn J); otherwise Wt’ = WtE( 03C9n (k) ) .
If j G J£+ i is (n + 1)-degenerate of order m and 0  d(k, j)~1 2 ~-1m ~7/4n, we

have

If j E Jn + 1 is (n + 1 )-degenerate of order m and
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we have

In order to formulate the next family of induction hypotheses, we need
to introduce some notations.

Notations. - If g (k) is a finite sum of 6-functions, i. e.

with ki E B, we define

J6(n+ 1 ) Dependency of Esn, Vsn and Hsn N on Ea (k).
For all z belonging to the interior Zn + 1 of Zn+ 1, all w E N >_ 2 and

k E B, the distributions

are finite sums of delta functions and we have

For all and N >_ 2, we have
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2.7. The Regular Part of {U n

In this subsection, we discuss the regular part exp (En Rn) of the unitary

transformation in (2.6.1). Rn is a skewsymmetric operator of the 
form

The functions r n (~; k) are computed in such a way that Rn 
solves the

following homology equation:

To this end, we have to choose k) as follows:

where

The (n + 1 )-st renormalized Hamiltonian is given by

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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where is the renormalized coupling. E~ + i is the operator of

multiplication by the function

where we use the following notation:
Notation. - If A, B are two operators and p is an integer >_ I, then

ad (A)P B is the, operator [B, A] in case p =1 and 
The operator has the form

where

Finally, the operators N ? 2 are given by

where

Vol. 10, n° 1-1993.
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In section 6 we prove that the following four families of induction
hypotheses are fulfilled.

~~ (n + 1 ) Properties of En + 1 (k).
For all Z E Zn + 1, the following are true:
(i ) The function En + 1 (k) has two bounded derivatives for all k E + 1

and all its discontinuities are jumps.
For all we have

(vi) For all (n + 1 )-regular jumps j~Jpn+1 and all have

( tn k) - En + ( 2 . 7 . l 5 )

(vii) For (n + 1 )-degenerate jumps jE 1 and all k E Cn ( j), we have

(2.7.16)

If j E Jn + 1 is (n + 1 )-degenerate of order m and k E B is such that
i r _ --.

(x) If kJn+ 1 and we have

n

then either k E U and we have
m=O
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or there is a (n + 1 )-regular jump j E 1 of height n’ and order m, such that

and, in this case, we have

(xi ) If E >_ En ~4, we have

for all xER.
(xii ) We have

where

and po, co, ~,1 and ~,2 are defined as in Lemma 2 I .
(xiii ) If j~Jpn+1 is a (n + I)-regular jump of order m and 0  ~  ~1/4n, we

have

where

(xiv) we have

~g (n + 1 ) Properties of 1 ~

For all z E 1, we have

for all 
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For all we have

where _ ~ in case there is no (n + 1 )-degenerate jump j E Jn + 1 such that
dn+ 1 (k, Ll Em 1 ~7/4n, j + Em 1 ~7/4n]) ~ 1. Otherwise, U’ = U/{ 03C9n k .

If j E Jn + 1 is (n + 1 )-degenerate of order m and k is such that

0  d k, _ 1 E -1 E’~4 we have( .~ ) - 2 m n

If j E 1 is (n + 1 )-degenerate o. f ’ order m and k is such that

- I ~-m 1 ~7/4n~d(k,j)~~-1m ~7/4n, W e have2 n’

~9 (n + 1 ) Properties N ? 2.
For all z~Zn+1 and all N >_ 2, we have

ybr all 03C9~U, k~B such that

~

(11) For all k E B, we have

For all we have
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If j E Jn + 1 is (n + 1 )-degenerate and k E B is such that

~ 10 (n + 1 ) Dependency ofEn+ 1, ~/,~ + 1 and Hn + 1 ~ N on Eo (k).
For all z belonging to the interior Zn + 1 of 1, all 03C9~U, N >_ 2 and

k E B, the distributions

are finite sums of delta functions and we have

For all k E we have
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For all N >_ 2 and all we have

2.8. Conclusions

In this subsection, we give the value of some of the constants introduced
above and we show that Theorem 2 holds if the induction hypothesis
~i (n) holds for all n >_ 1 and all i =1, ... , 10.
The constants 8i, i =1, ..., 34, are given as follows:

We omit giving the explicit definition of the constant D~, i = 1 , ... , 34
and 84, a, Eo because it would be too cumbersome. We shall just state
that they are the least positive constants fulfilling the inequalities in
Lemma 2.1 and in the following sections. Since such constants have to
satisfy a rather complex system of inequalities, I tried to state all the
conditions in a very clear - though redundant - way.
We have

LEMMA 2. 2. - Let us suppose that there is a sequence ~J n, n = 0, 1, ..., of
unitary operators satisfying the induction hypothesis of the families ~~ (n + 1),
i =1, ... , 10, for all n >_ o. Then there is a unitary operator aJ on L2 (B)
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such that

and Theorem 2 holds.

Proof. - It suffices to show that the limit in the strong sense in (2. 8 . 2)
exists. In fact, thanks to ~~ (n), ~8 (n) and ~9 (n) we have

where E~ is the operator of multiplication by the function

and the convergence in (2. 8. 3) is in operator norm. Hence

and Theorem 2 is satisfied.
To prove the existence of the strong limit (2.8.2) it suffices to prove

that for all f~ L2 (B) we have

We have

where ~~m~ _ ~n and, if m ? n + 1, we set

We have

as n - 00. Moreover, if we split as follows
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where

and

we have

as n -~ oo . Hence, it suffices to show that for all (B) we have

The operator can be written as follows.

If ~ >_ 281 m + 1 we have (~; k) = 0. Moreover, we have

and

as n --~ oo . If ~~ is the set

we have
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In particular, we see that l (~n) -~ 0 as n ~ 00. Hence, for all N > n we
have

as n --~ oo .

Q.E.D.

3. NONRESONANCE CONDITIONS

3.1. Definition of the set anp

Let n >_ 0 and let us suppose that the first n renormalizations have been
performed and that ~ (m) holds for m  n. In this section, we define the
sets Anp in (2.4.8) for p E in terms of the renormalized disersion law

En (z; k) and we prove that, with this choice, the family of induction
hypothesis ..ø 1 (n + 1) is true.

Notations. - Let p E ~,~ and let ~np be the set

where

The set ~np is constructed as the intersection of five sets defined below,
i. e.

The set have the form

with

If and the set x), i =1, ... , 5, is defined as the
maximal subset of Qp such that if

then the condition ~i (n, p) below is satisfied. Before stating such condi-
tions, let us introduce the set Bnp (z) such that if n > l , then
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and if 

We have

Condition ~1 (n, p). If t~ E 1, we have

for allj(z)EJn(z) and we have

for all k E (z).
Condition ~2 (n, p). If t~ E 1, we have

and

for all points ko E Bnp (z) such that

Condition L3 (n, p). E 1, we have

for all

with t~o E such that

Condition If n >__ 1 and p >_ ~0 1 (n -1), then for all

(~1 (~2 and all pairs of distinct and not mutually
conjugated zeros such that

and such that
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~’= 1, 2, we have

for all 03C9 E ~ { 0}.
Condition ~5 (n, p). For all ~1 E ~2 E and all pairs of

distinct and not mutually conjugated zeros such that (3.1.14), (3.1.15),
(3 .1.16) hold and (3 .1.17) is satisfied for all 03C9 E ~ { 0 }, we have

and

for all ~o E 

3.2. Notations and Preliminary Lemmas

Let us start by giving the definition of the points hp (z, P) and of the
integers ~ip (z) in (2 . 2 . 7) and (2 . 2 .19). If n >_ 1 and p E Pn is such that

let Hp (z, 1, ..., ~3p (z) ~, be a family of arcs partitioning the set
Bnp (z) such that

and such that

for all z, z’ E Zn such that In (z) = In (z’). The point hp (z, ~i) is defined to be
the center of Hp (z, ~3).

LEMMA 3 . 1. - If n >_ 0, is such that

p, 
then there exists a partition Hp (z, E ~ 1, ..., (3p (z) ~,

of Bnp (z) with the properties above.

Proof. - If n = 0, the existence of Hp (z, P) is obvious. In case n ? 1,
thanks (vii) the shortest connected component of Bnp (z) is of

length
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because E is so small that

for all n >_ 1.

Q.E.D.

Notation. - If p >__ 03B4-10 (n -1), let Jnp (z) be the set of the points k E B
such that

LEMMA 3 . 2. - If p~03B4-10(n-1) and 03BD0~{ l, ..., 03BDp} is such that

for some z E Zn, then we have

for all Z E Zn such that z~ = zH and

for all (PI, v) ~ (~, vo).

Proof - This is a straightforward consequence of J10 (n) (i ) and of
the fact that if (3 . 2. 9) holds then we have

LEMMA 3 . 3. - ZEFn Zn-l’ and then for
all i, we have

Proof. - The proof is by contradiction. Let jo (z) (resp. ji (z)) be the
closest point to ko (resp. to belonging to the set J(z). If (3 . 2 .13) is
false, then there are frequencies 0)0, Oi such that

and

Hence, we have

On the other hand, we have
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because

Hence, thanks to J1 (n) (vii) we have

where the last inequality holds because

and E is so small that

for all n >_ 1.

Q.E.D.

3.3. The First Condition

We have

LEMMA 3. 4. - If n >_ I , p E is such that

and z E F p 1, p, then condition ~ ~ (n, p) is satisfied.
Proof - Due to ~~ (n) (iii ), we have

Since

we have

Hence, if (3.1.7) holds for then (3 .1. 8) holds for all
k E (z). Thus, it suffices to prove (3 .1. 7) for all j (z) E In (z). Thanks
to ~ 1 (n) (ii ) and (iv), we have
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for allj(z)EJn(z). In virtue of ~~ (n) (ii ), we have

because

LEMMA 3 . 5. - If n >_ 0, p E is such that

and we have

Proof. - As in Lemma 3.4, also here (3. t. 7) implies (3.1.8). If

be the set such that if

then we have

for all

Let us remark that due to (3 . 2. 22) we have

for all 1, ... , vp ~. We propose to estimate the Lebesgue measure of
the set (3 . 3 .11 ).

In virtue of Lemma 3.3, if the set in (3.3. 14) is nonvoid for some

ZpEQp, then we have
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for all ZpEQp. Let v 1 E { 1, ..., be such that

Thanks to Lemma 3 . 2, J~ (z) and, consequently, the arcs Hp (P, z) do not
vary as sweeps the interval [ -1, 1].

Let us fix a sequence zkp(03B2) defined for ..., [ip (z)} and a
sequence p (v) defined for v E ~ 1, ..., vp }B~ v 1 ~ . Let

be the set of the values of such that if and zp (v) = z~ (v) for
then x, co, vo). We have

In virtue of Fubini’s theorem, we also have

Hence

because

3.4. The Second Condition

We have

LEMMA 3. 6. - If n >_ 1 and p E Pn is such that

then condition L2 (n, p) is satisfied for all z E Fp 1, p.

Proof. - Let ko E B be a point such that
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Thanks (n) (ii ), we have

because

1 hanks (iv), we have

r rom (3. 4. 3), (3.4.5.) and J i (n) (iii ), we find

because

ana E is so small that

ror all n~ 1 . Simmilarly, one can prove that (3 . 1. 11) holds.

LEMMA 3. 7. - If n >_ 0 and is such that

then for all z e H p Zn and all x e Xp, we have

Proof - For all c~ E ~~B~p _ ~ and all v ~ ~ ~ , ... , ~~ ~, let us introduce
the set
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defined as the maximal set such that if

then we have

for all k E (z) n t _~ Bnp (z) U Kp (v) and we have

Due to Lemma 3 . 3, we have either or t -fJ) ~,,~ ~ Jnp (z).
The two cases being similar, we discuss only the situation in which

Kp(vo) 4: Let us fix a sequence and a sequence ~ (v) defined
for and let

be the set of the values of zp (vo) such that if zp = p and z~ (v) = z~ (v) for
v ~ vo, then we have

Thanks (i ), m _ n, if zo denotes the sequence with 
we have .

Let us consider the set

If A;o ~ G, let Iko be the maximal subinterval of Kp (v) containing ko and _

such that

and let us consider the set

Let

be the decomposition of G into connected components. For all let

~~ c R be the interval of length

l~j n° 1-1993.
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and having the same center of the interval

We have

Let us consider the set of the zp (vo) such that

If zp (vo) satisfies this condition, then we have

for all k satisfying (3 . 4 .14). In fact, in this case, An (z, In

virtue of ~-, (n) (iv), we have

for all kEBnp(z) n Hence, for all ko E G we have

because

and E is so small that

for all n >_ 1. Similarly, one can treat the first of the conditions (3 . 4 .13).
Thanks to (3 .4.17) and (3 .4. 24), we have

Hence
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because

3.5. The Third Condition

We have

LEMMA 3 . 8. - If n >_ 1 and p is an integer such that

then near all zeros ~) (~ Bnp (z) (~ with 

and z E Fp p, 
there exists a zero ~,’ (z) E (z, ~) such that 

_ _ _ ,

Proof. - Thanks to ~~ (n) (ii), we have

because E is so small that

for all n ? 1. Hence, thanks to f1 (n) (iii) we have

To fix the ideas, let us suppose that the derivative in (3. 5. 5) is positive.
As k moves away from ~, (z) going to the left, the function (z, 0); k)
decreases and the inequality (3. 5. 5) remains valid. Hence, there is a zero
À’ (z) of (z, co; k) to the left of À (z) such that

because E is so small that

for all n >_ 1.

LEMMA 3. 9. - and pEP n is such that

Vol. 10, n° 1-1993.



46 C. ALBANESE

then for all z E Fp 1 , p, condition L3 (n, p) is satisfied.

Proof - and let À(z) be a zero
satisfying (3. 1. 12) and (3. 1. 13), Thanks to Lemma 3.9, there is a

(z, at distance less than 1 from ~. (z). Thanks to
J 1 (n) (iv), ~~ (n) (ii ) and ~~ (n) (iii), we have

because

and E is so small that

for all n >_ 1.

LEMMA 3 .10. - Let n > 0 and let p ~ be such that

If 1, ..., ~ip (z) ~ and H p (z, (3) contains a zero

such that

then we have

for all ~3).
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Proof. - If Hp (z, P) contains a zero satisfying (3 . 5 .13), then we have

because

and E is so small that

Hence, thanks to ~~ (n) (iv), we have

for all k E Hp (z, (3). Since

we find (3 . 5 .15).

LEMMA 3 . 11. - I, f ’ n >-- 0 and p E is such that

we have

for all z~03A0p Zn and all 
Proof - Let us fix X E Xp, ~o E 

be the set of the zp E Qp such that if Hp (z, P) contains a zero ~, (z) satisfying
(3 .1. 14) and (3 . 1. 15), then (3 . 1. 13) holds. Thanks to Lemma 3 . 3, either
H~ (z, P) or [3) is not contained in Jnp (z). Let ... be
such that Kp (vo) contains ~, (z) in the first case and in the second.
Let us fix a sequence p and a sequence p (v) defined for

1, ... vp ~B~ vo ~. Let (i zp, x, ~i, ~, vo)B[ -1, 1] be the set

of the values of z (vo) such that for all 1, ... [3p (z) ~
and z~ (v) = z~ (v) for v E {1, ..., vp ~B~ vo ~, then we have
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We have

At this point, we need to estimate the number of ... ~ip (z) ~
such that Hp (z, ~3) contains a satisfying (3 .1.13) and
(3.1.14). Thanks to ~~ (m) (iv), m __ n, if k E B we have

Let I be a connected component of the set (z) U Bnp (z)) and
let I be one half of I, i. e. an interval having an endpoint in common
with I and the other one at the center of I. 

i be the
eigenvalues E An (z, and satisfying (3 .1.13), ordered so that

U In) increases with i. We have

for all Hence

and we find

We can thus conclude that the number of P such that Hp (z, p) contains a
zero X (z) E An (z, with the properties above is

because E is so small that

for all n >_ 1.
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On the basis of (3. 5. 25) and (3 . 5 . 30), we find

because

3.6. The Fourth Condition

We have

LEMMA 3 .12. - If n~0 and p~Jn is such that

then for all and all XEXp, we have

Proof. - 
and and x E X p, let

be the set of the z p E Qp such that if

then we have

Here Hp (z, fl) is the closed arc having the same center hp (z, p) of Hp (z, P)
and length

SUBLEMMA 3 .13. - There are two indices vl, v2 E ~ 1, ... vp} such that

and are such that Kp (vl) contains either Hp (z, 03B2) or t03C91 Hp (z, (3) and Kp (v2)
contains either Hp (z, (3) or Hp (z, (3).
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Proof of Sub/emma 3 .13 . - In case ~uo = 0, we have to consider only
the situation in which c~2. If hp (z, ~i) ~ (z), then either t~1 hp (z, ~i)
or hp (z, ~3) ~ (z), as one can see from the proof of Lemma 3 . 3. In
case 0, ~2 = ~ ~ + c~o and h p (z, ~i) = + ~o h p (z, ~i) ~ J np (z), then
either hp (z, P) or two hp (z, ~i) ~ Jnp. In all other cases, thanks to Lemma 3. 3,
either h p (z, 03B2) or t03C91 hp (z, 03B2) ~ Jnp (z) and either two h p (z, 03B2) or

(z). Moreover, these four points are separated from
each other by a distance > 2 D2 12 - e2 p.

Q.E.D.

Let us return to the proof of Lemma 3.12. Let us choose the indices v~,
v2 as indicated in the Sublemma and let us fix the sequence and
the sequence p (v) defined for 1,... v2 ~ . Let

be the set of the values of zp (v2)) such that if and

zp (v) = p (v) for v2, we have x, ~i, ~, ~2). We pro-
pose to estimate the measure of the set in (3.6.9).

Let (v2)j be a point not belonging to the set in (3 . 6 . 9) and
let us consider the region

As {z~ (v~), zp {v2)) moves away from (z~ (vl), ~p {v2)) staying inside the
region R, thanks (iv), the renormalized dispersion law changes
so that

for all where

Since

and since

for all z~ {~r2~~ ~ ~ -1, 1 ~ ~, we see that and

then we have
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Analogously, one can study the region

The conclusion is that the complementary set in ~-1, 1]2 of the set in
(3 . 6.9), is contained in a square of area

Hence (3.6.19) gives an upper bound to the measure of the set 
~z, x, f3, t~, Oi, o)~) and we have

because

and E is so small that

for all n >_ 1.

3.7. The Fifth Condition

We have

LEMMA 3 . 14. - Let xeXp and let us suppose
that

Then we have

Proof - Let us fix a ... and let

be the set of the such that in case contains a zero ~, ~ ~~j
satisfying (3.1.16) for some 03C91~Up/Up-1 and (3.1.18), then (3.1.20)
and (3.1.21) hold for all distinct and not conjugated zeros satisfying
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(3 .1.17) for some ~2 (3 .1.19) for all (~ E U ~ 0 ~ and
(3.1.18). 

’

Let us fix the sequences z~ for 
..., Bp (z) ~~~ As

sweeps the interval [- l, I], the unrenormalized dispersion law
Eo (z; k) is modified on the arc of center hp (z, Po) and of size
(3/2) D3 12-83 p. If Hp (z, Po) contains a zero with the properties
above, then thanks to Lemma 3.10 this is the only zero of k)
in Hp (z, Po) and thanks to Condition ~4 (n, p), as varies, neither
In (z) nor the zeros À2 (z) with the properties above, move. Let

be the set of the values of zp such that if and zp = p (~i)
for then Thanks to Lemma 3.10, we have

because

LEMMA 3 . 15 . - p~Jn is such that

E ~,2 (z) are two distinct,
not conjugated zeros satisfying (3. 1. 16), (3. 1. 17) and (3. 1. 18), then we
have
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and

for all ~o E ~ll such that

Proof - Let ~,i (z) E (z, wl) and ~,2 (z) E (z, ~2) be the zeros
at distance __ from ~1 (z) and ~,2 (z), respectively, whose existence is
established in Lemma 3 . 8 . Thanks to J1 (n) (vi), we have

because

for all 03C90 satisfying (3 . 7. 11). (3. 7. 10) can be proven in a similar way.
Q.E.D.

z~03A0p-Zn and x~Xp-, then we have

where p is defined in (3. 1. 2).
Proof. - Thanks to Lemma 3.15, one can define (I x) as the

maximal subset of Qp such-that if

then condition rc 5 (n, p) holds for all C0o such that

Let us denote with ~ the set of the C0o satisfying (3 . 7 .17).
Let us fix a ..., ~ip (z) } and let

be the set of the such that if H;(z, Po) contains a zero 
satisfying (3 .1.16) for and (3 .1.18) and such that
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(3 .1. 20) and (3 .1. 21) hold for all distinct and not conjugated zeros À2 (z)
satisfying (3.1.17) for some (3 .1. 18). Thanks
to Lemma 3 . 9, there are two roots ~, ~ (z) E A~ (z, coi) and
~2 (z) E An _ ~ (z, ~2) such that

Moreover, thanks to of 1 (n) (vi), we have

for all 03C9~Un. We have

for all 03C9~Un, because

and E is so small that

for all n ? 1. We have

because

and E is so small that

for all n >_ 1. Hence, the arc Hp (z, Po) contains at most one zero 
with the properties above. Moreover, in case this happens, the set

contains no zero À2 (z) with the properties above and it has void intersec-
tion with the principal jump set Jn (z). As in Lemma 3 . 14, we can conclude
that as varies, neither In (z) nor the zeros À2 (z) move. By repeating
the arguments in the proof of Lemma 3.14, we find
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We have

where

and we use the inequality

Hence, we find

because

3 . 8. Proof of the Induction Hypothesis of the Family ~ 1 (n + 1 j

We have

LEMMA 3 .17. - The induction hypothesis of the family ~ 1 (n + 1 ), hold.
Proof. - (i ) Follows from Lemmas 3.5, 3 . 7, 3.11, 3.12, 3.14 and

3.16. To prove the next induction hypothesis let us remark that for all
p >_- n + 1 we have
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(ii ) If Z E Znp, we have

for all and j (z) E In (z). Hence, thanks to J10 (n) (iv), if
z~FpZnp we have

because E is so small that

for all p _>_ 1.
(iii) Let G~ 1 and ko E B be such that

for some z E Fp Znp and let z’ E Znp be such that

Thanks (iv), we have

because E is so small that

for 1. Hence, we have

Thanks to (vi), m  n, we have

because E is so small that
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(iv) If Z E Znp, then An (z, c Bnp for all and we have

for and If z~FpZnp, we have

because E is so small that (3 . 8 . 4) holds ‘d p >_ 1.
(v) Let p >__ bo 1 (n -1), zEFpZnp, ~2 and

(Di), A2 (Z) E An (z, ~2) be two roots satisfying the conditions
in J1(n+1)(v). If z’~Znp is such that 

have

for all (Do E U { 0 }. Hence

because E is so small that

for all p >__ I .
(vi) is true by definition of Finally, also (vii) holds. In fact, if

z E Fn Zn + 1 and z’ E Zn + 1 is such that 03A003B4-0 1 
(n) z’ 

= 03A003B4-0 1 
(n) Z, we have

for (z), because E is so small that

Q.E.D.

4. SINGULAR SETS

In this section, we consider the singular sets Gn and Gn introduced in
Section 2. 5 and we prove that if holds for all m  n, then also

~2 (n + 1) is true.
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LEMMA 4 .1. - For we have

Proof. - Thanks to J1 (n + 1) (vii), we know that

because

Moreover, since we have

because

LEMMA 4. 2. - For all pairs of distinct, nonconjugated jump points
j, j’ E 1 and all t~Q such that

we have

thanks to J1 (n + 1) (iii), we have

when k = ko. To fix the ideas, let us suppose that the derivative in (4 .12)
has the same sign If k moves away from ko going to
J1 (n + 1 ) (iii), (4.12) still holds. Hence, there exists a zero such

that

because

Annales de l’Institut Henri Poincaré - Analyse non linéaire



59QUASIPERIODIC SCHRÖDINGER OPERATORS

Hence ko E C~ (~,) and co = (~,).
In case 03C9~Un, if (4.10) does not hold then thanks to J7(n) (ii ) we

have

because E is so small that

for all n >_ 1. Hence, thanks to J 2 (n) (iii), there is a jump point j~Jpn such
that Moreover, thanks to (iv) we have

because

LEMMA 4 . 4. - then we have

Proof - If j E J~+ then thanks to the. proof of Lemma 4. 3, the
inequality (4.12) holds for all Hence, we have

because

In case j~Jpn then thanks to J2(n) (iv) we have

If j is n-degenerate we have
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where we apply ~~ (n) (vii). On the other hand, if j is n-regular, (4.19)
follows directly from ~~ (n) (vi).

Q.E.D.

LEMMA 4 . 5. - If dn + 1 (k, k’) is the semidistance in Section 2 . 5, we have

dn + 1 (k, k’)  1 ~ _ 281 tn + 2> (4 . 24)

Proof. - Let us fix an integer N >_ l, a point k E B and let 03C9~U be
such that

We have to prove that

Let ..., be a set of frequencies in ~ which minimizes the sum

under the constraints

and

for all l = o, ... , m -1. Thanks to ~2 (n) (v), we have

for all l = o, ... , m -1. We also have

Furthermore, if lo and 11 are two integers E ~ 0, ... , m -1 } such that the
function gn in (4 . 27) vanishes, we have

where we use ~2 (n + 1) (ii). Hence, we have
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because

.-.- .

As a consequence of the five lemmas above, we have

COROLLARY 4. 6. - The induction hypothesis in the family ~2 (n + 1),
hold.

5. THE SINGULAR PART OF Un

In this section, we construct the singular part Sn of Un - see
(2 . 6 , .1 ) - and we prove the induction hypothesis in the families ~ 3 (n + 1 ),
~4 (n + 1 ), ~5 (n + 1 ) and ~6 (n + 1 ).

5.1. Gap Estimates

Let us recall from Section 2. 6 that ~n is the operator of the form

where ~n ( j) is given by

and S" ( j; k) is an 0 (2) operator of the form

If the funtion k) has two bounded derivatives with respect
to k and it is such that Sn ( j; k) diagonalizes the operator

Notations. - Let us introduce the following functions defined on ~n:
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In (5.1.8) and in the following, we adopt the convention according to
which sgn 0 = + 1.
The following result derives from a simple calculation.

LEMMA 5 .1. - For all j E 1 and all k E Cn J), the eigenvalues of the
operator Fn ( j; k) are En (k) and En (t" k).
We have

LEMMA 5. 2. - For all j E i and all k E ~n J), we have

Proof - 1 is (n + 1 )-regular, then either j E Jn and this result
follows from ~~ (n) (vi), or we have

In this case, thanks to J 8 (n) (v), we have

for On the other hand, for alljEJ+1 and
such that thanks to ~2 (n + 1 ) (iv) we have

LEMMA 5 . 3 . - For all j E ~n + and all k E Cn J), we have

Proof - (i ) In case it results
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by applying the inequality valid for all we find

If k is such that

then thanks to J 2 (n + 1) (iv) and ~8 (n) (ii ), (5.1.16) holds. In fact, we
have

Hence, from the first inequality in (5.1.17) we find

On the other hand, if (5.1.17) fails to hold, then we can use the
inequality ,~1 + x~ - x  1 valid for all and we find

(ii) We have

Thanks to Jg(n) (iii), we have

Vol. 10, n° 1-1993.



64 C. ALBANESE

Hence, we have

because

(iii) We have

Thanks to ~~ (n) (v), J 8 (n) (iv) and Lemma 5 . 2, we have
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because

and E is so small that

for all n >_ o.

Q.E.D.

The following result has a proof very similar to that of the preceeding
lemma.

LEMMA 5 . 4. - For we have

5 . 2. The Operator k)

We have

LEMMA 5.5. - For and all the function k)
satisfies the following differential equation

Proof. - Let u 1 ( j; k) and u2 ( j; k) be the eigenvectors of the operator
k) in (5.1.4) that correspond to the eigenvalues and 

respectively, and have euclidean norm one. then for all k’ E B
close enough to k, we have 

’

where ~ c C is a small circle enclosing E~ (k) but not E~ (tn k) and c (k) is
a normalization factor. By differentiating with respect to k’ at k = k’,
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we find

By introducing the expressions (5.1.4) and

into (5 . 2 . 3), we find (5 . 2 .1 ).
Q.E.D.

LEMMA 5.6. - For and all we have

Proof - (i) Thanks to Lemma 5 . 2, we have

Hence, thanks to ~.~ (n) (iii), J 8 (n) (iii) and Lemma 5 . 5, we have

(ii) By differentiating in (5.2.1), we find
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. because

Proof : - Let us write the operator F~ ( j; k) as follows.

where

and

Let ui 1 ( j; k) and U2 U; k) be the eigenvectors of k) given in (5 . 2 . 4).
The orthogonal projection PI ( j; k) onto ul ( j; k) is given by the contour
integral

where

By expanding (5 . 2 . ~ 7) in geometric series and using the bound

deriving from ~g (n) (ii ), we find
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because

and E is so small that

for all n >_ 0. Hence, we have

Thanks to (5 . 2. 22), we also have

(ii ) Thanks to Lemma 5 . 5, (i ) and ~8 (n) (iii ), we have

because

and E is so small that

for all n > 1.

because

(iii) Finally, by differentiating in (5.2.1) and using ~~ (n) (v) and
~8 (n) (iv), we find
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and E is so small that

for all n >_ 1.

Q.E.D.

LEMMA 5. 8. - If j E 1 is an (n + 1 )-degenerate jump of order m, the
function 8" J, k) defined above for k E ~" J) can be extended to C" J) in
such a way that it has the following properties:

(i ) If d (k, j ) - En ~4, we have

where En (k) is the function defined in (2 . 6 .18);

and

(iv) If d(k, j) > § E§§ ~ E§/~i , we have

and

Proof. - Let 9n ( j; k), be defined as the function such that if
we replace 8n ( j; k) with ën ( j; k) in the definition (5 .1. 3) of ~" ( j), then
this operator diagonalizes k) exactly. Let us suppose that k) is
chosen so that it results continuous in k and it vanishes at the endpoints
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of Cn ( jj. A rather straightforward calculation gives the following result:

Since ~" (kj ~ 0 for all we have

Moreover, we have

for all k E C" (~~B~ j ~. If k E C" (j), we set

where f is the function defined in (2. 2.12). (v) is clearly true. Moreover,
we have

for Hence

and from (5.2.40) we find

To prove (ii), let us notice that if-s~~j~~(~./)~--E,~sJ~i and
Bn (/. ~) is the matrix in (5.2.16), then we have

))B.(/; (~2.45)
This derives from (v). Thanks to ~(~+~) w~ expand in
geometric series as in (5.2.20), we find
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because E is so small that

for all m _> 0. Thanks to (5.2.1), ~~ (n) (ix) and (vi), in this case
we also have

because E is so small that

then thanks to J~(n) (ix) and YJn) (vi),

we have

because E is so small that

for all 

Finally, if~(~~)~ -s~~j~, then thanks to J~) (viii), we have
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and hence

and (5 . 2. 36) follows.
Q.E.D.

It is straightforward to extend the arguments above to prove the follow-

ing result:

LEMMA 5.9. - For all we have

Moreover, for all k E Cn (j), we have

5 . 3. Proof of the Induction Hypothesis 53 (n + 1), ~,~ (n + (n + 1)
and ~6 (n + 1)

We have

LEMMA 5 .10. - For and all k E Cn J), we have
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Proof - we have

The third term on the right hand side has support in the set

and it can be estimated with the help of Lemma 5.7. Thanks also to
Lemma 5. 3, we have

because

This proves (i). We also have

because E is so small that

for all and

for all n >_ 1. This proves (ii ).
We have
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because

and E is so small that

for all 

Finally, from (5.3.5) we find

because E is so small that

for all n >_ 0.
Q.E.D.

LEMMA 5. 1 ~ . - .I~ + ~ is (n -~-1) degenerate of order m, the following
are true:

(ii) we have

and

Proof - (5.3.17) derives from (5.2.37). Moreover, for all kE Cn U)
we have

Thanks to ~.~ (r~) (viii), we have
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because E is so small that

for all n >_ o. If  E -1 E’~4  d k - ~ E - ~ E’~4 we have- 

2 
m n - ~ ~.~>- 2 m n 1~

,_ - ,

On the other hand, if d(k, j)~1 2 ~-1m ~7/4n-1, we have

because E is so small that

for all Similarly, one can prove (iii).
Q.E.D.

LEMMA 5 . 1 2. - The induction hypotheses of the family ~3 (n + 1 ), hold.

Proof - (i) is obvious. (ii) follows from Lemma 5.10 (i) and
Lemma 5.11 (i ). Also (iii) and (iv) follow from the two preceding lemmas
because

and

(v) follows from Lemma 5.10 (iv) and (vi) from Lemma 5.8 (ii ) and (iii).
Since (viii) follows from Lemma 5.11 (ii), the only hypothesis left to

prove is (vii).
be an {~ -#- ~ )-regular jump of order m and let us set m’=m

if n’ = n, m’ = n otherwise. such that
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then we have

because E is so small that

for all m’ >_ o. Hence

because

and E is so small that

for all m’ >_ 0.

Let us now suppose that (5.3.30) fails to hold. In this case, we have
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If j has height n’ = n, then we have

because

and E is so small that

for all On the other hand, if n’  n, i. e. if j~Jpn and it is n-regular,
we have

because E is so small that

for all n >_ 1. This completes the proof of ~3 (n + 1) (vii).
Q.E.D.

LEMMA 5 .13. - The induction hypotheses of the family ~4 (n + 1) hold.

Proof. - (i ), (ii ) and (iii) are obvious. To prove (iv), (v) and (vi), let
us notice that and we have

On the other hand, the function ( j); k) vanishes for
and we have
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Hence, thanks to ~8 (n? (ii ), we have

because E is so small that

for all to Lemmas 5 . 7 and 5 . 8 and to J8(n) (iii), we have

because

and

for all n >_ 1. Finally, thanks to (iv) we have

because

for all n~1.
Q.E.D.

LEMMA 5 . 14. - The induction hypotheses of the family ~5 (n -~-1 ), hold.

Proof. - (i ) and (ii ) are obvious and (iii), (iv) and (v) can be proven
as (iv), (v) and (vi ), respectively. If N=2, the function

hn2 (OOn (k); k) defined by (2 . 6 . 24) requires a special consideration when
being a (n + 1 )-degenerate jump point in Jn + ~ . In this
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case, we have

If d(k, j) ~1 2~-1m ~7/4n, we have 03B8n(j; k) = 0. Hence we have

and

because E is so small that

for all n >- o. Similarly, one can prove (viii).

On the other hand, if 1 ~-1m ~7/4n  d k - ~-1m ~7/4n, we have
2 

m n - ( ~.~~- m n

Moreover, we have
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and
) 7?

Q.E.D.
Finally, let us mention without proof that estimates very similar to the

ones above, permit us to prove the following:
LEMMA 5.15. - The induction hypotheses of the family ~6 (n + 1 ), hold.

6. THE REGULAR PART OF U~

In this section we consider the regular part exp (En Rn) of the unitary
transformation Un and we prove the induction hypothesis ~~ (n + 1 ),
J8 (n + 1), ~9 (n + 1 ) and ~10 (n + 1 ) in Section 2 . 7.
As explained in Section 2. 7, the operator Rn is skewsymmetric and has

the form
r

where

We have

LEMMA 6. 2. - The following are true
(i ) For all k E B, we have

For all k E B such that dn (k, ~ > l, we have
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For all we have

Proof. - From ~Z (n + 1) (iii) and ~4 (n + 1) (iv), we find

because

If kEB is such that ~) > 1, then thanks (iii), (iv), (v) and
(vi) and from ~4 (n + 1) (ii ), (iii), we have

and

because E is so small that

for all n >_ 1. Moreover, thanks to ~~ (n) (viii), (ix) and to ~3 (n + 1) (iii)
and (iv), we have

and

because E is so small that
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for all n >_ 0. Hence we have

because

This proves (ii ). We also have

because

This proves (iii).
we have

because

Here, we make use (iii), ~3 (n -~-1 ) (iii) and ~~, (rt + 1) (v). Finally
on the basis (v), ~3 (n + 1) (iv) and ~4 (n + 1 ) (vi), we find
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because

LEMMA 6 . 2. - For all k E B, we have

for all N >__ ~.
Proof - (i ) Due (ii ), Lemma 6 .1 (i ), (iv) and

(iii), we have

because

and E is so small that

for all 

~ii ~ From ~~ . 7 . 8), we find

because E,~ satisfies (6.25) and we have

for all 
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(iii) From (2 . 7 .10) we find

because E is so small that

for all 

LEMMA 6 . 3. - For all have

(iii ) For all N >_ 2 and all we have
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Proof. - (i ) Thanks ~4 (n + 1 ) (v) and
Lemma 6.1, from the expression (2 . 7 . 6) for En + 1 (k) we find

because a is so large that

and E is so small that

for all Since we also have

(6 . 35) follows from (6 . 38) and ~3 (n + 1) (iii). (ii) can be proven in the
same way.

(iii) If we start from (2 . 7 .10), we find

Vol. 10, n° 1-1993.



86 C. ALBANESE

because E is so small that

for all n >_ 0.

Q.E.D.

LEMMA 6 . 4. - For all we have

Proof - Thanks and

Lemma 6.1, we have
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because a is so large that

and

By using (6.43) and ~4 (n + ~ ) (iv), we find (6 . 45). Also (6 . 46) is a

straightforward consequence of (6.48). Moreover, we have

because E is so small that

/

for all 

Q.E.D.

LEMMA 6 . 5 . - is an (n + 1)-degenerate jump point of order m
and k E B such that

then we have
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If 03A3’ denotes the sum over 03C9 ~U such that 03C9~ 03C9n (k) in case N = 2 and
we have

Proof - If (6.53) holds, then thanks and

~2 (n + 1) (v) we have either

or

because

and E is so small that

for all n >_ o. In both cases we have

unless k E Gn, N = 2 and 03C9= 03C9n (k). This follows from J 2 (n + 1 ) (ii ) because

In case (6 . 60) holds, this lemma follows from J 4 (n), J 8 (n) and ~9 (n).
Otherwise, thanks to J7(n) (iv), n’  n, we have
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because

and E is so small that

We also have

because a is so large that

Thanks to ~$ (n) (iii), (iv), (v) and (vi), we have

and

because E is so small that

The same argument proves (v) and (vi).
Q.E.D.

LEMMA 6. 6. - The induction hypotheses of the family ~~ (n + I), hold.

Proof. - (i ), (ii ), (iii), (iv) and (v) are contained in Lemmas 6 . 2, 6 . 3

and 6 . 4. (vi) follows from ~~ (n) (vi) and (vii) and from J4(m) (iv), m  n.
In fact, from (6. 23) and (6. 24) we see that

because E is so small that
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for all nO and

and kEB is such that

we have

because E is so small that

for all n >_ 0. Hence, we have

because

for all This proves (vii). Also (viii) follows from (6 . 75). Finally, we
have

thanks to (6.43), (6.44) and (6 . 45). This proves (ix).
(x) Let us suppose that k E B is such that

00

If ki U ~m, then we have
nt=0
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Hence

because E is so small that

for all n >_ 1.
n

On the other hand, suppose k E ~ and let mo be the least integer
m=0

such that Then, there must be a (n+ I)-regular jump j~Jpn+1 of
height n’ and order m >_ mo, such that

In fact, if this were not true, then thanks to ~~ (m’~ (vii),
 m’ __ n + 1, we would have

because

and E is so small that

for all m’ >_ o. But (6.90) is absurd. Hence, thanks to J4(n+l) (vii), we
have
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(xi) then thanks to (ii ) we have

(xii) It is easy to convince ourselves that there exists a smooth function

1 (k) agreeing with En + 1 (k) for k E B’ and such that

and

for all k E B. Hence, thanks to Lemma 2.1, we have that either

or

Since

En + 1 (k) has the same number co of critical points of En+ 1 (k) and we
have

(xiii) Let j~Jpn+1 be a jump of order m and height n’ __ n and let

(k) be a smooth function defined for and agreeing
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with En + 1 (k) for all

and such that

and

Hence, thanks to ~~ (m) (x), we have that either

or

because (j) I __ 1 and s is so small that

for all m >_ o. If x E R, let us define the set

for all x E R. Since O  E G En ~4, we have

Each set dn(x) has at most four connected components 
a =1, ... , 4. If 

" -

then we have

Otherwise, we have
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Moreover, the measure of the set X of the x E R such that d n (x) is
nonvoid is __ D6 D i 2 2~es ~ s; 2~ m. Hence, we find

because E is so small that

for all 

(xiv) Let us introduce the set

where the union is over all (n + 1 )-regular jumps j~Jpn+ 1 of order m.
Thanks to (xiii), we have

because

In virtue of Holder’s inequality, we have

Q.E.D.

LEMMA 6. 7. - The induction hypothesis of the Jumily G8 (n + 1 j, hold.

Proof - (i ) follows from ~~ (n + i ) (v). (ii), (iii) and (iv) follow from
Lemma 6. 2, 6.3 and 6 . 4.

. 
Let us suppose that k E B is such that
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Thanks to J5 (n + 1 ) (vii) we have

because E is so small that

for all n >_ o. This condition implies also the following bound:

If k satisfies (6.85), then thanks to ~5 (n + 1) (viii) we also have

because

for all n >_ o. This bound also implies «

Q.E.D.

LEMMA 6. 8. - The induction hypotheses of the family ~9 (n + 1 ), hold.
Proof - (i ) Follows from J 2 (n + 1) (v) and (ii ), (iii) and (iv) follow from
Lemmas 6 . 2, 6 . 3 and 6 . ,4 (v) and (vi) follow from (iii) and (iv) in case
N >-14.

Let us suppose that N _ 13 and let k E B be such that
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Thanks to Lemmas 6.1 and 6. 5, we have

because (6.44) holds and

for all We also have

because

Q.E.D.
Finally, let us mention without proof that estimates very similar to the

ones above, permit us to prove the following result

LEMMA 6 . 9. - The induction hypothesis of the family J10 (n + 1 ), holds.
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