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ABSTRACT. - Considering a smooth manifold M provided with a sub-
Riemannian structure, i. e. with Riemannian metric and nonintegrable vector
distribution, we set a problem of finding for two given points E M a

length minimizer among Lipschitzian paths tangent to the vector distribution
(admissible) and connecting these points. Extremals of this variational

problem are called sub-Riemannian geodesics and we single out the
abnormal sub-Riemannian geodesics, which correspond to the vanishing
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Lagrange multiplier for the length functional. These abnormal geodesics are
not related to the Riemannian structure but only to the vector distribution
and, in fact, are singular points in the set of admissible paths connecting q°
and ql. Developing the Legendre-Jacobi-Morse-type theory of 2nd variation
for abnormal geodesics we investigate some of their specific properties such
as weak minimality and rigidity-isolatedness in the space of admissible
paths connecting the two given points.

Key words: Sub-Riemannan geometry, abnormal extremum.

RESUME. - Soit M une variete reguliere avec une structure sous-

riemannienne (i. e. avec une metrique riemannienne et une distribution
vectorielle non integrable). Nous etudions l’existence d’un chemin de

longueur minimale entre deux points q° et ql de M, parmi les
chemins lipschitziens tangents a la distribution vectorielle (chemins
admissibles). Des points stationnaires de ce probleme variationnel sont

appeles des geodesiques sous-riemanniennes et nous nous interessons

plus particulierement aux geodesiques sous-riemanniennes « anormales »,
correspondant a un multiplicateur de Lagrange nul. Les geodesiques
anormales ne sont pas reliees a la structure riemannienne mais seulement a la
distribution vectorielle et en fait sont des points irreguliers dans 1’ ensemble
des chemins admissibles reliant q° a ql. En developpant une theorie de
type Legendre-Jacobi-Morse de seconde variation pour les geodesiques
anormales, nous etudions quelques-unes de leurs proprietes spécifiques
comme la minimalite faible et la rigidite - le fait qu’ elles sont isolees dans
l’espace des chemins admissibles reliant les deux points.

1. INTRODUCTION

The paper deals with abnormal sub-Riemannian geodesics. Let us remind
that a sub-Riemannian structure on a Riemannian manifold M is given by
a completely non-integrable (or completely non-holonomic, or possessing
full Lie rank) vector distribution D on M. A locally Lipschitzian path

W~ ~0, T ~ (W~ ~0, T ~ denotes the space of Lipschitzian paths
T - q(T) on M) is called admissible if its tangents lie in D for almost
all T E [0,T]. Given two points q° and q 1 we set a problem of finding
weakly (or equivalently W~-locally) minimal admissible path connecting
q° with ql.
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The problem looks like direct generalization of the classical Riemannian
case, but in fact there is an essential difference. Namely the space of all
locally Lipschitzian paths, which connect q° and ql, has natural structure of
Banach manifold. Critical points of the length functional on this manifold
are Riemannian geodesics and all paths of minimal length are among them.
On the contrary the space of admissible paths, which connect q° and ql,
is not in general a manifold; it may have singularities. These singularities
correspond to so called abnormal sub-Riemannian geodesics, which do not
depend on Riemannian structure on M and are completely determined by
distribution D.

The term "abnormal" comes from optimization theory, since the problem
of finding minimal admissible path can be obviously reformulated as

a Lagrange problem of Calculus of Variations. The extremals of the
last problem are sub-Riemannian geodesics and, in particular, abnormal
extremals, with vanishing Lagrange multiplier for the (length) functional,
are abnormal sub-Riemannian geodesics.

There was a lot of activity tended to elimination of abnormal sub-
Riemannian geodesics. Preprint [ 19] of R. Montgomery lists several (given
by different authors) false proofs of the fact, that a minimal admissible path
should correspond to some normal sub-Riemannian geodesic. The preprint
contains also an important counterexample to this claim (see also [23]).
Main contribution of the paper is kind of Legendre-Jacobi-Morse-

type theory of 2nd variation for abnormal geodesics and derived from
it necessary/sufficient conditions of weak minimality and rigidity, as

well as existence of rigid paths of the distributions. Starting with the
definition of 2nd variation along an abnormal geodesic, we set 2nd-order
necessary/sufficient minimality conditions for abnormal geodesics. The
conditions seem to be similar to the classic Legendre-Jacobi minimality
conditions of Calculus of Variations, but not involving the length functional,
they are appearances of different phenomenon, which means "degenerate"
form of local minimality. Namely, the 2-nd order sufficient "minimality"
condition imply rigidity of abnormal geodesic path, which is isolatedness
up to reparametrization of this path in W~ -topology in the space of all
admissible paths, which connect given end-points. Therefore the 2nd-order
necessary/sufficient minimality conditions are in fact necessary/sufficient
rigidity conditions.
We go further and compute nullity and index of an abnormal geodesic,

which are correspondingly dimension of the kernel and negative index of
the 2nd variation along the abnormal geodesic. This in particular enables us
to verify the 2nd-order rigidity conditions globally, on large time intervals.

Vol. 13, n° 6-1996.
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We use the index and nullity theorems to establish rigidity for several
particular situations.

The paper is organized in following way. Section 2 contains preliminary
material; of most importance for further presentation are some notations
from chronological calculus and auxiliary results on symplectic geometry.
In Section 3 we present Hamiltonian form of "geodesic equation" and
introduce some invariants of geodesics. In Section 4 we introduce 1 st
and 2nd variations along abnormal geodesics and define Morse index and
nullity. Involving Goh and Generalized Legendre Condition along abnormal
geodesics we derive (Theorem 4.4) a sufficient condition for smoothness
of abnormal geodesic and announce (Theorems 4.1/4.8) necessary/sufficient
conditions of rigidity. In Section 5 we introduce (Definition 5 .1 ) Jacobi
curve in Lagrangian Grassmanian for an abnormal geodesic and compute
(Theorems 5.1 and 5.4) index and nullity of abnormal geodesics via

symplectic invariants (Maslov-type indices) of the Jacobi curve. This
enables us to establish (Theorem 5.5) local rigidity for abnormal geodesics
meeting Goh and Strong Generalized Legendre Condition. In Section 6
we describe some class of distributions which do possess rigid abnormal
geodesics (Theorem 6.1 and 6.2). In Section 7 we give more nice
and simplified presentation of Legendre-Jacobi formalism for abnormal
geodesics of 2-dimensional vector distributions. In Section 8 we investigate
rigidity of trajectories for affine control systems (Theorems 8.5-8.9).
In Appendix 1 (Section 9) we represent necessary/sufficient conditions
(Theorems 9.1/9.5) for isolatedness of critical points of smooth mapping on
critical level and use them to prove the necessary/sufficient conditions of
rigidity for abnormal geodesics, which were established in the Section 4.

In Appendix 2 we prove the necessity of the (introduced in the Section 4)
Goh and Generalized Legendre Condition for the finiteness of Morse index
of abnormal geodesic (see the Proposition 4.3).
The presentation is self-contained, although we often refer to the papers

[7], [8], which treats abnormal extrema for Lagrange problem of Calculus
of Variations. One can find in that paper instructive analogies and details
of some proofs.

In our work we were much inspired by a discussion on abnormal
sub-Riemannian geodesics at the Conference "Geometric Methods in
Nonlinear Optimal Control" (Sopron, Hungary, July 1991) and also by
papers [ 11 ], [19] and discussions with M. Kawsky, R. Montgomery and
H. J. Sussmann. The authors are grateful to H. J. Sussmann and the

anonymous referee for valuable remarks regarding the manuscript, which
we have taken into account when preparing the revised version. This paper
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was partially written when the second author was visiting the Faculty of
Applied Mathematics at Twente University, Enschede, The Netherlands ;
he is grateful to the faculty staff and especially to H. Nijmeijer and A. van
der Schaft for hospitality.

2. PRELIMINARIES

In the paper we use notation and technical tools of chronological calculus
developed by A. A. Agrachev and R. V. Gamkrelidze (see [5], [6]).
We will identify C°° diffeomorphisms P : M - M with

automorphisms of the algebra Cx(M) of smooth functions on M:

~(’) - P~ == ~(P(’)). The image of a point q E M under a diffeomorphism
P will be denoted by q o P.

Vector fields on M are 1 st-order differential operators on M or arbitrary
derivations of the algebra i.e. R-linear mappings X : C°° (M) -
C°°(M), satisfying the Leibnitz rule: X(~,~) _ (Xa)(3 + ~(X/?). Value
X(q) of a vector field X at a point q E M lies in the tangent space TyM
to the manifold M at the point q. We denote by ~X1,X2~ Lie bracket
or commutator X~ o X 2 - X 2 o X~ of vector fields Xl, X2. It is again
a 1 st-order differential operator and in local coordinates on M the Lie
bracket can be presented as 

’

This operation introduces in the space of vector fields the structure of a Lie
algebra denoted Vect M. For X E Vect M we use the notation adX for
the inner derivation of Vect M : (adX)X’ = [X,X’],VX’ e Vect M.

For a diffeomorphism P we use the notation Ad P for the following inner
automorphism of the Lie algebra Vect M: Ad PX = P o X o P-1 = 
The last notation stands for the result of translation of the vector field X

by the differential of the diffeomorphism 
To introduce topology in the space of vector fields and diffeomorphisms

we start with a family of seminorms II . in where
s is a nonegative integer and K ~ RN is a compact. This family
defines in the topology of convergence of all derivatives on

Vol. 13, n° 6-1996.
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compacts. We call a family of functions t ~ (t E R) measurable if
Vx E RN t )2014~ cpt (x) is measurable. A measurable family is called locally
integrable if 0, VK, b’t 1, t2 E R :  oo . A family c,~t

is called absolutely continuous w. r. t. t if 03C9t = 03C9t0 + j/ 03C6d for some
locally inegrable family Since any manifold can be properly embedded
into euclidean space of sufficiently large dimension N, one can introduce
such a topology (independent on the embedding) in the space Coo (M) of
smooth functions on M.

As far as we treat the vector fields and the diffeomorphisms as operators
on the Coo (M) we may introduce the properties of local integrability or
absolute continuity for parametrized by t families of the operators in a weak
sense (see [5] for details). Thus we call time-dependent vector field t - Xt
locally integrable if t - Xt03C6 is locally integrable for any (/? E C°° (M).
From now on we assume all time-dependent vector fields to be locally
integrable. A flow on M is an absolutely continuous family t - Pt of
diffeomorphisms, satisfying the condition Po = I (where I is the identity
diffeomorphism). This means that dcp E C°° (M) : 
is absolutely continuous family of functions; P003C6 = cp.
A time-dependent vector field XT defines an ordinary differential equation

q = = q° on the manifold M; if solutions of this differential
equation exist for all q° E M, T E R, then the vector field XT is called

complete and defines a flow on M, being the unique solution of the

(operator) differential equation:

This solution will be denoted by Pt = e p fo and is called (see
[5], [6]) a right chronological exponential of If the vector field X
is time-independent, then the corresponding flow is denoted by Pt = 
We introduce also Volterra expansion (or Volterra series) for the

chronological exponential. It is (see [5], [6]):

We will need only the terms of zero-, first- and second-order in this

expansion, which are

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire
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For time-independent X one obtains

One more tool from chronological calculus is a "generalized variational
formula" (see [5], [6] ] for its drawing):

Applying the operator Ad( exp Jo to a vector field Y and

differentiating

which is of the same form as (2.1). Therefore Ad( exp fo X03B8d03B8) can be
presented as an operator chronological exponential ad X e dB which
for a time-independent vector field XT - X is written as These

exponentials also admit Volterra expansions:

In this new notation the generalized variational formula (2.4) can be
rerepresented as:

Vol. 13, n° 6-1996.



642 A. A. AGRACHEV AND A. V. SARYCHEV

A vector distribution D on M is a subbundle of tangent bundle T M; a
vector field X is subjected to D if X(q) E Dq C TqM for every q E M.
For a distribution dim Dq does not change with q e M.

Generalizations of vector distributions are differential systems or vector
distributions with singularities (3) which are subbundles with nonconstant
dim Dq. We call differential system any C~(M)-submodule of Vect M;
then vector distributions correspond to projective C°°-modules. Locally one
may treat germ of vector distribution as free module.

If D is a differential system, then taking C°°-modules generated by Lie
brackets of order ~ k, k = 1,.... of the vector fields subjected to D one
obtains an expanding sequence of differential systems:

For any q E M the sequence of subspaces

is called flag of the differential system D at the point q E M, while
the sequence  ~ ~ ~ n~ (q)  ~ ~ ~, where = dim Dq, is called

growth vector of the differential system D at the point q. Differential

system is called completely nonholonomic or having full Lie rank at a

point q E M if Dq = TqM for some k. Differential system is called

completely nonholonomic or having full Lie rank if for some k Dq = ~qM
for all q E M.

If D is a distribution (nl (q) - const), then still D~ may lack to

be distributions (may have singularities), since the growth vector of a
distribution in general changes with q. Distribution is called regular if its
growth vector is constant for all q.

We also have to introduce some notions of symplectic geometry (see [9],
[ 14], [18] for more details). A symplectic structure in an even-dimensional
linear space £ is defined by a nondegenerate bilinear skewsymmetric
2-form ~ ( ~ , ~ ) . Two vectors ~l , ~2 E ~ are called skeworthogonal, written
~1 b~2, if a-(~1, ~2 ) = 0. If N is a subspace of ~, let us denote by Nb
its skeworthogonal complement: Nb = ~~ e E ] v) = 0, Vv 
Evidently dim N + dim Nb = dim 03A3. A subspace F ~ 03A3 is called isotropic,
when r C ro, and coisotropic, when r ~ r? A subspace A C ~ is called
Lagrangian plane, when 11b = A. Such subspaces have dimension 2 dim ~.

(3 ) Not to be mixed with the differential systems determined by the differential forms; those
have different kind of singularities.
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If A is a Lagrangian plane and F is isotropic, then it is easy to prove, that
(A n rb) + r = (A + r) n rb is a Lagrangian plane. We denote it by Ar.
The symplectic group is the group of those linear transformations

of ~, which preserve the symplectic form:

The elements of this group are called symplectic transformations of £ . The
Lie algebra of the symplectic group is:

Let H be a real quadratic form on £ and dç H be the differential of
H at a point ~ E ~. Then is a linear form on E which depends
linearly on ~. For every ~ E E there exists a unique vector H(ç) E E
which satisfies equality ~(H(~), ~) = It is easy to show that the linear

operator 7~ : E 2014~ E belongs to and the mapping H is an
isomorphism of the space of quadratic forms onto sp(~). The differential
equation ~ = H(ç) is called the linear Hamiltonian system corresponding
to the quadratic Hamiltonian H.

Denote by ~C(E) the Grassmanian of Lagrangian subspaces of ~. This is
a smooth manifold of dimension 1 8 dim 03A3(dim 03A3 + 2).

Certainly symplectic transformations transform Lagrangian planes into
Lagrangian ones, hence the symplectic group acts on ,C(E). It is easy to

show that it acts transitively.
Let us consider a tangent space A E G(~). Every quadratic

form h on E corresponds to a linear Hamiltonian vector field h and a
one-parameter subgroup t in Sp(~). Let us consider the linear

mapping 
- ;+

of the space of quadratic forms to T,~G(E). This mapping is surjective and
its kernel consists of all quadratic forms which vanish on A. Thus two
different quadratic forms correspond to the same vector from if

and only if the restrictions of these forms on A coincide. Hence we obtain
a natural identification of the space with the space of quadratic
forms on A.

A tangent vector ~ E is called nonnegative if the corresponding
quadratic form is nonnegative on A. An absolutely continuous curve

AT (T E [0,T]) in is called nondecreasing if the velocities

Ar E are nonnegative for almost all T E ~O,T~.
Vol. 13, n° 6-1996.
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Considering the action of symplectic group Sp ( ~ ) on ,C ( ~ ) one can easily
verify, that pairs of Lagrangian planes (A, A’) have only one invariant w.r.t.
this action: it is dim(A n l1’). For triples of Lagrangian planes, there are
more invariants.

Let 1,2,3 be Lagrangian planes. Let us present a vector A E
(Ai + A3) n A2 as a sum A = Ai + A3 and consider on (Ai + A3) n A2
properly defined quadratic form ,~ ( ~ ) Maslov index of the

triple is signature of ,~ ( ~ ) . It is an invariant of the action of
symplectic group.

In [1] ] a bit different invariant of a triple of Lagrangian planes (Ai, A2, A3 )
was exploited for computation of Morse index for singular extremals.

DEFINITION 2.1. - Consider the quadratic form ,~ ( ~ ) = ~3 ) with the
domain + / Ai. A sum 2 dim ker ~3 ~- ind-,~, where 
is negative inertia index of ,~, is an invariant of the triple ( 111,112 A3) of
Lagrangian planes. It is denoted by indA2 A3 ) and is called Maslov-type
index. D

Let us note, that ker (3 = ((Ai n A2) + (A2 n As))/ We refer to
[1] ] for a simple formula connecting this Maslov-type index with Maslov
index of the triple and for the proof of the following "triangle inequality":

It also follows directly from the definition, that

A continuous curve A(T) E ,C ( ~ ) , 0  T  1, is called simple if there
exists A E ,C ( ~ ) such that n A = 0 VT E [0,1].
LEMMA 2.1. - If 11 (T ) E ,~ ( ~ ) , 0  T  1, is a simple nondecreasing

curve in ,C(~), and II E ,C(~), then

A(1)) = ~1(1)), VT E [0,1]. D

LEMMA 2.2. - Let E ,C ( ~ ) . There exist A E ,C ( ~ ) and

neighborhoods ~o , Y 1 3 111 in ,C ( ~ ) such that whenever
A E V °, A’ E V1 and dim(A n A’) = dim(0 n then there exists
a simple nondecreasing curve A(T), T E [0,1] such that = 11,11(1) _
A’, A(T) n 0 = 0 bT E [0,1] . D

Both Lemmas are proved in [1].

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire



645ABNORMAL SUB-RIEMANNIAN GEODESICS: MORSE INDEX AND RIGIDITY

is called Maslov index of the curve A(t) with respect to H. D
It follows from the Lemma 2.1 that (2.10) does not depend on a choice of

tl  ...  If the curve A(t) is closed (A(0) = A(T)), then indnA(.)
does not depend also on the choice of II (cf. [1]).

3. NORMAL AND ABNORMAL GEODESICS. RIGIDITY

The problem of finding minimal admissible path can be represented as
following Lagrange problem of the Calculus of Variations with free final
time:

Here (’, .) stays for the inner product in the tangent spaces TqM; "control
parameter" u belongs to the (r - 1 )-dimensional unit sphere Sr-1; the
controls u(T) are measurable; G(q) _ (gl(q), ... g~’(q)) is a r-tuple of
smooth vector fields, which form a basis of the distribution D. Since our
consideration regards a small neighborhood of a nonselfintersecting path on
M, then such basis can always be chosen.
We investigate problem of weak minimality, i.e. whether a given time T

and an admissible control t(.) supply (R x Loo)-local minimum for the
problem (3.1)-(3.3).

Let us introduce classical 1 st-order necessary condition of weak

optimality for the Lagrange Problem of Calculus of Variations - Hamiltonian
form of the Euler-Lagrange equation.

THEOREM 3.1. - If a pair (T, ic(~)) is weak minimizer for the problem
(3.1)-(3.3), i.e. corresponding trajectory q(T) (T E ~o, T~) of (3.2) is
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W1~-locally minimal admissible path, then there exists a nonzero pair
(~o, ~ ( ~ ) ), where is a nonegative constant is an absolutely
continuous covector-function on ~~, T~, such that ~(T) E and the

(ic(~)~ R‘(’)~ ~o~ ~(’)~ T) "
1 ) satisfies in local coordinates on M Hamiltonian system

with a Hamiltonian

and "transversality condition "

DEFINITION 3.1. - Sub-Riemannian geodesic is an extremal of the Lagrange
problem (3.1 )-(3. 3), i.e. a 5-tuple (ic ( ~ ) , q ( ~ ) , ~o, ~ ( ~ ) ; T) meeting the

conditions of the Theorem 3.1. Sub-Riemannian geodesic is called normal,
0, and abnormal, if 0 = 0 . The corresponding triple (û(.), (.), T)

is called sub-Riemannian geodesic path. D

Remark. - Obviously any restriction ( ic ( ~ ) ~ q ( ~ ) ~ ~o , ~ ( ~ ) ~ ~o, t~ , t)
of normal or abnormal sub-Riemannian geodesic ( ic ( ~ ) , q ( ~ ) , ~o , ~ ( ~ ) , T) its
restriction (ic ( ~ ) ~ ~o,t~ , ~o ~ ~ ( ~ ) ~ t) to a subinterval ~0, t~ C ~0, T]
is also normal or abnormal sub-Riemannian geodesic correspondingly..
Remark. - A geodesic path ( ic ( ~ ) , q ( ~ ) , T) may correspond to different

geodesics with different ~o, ~ ( ~ ) . .
DEFINITION 3.2. - A corank of a geodesic path (ic ( ~ ) , q ( ~ ) , T) is dimension

of the space of pairs (~o, ~(~)), which together with (u(~), q(~), T) satisfy
Theorem 3.1. D

DEFINITION 3 . 3 . - A geodesic path ( ic ( ~ ) , q ( ~ ) , T) is called corank k
abnormal geodesic path if the space of pairs (o, ~ ( ~ ) ), which together with

, (u( ~ ), q( ~ ~, T) satisfy the Theorem 3.1, is k-dimensional. D
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Remark. - One should take precautions, when determining corank of
abnormal geodesic path, since in a k-dimensional linear space of pairs
( ~° , ~ ( ~ ) ) there is k- or (k -1 ) -dimensional subspace of pairs with vanishing

Therefore it may happen, that corank k geodesic path is corank (k - 1)
abnormal geodesic path..
Whenever geodesic is abnormal, then the length functional does not

enter the minimality conditions, given by the Theorem 3.1. No surprise
that corresponding geodesic paths have not too much to do with the sub-
Riemannian metric and minimality of length. It turns out that they often
exhibit a phenomenon called in [25] rigidity.

DEFINITION 3.4. - An admissible path q ( ~ ) of the vector distribution D with
end-points q° and ql is called rigid if it is isolated up to a reparametrization
in the metric of W1~ in the set Pqq0 of all admissible paths, which connect
q° and gi. D

Rigid admissible paths are formally weakly minimal and analysis of the
proof of the Theorem 3.1 shows, that the theorem is valid for the rigid
paths as well; in addition one can take = 0. This leads to

PROPOSITION 3.2. - If an admissible path ( ic ( ~ ) , q ( ~ ) ) is rigid on [0, T],
then ( ic ( ~ ) , q ( ~ ) , T ) is an abnormal geodesic path. D

Remark. - As it is known [15], admissible paths (without or with pregiven
end-points) of a completely nonholonomic vector distribution D are dense in
metric of C° in the space of all paths on M (correspondingly without or with
pregiven end-points). Therefore an admissible path is never isolated in the
metric of C°. Therefore strong (= C°-local) minimality for sub-Riemannian
geodesics need different treatment. The results on strong minimality of
abnormal sub-Riemannian geodesics for 2-dimensional vector distributions
are to be found in [26]..
To finish with the 1 st-order condition given by the Theorem 3.1 let us

note that in the abnormal case the Hamiltonian (3.6) degenerates into an
"abnormal" Hamiltonian

If we denote by the orthogonal complement to the vector ic(T) in
Rr, then the stationarity condition (3.7) for an abnormal geodesic takes form

and (3.8) becomes:

Vol. 13, n° 6-1996.
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Together with (3.10) it implies orthogonality of ~/>(7) to the distribution
D at every point q(T) :

4. NECESSARY/SUFFICIENT CONDITIONS FOR RIGIDITY
OF ABNORMAL SUB-RIEMANNIAN GEODESICS

In the previous Section we have reduced the problem of finding minimal
admissible ( = tangent to the distribution D) path between given points q°
and ql, to the Lagrange problem (3.1)-(3.3). We have formulated lst-order
necessary minimality condition saying that the solutions of this problem
should be sought among geodesic paths. We have singled out the class
of abnormal geodesics and defined what rigidity is. In this Section we
are going to introduce 2nd variation and set 2nd-order necessary/sufficient
conditions for rigidity of abnormal geodesic paths.

Let us start with definitions of first and second variations along an
abnormal geodesic (ic(~), q(~); ~(.~, T). Everywhere in this Section we
assume, that ic(~) is continuous (from the left) at T. We choose T > T and
put = û(T) on [T, T]. Let us introduce a (time x input)/state mapping
F : R x L~ ~0, T~ --> M, which maps a pair (t, u(.)) into the point q(t)
of the trajectory q(.) of the system q = G(q)u(T), q(0) = q°. Obviously,
F(t, ic(~)) = q(.) and F(T, t(.)) = q(T) = ql. We put

A well known fact is that for (T, u( ~ ) ) E R x L~ to be a minimizer for
the Lagrange problem (3.1)-(3.3) it must be critical point of the mapping
(I, F). Indeed otherwise in virtue of the Implicit Function Theorem the
system of equations

is locally (in a neighborhood of (T, ic ( ~ ) ) ) solvable for any sufficiently small
E > 0, and hence q° and q1 can be connected by an admissible path of
length R(T, ic( ~ ) ) - E  ic( . ) ) . If a pair (T, ic( ~ ) ) is critical point for the
mapping (l, F), i.e. the differential (l’, F’)|T,û(.)) : R x Lr~ ~ R x Tq1 M
is nonsurjective, then there exists a pair x nM, which
annihilates the image of (.~’ , F’ ) ( ~T, u ( . ) ) : 
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This equality is equivalent to the statement of the Theorem 3.1 with ~c%T
being the end-point value ~(T) for the solution of the adjoint equation
(3.5). If ~o = 0, then the functional f does not enter both (4.1) and the
Theorem 3.1. In this case the pair (T, ic(~)) enters an abnormal geodesic
(u(~), q(~), y(~);T) or, equivalently, is critical point of the mapping F.
To study abnormal geodesics ( = critical points of F) we have to invoke

(first terms of) Taylor expansion for F(t, u(~~~. Let us present F(t; u(~)~ as
chronological exponential (see Section 2 for the notation):

Putting u(T) = t(T) + v (T) and using the variational formula (2.4) we obtain

From the formula (2.5) it follows that

we compute (compare with [7]) the first differential of F at the point
(T, u~’))~

If a pair (T, ic( ~ ) ) is critical point of F, then 7~ TqlM, and
there exists a nonzero covector E which annihilates 

This implies
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and

for all u(.) E Lr~[0, T] such that u(T) E In virtue of Dubois-
Raymond Lemma the last equality implies: 

û()

These conditions are equivalent to the conditions (3.10)-(3.11) of the
Theorem 3.1 with the "abnormal" Hamiltonian (3.9). Namely if we
take the solution of the adjoint equation (3.5) with the end-point value
~(T) == then the condition (4.7) is equivalent to the stationarity
condition (3.7) and (4.6) implies, that the Hamiltonian H = being
constant along ( ic ( ~ ) , q ( . ) , ~ ( . ~ ~ ~ vanishes. The corank of abnormal geodesic
path (ic(~), q(~), T) coincides with the corank of F’~(T,u(.~).

DEFINITION 4.1. - The first differential F’ ~ (T,u~.)) : R x L~ -~ Tq1 M, at
a critical point (T, ic( . ) ) is called first variation along abnormal geodesic
path ( ic ( ~ ) , q ( . ) , T). It is calculated according to the formula (4. 5). 0
Now we introduce second variation along an abnormal geodesic

( i~ ( ~ ) , q ( ~ ) , ~ ( ~ ) , T ) . It is Hessian, or quadratic differential of F, at
the critical point (T, ic( ~ ) ) E R x L~ (see [10]). Choosing a function
x : M ----x R, such that d~|q1 = let us consider a function u(.)) =
x(F(t, ~c(~))). Since annihilates then (T, ic(~)) is critical
point for this function.

Let us compute the quadratic term of Taylor expansion for ~(t, u( ~) ) at
(T, ic ( ~ ) ) . Appealing to the Volterra expansion (2.2) for right cronolological
exponential, we derive

(When carrying the computation one should take into account the equalities
(3.8), (4.3) and (4.7).)
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When restricting the quadratic form (4.8) to the kernel of we

are able to subtract from (4.8) a vanishing value of

and transform (4.8) into

The last expression does not depend on choice of x but only on
= d~|q1 and therefore we come to the

DEFINITION 4.2. - The quadratic form

whose domain is subspace of R x L~ defined by the condition

is called second variation along the abnormal geodesic
(~(’)~ q(’)~ ~(~)~ T) ° D

DEFINITION 4.3. - Morse index of abnormal geodesic is negative index of
the quadratic form (4.9)-(4.10), i.e. maximal among the dimensions of the
subspaces in its domain, on which the quadratic form is negative definite. D

DEFINITION 4.4. - Morse index of abnormal geodesic path ( ic ( . ) , q ( . ) , T )
is minimum of indices of the abnormal geodesics ( ic ( . ) , q ( . ) , ~ ( . ) , T), which
correspond to this geodesic path, or minimum of indices of quadratic forms

for all possible ~T 1 Im D

We now set 2nd-order necessary rigidity condition for corank k abnormal
geodesics paths. It follows from general necessary condition for isolatedness
of critical point of smooth mapping on critical level. Formulation and proof
of the general condition (Theorem 9.1 ) as well as the proof of the following
Theorem 4.1 are given in the Appendix (Section 9). Corresponding result
for corank 1 case was established in [7], [8].
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THEOREM 4.1 (Necessary Rigidity Condition for Abnormal Geodesics). -
For a corank k abnormal geodesic path (û(.), (.), T) to be rigid its index
should not exceed k - 1. In particular index of a rigid corank 1 abnormal
geodesic path must vanish. D

Generally rigidity is stronger than weak minimality. But whenever all
geodesic s, which a geodesic path ( ic ( - ) , q ( ~ ) , T ) enters, are abnormal, then
the conditions of the Theorem 4.1 are necessary for weak minimality of the
path. It follows from the Propositions 9.4 and 9.3 (see Appendix).

PROPOSITION 4.2 (Necessary Minimality Condition for Abnormal Geode-
sics). - ~,et(ic(~), q(~), T) be a corank k abnormal geodesic path, such that
all the corresponding geodesics are abnormal. Then for the geodesic path
to be weakly minimal its index should not exceed k - 1. D

It follows from the Theorem 4.1, that finiteness of index is necessary for
rigidity. Therefore we are going to invoke conditions which provide the
finiteness for an abnormal geodesic ( ic ( ~ ) , q ( ~ ) , ~ ( ~ ) , T ) .

Denoting again by the orthogonal complement to ic(T) in R~ we
introduce first of these conditions: for almost all T E [0, T]

In different context it was introduced by B.S. Goh in [13] ] and we call it
Goh necessary condition.

Differentiating the identity (3.10) w.r.t. 7- one obtains for almost all
T E [0, T]

and together with (4.11): for almost all T E [0,T]

We will also refer to the last condition as to Goh condition. This condition

together with (3.12) implies, that at every point q(T) of rigid abnormal
geodesic (û(.), (.), (.),T) the covector () has to be orthogonal to
D2 (q(T) ) _ ~D, D~ (q(T) ), spanned by the vector fields from D and their
Lie brackets of the 2nd order:

Another necessary condition, which is called (see [16], [4], [17])
Generalized Legendre Condition, is: for all T E [0, T]
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Proofs can be found in in [4], [3], [1]; see also Appendix 2.
We summarize the aforesaid in following

PROPOSITION 4.3 (Necessary Goh and Generalized Legendre Conditions). -
For an abnormal geodesic path (û(.), (.), T) to be rigid the Goh condition
(4.13) and the Generalized Legendre Condition (4.1 S) have to hold for some
abnormal geodesic (ic(~), q(~), ~(~), T). D
To set Jacobi-type conditions we need Strong Generalized Legendre

Condition. It is (compare with (4.15)): for some ,~ > 0 and for all T E [0, T]

This last condition, which together with (4.13) is sufficient for finiteness
of Morse index of an abnormal geodesic, is not only essential for its rigidity
but also provides smoothness and in some cases uniqueness of the geodesic.

THEOREM 4.4 (Regularity of Abnormal Geodesics). - Let Goh condition
(4. l l ) and Strong Generalized Legendre Condition (4.16) hold along an
abnormal geodesic ( ic ( ~ ) , q ( ~ ) , ~ ( ~ ) , T ) . Then the corresponding "control "
ic(T) and the trajectory q(~) are smooth on ~0, T~. If in addition, the vector
space ~D, D~ ) (q°) (correspondingly ~D, D~ (ql )) has codimension 1 in TqoM
(correspondingly in Tq 1 M), then no other abnormal geodesic path, starting
at q° (correspondingly, finishing at ql ) may satisfy Goh condition (4.11 ) and
Generalized Legendre Conditions (4.15). D

Proof. - Differentiating (4.13) W.f. t. T, we obtain

and, in particular,

Hence the points (u(T), q(T), ~(T)) of abnormal geodesic (ic(~), q(~), ~(~))
must lie in the subset of x T* M, defined by following system of
relations:

Here ~ : R’’ x T*M - (Rr)*, SZ : Rr x T*M ~ (Rr)* 0 (Rr)*.
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The differential of the mapping 4l w.r.t. u at a point (~(~), ~(r), ~(r)) is:

= ~(r). [~(~), G]](9(~)) + ~(T). G]](~(T)),

or since in virtue of (4.17) the last addend vanishes:

Here Au E V ~T) ^_r ~~,5’’~-1; but if we substitute Au = into

(4.21), then in virtue of (4.18) = 0. In virtue of

(4.16) is nonsingular on and hence the equation
~ ( u, q (T ) , ~ (T ) ) = 0 can be locally (in a small neighborhood of

(ic(T), q(T), ~(T))) uniquely solved w.r.t. ~c, presenting u as a smooth
function u = u(q(T), ~(T)).

In fact the solution of the system (4.19)-(4.20) is globally unique, even
more, there is no other solution of the equation (4.19) such
that ~(T) ~ is nonnegative quadratic form on Y1.
Indeed let us assume, that ~(ic(T), q(T), ~(T)) _ ~(u, q(T); ~(T)) = 0.
Then on the interval connecting ic(T) with u there must be a point

(0  ~.c  1) such that ~~~(u~,q(TO~(T>)(u(T)-~) = 0
or, since is linear w.r.t. u~,

The left-hand side of (4.22) belongs to applying it to the vector

(û(,) - u) E Rr and taking into account, that ~u ~ ~u(T),q(T~,~(T~)2c(T) _
= 0 we derive 

~ 

that may happen only if But for ic(T) _ the quadratic
form ~(T) ~ ~~G~c, Gv~, is negative definite. Hence ~c.

Thus we have established for every T global uniqueness of the
solution ic(T) for the system of relations q(T), ~(T)) = 0, SZ(u, q(T),
~(T)) > 0. Then the corresponding implicit function u(q, which is
defined by the system (4.19)-(4.20), is continuous and hence smooth w.r.t.

and therefore ~c ( q (T ) , ~ (T ) ) is smooth function of r.

Assume, that codim[D, D](q0) = 1. Then, as we will prove now, there
is no other geodesic path, starting at q° and meeting Goh and Generalized
Legendre Conditions (4.11 ) and (4.15).
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Assume on the contrary that there is another geodesic (u(~), q(~), ~c%(~), T)
which starts at q° and meets the conditions (4.13) and (4.15). Then

~(0) = k~(0); or since the geodesic equations and the conditions (4.13)
and (4.15) are homogeneous in we may think, that ~(0) _ ~(0). We
have already established existence of a unique smooth function u(q, p)
defined on some neighborhood W of the point (q(0), ~(0)) such that:

= u(q(T), y(T)), u(T) = u(q(T), y(T)). That means, that (q(~), ~(~))
and (q(~), ~(~)) are locally (in W) solutions of the same Hamiltonian
system with the same starting points. Hence they coincide in W. Standard
reasoning proves, that the set of those t, for which (u(~), q(~), y(~)) and
(q(~), q(~); ~(~)) coincide, is closed and open in [0, T] and hence is [0, T]
itself. The same reasoning is applicable to the geodesic paths finishing at
the point q1..
Now we are going to set 2nd-order sufficient rigidity condition for

abnormal geodesics. It involves the introduced above Goh and Generalized
Strong Legendre Conditions, which provide for the second variation (4.9)-
(4.10) weak positive definiteness on some subspace of finite codimension
in the domain (4.10) (see [1]). To put it in a strict way, let us note,
that if Goh condition (4.11) holds, then the quadratic form (4.9)-(4.10)
can be [1, Lemma 3.8] extended by continuity onto subspace of finite
codimension in [0, T~; the domain of the extension is determined
by the condition (4.10). The notation stays for Sobolev space of
order -1, which is dual space to the space Hl (0, T] of absolute-continuous
functions with square integrable derivatives. The space Lz ~0, T~ is densely
embedded into [0, T]. For any function u(.) E Lz [0, T] c [0, T],
whose primitive is v(~) _ .fo u(T)dT, the H_1-norm of u(.) can be defined
as: = (Iv(T)12 + ~~’U(.)~~,...)l~z. There is a direct estimate

Let us also note, that fast-oscillating functions have small H_ 1-norms.
Thus for a finite interval [0, T] : ( ~ sin b-1 T ~ ~ _ 1 = O ( b) , for b -~ 0, while
(~ sin = T~2 ~ O(b), for b ---t 0.

We define weak positive definiteness as positive definiteness W.f. t. the
norm of T ~ . We refer to [ 1 for the proof of the following

PROPOSITION 4.5. - If Goh condition (4. I l ) and Generalized Strong
Legendre Condition (4.16) both hold along abnormal geodesic, then the
extension of the second variation (4.8) is weak positive definite on some
subspace of finite codimension in its domain, i.e. the second variation admits
on this subspace lower estimate:
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COROLLARY 4.6. - Under the conditions of the Proposition the second
variation admits on some subspace of finite codimension in its domain a
lower estimate

where v(.) = fo u(T)dT. D

Everywhere below we assume that Goh condition (4.11 ) and Generalized
Strong Legendre Condition (4.16) hold along geodesics we deal with. This
implies, that the negative indices of the second variation (4.9)-(4.10) and
of its extension onto (subspace of) R x Hr-1 [0, T] are finite and coincide.

DEFINITION 4.5. - Nullity of an abnormal sub-Riemannian geodesic
( ic ( ~ ) , q ( ~ ) , ~ ( ~ ) , T) is the dimension of the kernel of the extended second
variation (4.9)-(4.10) in R x H~’ 1 [0, T]. D

It turns out, that in fact under the assumptions, we have made, the
kernel "is almost contained in R x namely it is contained in
R x ® Hr 1 ~0~ ® H’’ 1 [T] ), where Hr 1 [0~ and Hr 1 [T] consist of
Rr-valued Dirac measures located at 0 and T correspondingly. Following
fact was established in [ 1 ] .

PROPOSITION 4.7. - Under Generalized Strong Legendre Condition (4.16)
and Goh condition (4.13) the kernel of the extended second variation is
contained in

Now we are able to set Sufficient Rigidity Condition for abnormal

geodesics.

THEOREM 4.8 (Sufficient Condition of Rigidity for Abnormal Geodesics).
- If the second variation along abnormal geodesic ( ic ( ~ ) , q ( ~ ) , ~ ( ~ ) , T) is

weakly positive definite, then the geodesic path (u(~), q(~), T) is rigid, i.e.
isolated up to a reparametrization in the topology of W~ in the set of
admissible paths, which connect q° and D

COROLLARY 4.9. - If Goh condition (4.11 ) and Generalized Strong Legen-
dre Condition (4.16) hold along abnormal geodesic (ic ( ~ ) , q ( ~ ) , ~ ( ~ ) , T) and
its Morse index and nullity both vanish, then the geodesic path (ic(~), q(~), T)
is rigid. D

The two results follow from general sufficient condition for isolatedness
of critical points of smooth mappings on critical levels; formulation and
proof of the general condition (Theorem 9.5) as well as the proof of the
Theorem 4.8 are to be found in the Appendix (Section 9).
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5. MORSE INDEX AND NULLITY OF

ABNORMAL SUB-RIEMANNIAN GEODESICS

In the previous Section we have formulated necessary (Theorem 4.1 ) and
sufficient (Theorem 4.8) conditions for the rigidity of abnormal geodesics.
The corresponding statements involve Morse index and nullity, and in this
Section we are going to compute Morse index and nullity for an abnormal
geodesic. The scheme of the computation is in many aspects similar to
the one presented in [7], [8] for abnormal extremals of Lagrange Problem
of Calculus of Variations. Refering to that paper for more details, we still
provide a selfcontained exposition. The readers are referred to the Section 2
for notions and facts from symplectic geometry.
We start with the computation of the Morse index. To this purpose

we introduce symplectic representation of the second variation (4.9)-(4.10)
along abnormal geodesic ( ic ( ~ ) , q ( ~ ) , ~ ( ~ ) , T ) .

Let us put

where YT is defined by (4.4). Evidently W c Tq1M coincides with an
image Im of the first variation (4.5). It follows from (4.6)-(4.7),
that annihilates W, and codim W = k is corank of the abnormal

geodesic (ic(~), q(~), ~(~), T). °
Taking the space of the vector fields, whose values at q1 lie in W,

let us consider a skewsymmetric bilinear form on ~y~,.~ :

This form has kernel of finite codimension in which is defined by
equalities: 

’

Taking the quotient of Sw w.r.t. this kernel, one obtains on the

finite-dimensional quotient space £ a (induced from (5.2)) nondegenerate
skewsymmetric bilinear form a~ ( ~, ~ ) . This form defines symplectic structure
on £. Direct calculation gives us dim ~ = 2 dim W = 2 (n -1~ ) . We denote
by X the image of an X E ~W under the canonical projection Sw -~ ~.

Choosing local coordinates (x 1, ... x~ ) : : (9 ----7 Rn on some

neghborhood C of q 1 in M in such a way that = 0, ( i = 1, ... n )
and the subspace W is defined by the equalities x1 = ~ ~ ~ = x~ = 0, while
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= (~1, ... , ~~, 0, ... 0), we may represent the canonical projection
X --~ X as:

The symplectic form a(X, Y) can be then represented as:

Let us denote by II the image under the canonical projection of the space
of those vector fields, which vanish at ql. Since the Lie bracket of two
vanishing at q1 vector fields also vanish at ql, then II is Lagrangian plane.

Instead of notations YT and for the images of the vector fields Yr
and under the canonical projection ~ 03A3 we use below 03A5 and
9 correspondingly. According to the introduced above definitions of a(. , .)
and II, we may represent the second variation (4.9)-(4.10) as:

and its domain as:

Under new notations the Goh condition (4.13) and Strong Generalized
Legendre Condition (4.16) take form:

’and

correspondingly.
Now we will transform the formulae (5.4)-(5.5) for the second variation,

representing it as a quadratic form in 50 and v(.) = f o u ( ~ ) d~ instead of
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bB, u(.). To this end let us integrate (5.4) by parts in such a way, that
u(.) is integrated:

When proceeding with this computation we took into account that

in virtue of Goh condition (5.6).
The domain of the second variation is:

Let us put

In virtue of Goh condition = 0 and

therefore r (and r~) is isotropic subspace of £ : r ç r~.

Following [1] ] we introduce now Hamiltonian form of Jacobi equation for
abnormal geodesics. Considering the defined by (5.7) positive definite

quadratic form on let us put ir for the nonsingular
selfadjoint operator iT : --~ V ~T~ , which corresponds to iT:

= Vu , v E Taking an inverse operator 

Y ~T ~ -~ we define a bilinear form on V ~T ~ as ~yT 1 ( u* , v * ) =
(~yT 1u*, v* ~, Vu*, v* E V ~T) . Obviously for any x E ~ the mapping
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u --~ defines a linear form on i.e. an element of ~ ~T),
which depends linearly on x E ~. This means, that the correspondence

defines a quadratic form on £.

Treating this quadratic form as time-dependent Hamiltonian on ~, one
may consider on £ linear Hamiltonian system:

which we call Jacobi equation for abnormal geodesic ( ic ( ~ ) , q ( ~ ) , ~ ( ~ ) , T ) .
If for any T E [0, T] the vectors ~c1 (T), ... ur_1 (T) form such basises in

that ~yT (ui (T), ~c~ (T) ) = (i, j = 1,...r - 1), then the equation
can be presented as

Since a Hamiltonian flow preserves symplectic structure of ~, then

the Jacobi equation transforms Lagrangian planes into Lagrangian ones.
Therefore one may consider the Hamiltonian flow as a flow on Lagrangian
Grassmanian ~C(E). It is generated by the following time-dependent
Hamiltonian system on ~C(E) :

(see Section 2 for details).

DEFINITION 5.1. - Jacobi curve T - l1T (T E [0, T~) corresponding to
the abnormal geodesic ( ic ( ~ ) , q ( ~ ~ , ~ ( ~ ) , T ) is the curve in Lagrangian
Grassmanian ,C(~), which starts at 1~0 = II, coincides for T E [0, T) with
the starting at II trajectory of the Jacobi equation (5.11 ) and jumps at

D

Basing on this definition we set

THEOREM 5.1 (Index Theorem for Abnormal Geodesics). - Let the Jacobi
curve T ~ l1T correspond to abnormal geodesic ( ic ( ~ ) , q ( ~ ) , ~ ( ~ ) , T ) . Then
for any subdivision ris+1 = 0 = rio  ril  ~ ~ ~  ris = T of T H l1T into
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simple subarcs ( i = 0,... s - 1 ) Morse index of the abnormal
geodesic is equal to

where k is corank of the abnormal geodesic path (ic( ~ ), q( ~ ), T ) . D

Proof. - We give a sketch of the proof of this Theorem, referring for
details to the performed in [7] computation of Morse index of an abnormal
extremal for Lagrange Problem of Calculus of Variations.

Putting b8 = 0 in (5.4)-(5.5), we obtain a quadratic form which we call
reduced second variation. This quadratic form is a Hessian of input/state
mapping (see [6]) u(.) ~ F(T, u( ~ ) ) . Its domain has codimension 1 or 0

in the domain of the second variation (5.4)-(5.5), hence its index is not

larger and differs at most by 1 from the index of the second variation. It

can be represented as

with the domain

We define Jacobi curve for the reduced 2nd variation following [ 1 ] .

DEFINITION 5.2. - Jacobi curve T ~ l1e (T E [0, T] ) corresponding to
the reduced second variation (5.13)-(5.14) is the curve in the Lagrangian
Grassmanian ,C ( ~ ) , which starts at Ag = II coincides for T E [o, T) with
the starting at II trajectory of the Jacobi equation (5.11 ) and jumps at

= 0

The following Proposition providing formula for the index of the reduced
second variation (5.13)-(5.14) via Maslov indices of the Jacobi curve l1~
is corollary of the Theorem 1 in [ 1 ] .

PROPOSITION 5.2 (Index of the Reduced Second Variation). - Let T -

11~ (0  T  T), be Jacobi curve corresponding to the reduced second
variation (5.13)-(5.14) along an abnormal geodesic ( ic ( ~ ) , q ( ~ ) , ~ ( ~ ) , T ) .
Then for any subdivision (m+1 = 0 = ~o  ~1  ...  (m = T of
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T ---~ 11~ into simple subarcs (z = 0,... m - 1) the negative
index of the reduced second variation (5.13)-(5.14) is equal to

where k is corank of the abnormal geodesic path (ic ( ~ ) , q ( ~ ) , T ) . D

Starting from the formula (5.15) one is able to compute negative index
of the second variation (5.4)-(5.5), by using following technical Lemma
(see [ 1 ] ) .

PROPOSITION 5.3. - Assume, that a quadratic form C~ ( ~, ~ ) is defined
on a Hilbert space and is positive definite on a subspace of finite
codimension. Let N be a closed subspace of the Hilbert space, QN be
the restriction of Q on M, and be the Q-orthogonal complement to
Ai : ,JU~ _ y) = 0, Vx where B is corresponding to Q
symmetric bilinear form. Then

To apply the result in our case we take for the Hilbert space H set of
the pairs (bo, u( ~ ) ), which meet the condition (5.5), for the subspace .N~
the set of pairs (0, u(-)), which meet the condition (5.14), and for Q the
quadratic form (5.4). Evidently codimN ~ 1.

Following this line the authors have already computed in [7], [8] index
of abnormal extremal for Lagrange Problem of Calculus of Variations.
We have established in [7, 8], that appearance of additional term gb8 in
the second variation (5.4)-(5.5) in comparison with the reduced second
variation (5.13)-(5.14) leads to a change of the final "jump" of the Jacobi
curve, which becomes AT = = Since g E T~,
then r~ = r~ + span(§) = r and also = ~T-o. Therefore we
come to the formula (5.12) (completing the proof of the Theorem 5.1). N
Now we set Nullity Theorem for abnormal geodesics. Its proof is similar

to the given in [7] proof of Nullity Theorem for abnormal extremals of
Lagrange problem.

THEOREM 5.4 (Nullity Theorem for Abnormal Geodesics). - Let T ---~ A~
be the Jacobi curve in Lagrangian Grassmanian ,~ ( ~ ) , which corresponds
to an abnormal geodesic ( ic ( ~ ) , q ( ~ ) , ~ ( ~ ) , T ) . Then nullity of the abnormal
geodesic, i.e. the dimension of the kernel of the second variation (5.4)-(S.5),
is equal to dim(AT n II). D

Annales de l’Institut Henri Poincaré - Analyse non linéaire



663ABNORMAL SUB-RIEMANNIAN GEODESICS: MORSE INDEX AND RIGIDITY

What follows is corollary of the Theorems 5.1 and 5.4 (compare with
the Corollary 5.5 in [7], Theorem 5 in [8]).

THEOREM 5.5 (Local Rigidity Condition for Abnormal Geodesics). -
Let an abnormal geodesic (û(.), (.), (.), T) meet Goh condition (4.11 )
and Strong Generalized Legendre Condition (4.16). Then for any small
enough t > 0 the restrictions (u ( ~ ) ~ ~o, ~ , q ( ~ ) ~ ~o, ~ , ~ of the geodesic path
(ic(~), q(~), T) on ~0, t~ are rigid. D

Proof. - Let us note firstly, that corank of the restrictions

( ic ( ~ ) ( ~o, ~ , q ( ~ ) ~ ~o, ~ , t) is integer-valued non decreasing function of t, and
hence for small enough t > 0 all the restrictions have the same corank

k > 0.

We are going to prove, that both index and nullity along any restriction
vanish and then apply the Corollary 4.9.

To compute the index of the restriction ( ic ( ~ ) ~ ~o,t~ , q ( ~ ) ~ ~o,t~ , ~ ( ~ ) ~ ~o,t~ , t)
let us consider corresponding nondecreasing Jacobi curve in

Lagrangian Grassmanian. Since r n II = 0 then r n 11T = 0 for any

small enough T > 0 and therefore dim(A~ n Ar) = const for small

T > 0. Then according to the Lemma 2.2 there exist t > 0 and a

Lagrangian plane A such that for any T E [0, t] 11T can be connected
with A~ by a simple nondecreasing curve 11T ( s ) , 0  s  1 such that

= 0, Vs E [0,1]. Then the concatenation of the curve with

the corresponding curve At (s) is also simple and evidently nondecreasing.
According to the Proposition 5.2 and Theorem 5.1 index of the (having
corank 1) restriction equals

where Af = At n rb + F. According to the Lemma 2.1 indn(II, At) +
ind03A0(t, 0393t) = ind03A0(03A0,0393t) for all small enough t > 0 and we obtain for
the Morse index the expression:

Being nonnegative this Morse index must vanish. That implies also

dim(Af 0, i.e. in virtue of the Theorem 5.4 nullity of the restriction
(u(~) ~ ~o,t~ ~ q(~) ~ ~o,t~, ~(~) ~ ~o,t~, t) also vanishes. N
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6. VECTOR DISTRIBUTIONS
EXHIBITING RIGIDITY PHENOMENON

We are going to describe some class of vector distributions, for which
rigid abnormal geodesic paths do exist. We will consider germs of smooth
r-dimensional vector distributions in Rn. It turns out that some conditions

on growth vectors of the distributions provide existence of rigid geodesic
paths.

THEOREM 6.1. - Let n > 2r, q° E M. Then in the set of 2-jets at q° of
vector distributions D satisfying the condition dim 2r - 1 there is an

open subset, such that for any distribution D with 2-jet lying in this subset,
there exists a rigid admissible path starting at qO. D

Generic 2-dimensional distributions on n-dimensional manifold M with

n > 4 not only meet the conditions of the Theorem 6.1, but possess
stronger property.

THEOREM 6.2. - For any germ at a point q° E M of 2-dimensional vector
distribution D, such that D2q0, there exists rigid admissible path
starting at qO. D

Proof of Theorem 6.1. - Let us assume that a distribution D meeting the
conditions of the Theorem 6.1 is spanned by the vector fields gl, ..., gr,
while

Assume that for some ~° E annihilating DZ the ((r-1) xr)-matrix

has the maximal rank (r - 1). Then it holds also for a nonzero p
close to 03C80 and there exists a smoothly depending on 03C8 solution

u(~) _ (ul(~); ... r,.(p)) E 0 of the systems Ay,~u(~(~) = 0; without
loss of generality we may assume u(y°) _ (1; 0 ... 0).
Assume in addition that the quadratic form

is positive definite. Hence for 03C8 close to 03C80 in T* M the quadratic forms
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are also positive definite on the orthogonal complements V1jJ to u(~c%) in RT.

Any vector distribution meeting the conditions of the theorem and with

2-jet belonging to a small enough neighborhood of the 2-jet of D meets
the above mentioned assumptions as well.

For any such vector distribution let us introduce a Hamiltonian h(q, 9) =
Then some subarc of the starting at (qO, y°) trajectory

(q(~), ~~(~)) of the corresponding Hamiltonian system is an abnormal

geodesic, which meets Strong Generalized Legendre Condition. We need
only to verify, that it also meets Goh condition, i.e. that ’lj; 1 DZ along the

trajectory. In virtue of (6.1) it is enough to establish the equalities

along the trajectory.
Let us put hi(t) = ~ (t) ) (2 -

1, ... , r) and compute hi, h1i. Since h = ~~==1 then

In virtue of (6.1) ~g3 , gi ~ lies in the linear span of vector fields

gl, ... g’~, ... ~gl, g’"~; 1 hence

and therefore

Also
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Therefore the functions (2 = 1, ... r)
satisfy the linear system of differential equations (6.2)-(6.3), and since

tnen

We have established that the abnormal geodesic ( q ( . ) ; ~ ( . ) ) satisfies the
conditions of the Theorem 5.5 and therefore is rigid.
To finish the proof of the Theorem 6.1 we only have to construct at least

one r-dimensional distribution D, with the growth vector and the basis
meeting all the assumptions we have done.

Let q° = ORn and Rn = z E R
Let us put

The vector fields g 1, ... , g’~ span germ of r-dimensional distribution of full
Lie rank. In addition:

] is linear combination of and ~~gl, g~~ - 
where b2~ is Kronecker symbol. All the above mentioned assumptions will
hold if we choose such that
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Proof of Theorem 6.2. - One can always choose vector fields f, g, which
span D and a covector ~° E 0, in such a way, that following
conditions hold:

(it is enough to chose ~° 1 D2, ~° ~ D3 and, when necessary, multiply
~° by -1). The inequality (6.4) holds for all ~ close to ~° in T* M.
Considering the equation

we note, that, since ~%°~g, ~f,g~~(q°) > 0 then locally the equation
= 0 has smooth solution v,(y) _ (y~f, ~f.g~~(q))/(~~g, ~f,g~~(q));

u(~°) = 0. As in the proof of the previous theorem some subarc of
starting at (qO, ~°) trajectory of Hamiltonian system with the Hamiltonian
h = + is abnormal geodesic, which meets Goh and Strong
Generalized Legendre Conditions and hence is rigid..

7. ABNORMAL GEODESICS FOR 2-DIMENSIONAL

VECTOR DISTRIBUTIONS: FEW MORE STEPS

In this Section we deal with abnormal geodesics for 2-dimensional smooth
vector distributions. For this case we are able to proceed further with the
computation of Morse index and nullity and obtain elegant representation
of the Jacobi equation and characterization of conjugate points.

Let us consider a 2-dimensional distribution D on a (n + 2)-dimensional
manifold; let the vector fields f, g E VectM span D. Assume that:

i) the vector fields

are linearly independent at every point of the domain we treat;
ii) (ad can be presented as a linear combination with Coo-coefficients

of these n + 1 vector fields:
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Then the trajectories of the vector field fare corank 1 abnormal geodesics
for the distribution D. Let us consider vector distribution (free C°° (M)-
module of vector fields)

and assume, that:

iii) in the treated domain

Let ’ljJ be a 1-form on the domain, defined by the conditions:

We shall derive Jacobi equation for the abnormal geodesic, which
corresponds to the vector field f. We denote by q( . ) = q° o etf
the starting at q° = trajectory of f ; q(T) = q1. Following the

approach of the Section 5 let us consider skewsymmetric bilinear form
(vl, v2) wl, v2~(ql), vl, v2 Taking quotient of V w.r.t. the
kernel of this form we obtain a 2(n + 1)-dimensional symplectic space
~’ . We reduce the symplectic space considering the ( 2n + 1 )-dimensional
skeworthogonal complement to the canonical projection f of the vector
field f onto ~’ and then taking quotient of ~’ w.r.t. The result is
denoted further by ~; it is 2n-dimensional symplectic space with skewscalar
product denoted by (J. We again denote by Y the image of a vector field
Y E V under the canonical projection V - ~.
We are going to introduce special coordinates in £ and to derive one

more representation of the Jacobi equation (5.10).
Let us put for i > 0

Returning to the equality (7.1) we put at = (i = 0, ... n - 1 ),
!3t = ,~ ( q ( t ) ) , and derive from (7.1):

LEMMA 7.1.
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Proof - Chosing coordinates in £ as in (5.3) (with k = 1) we only
need to establish, that

2=~

for local coordinates x = (xi, ... xn) in the neighborhood of q 1 E M.
But this follows directly from (7.1) and the equalities 0,
z = 0,...n - 1..

Let II be image under the canonical projection of the vector fields Y,
which meet the condition 03C8.[f, Y](q1) = 0 and vanish at q 1; II is Lagrangian
plane in ~. It follows from (7.1)-(7.2), that £ = II e span{g , t E R} and
for any T E R the vectors g , gT ’ . ’ gT 1 form the basis of the subspace

t E R} = A. Let us emphasize, that the subspace 0 is not
Lagrangian and a defines a nondegenerate coupling between II and A.

Representing where z E 0, ~ E II, we may write
the Jacobi equation (see (5.10)) in these coordinates as

or

Evidently one of the solutions of this equation is: = 0.

We call t a conjugate point of multiplicity A; > 0, for the abnormal
geodesic = q° o etf , if for the equation (7.3) the space of solutions,
which satisfy boundary conditions

is k-dimensional.

Let us put (t ~~ ) and present zt in the form: zt = z:fl;’
Then the equation (7.3) can be transformed into the following system

(the equation for z°, which enters neither (7.4) nor (7.5), is ommitted).
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The multiplicity of a conjugate point is the dimension of the space of
those solutions of the system (7.5), which satisfy the conditions

Summarizing the aforesaid we set following

THEOREM 7.1. - Assume that for starting at q° trajectory q(t) = q° o etf
of 2-dimensional vector distribution on an (n + 2)-dimensional manifold the
set above conditions (i), (ii) and (iii) hold. Then:

1 ) q (t) , t E [o, T ] , is corank 1 abnormal geodesic path of the distribution;
2) it has finite number (may be zero) of conjugate points ti and multiplicity

of a conjugate point t is equal to the dimension of the space of solutions of
the system (7.5), which satisfy the boundary conditions (7.6);

3) Morse index of the abnormal geodesic is equal to the sum of
multiplicities of the conjugate points, which are located on (0, T);

4) nullity of the abnormal geodesic is equal to the multiplicity of conjugate
point at T (vanishes if T is not a conjugate point);

5) for the abnormal geodesic path to be rigid it is necessary, that (0, T)
does not contain conjugate points, and it is suficient, that (0, T] does not
contain conjugate points. D

Proof. - Statement 1 ) was established at the beginning of the Section, .

finiteness of the set of conjugate points and the statements 3), 4) follow
from strong regularity (see [22]) of the abnormal geodesic q(~); statement 5)
follows from corank 1 variants of the Theorems 4.1 and 4.8 together with 3)
and 4)..
Now we treat in more detailed way the case n = 2, i.e. 2-dimensional

vector distributions on 4-dimensional manifolds. Here the vector field f,
which meets the condition (7.1 ) exists and is unique for any 2-dimensional
distribution of maximal growth; such vector distributions define so-called
Engel structure on 4-dimensional manifolds (readers can find in [12] a
detailed survey of this topic). For n = 2 the system (7.5) takes form:

Besides
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Hence == e~o ~~ ~ and therefore

One sees, that t is a conjugate point if and only if ~t = 0. Multiplicity
of any conjugate point equals to 1.

Therefore for the 2-dimensional case the following corollary of the
Theorem 7.1 is valid.

COROLLARY 7.2. - For every 2-dimensional distribution ofmaximal growth
on 4-dimensional manifold M and for every point q° E M there exists a
corank 1 abnormal geodesic path q(t), (t E ~0, T]) of the distribution
starting at q°. Morse index of the corresponding abnormal geodesic is

equal to the number of located on ( 0, T) zeros of the solution ~ ( - ) of the
equation (7.7). For the abnormal geodesic path to be rigid it is necessary
(correspondingly, suffccient), that there are no zeros of ((.) on ( 0, T)
(correspondingly, on (0, T~). D

8. RIGID TRAJECTORIES OF AFFINE CONTROL SYSTEMS

In the Section we extend our approach onto the class of affine control
systems

and derive rigidity conditions for extremals of these systems.
Here the drift vector field f(q) and the control vector fields gi(q), i =

1, ... r, are C°° on M admissible controls u(~) _ (ul(~), ... ur(~)) E L~.
The material of this section relates to the results of [7, 8], where nonlinear

Lagrange Problem of the Calculus of Variations was treated, and also with
[ 11 ], which treated time-optimal problems for affine control systems.
We start with definition of rigidity for a given input û( t), t E [0, T] ] of

the affine control system (8.1), We assume ic(~) to be continuous at T - 0.
The extension of ic( ~ ) from [0, T] onto [0, T + b] by the constant û(T) will
be denoted also by ic( ~ ) . We assume that the starting at q° trajectory q( ~ )
of the system (8.1) driven by the control u ( ~ ) exists on [0, T + 8].

DEFINITION 8.1. - A control ic ( ~ ) and the corresponding trajectory q ( ~ ) of
the control system (8.1 ) are called rigid on [o, T], if for some E > 0 no one
Vol. 13, n° 6-1996.
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(different from ic(~)) control from E-neighborhood of ic(~) in L~ can steer
the system (8.1 ) from q° to q(T) in a time T’ E ~T - E, T + E~ . D

Following the approach of the Section 4 we consider for the system (8.1)
a time x input/state mapping F : R x L~ -~ M; F maps a pair (t, u(.))
consisting of time moment t and an admissible control u(.) into the point
q(t) of the trajectory q(.) of the control system (8.1).

It turns out that for ( ic ( ~ ) , q ( ~ ) , T ) to be rigid, (T, ic ( ~ ) ) has to be
critical point of F. That means Im F’ ~ {T,.u,~.)) ~ and there exists

nonzero rJ;T E annihilating Im F’ ~ ~T, u ( . ) ) . For any such one

can transform the equality 0 into Hamiltonian form of the Euler-

Lagrange equation (compare with the Theorem 3.1), which is extremality
condition for the path (ic( ~ ) , q ( ~ ) ) . It is more convenient for us to set it
this time as a Definition.

DEFINITION 8.2 (Extremality). - We call (ic ( ~ ) , q ( ~ ) ) extremal pair for the
affine control system (8.1 ) on ~0, T], if there exists an absolutely-continuous
covector-function () on [0,T]) such that the triple (û(.), (.), (.)) :

1) satisfies Hamiltonian system

with an "affine " Hamiltonian

2) meets stationarity condition

and "transversality condition "

We call ic ( ~ ) extremal control and q ( ~ ) extremal trajectory of the control
system (8.1 ) on [0, T] .
The quadruple ( u ( ~ ) , q ( ~ ) , ~ ( ~ ) , T ) is called extremal of the control

system (8.1 ) on [0, T] .
Corank of an extremal path ( ic ( ~ ) , q ( ~ ) , T ) is the dimension of the space

of extremals, it enters, or, equivalently, dimension of the space of those
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~(’), which together with ( ic ( ~ ) , q ( ~ ) , T ) satisfy the Definition 8.2, or,

equivalently, 
It follows from the Implicit Function Theorem, that extremality is

necessary for rigidity.

PROPOSITION 8.1. - A rigid path ( ic ( ~ ) , q ( ~ ) , T) of the control system (8.1 )
must be extremal pair of the system. D

Let us put = f (q) + gi (q)ui (T). To derive 2nd-order rigidity
conditions we have to involve again Goh and Generalized Legendre
Conditions along extremal. They are (compare with (4.11 ) and (4.15)):

and for all T E [0, T~ :

Strong Generalized Legendre Condition (compare with (4.16)) looks like
follows: for some (3 > 0 and for all T E f0,7l :

Following result is "affine version" of the Proposition 4.3.

PROPOSITION 8.2 (Goh and Legendre Necessary Rigidity Conditions). -
For an extremal control û(.) or the corresponding trajectory (.) of the
affine control system (8.1 ) to be rigid it is necessary, that for some ~ ( ~ )
the extremal ( ic ( ~ ) , q ( ~ ) , ~ ( . ) , T) meets the Goh condition (8.7) and the
Generalized Legendre Condition (8.8). D

Let us denote by ~yT the nonsingular symmetric ( r x r)-matrix, which
corresponds to the quadratic form v) on Let be an

ij-entry of the matrix 

Following proposition is "affine version" of the Theorem 4.4.

PROPOSITION 8.3 (Regularity of Extremals for Affine Systems). - If Goh
condition (8.7) and Strong Generalized Legendre Condition (8.9) hold along
an extremal ( u ( ~ ) , q ( ~ ) , ~ ( ~ ) , T) ofthe control system (8.1 ), then the extremal
control ic(T) is smooth and meets the equality:
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We define correspondingly lst and 2nd variations of the system (8.1)
along its extremal (u(~), q(~), ~(~),T) as the differential and the Hessian of
the (timexinput) state mapping F(t, u(. ) at the point (T, u(~)) E R x 
The formulae are: for the first variation

and for the second variation

with the domain

where

We define nullity and Morse index of extremal (ic ( ~ ) , q ( ~ ) , ~ ( ~ ) , T) as the
dimension of the kernel and negative index of the quadratic form (8.11 )-
(8.12). Morse index of extremal path (û(.), q(.), T) is minimum of the

indices of the extremals ( ic ( ~ ) , q ( ~ ) , ~ ( ~ ) , T), which this path enters.
The following Proposition is direct generalization of the Propositions 4.5

and 4.7.

PROPOSITION 8.4. - If Goh condition (8.7) and Generalized Strong
Legendre Condition (8. 9) hold along extremal ( ic ( ~ ) , q ( ~ ) , ~ ( ~ ) , T) of the
affine control system (8.1 ), then:

1) the second variation (8.11)-(8.12) can be extended by continuity onto
the space R x T] and the extension is weakly positive definite on
some subspace of finite codimension in R x ~0, T ~ , i.e. admits on this

subspace a lower estimate:

2) the kernel of the second variation is contained in
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The following two theorems are slight generalizations of the obtained in
the Section 4 rigidity conditions for vector distributions.

THEOREM 8.5 (Necessary Rigidity Conditions for Affine Systems). - If a
corank k extremal path ( ic ( ~ ) , q ( ~ ) , T) of the system (8.1 ) is rigid on ~0, T],
then its Morse index should not exceed k - l. In particular for a rigid corank
1 extremal path the index must vanish. D

THEOREM 8.6 (Sufficient Rigidity Conditions for Affine Systems). -
1 ) If the second variation along an extremal (û(.), (.), (.), T) of the
affine control system (8.1 ) is weak positive definite, then the extremal

path (ic( ~ ), q( ~ ) , T) is rigid. 2) In particular, if Goh condition (8. 7) and

Strong Generalized Legendre Condition (8.9) hold along the extremal

(u(~), q(~), ~(~), T) and Morse index and nullity of the extremal both vanish,
then the extremal path ( ic ( ~ ) , q ( ~ ) , T) is rigid. D

To compute Morse index and nullity which play an important role for
the rigidity conditions for extremal paths of affine control system (8.1 ) we
have to repeat almost literally what was done in the Section 5. We refer to
that Section marking only minor differences.

Given an extremal ( ic ( ~ ) , q ( ~ ) , ~ ( ~ ) , T) of the affine control system ( 8 .1 ),
we define linear space W (compare with (5.1 )) as:

where iT and YT are defined by (8.13). Evidently W = and

codim W = k is corank of the extremal path (u(~), q(~), T).
Introducing like in the Section 5 the symplectic space E (dim E =

2(n - k)), Lagrangian plane II and denoting by f the canonical projection
of the vector field iT we see, that (5.4)-(5.5) is as well symplectic
representation for the second variation (8.11)-(8.12) of the affine control
system (8.1).

Therefore the Jacobi equation for the extremal (i~(~),q(~),~(~),T) of the
affine control system (8.1) has the same form (5.10) or (5.11). Introducing
isotropic subspace:

we define Jacobi curve in Lagrangian Grassmanian for the extremal

(ic(~), q(~), ~(~), T) (compare with the Definition 5.1).
DEFINITION 8.3 (Jacobi Curve for Extremal of Affine System). - Jacobi

curve corresponding to an extremal of the affine control system (8.1 )
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is a curve T ~ E ~0, T ~ ) in Lagrangian Grassmanian ,C ( ~ ) ,
which coincides for T E ~0, T) with the starting at II trajectory of the
Jacobi equation (S.11 ) in ,C ( ~ ) and jumps at T - 0 to AT = =

AT_onrf+rf. D
As for abnormal sub-Riemannian geodesics Morse index and nullity of

the extremal of affine system can be computed via symplectic invariants
of the Jacobi curve.

THEOREM 8.7 (Index Theorem for Extremals of Affine System). - Let
T - E ~0, T]), be the Jacobi curve, which corresponds to an

extremal (ic ( ~ ) , q ( ~ ) , ~ ( ~ ) , T) of the affine control system (8.1 ). Then for any
subdivision = 0 = rio  ri1  ~ ~ ~  ris = T into simple
subarcs ( i = 0, ... s - 1 ) Morse index of the extremal equals to

where k is the corank of the extremal path ( ic ( ~ ) , q ( ~ ) , T) . Cl

THEOREM 8.8 (Nullity Theorem for Extremals of Affine System). -
Let the Jacobi curve  ~ AT (T E [0, T]), correspond to an extremal
(ic ( ~ ) , q ( ~ ) , ~ ( ~ ~ , T) of the affine control system (8.1 ). Then nullity of the
extremal, i.e. the dimension of the kernel of the second variation (8.11)-
(8.12), equals to dim(AT n II). D

THEOREM 8.9 (Local Rigidity for Extremals of Affine System). - Let an
extremal ( u ( ~ ) , q ( ~ ) , ~ ( ~ ) , T) of the affine control system (8.1 ) meet Goh
condition (8.7) and Strong Generalized Legendre Condition (8.9). Then for
any small enough t > 0 the restrictions (ic( ~ ) ~ ~o, ~ , q( ~) ~ ~o, ~ , ~ of the extremal
path (ic(~), q(~), T) on ~0, t~ are rigid. D

9. APPENDIX 1

ISOLATED POINTS ON CRITICAL LEVELS OF SMOOTH

MAPPINGS AND RIGIDITY OF ABNORMAL GEODESICS

In the Section 3 we have represented the problem of finding minimal
geodesics as Lagrange Problem of Calculus of Variations, which is in turn
particular case of problem of relative extremum:
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where V is a scalar function(al) on a Banach space X and F maps X
into R~ .

Necessary 1 st-order condition for local minimality of point x E X for
this problem is extremality of x. Namely, if  is point of minimum and
,7, Fare Frechet differentiable at x, then there exists a nonzero pair of
Lagrange multipliers (Ao, A) E R+ x R~ x , such that x is critical point for
Lagrangian £ = (Lagrange multipliers rule). We call such
x extremal point and (x, ~) extremal for the problem (9.1).

Evidently an extremal point x may enter different extremals with different
Lagrange multipliers; corank of an extremal point is the dimension of the
space of Lagrange multipliers, which correspond to it.

An extremal (x, ~o, ~) is normal, whenever 0, and abnormal

otherwise. We use the notation (x, A) for abnormal extremals. If Ao = 0,
then the functional V does not at all enter the 1 st-order condition. Since

we suppose to deal only with abnormal extremals, then we may at all

forget about the functional V and at once about the words "abnormal" and
"extremal". A corank k abnormal extremal point is in fact a corank k critical
point of the mapping F. We avoid introducing an extra word "rigidity" for
phenomenon of isolatedness of point x on the level F-1 (0) of the mapping
F, the phenomenon, we suppose to deal with in this Section.

Certainly for x to be isolated it is necessary to be critical, since otherwise
locally in a small neighborhood of x the level F-1 (0) is Banach manifold
(without isolated points). We are going to set necessary/sufficient conditions
for isolatedness of critical point x on the critical level F-1 (0) of the
mapping F.

Assuming that F is twice Frechet differentiable at the point x we involve
into consideration the Hessian of F at the point x (see [10]). It is quadratic
mapping F"(x) : ker F’lx 2014~ coker One can represent it as a bundle
of quadratic forms

with the domain ker F’lx’
We define index and nullity of ~) as negative index and dimension of

the kernel of the quadratic form ~F" (~) (~, ~) on ker Index of critical
point x is min {ind 03BBF"|03BB 1 
We will show now, that index and nullity provide essential information

about local structure of the critical level F-1 (0).
THEOREM 9.1 (Isolated Points on Critical Levels: Necessary Condition).

- Let X be a Banach space and x E X be a corank m critical point for the
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mapping F : X -~ which is twice Frechet differentiable at x. Then for x
to be an isolated point of the set F-1 (0), its index must be less than m. D

Proof of Theorem 9.1. - We assume without loss of generality, that x is
the origin of X. We denote by D and h correspondingly the differential
and the Hessian of the mapping F at the origin. Suppose, that for any
A E ( Im D)~ index of the quadratic form Ah on ker D is > m. We are
going to prove that then x = 0 is not isolated point of the set F-1 (0).
The equation F(x) = 0 can be represented as a system f(y, z) = 0,

g(y; z) = 0, where (y, z) = x is such splitting of x, that:
(i) z coordinatizes ker D, = 0;

(ii) dim f = dim y = rank D = I~ - m,

rank = rank 0 = rank D

Then in virtue of Implicit Function Theorem the equation f(y, z) = 0 can
be resolved uniquely w.r.t. y: y = g ( z ) . Substituting y(z) into the equation

z) = 0 we obtain an equation = z) = 0. Obviously x = 0
is an isolated point of the set F-1 (0), if and only if z = 0 is an isolated
point of cp-1(0). Let us note, that ~p‘(0) = 0 and hence we may investigate
now the mapping cp, whose differential vanishes at the origin. To avoid
additional notation we will assume, instead of it, that D = F‘ ~ o = 0, and
then h = F" ( o is a quadratic mapping of X into Again we assume,
that for any nonzero A E R’n 

* 

index of the quadratic form Ah is > m.
Now we will get rid of infinite-dimensional space X.

LEMMA 9.2. - Under the conditions of the Theorem 9.1 there exists a
finite-dimensional subspace W c X, such that for any nonzero 03BB E R’n*
index of the quadratic form is > m. D

Proof of Lemma 9.2. - For any unit covector .B E R’n* , there exists a m-
dimensional subspace W~ c X, such that the restriction is negative
definite. For all A’s from some small neighborhood of A the quadratic
forms 03BBh|W-03BB are also negative definite. Choosing a finite covering of the
sphere = 1 by corresponding neighborhoods ... 03A903BBs we may take
W = + ... Wxs ..
From now on we consider W in place of X or, all the same, assume

dim X  oo.

The following statement enables us to investigate the quadratic mapping
h instead of F.
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LEMMA 9.3. - If the cone (h)-1 (o) contains a regular point of the
quadratic mapping h : X -~ R’n, then 0 is not isolated in the set

F-1(o). D

Proof. - If y E h-1(0) is a regular point of h, then there exists a

m-dimensional subspace Z C X, such that ( y + Z) -~ R’n is

local diffeomorphism at y. Since h is homogeneous, then the same holds
for all points 

Consider the mapping = h(y + where z belongs to the unit
sphere S"2-1 C Z. Obviously = and, for small enough
E > 0, the topological degree of the mapping S’n-1 -~ S’n-1 is
+1 or -1. Since the differentials of h at the points are nondegenerate,
then 3a > 0, such that for small enough E > 0, Vz E sn-1:

On the other side

and therefore for some E > 0 and small enough r~ > 0 topological degree
of the mapping

is +1 or -1. Hence for every small enough r~ > 0 the equation
F(qy + = 0 has a solution z~ belonging to the unit ball En c Rn and
therefore 0 is not isolated point of the set F~(0). N

This Lemma allows us to deal with the quadratic mapping h instead of
F. The conclusion of the Theorem 4.1 is implied by the following

PROPOSITION 9.4. - Let P : X -~ Rm be quadratic mapping (dim X 
oo), such that ind 03BBP > m, VA E Rm* B 0. Then P-1 (0) contains regular
point of the mapping P. D

Proof. - Without loss of generality we may assume, that 0 if
and only if x = 0. Indeed otherwise the condition = 0 means, that x
lies in the intersection of the kernels of the (quadratic forms, which are)
components of P, and we may take quotient of X w.r.t. to this intersection.

Let us start induction w.r.t. m. For m = 1 the theorem was proved in
[7]. Taking m > 1 we will treat separately two cases.

i) P-1(0) =I ~0~. Let P(y) = 0 for some 0. Then 0 and

ÀP"ly coincides with the restriction of AP onto ker P’ly (A JL 
Conditions of the Proposition imply codim Im P’|y, VA 1
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Since dim cokerP’|y  m, then according to the inductive

assumption the inverse image ( P" ~ y ) -1 ( 0 ) contains regular point and hence
P-1 (0) contains regular point.

ii) P-1 (0) _ ~0~ . Then Im P is a closed cone. Applying inductive

assumption to the Hessians for any ?/ / 0 we obtain, that Vz E ImPB0
the inverse image P -1 ( z ) contains regular point of P and therefore ImPB0
is open. This means that Im P = 

Let S be unit sphere in X. Then is a surjective
mapping. In virtue of Sard theorem there exists regular value v of this
mapping. If P(x) = av for some a > 0, then m - 1. Let

av = min{a > 0|av E P(S)}; av > 0, since P-1(0) = 0. Let xv E S
and P (xv ) = av v. The pair (av , xv ) is point of local minimum and normal
extremal point for the following problem of relative extremum:

Standard 2nd-order necessary optimality condition for this problem provides
existence of A E l~~x ~ 0, such that:

Direct computation gives

and hence 0 for all yEN = ~ ~ ~ ~ 1 xv , 0 ~ . Obviously
N is a linear subspace of codimension m in X. Since AP(xv) = 0

and xv is orthogonal and P-orthogonal to N, then AP is nonnegative on
N 0 span{xv} and hence ind m - l, i.e. we come to a contradiction,
which finishes the proofs of the Proposition 9.4 and Theorem 9.1..
Now we are going to derive from the previous theorem the necessary

rigidity condition for abnormal geodesics, which was established in the
Section 4.

Proof of the Theorem 4.1. - We consider ~x = (t, u(.)) E [0, T~ x
L~ ~0, T~ ~ I ~~c(t) ~ I - l~, x = (T, u(~)), and F = F(t, u(~)) be the

(timexinput)/state mapping. Since our consideration is local, we may
coordinatize small neighborhood of q 1 = F ( (T, ic ( ~ ) ) in M by P~
and small neighborhood of (T, ic( ~ ) ) by X = ~0, T~ x The

(timexinput)/state mapping is not smooth w.r.t. time parameter t but
becomes C~-smooth when restricted onto the space of C~-smooth controls
~c ( ~ ) . Obviously the Hessian of this restriction coincides with the 2nd
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variation (4.9)-(4.10) and index of the critical point x = (T, ic( ~ ) ) for this
restriction coincides with the one from the Definition 4.4.

Now the Theorem 4.1 follows from the Theorem 9.1..

THEOREM 9.5 (Isolated Points on Critical Levels: Sufficient Condition).
- Let Banach X be densely embedded into separable Hilbert space
H : X ~ H. Let a mapping F : X --~ R’n be Frechet differentiable
at a point x E X, which is critical point of F, i.e. = 0 for some
nonzero 03BB E If:

(ii) the function ~F admits Taylor expansion at x of the form

(iii) the quadratic form (x, x) admits continuous extension from
X onto H and is H-positive definite on ker F’(x), i.e. for some ~ > 0

then x is an isolated point of the level set F-1 (F(x) ) . D

Proof of the Theorem 9.5. - Without loss of generality we may assume,
that F(x) = 0 and x is the origin of X. We are going to establish, that

for some p > 0 and all x from some small neighborhood
of the origin in X.

Let us take any linear complement Z to ker F’(0); F’(0) maps the
finite-dimensional subspace Z onto the image F’(0)X isomorphically.
Any x E X can be represented uniquely as a sum x = xi + xo of

xi E Z, xo E and for some c > 0

For the Lagrange multiplier A E R"‘’ let us define N = {y E =

0} and choose a vector ~ E Rm such, that 03BB~ = 1. Then R"‘ + N
and Im F’(0) C N.
We may present F(x) as a sum of two addends and the

rest with values lying in N. The norm admits an estimate

a(IÀF(x)1 + for some a > 0. In virtue of (9.2)
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The condition (9.3) and the continuity of the quadratic form ~F"(:i)(:~, ~)
in the norm of H imply

Since = + we can transform the last
estimate into

Fixing positive E  min(c,’)1) we may choose in virtue of (9.6)-(9.7) a
small neighborhood V in X such that for some positive k and any x E V:

and

Together with (9.4) and (9.5) this implies

and

Denoting c = c - E, ~y = ~y - E we obtain

Without loss of generality we may assume that 4Ek(1 + 
Now if then

with a(e, c) > 0.

Otherwise if then

Basing on the Theorem 9.5 we shall prove the Theorem 4.8, which
provides sufficient rigidity condition for abnormal geodesics.
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Proof of the Theorem 4.8. - We will verify the assumptions of the
Theorem 9.5 for the (time x input)/state mapping F. Since our consideration
is local i.e. regards small neighborhoods of q1 E M of (T, ~(~)) E

{(t,u(~)) E (O,T~ x L~~O,T~~~u(t)~ - 1~ then coordinatizing these

neighborhoods by R’~ and X = [0,T] x correspondingly, taking
H = [0,T] x = (t, u(.)); x = (T,v,(~)),~ _ and

F = F(t, u(.)) being the (timexinput)/state mapping.
If (T, u(~)) enters an abnormal geodesic (u(~), q(~), y(~), T), then

(T, u(~)) is a critical point of F and rJ;T E Rn* (see above) is an annihilator
of ImF’~~T,,y~.~~.

Let us put

and extend smoothly onto [0,T+ 1]. The condition (9.4) is fullfilled
by virtue of the positive definiteness of the 2nd variation.
To verify other conditions it is useful to introduce another representation

of F. Recall that

where = exp ft ad 
Now we shall transform the chronological exponential

by means of the integration by parts formula for
a chronological exponential, established in [21]. We derive:

where v(.) = f o u ( ~ ) d~ and 9 denotes the partial derivative 
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Taking Volterra expansions for GK(T)dT and for the ordinary
and chronological exponentials in the last formula we derive

from where the estimate (9.2) follows directly.
To verify the estimate (9.3) we will multiply (9.8) by A = and

simplify it getting rid of the terms which are more than quadratic in v ( ~ )
and therefore admit an estimate o ( 1 ) ( I ~ C ’ ) ( I 21 ~ We obtain

Kecall that Goh condition = 0 is
necessary for weak positive definiteness of the second variation. Taking it
into account together with the equalities

we consider the Volterra expansions of the chronological exponentials in
the last formula deriving

Annales de l’Institut Henri Poincaré - Analyse non linéaire



685ABNORMAL SUB-RIEMANNIAN GEODESICS: MORSE INDEX AND RIGIDITY

The rest term contains terms of order > 2 in ( 8, u(’ ) , v (’ ) ) of the Volterra
expansions, while the specified terms form (8, u(.)).
The last formula provides the estimate (9.3) for the (timexinput)/state

mapping F and implies the continuity of the quadratic form ~F" (x) (x, x)
in H. The statement of the theorem follows now from the Theorem 9.5. t!

10. APPENDIX 2

GOH CONDITION AND (FIRST)
GENERALIZED LEGENDRE CONDITION

In this Section we provide a proof of the announced in the Section
4 necessity of the Goh condition (4.11) and the Generalized Legendre
Condition (4.15) for the finiteness of index of the 2nd variation (4.9)-
(4.10), or, all the same, of its symplectic representation (5.4)-(5.5).
Since we consider bounded measurable controls unlike piecewise-smooth
controls treated in the earlier papers, then we find it worth giving here a
self-contained proof.
We shall work with the symplectic representation (5.4)-(5.5) of the 2nd

variation

whose domain is:

Recall that the vector functions T are Lipschitzian and hence
differentiable for almost all T E [0, T~, in fact, for all T, which are the
Lebesgue points of T - 

Let us consider the depending on T E [0, T] bilinear forms

and the quadratic forms

defined for almost all T E [0, T~ .
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PROPOSITION 10.1. - For the quadratic form (10.1 )-(10.2) to have finite
negative index the bilinear forms (10.3) must vanish for all T E ~0, T] and
the quadratic forms (10.4) must be nonnegative for almost all T E [0, T~ . 0

Proof - First we shall restrict the 2nd variation ( 10.1 )-( 10.2) onto the
subspace of codimension 1 in (10.2), defined by the equality se = 0.

Evidently the index of the new form may differ at most by 1 from the

index of the original form. Therefore from now we work with the reduced
quadratic form

with the domain:

which coincides with the 2nd variation treated in [1].
Then we shall consider the quadratic form (10.5)-(10.6) for those

variations u(.), whose supports are located on a (small) subinterval

~t, t + s] C [0, T], where s > 0 and t is a Lebesgue point of T H ’Y’T.
Integrating (10.5)-(10.6) by parts we obtain

where v(T) = Itr u(~)d~ and
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Let us restrict once more the 2nd variation on the set of u(.), which
satisfy the condition ~t+st u(03BE)d03BE = 0. This subspace has codimension r in
the space of all with supports in ~t, t + s]. The 2nd variation takes
on this subspace the form

The subspace

is the domain of this form, which is a subspace of codimension no more
than ~~ ~0, T~, with k being the corank of our abnormal
geodesic.

Introducing the time stretching (T - t)/s = 8, we transform the integral
quadratic form (10.7)-(10.8) into

Let us introduce the notation u,s(B) - u(t + and 

,f~ u.,(~)~~, ~ E [0,1]; then v(t + = and the quadratic form
can be represented as
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Consider the principal term

The involution J : us(l - 0) changes the sign of Gt :

The existence of such involution implies, that for any subspace in

L~ ~0,1~, on which the quadratic form ( 10.10) is positive definite, there
exists a subspace of the same dimension on which it is negative definite.
Were the negative index of the form finite, we would obtain contradiction
with the evident fact, that the kernel of the form (10.10) has infinite
codimension in L~ ~0; T~.

Therefore, if the Goh condition is violated at the point t, then the quadratic
form Gt (which does not depend on s) has infinite negative index. Take
arbitrary integer N and an m + N-dimensional subspace AN of L~ ~0,1~
such that Gt IAN  0. This form is even negative definite, since AN is finite-
dimensional. Then by virtue of the representation ( 10.9) for the restriction
of the 2nd variation on Es, we derive that for small enough s > 0 the 2nd
variation is negative on the subspace AN n Es with the dimension > N.

Returning to the expression (10.9) and assuming the Goh condition to
hold on [t, t + s] we may represent the 2nd variation as

,

If t is a Lebesgue point of t - t(t) and therefore also of t - then

(10.11) can be represented as

Evidently if the Generalized Legendre Condition fails, i. e.

 0 for some vo E Rr, then for arbitrarily large N
there exists a m + N-dimensional subspace ~4~ consisting of the functions
of the form a ( ~ ) vo with a ( ~ ) E Loo[0,T], on which the quadratic form
Io1 is negative. Then for small enough s > 0 the
2nd variation, admitting the representation (10.12), is negative on the

subspace ~4~ n Es with the dimension > N..
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