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ABSTRACT. - In this paper we consider the heat equation ut = Au in a
unbounded domain Q C RN with a Neumann boundary condition uv = up,
where p > 1 and v is the exterior unit normal on It is shown for
various type of domains that there exists a critical number 1, such
that all of positive solutions blow up in a finite time when p E (l,pc] while
there exist positive global solutions if p > pc and initial data are small.

1. INTRODUCTION

In this paper we consider the following problem:
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where 0 is a (bounded or unbounded) connected domain in RN with
boundary is the exterior normal vector on p > 1 and uo (x) > 0.

It is well known (cf. [18]) that the solution of ( 1.1 )-( 1.3) will blow up
in a finite time if initial datum is suitably large. An interesting question
is what happens for small initial datum. Is there a Fujita type of critical
exponent pc ? Namely, all positive solutions blow up in a finite time if the
exponent p  pc while global solution exists if p > pc and initial value is
small enough. As part of our motivation, we recall some interesting results
on Fujita’s critical exponents for equations with nonlinear reactions. Let
u(x, t) be a solution of the following problem:

Fujita [5] (see [19] for the case p = pc) showed that pc = 1 + it. When
RN is replaced by Dk = {x = RN : xi > 0, x2 >
0, ~ ~ ~ , x ~ > 0 ~ ,1  1~  N with a supplement of zero Dirichlet boundary
condition, then pc = 1 + ~+N which depends on k (see [13]). When H is
a cone in RN , pc = 1 + 2 2 ~, , where 1 is the negative root of the equation
x ( N - 2 + x ) = Ai while Ai is the first Dirichlet eigenvalue of Laplace-
Beltrami operator on S2 = 1} (cf [ 1 ] ). In a recent paper [16], Ohta
and Kaneko proved the following formula

for the product domain H = Di x D2. The reader can find an excellent
survey [12] on this subject.

For the heat equation with a nonlinear boundary condition, there is a very
nice survey [4] regarding the questions like blow up rate, blow up behavior,
etc. Blow up rate, blow up set and asymptotic behavior has been studied
in a number of papers. It has been shown under a very general condition
that blow up can not occur at t = oo (see [14]). However, there has been
not much progress for Fujita’s type of critical exponent until very recently.
When 0 is a bounded domain in it is known (cf [3]) that all positive
solutions blow up in a finite time (see also [10] for a short proof). Therefore,
the critical number pe = oo for a bounded domain. On the other hand, when
Q is a complement of a bounded domain, we will show (see Theorem 2.2
in Section 2) that the problem ( 1.1 )-( 1.3) always has global solutions if

initial data are small when the dimension N > 2. It follows that the critical
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number pc = 1 when N > 2. These are two extreme cases. When a domain

S2 has other general shape, the critical exponent depends on the domain.
For the heat equation in H = R+ _ {x = (xl, ~ ~ ~ , xN) E RN : xN > 0~
with N > 2, it is shown in [2] that pc = 1 + N . The corresponding
elliptic problem in the half space was studied in [9]. For the porous
medium equation ut = in a half real line with boundary condition

= -uP, Galaktionov and Levine [6] proved that pc = m + 1,
where m > 1.

In the present paper we study two types of domains. We show that if Q is
a convex cone type of domain in RN (see Definition (2.2)-(2.3 ) in Section 2)
then = 1 + N , in particular, Pc(Dk) = 1 + N , for all 1  k  N -1,
which is interesting if one compares with the case of interior reaction.

When n = l~~ x D where D is a convex bounded domain in RN-k and

prove that the critical exponent equals 1 + ~ .
To show the blow up of solutions, we first derive some properties of

fundamental solution in convex domains and then prove the results by using
integral inequalities. For global existence, we construct various auxiliary
functions as supersolutions of ( 1.1 )-( 1.3 ). Those auxiliary functions are

not trivial.

The paper is organized as follows. In Section 2, we state the main results.
In Section 3, we state some propositions for the problem in a domain with
uniformly Lipschitz continuous boundary. In Section 4, we show various
blow up results. Global existence will be presented in Section 5.

2. THE MAIN RESULTS

We begin with the case where Q is a bounded smooth domain. It is

known that all positive solutions blow up in a finite time if 1  p  oo.

This result has been proved in [3]. We state this in the following theorem
for completeness.

THEOREM 2.1. - The critical exponent = oo ifo is a bounded smooth
domain; i.e., all positive solutions blow up in a finite time if 1  p  oo.

Next we consider the case when f2 is the complement of a bounded
domain. As we mentioned in Introduction, for the connected complement
of a bounded domain, the critical exponent is 1, i.e. there always exist
positive solutions if initial values are small. Notice that when N = 1,
the complement of a bounded interval is two half spaces which is not
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connected. It is proved in [6] that for half-space, the critical exponent is 2.
So we consider the case only for N > 2.

THEOREM 2.2. - Suppose that SZ is a connected complement of a bounded
domain with smooth Then

i.e., if p > l, then there exist positive global solutions for all 0  t C o0

provided that the initial data satisfy

where a is suitably small.

A bounded domain or the exterior of a bounded domain are two extreme

cases. We next consider other intermediate domains.

Consider a convex cone type of domain, namely,

where we assume that Q is convex and that there exists M > 0 such that

THEOREM 2.3. - Let SZ be a convex domain satisfying the assumption
(2.2)-(2.3). Then the critical exponent

in the following sense.
(i) If 1  p  all positive solutions of the system ( 1.1 )-( 1.3) blow

up in a finite time.
(ii) If p > then there exist solutions for all 0  t  oo provided

that the initial data satisfy

where a is suitably small.
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Moreover, for any small ~ > 0, we can take the initial value small enough
so that the global solutions decay to zero at the rate 

With the appropriate change of coordinates, all convex cones

(where D is an open convex set in such that 0 ~ D) are included
in Theorem 2.3. The domain Dk discussed in Section 1 is a special case
of the convex cone.

Next, we consider the case of a convex cylinder:

where D is a bounded, convex domain in 

THEOREM 2.4. - The critical exponent

I.e.,
(i) If 1  p  x D), all positive solutions of the system ( 1.1 )-( 1.3)

blow up in a finite time.
(ii) If p > x D), then there exist solutions for all 0  t  o0

provided that the initial data satisfy

where a is suitably small.
Moreover, the global solutions decay to zero at the rate t- 2 for small

initial values.

3. PRELIMINARIES

In order to include those cones and Dk (as mentioned in section 1 ) in
our theorems, we need the existence and uniqueness for Lipschitz domains.

DEFINITION. - We say that the domain SZ is uniformly Lipschitz, if the
exterior and interior cone conditions are satisfied with a cone of fixed size
for every x E 

Assume that SZ is a connected domain in RN with piecewise smooth
and uniformly Lipschitz boundary S _ We use the standard notation

Vol. 13, nO 6-1996.
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QT = SZ x (0, T). Since the boundary of the domain is not smooth, the
classical theory of parabolic equations is not directly applicable. We shall
state some propositions which will be used in the sequel. We shall first

prove the comparison principle for Lipschitz domains.

PROPOSITION 3.1. - Assume that ul (x, t), u2 (x, t) are two solutions for
the system ( 1.1 )-( 1.3) such that

Then

Proof. - By regularity theory, the solutions ~1 and U2 are smooth up to
the smooth part of the boundary. The function w(:c, t) = u2(x, t) - ul (x, t)
satisfies

Let ( be a cut-off function such that

Multiplying the equation by (2W+ and integrating over Q, we obtain

where u* = ~o ~8u2 + (1 - 
Since w(x,O) = 0 and u* is bounded, the above inequality leads to
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Since aSZ is uniformly Lipschitz, the Poincare’s inequality

is valid for cp E H1(n) with the constant C(6) depending only on Q
(see [15]). Letting cp = ~ ~ w+ in the above inequality and substituting
into (3.1), we obtain

We now take smooth cut-off functions {~E} with compact support such that

Then ~~~o~ I  (o and (3.2) implies that

Thus w+ - 0 if t is small enough. The result now follows step-by-step to
all QT. D The comparison principle immediately implies the uniqueness
of the system ( 1.1 )-( 1.3). In order to prove the local existence theorem for
Lipschitz domains, we first establish some property of such domains.

LEMMA 3.2. - Suppose that SZ is a uniformly Lipschitz domain in RN.
There exists a constant co > 0, depending only such that for any ~ > 0,
there exists a function g~ (x) with the following properties

Vol. 13, n° 6-1996.
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where Nc(x) is the normal cone, i.e.,

Proof - We define

Let cps ( x ) be the standard mollifier supported  b ~ . If we take b
to be sufficiently small and b  ~ / 2, then the function g~ ( x ) _ ~ + g

satisfies (3.3)-(3.7). ll

PROPOSITION 3.3. -Assume that uo(x) E n 
M~ ) (for any M > 0). Then there exists a small T > 0 such that the problem
( 1.1 )-( 1.3) has a unique solution u(x, t) E C2~ 1 (QT ) n L°° (QT ) with ~u
being continuous up to the smooth part of the boundary. u(x, t) satisfies the
initial and boundary conditions ( 1.2)-( 1.3) in the weak sense and pointwise
except for those singular points on S.

Moreover, the solution can be extended in t direction as long as it remains

finite in L°° norm.

Proof. - When the boundary of SZ is smooth and uo is smooth and

satisfying the compatibility condition, local existence of a classical solution
in C2+a ~ 1+’ (QT ) n LCXJ ( QT ) is elementary and can be established by, say,
the contraction mapping principle (see [8]).
We now take co as in Lemma 3.2, and let

Once c is fixed, we can take ~ as in Lemma 3.2 and let C2 =

Then the function

(3.8) ~(~) - + ~2~ + for 0  t  
2014

is a local supersolution for (1.!)-(!.3). If we approximate the domain ~ by
smooth such that f~ G ~, then for A sufficiently small,
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It follows that the function 9 defined in (3.8) is a supersolution for the
system ( 1.1 )-( 1.3) with Q replaced by for all small A > 0 (remember
that c is fixed). Therefore, for the approximation problem

Using this uniform L°°-estimates, it is easy to show that

where C(T, M) is independent of 03BB and T = 1/C2. The compactness
argument yields that the limit of a suitable subsequence exists and is

a weak solution of the problem ( 1.1 )-( 1.3). The regularity theory of parabolic
equations (cf [11]) implies that u (x, t) is of class Moreover,
the solution u(x, t) satisfies the initial and boundary conditions except at
those points where the boundary of 03A9 is not differentiable (cf [11]). It is
not hard to see that the solution can be extended in t direction as long as
it remains finite in L°° -norm. D

4. FINITE TIME BLOW UP

To prove the theorems, we start with a general result which ensures the
blow up of all solutions in a finite time if certain assumptions are satisfied.

Suppose that ~03A9 is piecewise smooth. Let y, t, T) be the Green’s
function of the heat equation with homogeneous Neumann boundary
condition. Assume that there exist constants co > 0, Ci > 0, 0  (3  1 and

nonnegative functions G(x, y, t - T), p(x, t) with the following properties:

Vol. 13, n° 6-1996.
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We further assume that there exist c* > 0 and r~ > 0 such that

THEOREM 4.1. - Under the assumptions (4.1)-(4.3), any positive solution
of ( 1.1 )-( 1.3) with initial value satisfying (4.4) blows up in a finite time if

In the case

the solution still blows up in a finite time if the initial datum satisfies (4.4)
with the constant c* in (4.4) being large enough.

Proof. - In our proof, we shall use 6 to denote various small positive
generic constants depending only on co, Ci and p (8 will be independent
of c*). We shall argue by contradiction. Assume that a positive solution of
( 1.1 )-( 1.3 ) exists for all t > 0. Let GN be the Green’ s function for the heat

equation with Neumann’s boundary condition. Then

We now take T to be sufficiently large so that (4.4) is satisfied for

T/2 :S t  T (T > 2). We set
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Then, by (4.1)

Clearly, from (4.4) for t e 2 , T ~ ,

Using (4.2), (4.3) and Jensen’s inequality, we obtain,

Let

Then for sufficiently large T,

where we used the inequality

It follows that

where we used the inequality

Vol. 13, n 6-1996.
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Let g(t) denote the right-hand-side of the inequality (4.9), then

integrating this inequality over ~l’/2,1’~, we obtain

i.e.,

This is a contradiction if 7/(p - 1)  1 - ;~ and T is large enough.
It is clear from the above proof that the constant 6 is independent of c*

and T (it depends only on co, Ci and p). Therefore the proof is still valid
for the case r~(p - 1) = 1 - j3 if we take c* such that

Any solution with initial datum satisfying (4.4) (with c* given above) still
blows up in a finite time in this case. D
Now we apply this theorem to show that for a large class of convex

domains, the critical exponent is no less than 1 + 1 /N.
LEMMA 4.2. - Let Q be an unbounded convex domain with the property:

If

then any positive solution of ( 1.1 )-( 1.3) blows up in a finite time.

Proof. - In the proof, we use 03B4 for various generic positive constants,
it may vary from one line to the other. Assume without loss of generality
that 0 E We take
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We shall next verify all assumptions of Theorem 4.1. The Green’s function
is constructed in the following way (cf. [7]):

where h satisfies the backward heat equation with final datum

Since we have a cylindrical domain and av is a function of and t - T,
y

Since Q is convex, 0 for y E E n. It follows that h > 0 and

Thus (4.1) is valid, and

where

is clearly bounded above and below (away from zero) uniformly in x E ~SZ
and t > 1. In particular, (4.2) is satisfied (if we take x = 0). To show (4.3)
with j3 = 1/2, we compute, for t ~ 2  T  t,

Vol. 13, n° 6-1996.
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Since

we derive from the assumption (4.11) that

Combining (4.18) and (4.19), we obtain (4.3).
Finally, by using t == c instead of t = 0 if necessary, we may assume

that uo(y) > 0 for all Therefore
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It follows that (4.4) is satisfied with r~ = N/2. Thus by Theorem 4.1, all
positive solutions blow up in a finite time if p  1 + 
We now consider the critical case p = 1 + 1/N. Recall that 0 E dS2.

From (4.20), we have

B - _ /

It follows from the representation (4.7) that

Thus

Vol. 13, n° 6-1996.
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where the constant 8 is independent of to. Therefore, if we use t = to as
the new initial value and take to to be large enough, then the constant c*
in (4.4) can be taken arbitrarily large. Therefore the solution blows up in
a finite time in this case. D

Remark 4.1. - Any domain satisfying (2.2) and (2.3) will satisfy (4.11 ).
Finally, we consider the case of a convex cylinder. Let D be a bounded,

convex domain in and let

LEMMA 4.3. - If

then any positive solution of ( 1.1 )-( 1.3) blows up in a finite time.

Proof. - We first derive some estimates for the Green’s function

y, t - T). Clearly,

Since H is convex,

Especially,

where x = (xl, ... , ~~, x~+l, ... , x~~ _ (~~, ~~+l, ... , and y =

(~’, y~+1, ~ ~ ~ , yN ) . Therefore by comparison principle,
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So we take

_ 

, /

It is clear that (4.2) and (4.3) are satisfied with ,C~ = 0. Similar to the proof
in Lemma 4.2, using (4.23) and (4.24), we derive (4.4) with r~ = 2. Thus,
by Theorem 4.1, any positive solution blows up in a finite time in the
subcritical case p  1 + ~ .

In the critical case p = 1 ~ ~ , we can use (4.24) to derive that

This estimate implies that the constant c* in (4.4) can be chosen arbitrarily
large in Theorem 4.1. The Lemma is proved. D

5. GLOBAL EXISTENCE

A solution can be extended into a larger interval [0, T* ~ as long as we
have an a priori estimate of t~T~ ) > (see Proposition 3.3). Therefore,
the proof for global existence relies on deducing an a priori maximum
norm of the solution.

We begin with the case where Q is the connected complement of a
bounded domain in RN with ~SZ of class It should be pointed out that
the associated elliptic problem admits a positive solution when N > 3. It
is not hard to verify that when N = 2 and Q = 1~2 ~ Bi(0), the associated
elliptic problem (which reduces to an ODE) does not have any positive
solutions.

Proof of Theorem 2.2. - We first consider the case where N > 3. It is not
difficult to construct a supersolution in this case. Without loss of generality,
we assume that 0 ~ Q. Consider the following problem:

Vol. 13, n° 6-1996.
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To prove the existence of a positive solution for the above problem (5.1),
we note that 0 is a subsolution while is a supersolution if C is

suitable large, where |x| = x21 +...+ x2N. It follows from Theorem 8.2
of [17] (page 343) that the problem has a unique solution. As v (x )
takes positive maximum everywhere on the strong maximum principle
implies > 0 for x E aS2. Since is compact, co > 0
on for some co > 0, where co depends on Q. If 8P-l  co, then the
function w(x) = 8v(x) satisfies wv = 03B4c0 ~ wP on Thus w(x)
is a supersolution of the problem ( 1.1 )-( 1.3) if w(x,O) = 
Therefore, u(x, t) will be bounded by 8v(x) for t > 0, if uo(x)  w(x, 0).
This a priori estimate along with the local solvability ensures that the

problem ( 1.1 )-( 1. 3 ) has a solution in 0 x [0, T~ for any T > 0.
For N = 2, the system (5.1) does not have a solution. So we shall

construct a supersolution in a different manner. For simplicity, we first
consider the case that SZ~ is star shaped with respect to the origin 0, i.e.,
v ~ x  -co  0 on Let

where

It is clear that

It follows that

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire



725CRITICAL EXPONENTS FOR NONLINEAR BOUNDARY CONDITION

provided we take r~ such that

We take k such that p > 1 + ak/( 1- 6) (this is possible since p > 1). Then

provided ~p-1  coak -1. It follows that if initial value satisfies
xE80

uo(x)  to) for x E SZ for some to > l,

then the solution exists globally in time, with u(x, t) t + to) for
all 0  t  oo .

We next consider a general exterior domain without the star shape
assumption. Assume that 0 ~ H. We shall still define ~ as in (5.2) with

and gk (x) to be determined. As before, we can choose 7~ so that

8/2 > Then the previous calculation shows that

Therefore, if gk satisfies

Vol. 13, n° 6-1996.
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then 03C8t - 039403C8 > 0 for t > 1 provided  is small enough. We shall prove later
that such gk(X) exists. As before, take k such that p > 1+~k /(1-b). Then

provided c is sufficiently small and t* is sufficiently large. Therefore if
initial datum satisfies

then the solution of (1.1)-(1.3) exists globally in time.
To complete the proof, we now show the existence of the function in

(5.6). Take R > 0 to be large enough such that cc Let h(x)
be a solution of the following problem

It is clear that

We now let

If we choose C > ~ max then

We next take 6 to be small enough, then all requirements in (5.6) are
satisfied. The Theorem is proved. D

We next consider the domain with the following property:
There exist P E RN B H, g(x) and TJ > 0, 0  B  1 such that
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LEMMA 5.1. - Let the assumption (5.8) be in force. Suppose that

Then there exist solutions of ( 1.1 )-( 1.3) for all t E ~4, oo ), if the initial value
satisfies

for a suitably small a > 0.

Proof. - We shall construct a supersolution of the form

where = is small and g(x) is given in (5.8). It is clear that

It follows that

provided c is small enough. We fix such an c. Since p > 1 + (1 + 0) /N,
we can choose 8 so that
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Thus, by (5.8),

provided

It follows that if initial datum satisfies

then the solution exists globally in time. D

It turns out that there is a large class of domains which satisfy the
assumption (5.8). Let

where we assume that there exists M > 0 such that

LEMMA 5.2. - lf o is given by (5.13) with G satisfying (5.14)-(5.15), then
the assumption (5.8) is satisfied with 8 = 0. Therefore, there exist solutions
to (1.1)-(1.3) for all t E if

and the initial value Uo ( x) satisfies

for a suitably small a > 0.

Proo, f. - The exterior normal direction on ~03A9 is given by

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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If we take g(x) = xl, then

It is also clear that all remaining conditions on g(x) in (5.8) are satisfied
with 0 = 0.

We now take P = (-M, 0, 0,... 0), then

Thus the lemma follows from Lemma 5.1. D

Remark 5.1. - If S2 is convex, then (5.14) is satisfied with M = 0.

Remark 5.2. - Any convex cone will satisfy (5.14)-(5.15). Because of the
constant M, (5.14)-(5.15) are the assumptions for the domain at x = oo.
Roughly speaking, (5.14) requires the growth of G at infinity no more than
linear growth and (5.15) requires some kind of convexity of the domain
near infinity.
We next replace (5.14) with

where 0  8  1.

LEMMA 5.3. - If 03A9 is given by (5.13) with G satisfying (5.14a) and (5.15),
then the assumption (5.8) is satisfied. Therefore, there exist solutions to
(1.1)-(1.3) for all t E 

and the initial value Uo ( x) satisfies

for a suitably small a > 0.

Proof. - If we take g(x) = x 1 + x i +8, then
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for some ~ > 0. It is also clear that all remaining conditions on g (x )
in (5.8) are satisfied. Thus the lemma follows from Lemma 5.1. D

Lemma 5.3 includes all domains of the type
~(~1, ~ ~ ~ , ~N); G(x2, - ~ ~ , ~N)~ where G is given by

for 0 = 1.

Finally, we consider a cylinder H = R~ x D, where D is a bounded
domain in RN-k with uniformly Lipschitz boundary 0D.

LEMMA 5.4. - For 0 = Rk x D, there exist solutions of ( 1.1 )-( 1.3) for
all t E 

and the initial value Uo (x) satisfies

for a suitably small a > ~.

Proof. - We shall construct a supersolution of the form

where j/ == (x 1, ~ ~ ~ , ~~ ) . We take g to be a smooth function on D such that,
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where v is the exterior normal on A direct calculation shows that

if we take

On the boundary,

provided we take

It follows that if initial datum satisfies

then the solution exists globally in time. D

Finally, Theorem 2.3 is a combination of Lemma 4.2 and Lemma 5.2
while Theorem 2.4 is a combination of Lemma 4.3 and Lemma 5.4.

Remark 5.4. - No convexity assumption is needed for the domain D for
the proof of global existence.
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