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ABSTRACT. — In this paper we consider the heat equation u; = Awu in a
unbounded domain 2 C R" with a Neumann boundary condition v, = u?,
where p > 1 and v is the exterior unit normal on 9. It is shown for
various type of domains that there exists a critical number p.(€2) > 1, such
that all of positive solutions blow up in a finite time when p € (1, p.] while
there exist positive global solutions if p > p. and initial data are small.

1. INTRODUCTION

In this paper we consider the following problem:

0
(1.1) E_TZZAU forz €, t >0,
1.2) %:uf’ for z € 082, t > 0,
ov
(1.3) u(z,0) = up(z) >0 forz €,
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708 B. HU AND H.-M. YIN

where ) is a (bounded or unbounded) connected domain in RY with
boundary 0€2, v is the exterior normal vector on 92, p > 1 and ue(z) > 0.

It is well known (cf. [18]) that the solution of (1.1)-(1.3) will blow up
in a finite time if initial datum is suitably large. An interesting question
is what happens for small initial datum. Is there a Fujita type of critical
exponent p. 7 Namely, all positive solutions blow up in a finite time if the
exponent p < p, while global solution exists if p > p. and initial value is
small enough. As part of our motivation, we recall some interesting results
on Fujita’s critical exponents for equations with nonlinear reactions. Let
u(z,t) be a solution of the following problem:

up = Au+uP, forze RN, t>0,
(1.5) u(z,0) = up(z), z € RN,

Fujita [5] (see [19] for the case p = p.) showed that p. =1 + % When
RY is replaced by Dy = {z = (x1,---,on) € RN : 3y > 0,22 >
0,---,z > 0},1 < k < N with a supplement of zero Dirichlet boundary
condition, then p, = 1 + Tc%v‘ which depends on & (see [13]). When 2 is
a cone in RY, p, = 1 4 52, where vy is the negative root of the equation
(N — 2+ ) = X\, while A, is the first Dirichlet eigenvalue of Laplace-
Beltrami operator on £ N {|z| = 1} (¢f. [1]). In a recent paper [16], Ohta
and Kaneko proved the following formula

1 1 1
= +
pe(D1 X Dy) =1 po(D1) =1 pe(D2) =1

for the product domain = D; x D;. The reader can find an excellent
survey [12] on this subject.

For the heat equation with a nonlinear boundary condition, there is a very
nice survey [4] regarding the questions like blow up rate, blow up behavior,
etc. Blow up rate, blow up set and asymptotic behavior has been studied
in a number of papers. It has been shown under a very general condition
that blow up can not occur at ¢t = oo (see [14]). However, there has been
not much progress for Fujita’s type of critical exponent until very recently.
When € is a bounded domain in RY, it is known (cf. [3]) that all positive
solutions blow up in a finite time (see also [10] for a short proof). Therefore,
the critical number p, = oo for a bounded domain. On the other hand, when
() is a complement of a bounded domain, we will show (see Theorem 2.2
in Section 2) that the problem (1.1)-(1.3) always has global solutions if
initial data are small when the dimension N > 2. It follows that the critical
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CRITICAL EXPONENTS FOR NONLINEAR BOUNDARY CONDITION 709

number p. = 1 when N > 2. These are two extreme cases. When a domain
2 has other general shape, the critical exponent depends on the domain.
For the heat equation in Q@ = RY = {z = (z1,---,zn) € RY : 2y > 0}
with N > 2, it is shown in [2] that p. = 1 + ~. The corresponding
elliptic problem in the half space was studied in [9]. For the porous
medium equation u; = (u™),, in a half real line with boundary condition
u.(0,t) = —uP, Galaktionov and Levine [6] proved that p. = m + 1,
where m > 1.

In the present paper we study two types of domains. We show that if  is
a convex cone type of domain in R" (see Definition (2.2)-(2.3) in Section 2)
then p.(Q) = 1+ &, in particular, p.(Dy) = 1+ %, forall1 <k < N -1,
which is interesting if one compares with the case of interior reaction.
When = RF x D where D is a convex bounded domain in R¥N~* and
1 <k < N —1, we prove that the critical exponent equals 1 + %

To show the blow up of solutions, we first derive some properties of
fundamental solution in convex domains and then prove the results by using
integral inequalities. For global existence, we construct various auxiliary
functions as supersolutions of (1.1)-(1.3). Those auxiliary functions are
not trivial.

The paper is organized as follows. In Section 2, we state the main results.
In Section 3, we state some propositions for the problem in a domain with
uniformly Lipschitz continuous boundary. In Section 4, we show various
blow up results. Global existence will be presented in Section 5.

2. THE MAIN RESULTS

We begin with the case where () is a bounded smooth domain. It is
known that all positive solutions blow up in a finite time if 1 < p < oc.
This result has been proved in [3]. We state this in the following theorem
for completeness.

THEOREM 2.1. — The critical exponent p.(§2) = oo if Q is a bounded smooth
domain; i.e., all positive solutions blow up in a finite time if 1 < p < o0.

Next we consider the case when 2 is the complement of a bounded
domain. As we mentioned in Introduction, for the connected complement
of a bounded domain, the critical exponent is 1, i.e. there always exist
positive solutions if initial values are small. Notice that when N = 1,
the complement of a bounded interval is two half spaces which is not
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710 B. HU AND H.-M. YIN

connected. It is proved in [6] that for half-space, the critical exponent is 2.
So we consider the case only for N > 2.

THEOREM 2.2. — Suppose that 1 is a connected complement of a bounded
domain with smooth 0X). Then

(2.1) p(Q) =1,

ie., if p > 1, then there exist positive global solutions for all 0 < t < oo
provided that the initial data satisfy
o
UO(I) S E‘N—_Q forN Z 3,
ug(z) < oexp(—lz|*) for N =2,
where o is suitably small.

A bounded domain or the exterior of a bounded domain are two extreme
cases. We next consider other intermediate domains.
Consider a convex cone type of domain, namely,

(2.2) Q:{(Z'l,l'g,"',l'jv) I 1’1>G(£L'2,”',£L'N)},

where we assume that ) is convex and that there exists M > 0 such that

G($27"'7IN) Z Oa
oG

0z,

(2.3) i

J=2

<M for (zy, --,zn) € RV

THEOREM 2.3. — Let Q1 be a convex domain satisfying the assumption
(2.2)-(2.3). Then the critical exponent

1
pc(ﬂ) —1+]_V—

in the following sense.

@) If 1 < p < p.(Q), all positive solutions of the system (1.1)-(1.3) blow
up in a finite time.

(i) If p > p.(2), then there exist solutions for all 0 < t < oo provided
that the initial data satisfy

ug(z) < oexp(—|z|*) forz €Q,

where o is suitably small.
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CRITICAL EXPONENTS FOR NONLINEAR BOUNDARY CONDITION 711

Moreover, for any small € > 0, we can take the initial value small enough
. N
so that the global solutions decay to zero at the rate t~ 2z T°.

With the appropriate change of coordinates, all convex cones
(2.4) Q={Xz; >0, z € D}

(where D is an open convex set in RY such that 0 ¢ D) are included
in Theorem 2.3. The domain Dy discussed in Section 1 is a special case
of the convex cone.

Next, we consider the case of a convex cylinder:

(2.5) Q=R'xD (1<k<N-=-1),

where D is a bounded, convex domain in RV %,
THEOREM 2.4. — The critical exponent

po(RF x D) =1+ %
ie.,
() If1 < p < p(R* x D), all positive solutions of the system (1.1)-(1.3)
blow up in a finite time.
(i) If p > p.(RF x D), then there exist solutions for all 0 < t < oo
provided that the initial data satisfy

ug(z) < oexp(—|z|?) forz e R* x D,

where o is suitably small.
. _k
Moreover, the global solutions decay to zero at the rate t~2 for small
initial values.

3. PRELIMINARIES
In order to include those cones and D} (as mentioned in section 1) in
our theorems, we need the existence and uniqueness for Lipschitz domains.

DEFINITION. ~ We say that the domain Q) is uniformly Lipschitz, if the
exterior and interior cone conditions are satisfied with a cone of fixed size
for every x € 0N

Assume that 2 is a connected domain in RN with piecewise smooth
and uniformly Lipschitz boundary S = 02. We use the standard notation
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712 B. HU AND H.-M. YIN

Qr = © x (0,T). Since the boundary of the domain is not smooth, the
classical theory of parabolic equations is not directly applicable. We shall
state some propositions which will be used in the sequel. We shall first
prove the comparison principle for Lipschitz domains.

ProposITION 3.1. — Assume that ui(z,t), us(x,t) are two solutions for
the system (1.1)-(1.3) such that
ur,up € C*(Qr) N L*(0, T; HY(Q N {|z] < M}) forany M > 0,
ur, uz € L=(Qr),
liné [ul(z,t) - uz(z,t)] >0 forx e

Then
ul(l"t) 2 u2($?t) for (:Eat) € QT‘
Proof. — By regularity theory, the solutions u; and u, are smooth up to

the smooth part of the boundary. The function w(z,t) = ua(z,t) — us(z, t)
satisfies

éut_ =Aw for (z,t) € Qr,
%@:ug—uf for (IL‘,t)EST:aQX(O’T],
v

w(z,0) =0 forz € Q.
Let ¢ be a cut-off function such that

0<(¢<1, C(z) =0 for|z| > M.

Multiplying the equation by (?w™ and integrating over {2, we obtain
5 (/ C(w dz) / C|lVwT [2dz
< 4/ V¢ (w dx-I-Z/ pu*C*(wh)?dS,,
1)

where u* = f [fuz + (1 — O)u;]P~1db.
Since w(z,0) = 0 and u* is bounded, the above inequality leads to

(3.1 Osigt[/g z,7) (:E,T)dx] +/t/ CIVw™ |2dzdt
<4//;v<| dwdt-l-C/ w)2dS, dt.
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CRITICAL EXPONENTS FOR NONLINEAR BOUNDARY CONDITION 713

Since 9% is uniformly Lipschitz, the Poincaré’s inequality

/ ©*dS, < 5/ [ch]Qd:v—}-C(&)/ o’dx for all§ >0
a0 Q Q

is valid for ¢ € H'(Q) with the constant C(§) depending only on €
(see [15]). Letting o = ¢ - w' in the above inequality and substituting
into (3.1), we obtain

(3.2) sup { /Q C2($,T)(w+)2($,7')d:v}

0<r<t

<o [+ ey

We now take smooth cut-off functions {(.} with compact support such that

¢ — Co=exp(—+/|z|2+ 1) forz e,
V¢ — V{ forxz e

Then |V{| < (o and (3.2) implies that

sup | [ Gt (o,

0<r<t

<ctsw | [ Gl s
0<r<t 0

Thus w* = 0 if ¢ is small enough. The result now follows step-by-step to

all Qr. 0O The comparison principle immediately implies the uniqueness

of the system (1.1)-(1.3). In order to prove the local existence theorem for

Lipschitz domains, we first establish some property of such domains.

Lemma 3.2. — Suppose that Q) is a uniformly Lipschitz domain in RY.
There exists a constant ¢y > 0, depending only 0%, such that for any € > 0,
there exists a function g.(x) with the following properties

(3.3) ge € C2(RY),
(3.4) 0<g.(z)<1 forzeq,
(3.5) 0 < g.(z)<e forxedq,
(3.6) 99e

Ov
(3.7) |Age(z)] < C(e) forxz e RV,

> ¢y foranyv € Neo(z), x € 09,
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714 B. HU AND H.-M. YIN

where Ng(x) is the normal cone, ie.,

Ne(z) = {l/; lv| =1, liminf Y u>0b.
y—z, yeN tm — yl

Proof. — We define

£ for x € RN \ €, dist(z,09) > ¢
o(z) = dist(z, 0%2) for z € RN\ Q, dist(x,09) < ¢
: —dist(z, 09) for z € §, dist(z,00) < ¢

—€ for z € 2, dist(z,00) > ¢

Let ps(z) be the standard mollifier supported in {|z| < é}. If we take 6
to be sufficiently small and § < £/2, then the function g.(z) = e+ ps * g
satisfies (3.3)-(3.7). O

PROPOSITION 3.3. — Assume that ug(z) € C?*(Q) () L= (Q)NH (QN{|z] <
MY}) (for any M > 0). Then there exists a small T > 0 such that the problem
(1.1)-(1.3) has a unique solution u(z,t) € C*1(Qr) () L>(Qr) with Vu
being continuous up to the smooth part of the boundary. u(z,t) satisfies the
initial and boundary conditions (1.2)-(1.3) in the weak sense and pointwise
except for those singular points on S.

Moreover, the solution can be extended in t direction as long as it remains
finite in L*° norm.

Proof. — When the boundary of €2 is smooth and wg is smooth and
satisfying the compatibility condition, local existence of a classical solution
in C%+*1%3(Q1) () L>=(Qr) is elementary and can be established by, say,
the contraction mapping principle (see [8]).

We now take ¢y as in Lemma 3.2, and let

1
20,

Once ¢ is fixed, we can take g, as in Lemma 3.2 and let C; =
C1]|Age|| L= (0)- Then the function

C = f—0<2+ luollz= )’ e

1
(38) ’(/)(l‘,t) = Clge(m) + Czt + HUOHL‘”(Q) forO0 <t < ?2

is a local supersolution for (1.1)-(1.3). If we approximate the domain {2 by
smooth 2, such that 2, C €, then for A sufficiently small,
0<g.(z) <1 forzeQy,

0<g.(z) <2 forz € 0y,

99.
;V Z%O for z € 082,.
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CRITICAL EXPONENTS FOR NONLINEAR BOUNDARY CONDITION 715

It follows that the function 1 defined in (3.8) is a supersolution for the
system (1.1)-(1.3) with € replaced by Q,, for all small A > 0 (remember
that ¢ is fixed). Therefore, for the approximation problem

1
0 <ux(z,t) <P(z,t) < Cr+ 14 ||uollpe forz ey, 0<t< o
2

Using this uniform L°°-estimates, it is easy to show that
lluall L2 0,71 (@nijel<aryyy < C(T, M) for any M >0,

where C(T, M) is independent of A and 7' = 1/C5. The compactness
argument yields that the limit of a suitable subsequence of {u, } exists and is
a weak solution of the problem (1.1)-(1.3). The regularity theory of parabolic
equations (cf. [11]) implies that u(z,t) is of class C*(Qr). Moreover,
the solution u(z,t) satisfies the initial and boundary conditions except at
those points where the boundary of €2 is not differentiable (c¢f. [11]). It is
not hard to see that the solution can be extended in ¢ direction as long as
it remains finite in L*-norm. [J

4. FINITE TIME BLOW UP

To prove the theorems, we start with a general result which ensures the
blow up of all solutions in a finite time if certain assumptions are satisfied.
Suppose that 052 is piecewise smooth. Let Gy (z,y,t,7) be the Green’s
function of the heat equation with homogeneous Neumann boundary
condition. Assume that there exist constants co > 0, C; > 0,0 < 3 < 1and
nonnegative functions G(z,y,t — 1), ¢(z,t) with the following properties:

(4.1) Gn(z,y,t,7) > Glz,y,t —7)
forl <t<oo, 0<17<t, 2,y €09,
(4.2) co < / o(z,t)dS, < C; for1 <t < oo,
890
(4.3) / t'aé(x,y,t — 7)oz, t)dS, > coply, T)
890

t
fory € 000, 2 <t < o0,

er<t
7 =T=
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716 B. HU AND H.-M. YIN

We further assume that there exist ¢* > 0 and n > 0 such that

(4.4) {/an (,o(;ut)(/QGN(x,y,t,O)uo(y)dy>pd5$}l/p

>t fort > 1.
THEOREM 4.1. — Under the assumptions (4.1)-(4.3), any positive solution
of (1.1)-(1.3) with initial value satisfying (4.4) blows up in a finite time if
1=~
(4.5) p<1+ ———ﬂ
n
In the case
1—
(4.6) p=1+ 1-8

the solution still blows up in a finite time if the initial datum satisfies (4.4)
with the constant c* in (4.4) being large enough.

Proof. — In our proof, we shall use § to denote various small positive
generic constants depending only on ¢y, C; and p (6 will be independent
of ¢*). We shall argue by contradiction. Assume that a positive solution of
(1.1)-(1.3) exists for all £ > 0. Let G be the Green’s function for the heat
equation with Neumann’s boundary condition. Then

(4.7) ulz, ) = / G (.9, £, 0)uoly)dy
Q
t
+/ / GN(:I:ayat)T)up(va)dSydT
0 N

forz € Q,t > 0.

We now take T to be sufficiently large so that (4.4) is satisfied for
T/2 <t < T (T >2). We set

JO(xat):/GN(‘T?yatvO)uO(y)dyv
Q

t
Ji(z,t) = / / G(z,y,t — T)uP(y, 7)dS,dr.
T/2 J8Q
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CRITICAL EXPONENTS FOR NONLINEAR BOUNDARY CONDITION 717
Then, by (4.1)
u(z,t) > Jo(z,t) + Ji(z, t).

Clearly, from (4.4) for t € [Z,T],

*p

/ o, 0)JE (2, 0dS, > S
o T

Using (4.2), (4.3) and Jensen’s inequality, we obtain,

/ o(z, )P (2, 1)dS,
o0

t - r
26{/ / up(y,T)/ G(:z:,y,t—T)(p(:z:,t)dSzdSydT}
T/2 Joa 80
t 1 r
5{/T t—ﬁ/ up(y,f)w(y,f)dsydT}
/2 80

t 4 P
5{/ —ﬁ/ u”(y,T)(p(y,T)dSydT} for T/2<t<T.
r/2 TP Jaa

v

v

Let '/p
At) = (/39 u”(:c,t)@(:z:,t)dSz> .

Then for sufficiently large T,

*P t p P
(4.8)  AP(t) > ; +5{ / AT(;) dT} for T/2 <t<T,
T/2

where we used the inequality
(a+bP >a? +0° fora>0,b>0, p>1.

It follows that

1{ ¢ tAP(T)
4.9 A(t) > = ) d f <
(4.9) ()"2{T"+ /T/2 T8 T} orT/2<t<T,
where we used the inequality
p
a? +bvF > (a+0) .
9p
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718 B. HU AND H.-M. YIN
Let g(t) denote the right-hand-side of the inequality (4.9), then

1) = A 2 )

Integrating this inequality over [T/2,T], we obtain
1 (T 1 [, (T 8 1 4
[ _ > — pf ) P > - i
Py (2) p—1[9 5 ) -9 D) 2,77

-1
2070 v Spioe)

—T
(p—1)ere-1) 4
This is a contradiction if n(p — 1) < 1 — 8 and T is large enough.

It is clear from the above proof that the constant § is independent of ¢*
and T' (it depends only on cg, C; and p). Therefore the proof is still valid
for the case n(p — 1) = 1 — 3 if we take ¢* such that

2(p—1) 16
(p— @D 24
Any solution with initial datum satisfying (4.4) (with ¢* given above) still
blows up in a finite time in this case. O

Now we apply this theorem to show that for a large class of convex
domains, the critical exponent is no less than 1 + 1/N.

forT/2<t<T.

Le.,

(4.10)

LemMa 4.2. — Let 2 be an unbounded convex domain with the property:

. 1 P |z — PJ?

for allt > 0 and some ¢ > 0.
If
(4.12) p< Pl Q) =1+ —,
N
then any positive solution of (1.1)-(1.3) blows up in a finite time.

Proof. — In the proof, we use ¢ for various generic positive constants,
it may vary from one line to the other. Assume without loss of generality
that 0 € 0f). We take

(4.13)  G(z,yt—7)=T(x —y,t - i
(477 t—r > 2 ( lxt_—yfl))
(4.14) o(z.t) = 557 )/ exp < [Zl:)
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We shall next verify all assumptions of Theorem 4.1. The Green’s function
is constructed in the following way (cf. [7]):

(415) GN(zvyvth) :F(m_y’t_T)_*—h(‘T?yataT)a

where h satisfies the backward heat equation with final datum

0

(EﬂLAy)h:O fory e Q,7 < ¢,
oh or
— =———f o) t
o0, B,y ory € , T < 1,

h=0 forzeQt=r.
Since we have a cylindrical domain and 88—,2 is a function of z,y and ¢t — 7,
(4.16) Gn(z,y,t,7) = Gn(z,y,t — 7,0) = Gy(z,y,t — 7).
Since 2 is convex, 8871; < 0 for y € 09, = € Q. It follows that & > 0 and
(4.17) Gn(z,y,t=7)>T(z—y,t—7) forz,ycQ, 0<7<t<T.

Thus (4.1) is valid, and

1 1 |z —y|*\ dS

Ne —y,t)dS, = ———= - i

/89 (z —y,t)dS, (4m)N7Z Jf aQeXP( at t(N=1)/2
1 1

—J(z,t) forz e 80,0 <t < o0,

(4m)N72 /¢

where 9

J(z,t) = / exp ( - 1—”—)dsw
89, 4

(Pas = (o5 Viw 2 c ) = =121

is clearly bounded above and below (away from zero) uniformly in z € 692
and ¢t > 1. In particular, (4.2) is satisfied (if we take z = 0). To show (4.3)
with 8 = 1/2, we compute, for /2 < 7 < ¢,

1l

(4.18) Vil(z — y,t — 7)p(z, t)dS,
80

> / Vt—1I(x —y,t — 7)p(z,t)dS,
90
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1 1 |z]?
AL /an tv-n7z P ( - _‘E>
Xexp<_ lw—yl2> dS,
4t —71) ) (t —T)(N-1)/2
S 1 1 (N-1)/2 (
> Glz) e

2 2 a2
[ (B by s
90 4r 4 Ait—-1) /)t —T7)W-D/2

>  |z? |z —y]?

47 41 4t — 1)
WP ey P 2o —ylly]  Jx -y

T 4r 4t At —7)
_1 t—7 0\ _le—yl? |z—yf
= (2l ) -
B | N e O A 1

ST wt-1) At-r) &

3z -yl

—— for 0 < t/2 t
T A4t-1) or0<t/2<r<t,
we derive from the assumption (4.11) that

]l S e T dS,
(4.19) /aQexp (ZT— ~ 4(t—7')> (=) ("D >6>0

for0<t/2<T<t yed

Combining (4.18) and (4.19), we obtain (4.3).

Finally, by using ¢ = ¢ instead of ¢ = 0 if necessary, we may assume
that ug(y) > 0 for all y € 9. Therefore

(420) /QGN(x,y,t,O)UU(y)dy

> /QI‘(:E ~ v, t)uo(y)dy

> /Q@rtl)—wgw(y)exp<— ILE—IQ—%Mﬁy

> Wexp ( —~ l%';—) /Quo(y)exp(—IyIQ)dy
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C* |$[2
2 gy P ( - 7)

forl <t < oo, z€Q, for some ¢* > 0.

It follows that (4.4) is satisfied with n = N/2. Thus by Theorem 4.1, all
positive solutions blow up in a finite time if p < 1 4+ 1/N.

We now consider the critical case p = 1 + 1/N. Recall that 0 € 99).
From (4.20), we have

&P 2 —
Up(l',t)?_mexp<—p|$[ ) f0r$€Q7 t> 1.

2t
It follows from the representation (4.7) that

t 1 2
u(z,t) > 6/1 /Q v P ( _ plyl >F(£L' —y,t —1)dS,dr

> dexp ( I${2> / /ao T(N+1)/2 — 7)N/2

R 2 S e
X exp ( ; 5 20— 1) dS,dr

6 |=|*
= P ( - T
l=1*  plyl®  =* + ly[?
/ /{,Q 77 (T Ty T )T
exp [:c|2 t/2 dr
tN/2 t . T
5 2 _
tN/2(log )exp(—%‘—) forz €, t> 1.
Thus

/ Gz, 1, 0)u(y, to)dy
Q

> / Iz — . t)uly, to)dy

58 [ (5 o)

2 Wz exp ET3 6 ogE forx e, 1<tg<t<oo,
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where the constant ¢ is independent of ty. Therefore, if we use ¢ = ¢y as
the new initial value and take ¢y to be large enough, then the constant ¢*

in (4.4) can be taken arbitrarily large. Therefore the solution blows up in
a finite time in this case.

Remark 4.1. — Any domain satisfying (2.2) and (2.3) will satisfy (4.11).
Finally, we consider the case of a convex cylinder. Let D be a bounded,
convex domain in RY %, and let

(4.21) Q=R*xD (1<k<N-1)
Lemma 4.3, - If

(4.22) p<p(RFxD)=1+ %,

then any positive solution of (1.1)-(1.3) blows up in a finite time.

Proof. — We first derive some estimates for the Green’s function
Gn(z,y,t — 7). Clearly,

s} k
8—G:0 forz € R* x 0D.

Uy

Since ) is convex,

(4.23) Gn(z,y,t—1) 2 T(@—y,t —7) forz,y € Q0< 7 <t < 0.

Especially,
GN(wvy»t)
t=1
|z —y]®
> —
exp ( 1
o — P .

> bexp - for z,y € R* x D and some é > 0,
where © = (21, -+, 2k, Tht1,- s 2n) = (2, Tks1, ,2N) and y =
(¥, Yx+1, -, yn). Therefore by comparison principle,
(4.24)

6 l=" — ¢ K
GN(x,y,t)ZWexp<—T forz,y e R*x D, ¢t > 1.
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So we take

N Fy I_,E/__yIIQ
G(.’E,y,t): %—k—/—iexp(—T fort>1,

I(z—yt) for0<t<1,

oz, 1) = tk%exp ( _ '”:f).

It is clear that (4.2) and (4.3) are satisfied with 4 = 0. Similar to the proof
in Lemma 4.2, using (4.23) and (4.24), we derive (4.4) with 5 = % Thus,
by Theorem 4.1, any positive solution blows up in a finite time in the
subcritical case p < 1+ %

In the critical case p = 1 + % we can use (4.24) to derive that

Ll

)
(4.25)  wu(z,t) > W(log%) exp(—C . ) for x € R¥ x D.

This estimate implies that the constant ¢* in (4.4) can be chosen arbitrarily
large in Theorem 4.1. The Lemma is proved. [J

5. GLOBAL EXISTENCE

A solution can be extended into a larger interval [0,7*] as long as we
have an a priori estimate of ||ul||p~(g,.) (see Proposition 3.3). Therefore,
the proof for global existence relies on deducing an a priori maximum
norm of the solution.

We begin with the case where {2 is the connected complement of a
bounded domain in RY with 9Q of class C?. It should be pointed out that
the associated elliptic problem admits a positive solution when N > 3. It
is not hard to verify that when N = 2 and Q2 = R? \ B;(0), the associated
elliptic problem (which reduces to an ODE) does not have any positive
solutions.

Proof of Theorem 2.2. — We first consider the case where N > 3. It is not
difficult to construct a supersolution in this case. Without loss of generality,
we assume that 0 ¢ 2. Consider the following problem:

Av =0, forz e Q,

(5.1) v(z) =1, forzx € 09,
J llim v(z) = 0.
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To prove the existence of a positive solution for the above problem (5.1),
we note that 0 is a subsolution while lrl% is a supersolution if C is

suitable large, where |z| = \/z% + --- + 1%, It follows from Theorem 8.2
of [17] (page 343) that the problem has a unique solution. As v(z)
takes positive maximum everywhere on 9, the strong maximum principle
implies dv/0v > 0 for z € . Since 8Q is compact, dv/dv > ¢y > 0
on 952, for some ¢y > 0, where ¢, depends on . If 67~ < ¢, then the
function w(z) = dv(z) satisfies w, = v, > dcy > wP on HN. Thus w(zx)
is a supersolution of the problem (1.1)-(1.3) if uo(z) < w(z,0) = v(z).
Therefore, u(z,t) will be bounded by §v(z) for ¢ > 0, if up(z) < w(zx,0).
This a priori estimate along with the local solvability ensures that the
problem (1.1)-(1.3) has a solution in § x [0, T] for any T > 0.

For N = 2, the system (5.1) does not have a solution. So we shall
construct a supersolution in a different manner. For simplicity, we first
consider the case that ¢ is star shaped with respect to the origin 0, i.e.,
v-x < —¢yg < 0 on 9. Let

N 2 gs(2)
(5.2) Ylz,b) = tl——ée"p<_ﬁ_ : tT)

(aj :2_j7 IS]SIC),

where
(5.3) gi(x) = n/lzl,  galx) = mlzl*%, -, g(z) = nz|**.
It is clear that
2 2
oS dnas. 4
r-Vgi{z) = ajg;(z),  Ags(z) = l$|2_1aj 2 mzij = 5|V9j+1|2-

It follows that

Py — A
1 . .
—v |- +Z;ziﬁ

1 Ag; 2 T; a 1 Jg; 2
+Z+Ztaj_2(ﬂ+zta_ja_:;)]

« Jj=1 i=1 Jj=1
6 a g 1 < Og
v 395 _ J
= 7’b l:t + ; (taj+1 ta_,+1 Zl 181}1)
k k 2
Ag; 1 Oy,
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k—1
4 ]ng+1] 2
- pop kz o [Vg;l
[ 77]:1 1 t2
1 gy Vg4l Ag
=4 |2 (6—kVg|?) + - g O
t j=1 n ¢ go

>0,
provided we take 7 such that

< min |2 0 in || 4
7 < min ernel_gx,k

We take k such that p > 14 /(1 —6) (this is possible since p > 1). Then

(5.4) ((99_1/’ > :—d)ak]x]"‘“_l ( - y-x) > P for x € 0Q,t > 1,
v “k

provided £?7! < coay, rn(iarsl7 |z|** 1. It follows that if initial value satisfies
z€
uo(z) < Y(z,t) forz € N for some ty > 1,
then the solution exists globally in time, with u(xz,t) < 9(z,t + to) for
all 0 < t < o0.

We next consider a general exterior domain without the star shape
assumption. Assume that 0 ¢ 2. We shall still define 1 as in (5.2) with

(5.5) g(@) =ny/lz}, -, gk-1(z) = nla|**-1,

and gx(z) to be determined. As before, we can choose 7 so that
8/2 > k|Vgy(z)|?. Then the previous calculation shows that

1 Agr_1  Ag: k 2
| gkl .

Ve — A > 9+ Vgr + +

2t T et gt g plaw
Therefore, if g; satisfies

k>0 AngO fOI'.’L‘EQ,

(5.6) Ing] < I I for z € Q,
0
%<—5<0 for x € 99}, for some 7 > 0,
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then ¢, —Atp > 0 for ¢ > 1 provided ¢ is small enough. We shall prove later
that such g, (z) exists. As before, take k such that p > 1+ ay/(1—6). Then

o

By, 1 dgs G| .
(5.7) Eze¢.<—f——cz >yP forxz € 00t > ¢,

provided ¢ is sufficiently small and ¢* is sufficiently large. Therefore if
initial datum satisfies

ug(z) < Pz, tg) forz € Q for some ty > t*,

then the solution of (1.1)-(1.3) exists globally in time.

To complete the proof, we now show the existence of the function in
(5.6). Take R > 0 to be large enough such that Q° CC Bg(0). Let h(z)
be a solution of the following problem

Ah =0 forz € QN Bg(0),
h=0 forze dN,
h=1 forz e 0Bg(0).
It is clear that
oh

0<h(z) <1 forze QN Bg(0), a—§—0<0 for z € OQ.
14
We now let
gh(x) for x € QN Bgr(0)
9() = g{alog (%) + 1} for |z| > R. ’ (8> 0).

If we choose C > RHZ_UEW}L(‘T)I’ then

Agy > 0 for z € Q) in the distribution sense.

We next take & to be small enough, then all requirements in (5.6) are
satisfied. The Theorem is proved. [J

We next consider the domain with the following property:

There exist P € RV \ Q, g(z) and n > 0,0 < 8 < 1 such that

0
— ~P]?) <0 forx e 8,
(5.8) ay(lx l)— or & € %%
glx) >0, Ag >0, |Vg(z)| <1+ |z — P forzeq,
ag—(w)ﬁ—n<0 for z € 90.
ov
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LemMa 5.1. — Let the assumption (5.8) be in force. Suppose that

146
(5.9) P> pe(Q) =1+ %

Then there exist solutions of (1.1)-(1.3) for all t € [0,00), if the initial value
uo(x) satisfies

uo(2) < oexp(=|z|’)  for z €,

for a suitably small ¢ > 0.

Proof. — We shall construct a supersolution of the form

£ §\|z— PP qi(z)
(5.10)  9(2,t) = oz exp l:“ <1 - YV_) yrammia s yA b
where g,(z) = €g(z), € is small and g(z) is given in (5.8). It is clear that
) 5\ (z—P) V¢ < 6 ) 5§\ |z - PJ?
T N) G2 | SN\ N/ a2

N |Vg1]2
#2(5 1)

1+ |z — P*
0

o = PJ?

§2+T fort > 1.

It follows that

Y — Ay

—y {22 8 \le—P?  (1+0)ai(z) = Agi
- {52 " —<1 - N) 412 + 2t(3+6)/2 1(1+8)/2

N
Tl (y_5)eohva)

1+ N 1(3+8)/2
b, 0 §\|z— PP 2N |Vg ]
Ssh.42 0 9 (72 _2N
>f §+_5_ l—i |z — P> 4NE? (1+ |z~ P|*
= tl2 2N N & % m

>0 forzxedt>1,

provided ¢ is small enough. We fix such an . Since p > 1 + (1 + 8)/N,
we can choose § so that

N 146 N
S+ <pl 2 —5).
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Thus, by (5.8),

a

(5.11) % > P forz e It > 1,
v

provided

(5.12) eP~l <&

It follows that if initial datum satisfies

uo(z) < Y(z,t) forz € Q for some tg > 1,
then the solution exists globally in time. [J

It turns out that there is a large class of domains which satisfy the
assumption (5.8). Let

(5.13) Q= {(xl,zg,---,xN) { 1 >G(x2,-..,xN)},

where we assume that there exists M > 0 such that

G(z2, -+ zn) 20,
oG

8.’1,‘1'

(5.14) i

i=2

<M for(zy, --,zn) € RN,

(5.15)  22Go, 4+ +2nGoy <G+ M for (zq,---,zn) € RN7L

LEMMA 5.2. — If Q is given by (5.13) with G satisfying (5.14)-(5.15), then
the assumption (5.8) is satisfied with 8 = 0. Therefore, there exist solutions
to (1.1)-(1.3) for all t € [0,00), if

p>1+1/N
and the initial value uo(x) satisfies
ug(z) < gexp(—|z|*) forz € Q,
for a suitably small o > 0.
Proof. — The exterior normal direction on 9f2 is given by

(-1,V'G)

VIF+ VG
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If we take g(z) = z;, then
d0g(z) 1 -1

= — < .
ov VI+IV'GE ~ V1+ M?

It is also clear that all remaining conditions on g(z) in (5.8) are satisfied
with § = 0.
We now take P = (—M,0,0,---,0), then

—~(G+ M) +2,G,, + - +anG
VI+IVGE

Thus the lemma follows from Lemma 5.1. O

Remark 5.1. - If Q is convex, then (5.14) is satisfied with M = 0.

g 2

Remark 5.2. — Any convex cone will satisfy (5.14)-(5.15). Because of the
constant M, (5.14)-(5.15) are the assumptions for the domain at z = oo.
Roughly speaking, (5.14) requires the growth of GG at infinity no more than
linear growth and (5.15) requires some kind of convexity of the domain
near infinity.

We next replace (5.14) with

G(z') > 0,
N
(5.14a) Z < M(1+G? forz' = (zg,---,z5) € RN7L
j=2

J

%G
al'j

where 0 < 6 < 1.

LEMMA 5.3. — If Q is given by (5.13) with G satisfying (5.14a) and (5.15),
then the assumption (5.8) is satisfied. Therefore, there exist solutions to
(1.1)-(1.3) for all t € [0,00), if

p>1+(1+86)/N
and the initial value uo(z) satisfies
uo(z) < oexp(~|al*) forzeQ,

for a suitably small ¢ > 0.
Proof. — If we take g(z) = z; + 17, then

0 1 1 8
g(x):_ +{d+0)G < —n forz € 09,

v /T+|V'GE ~
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for some 1 > 0. It is also clear that all remaining conditions on g{x)
in (5.8) are satisfied. Thus the lemma follows from Lemma 5.1. O

Remark 53. — Lemma 5.3 includes all domains of the type
{{@1,---,zN); 21 > G(xa,--+,zN)} where G is given by

3

1/(1—8)

b0207b2_>_07"'7bN205
for 0 < 8 <1, or

G(z’) = exp {\/bg + bg.’E% + ngg 4+ o4 bNx%,},

b0207b2207”'7bN207

for 8 = 1.

Finally, we consider a cylinder 2 = R* x D, where D is a bounded
domain in RV % with uniformly Lipschitz boundary 9D.

LEMMA 5.4. — For Q = R* x D, there exist solutions of (1.1)-(1.3) for
all t € [0,00), if

(5.16) p>p(R) =1+

?

ES ]

and the initial value up(x) satisfies
up(z) < oexp(=|z|’) forz € Q,

for a suitably small o > 0.

Proof. — We shall construct a supersolution of the form

(5.17) (z,t)
€ 9(Thq1,*, TN) 1 |2/

where ' = (21, - -, zx). We take g to be a smooth function on D such that,

9(Tky1,---,2zn) 20 in D,

5.18
( ) gg(mk-klf"axN)Zl 0n8D7
14
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where v is the exterior normal on OD. A direct calculation shows that
0
— A
(5-2)v
€ 1 |z’|?
=P T E )P\ T

§ 9(Try1, -, TN) (1+6)g Ag
X {t_ﬁr—&(M+ (146 T s s

>0 forze RFxD,t>1,

if we take

M = —(1Agllz=oy + (1 + 8)ligll = (D))

S

On the boundary,
oY € 1 1 |z’'|?
By T ez \ e ) P T JXP 4t
€ 1 |z'|?
= gireraz P\ T )P Ty

> P forz € R*x 0D, t> 1,

provided we take

k( 2) . 1
b=—lp—-1—-+], ef™r < .
2 k [M + gl = (p))”

It follows that if initial datum satisfies

uo(z) < Pz, ty) forz € R¥ x D for some £, > 1,

then the solution exists globally in time. [
Finally, Theorem 2.3 is a combination of Lemma 4.2 and Lemma 5.2
while Theorem 2.4 is a combination of Lemma 4.3 and Lemma 5.4.

Remark 5.4. — No convexity assumption is needed for the domain D for
the proof of global existence.
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