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ABSTRACT. - In this paper we prove the existence of at least one
homoclinic solution for a second order Lagrangian system, where the

potential is an almost periodic function of time. This result generalizes
existence theorems known to hold when the dependence on time of the
potential is periodic. The method is of a variational nature, solutions being
found as critical points of a suitable functional. The absence of a group of
symmetries for which the functional is invariant (as in the case of periodic
potentials) is replaced by the study of problems "at infinity" and a suitable
use of a property introduced by E. Sere.

RESUME. - Dans cet article on demontre 1’ existence d’une solution
homocline pour un systeme Lagrangien du deuxieme ordre ou le potentiel
depend du temps d’une façon quasi periodique. Ce resultat generalise
le cas ou le potentiel est une fonction periodique du temps. La methode
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784 E. SERRA, M. TARALLO AND S. TERRACINI

utilisee est variationnelle, les solutions etant trouvees comme points critiques
d’une fonctionnelle. L’absence d’un groupe de symetries pour lequel la
fonctionnelle est invariante (comme dans le cas des potentiels periodiques)
est remplacee par I’ étude des points critiques « a l’infini » et par une

propriete introduite par E. Sere.

0. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

In this paper we prove the existence of at least one homoclinic solution
for a class of second order Lagrangian systems. In particular, we study
the problem

where a is a continuous positive almost periodic function (see Definition 0.3
below) and G E C2 (R N ; R), N > l, satisfies suitable superquadraticity
assumptions.
The main reason of interest for this kind of problem is to try to extend

some results obtained in the study of homoclinic orbits, a subject which
has received much attention in the last few years, especially when the
potential is a periodic function of time. Indeed, starting from [7], [8] and
[14] the problem of homoclinic and heteroclinic solutions has been widely
investigated by people working with variational methods. Existence and
powerful multiplicity results were given in [1], [2], [5], [8], [12], [13]
for second order systems and in [7], [14]-[16] for the case of first order
Hamiltonian systems. See also [6] for the asymptotically periodic case.
A second feature of interest is that this problem may serve as a model in

the study of the existence of orbits of a conservative system, homoclinic to
a given almost periodic solution. In this context see also the papers [3]-[4],
[10],[11] (where the problem of homoclinics is seen from a different point
of view) and the references therein.
We will prove the following result.

THEOREM 0.1. - Assume that

(Gl) G E C2(RN; R) and a E C(R; R)
(G2) There exists 0 > 2 such that for all x E ~0~,

0  x ;
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785HOMOCLINIC SOLUTIONS

(G3) a is almost periodic, in the sense of Definition 0.3, and

Then Problem (P) admits at least one nonzero solution.

Remark 0.2. - We point out that the same result holds for systems of
the form

when A(t) is a symmetric positive definite almost periodic matrix and
G(t, x) is almost periodic in t uniformly in x and satisfies (G2) uniformly
in t. We shall work with the simpler problem (P) in order to avoid heavy
technicalities.

Also note that superquadraticity of G (assumption (G2)) is standard
when one deals with second order systems, as well as positivity of a.
In particular therefore, Theorem 0.1 generalizes existence (though not
multiplicity) results established in the periodic case.

We will study the existence of solutions to Problem (P) by means of
a minimax procedure. Indeed let H = and let f : H ~ R
be the functional defined by

It is readily seen, following for example [8] that if (G1)-(G3) hold
(actually much less is enough) then f E R) and

so that critical points of f are weak (and, by regularity, strong) solutions
to problem (P).

In the search for critical points of a functional like f one generally
needs two different arguments. First, a change in the topology of some
of the sublevel sets of f ; secondly, some compactness property such as
the Palais-Smale condition. In this context, it is easy to see that under

assumption (G2) (and independently of any other assumption on a, as long
as 0 is nonnegative) the function 0 is a strict local minimum for
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786 E. SERRA, M. TARALLO AND S. TERRACINI

f, and f is not bounded from below. This amounts to say that f satisfies
the geometrical assumptions of the Mountain Pass Lemma.

In contrast, f does not satisfy in general the Palais-Smale condition,
owing to the fact that the embedding of H into is not

compact. However, if a is positive and bounded, it can be proved that
for every Palais-Smale sequence un at a level 0 there exists a sequence
(tn)n C R such that the sequence un ( ~ + tn) converges weakly to some
limit 

These are the general features appearing in every problem concerning
homoclinic solutions. Now, in order to highlight the difficulties that one has
to face in the case when a is not a periodic function we first describe the
easier problem with a periodic and then we examine the main differences
between the two cases, from the point of view of existence results.
When a is periodic one can assume without loss of generality that the

sequence tn introduced above is made up of multiples of a period of a.
Therefore, by the invariance of f, the sequence un ( ~ + tn) is still a Palais-
Smale sequence for f and, as noted above, it contains some subsequence
converging weakly to some u0 ~ 0. To conclude the proof it is enough to
note that ~f : H ~ H is continuous for the weak topology: this shows
that = 0.

If a is almost periodic but not periodic f is no longer invariant for the
action of a group of translations. In particular this means that the sequence
un ( ~ + tn) is not a Palais-Smale sequence for f, unless tn is a sequence
of En-periods of a, with ~~ ~ 0. To overcome this difficulty we will show
that for those Palais-Smale sequences which satisfy the additional property

0, there exists a sequence tn of sn-periods of a such that
(a subsequence of) un(. + tn ) converges weakly to some u0 ~ 0. The weak
continuity of ~f then shows that uo is a critical point for f.
The accomplishment of this program involves a careful analysis of some

qualitative properties of the solutions to the problems "at infinity". As an
example, in the simplest case where a(t) = al (t) + a2 (t), with ~xl and a2
periodic functions of periods Ti and T2 respectively ( ~~-,~ ~ Q), the family
of the problems at infinity is given by the equations 

°

We note that unless 0 = cp this problem is not equivalent to (P).
Finally, we point out that the existence of Palais-Smale sequences with

the further property ~un - un-1~ ~ 0 is due to E. Sere (see [14], [7])
where it has been used to find multiple homoclinic solutions in the periodic
coefficient case. It seems to us that the full force of this property is well
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787HOMOCLINIC SOLUTIONS

demonstrated in the study of problem (P), where it plays a central role;
the fact that it is used here in a different way provides a new application
of this general principle.
The proof of Theorem 0.1 is divided in a series of steps. In Section 1

we prove the existence of a Palais-Smale sequence un satisfying Sere’s
property 2014~ 0. Section 2 is devoted to the study of the
functional f and of its Palais-Smale sequences. Lastly, in Section 3 we
examine some qualitative properties of the problems at infinity which will
allow us to conclude the proof.

Before entering the proof of Theorem 0.1 we recall for the sake of
completeness some definitions and properties concerning almost periodic
functions. These are taken from [9], to where we refer the reader for further
details and proofs.

DEFINITION 0.3. - (i) A set P G R is called relatively dense in R if there
exists a number A > 0 such that every interval of length A contains at least
one element of P. (ii) Let a : R ~ R be a continuous function. Given
~ > 0, a number T E R is called an c-period of a if

(iii) A continuous function a : R ~ R is called almost periodic if for

every E > 0, there exists a relatively dense set P~. C R of ~-periods of a.
The next is a classical result on almost periodic functions and will be

used at the core of our argument.

THEOREM 0.4. (Bochner’s criterion). - Let C(R; R) be the space of
continuous, bounded functions on the real line, endowed with the sup norm.
A function a E C(R; R) is almost periodic if and only if the set of its

+ T) / T E R} is precompact in C (R; R).
Notations. - H := RN) denotes the Sobolev space of L2

vector-valued functions whose distributional derivative is (represented
by) an L2 function. This is a Hilbert space endowed with the norm

We recall that H is continuously (though not
compactly) embedded into C° (R; R~ ) and LP (R; RN), for all p E [2, 
and that in particular for all u E H. ,

By u . v we will denote both the scalar product in RN and in H. The
context will always rule out possible ambiguities.

Likewise, we use V to denote both the gradient of an RN -valued function
and the gradient of a functional defined over H, that is the unique element

Vol. 13, n° 6-1996.
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of H which represents the differential of the functional via the Riesz

isomorphism.

1. AN ABSTRACT RESULT

The aim of this section is to restate a celebrated result due to E. Sere

(see [14], [7]) in a form which will turn out to be useful for our purposes.
Although we will give a proof of Theorem 1.2 below, we wish to make
clear that we do it only for the convenience of the reader; nearly all the
arguments used can be traced in the works [7], [14].
We start by recalling some definitions.

DEFINITION 1.1. - Let be a Hilbert space. With the term

deformation of H we mean a continuous H x [0,1] ---> H such

that r~(~, 0) = IdH.
Given a functional f : R and numbers a, b E R we denote

By minimax class for f at level c E R we mean a class F of subsets
of H such that

We say that a minimax class T is invariant for a deformation r~ if A E r

implies t) E r, for all t E ~o,1~ .
The following is the main result of this section.

THEOREM 1.2. - Let f E C2 (H; R) and let r be a minimax class for f
at level c E R. Assume that there exists ~o > 0 with the property that r

is invariant for all deformations ~ such that ~(., t) is the identity outside

c-2co .
Then for all ~ ~]0,~0[, there exists a sequence (un)n C H such that

Proof. - The proof is a slight variant of well-known deformation

techniques, so that we will be rather sketchy at some points.
Let x : R -~ [0,1] be a C~ cut-off function such that
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789HOMOCLINIC SOLUTIONS

and consider the Cauchy problem

Notice that since the right-hand-side of the above differential equation
is locally Lipschitz continuous and is uniformly bounded in norm by
1, the flow r~ is uniquely defined for all u e H and all t > 0, and
of course is a continuous function. Moreover, since x( f (u)) = 0 if

f(u) ~]c - 2so, c + 2eo~, we see that r~(~, t) is the identity outside f~+2~o ,
so that by assumption the class r is invariant for r~.
Now let c and define a function T : H --> R by setting

It is not difficult to show that the function T is continuous at all points u
where T (u) is finite; we leave the details to the reader.

Let SZ~ _ {u E fc+e / T (u)  that is, the set of points in the
sublevel fc+e which are pushed by the flow ~ below the level c - c in a
finite time. Note that T is continuous in 
We claim that fc+e.
Indeed if this is not the case, namely if T is finite at all points of fc+e, then

consider the map fi : fc+e x [0,1] -~ H defined by t) = T (u)t).
Plainly, by Dugundji’s theorem this map can be extended to another
continuous map, still denoted by fi, such that t) = u for all t > 0 and
all u ~ This and the fact that T (u) = 0 if u E show that
the class r is invariant for the deformation vy. Let A E r be a set such that
supA f  c + ~; in particular, therefore, A c Then by construction we
have C and this contradicts the fact that E r.

This argument shows that there must be at least one point u E fc+e such
that T ( u ) = +00, or, in other words, t ) ) > c - c for all t > 0. We
now use this fact to conclude the proof. Let g : [0, R be the function

Note that g is C~ and that f (~~(u, t)) - f (u) = g(t), as one immediately
sees from the definition of 7/. Moreover g is nonincreasing and is bounded
from below, since

Vol. 13, n° 6-1996.
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Let (sn)n C R be a minimizing sequence for g such that s n --~ +00 and

] --~ 0. Applying Ekeland’s variational principle to g yields a
sequence tn such that

Set un = tn). Then (l.l) says (also using the fact that .) is

1-Lipschitz continuous),

which proves (iii). Next, since f (r~(~c, t)) E [c - c, c + ~~ for all t, it is clear
that also (i) holds. Finally because of (i) we see that t))) = 1
for all t, so that by (1.1),

that ] -~ 0, and the proof is complete..
Remark 1.3. - With the terminology of [7] we can say that under the

assumptions of Theorem 1.2, there exists a PS sequence for f at some
level between c - ~ and c -~- ~. Actually, with some slight changes one could
obtain a better estimate on the level, namely lim f ( un) E [c, c + ~] . Since
we do not need this, we give no details. However it is also quickly seen
that in general the estimate from above can be no better than this. Indeed if
one takes f (x) = cos x + cos and for r the class of one-point sets, one
sees that = inf R f = - 2 but this value is never
attained. One therefore sees that for each s > 0 the flow lines converge to
one of the local minima of f at some level strictly between - 2 and - 2 + e.
Theorem 1.2 above will be used only at the end of the proof. From

now on we just keep in mind that whenever we speak of a Palais-Smale
sequence it can be assumed without loss of generality that un is in

reality a PS sequence, that is, it satisfies ] -~ 0 as n -~ oo.
We wish to point out that this property is not inherited by subsequences.
A considerable amount of work in this paper is devoted to establish results

which hold for an entire PS sequence, so that one can make use of the

full force of the property ~un - un-1~ ~ 0.

Remark 1.4. - We wish to make clear the difference with Z-invariant

functionals, such as those associated to the periodic in time potentials.
Indeed we cannot say that the PS condition is satisfied, and therefore we
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cannot prove a real deformation Lemma as in the papers [8], [14]. We

only prove that the existence of a PS sequence implies the existence of a
solution to our problem. The underlying reason is that when the potential is
periodic in time one uses assumptions like finiteness or discreteness (modulo
translations) of solutions to problems at infinity to prove the deformation
Lemma. In that case the problems at infinity coincide with the original
problem and these assumptions are reasonable. In our case, on the contrary,
the structure of critical points at infinity is much more complicated, and
this type of assumptions would not only be an arbitrary imposition, but
they could even be not satisfied a priori in some situations.

2. SOME BASIC PROPERTIES

In this section we will state some of the properties that we will use in
proving the main result. From now on, in the statement of propositions,
we tacitly assume that (G 1 )-(G3) hold. It is clear that many results hold
without the totality of these assumptions, but it seems to us that there is no
need to specify each time the minimal conditions that could be used.

For future reference note that (G2) implies that G(x) = and
= as x --~ 0; these facts will be used repeatedly.

DEFINITION 2.1. - If a satisfies (G3), then it is bounded above by some
constant a, see [9]. In the sequel we will denote by Aa the set

Let f : H -~ R be the functional defined in the introduction. As a first
result concerning f we have

PROPOSITION 2.2. - ~ f is weakly continuous, in the sense that

Proof - Let J(u) = Since f(u) = 2 ~ ~u~ ~2 - J(u), and
the quadratic part has the desired property, we only have to check that the
same holds for J. To this aim, pick 03C6 E H, fix ~ > 0 and let R~ > 0 be
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so large that »E |03C6|2dt  ez. Then we have

Now the first integral tends to zero as n -~ +00 because strongly
in Lr:c; the second integral is bounded independently of n (since un is
bounded in H). The fact that c is arbitrary concludes the proof..
We now list some of the geometric features of the functional f.
PROPOSITION 2.3. - (i) t6 = 0 is a strict local minimum for f ; (it) there

exist p > 0 and a > 0 such ( = p implies f(u) > a; there exists
v E H such that f (v)  0.

The proof is straightforward and we omit it. We note that Proposi-
tion 2.3 states that the functional f verifies the geometric assumptions of
the Mountain Pass Lemma.
The next property shows that some estimates hold uniformly in Aa. In

order to make this point clear, and also because we will soon need it, we
introduce some notation.

DEFINITION 2.4. - For every /3 E A~ we define a functional f (,~, ~ ) E
C2(H, R) by setting

The expression ~ u) stands for u) and it is understood that

f(a,u) will be denoted simply by f(u).
PROPOSITION 2.5. - For 03B2 E Aa, let _ {u E 0, ~f(03B2, u) = 0}

be the set of nonzero critical points of ). Then we have:

Annales de l’Institut Henri Poincaré - Analyse non linéaire



793HOMOCLINIC SOLUTIONS

Proof. - Let 6 > 0 be such that 1 - a6 > 0 and let a > 0 be so
small that ~~~  a implies ~~G(~)~ G (this is possible by (G2)).
Now let u E H verify  a. Since we have that

~~G(u(t)) ~ u(t)~  6~u(t)~Z for all t. Now for any ,~ E Aa there results

This shows that if ] ]u] ] is small, then u cannot be a critical point of any
f(fl> °).
To prove (it), just note that if u is critical for some f(fl, .), then

so that invoking (i) the proof is complete..
We now begin the study of the Palais-Smale sequences for the functionals

of the form .). To this aim we will first prove some technical lemmas
which show that the behavior of these functionals with respect to some
limit operations is somewhat uniform on Aa. The type of uniformity is the
same as that of the previous proposition.

LEMMA 2.6. - Let uo E H and let (vn)n C H be a sequence such that
0 weakly in H. Then

Proof. - Fix c > 0 and let R > 0 be free for the moment. Split the
integral in (i) as + note that for any fixed R the first integral
tends to zero as n ~ oo, because of the strong L~ convergence of vn to
zero. Therefore it is enough to show that, given E > 0, we can find R == Re
such that the second integral is, say, less than c for all n.

Vol. 13, n° 6-1996.
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By the Mean Value Theorem we have, for some convenient numbers
~ 6]0,1[,

for all /~ E A~ .
Now, by (G2), for all M > 0, there exists Ksi > 0 depending

only on M, such that Ixl  M implies both  and

 Choose M so large that (by boundedness)  M
and + ]  M for all t E 1~ and all n. Then

This shows that given c > 0 we only have to take R = R~ so large
that the last quantity is less than c, which is possible since the function

|u0|2dt tends to zero as +00; part (i) is proved.
The proof of part (ii) is analogous: after splitting the corresponding

integral as above, and keeping in mind that 0 in Lc’ the only
relevant part is to show that for every E > 0, there exists R~ such that

for all ] = 1 and all ,~ E Aa . But this is readily accomplished, using
as above the fact that ]  ] and, this time, also the fact that
VG is lipschitz continuous (with lipschitz constant LM) on the compact

 M}. Then plainly, by Holder inequality,

and the conclusion follows as above..
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Lemma 2.6 will be immediately used to prove the following basic result.

PROPOSITION 2.7. - Let (Vn)n C H be a sequence such that vn ~ vo
weakly in H. Then

Proof - Let us begin by (i). We have, as n - oo,

Setting vn - vo = zn, we see that 0 weakly in H and therefore

and this quantity tends to zero as ?~ 2014~ oo, by Lemma 2.6, part (i).
We now verify that (ii) holds. To this aim, note that for every cp E H,

If, as above, we set vn - vo = zn, we see that

which tends to zero by Lemma 2.6, part (ii)..
We are now almost ready to describe the Palais-Smale sequences of

the functional f. The next result is the first step towards a complete
characterization. Analogous results in this direction can be found in almost
every paper on homoclinic solutions, see e.g. [5]-[8], etc.

Vol. 13, nO 6-1996.
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PROPOSITION 2.8. - Let C H be a Palais-Smale sequence for f at
level c E R, that is,

Then there exist a subsequence (still denoted un) and uo E H such that

Proof - The proof is a standard technique in the variational approach to
homoclinic solutions. Being very short, we report it for completeness.

Since

we see that un is bounded in H. Then there exist a subsequence, still

denoted u~, such that uo weakly in H (and therefore strongly in
L~ ), for some uo E H.
Now since un - uo weakly in 0 in H, by

Proposition 2.2, for all cp E H,

which proves (i). To prove (ii) it is enough to invoke Proposition 2.7,
with f3 = a:

Finally, = 0(1) in = 0, we have

by Proposition 2.7. The proof is complete..
Remark 2.9. - The full generality of Proposition 2.7 (uniformity over

Aa) has not yet been taken into account, but it soon will.

Remark 2.10. - The way Proposition 2.8 will be used in the sequel is
the following. The functional f satisfies the geometric assumptions of the
Mountain Pass Lemma (Proposition 2.3); by Theorem 1.2 one can find
a Palais-Smale (actually PS) sequence un for f at some level c > 0.
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By Proposition 2.8 there is a subsequence un converging weakly to some
uo E H, which is a critical point for f. If u0 ~ 0, then we have found a
solution to our problem, and there is nothing left to say. Therefore in what
follows we shall always assume, without loss of generality, that if un is a
PS sequence at some level c > 0, then 0 weakly in H.
We now turn to a nonvanishing property of PS sequences.

PROPOSITION 2.11. - Let un be a PS sequence for f at some level c > 0.
Then there exists a > 0 such that lim > a.

Proof. - Assume for contradiction that 0. Then for

some subsequence Unk we have = o. Choose a number

é > 0 such that 1 - a~ > 0, and note that by (G2), there exists a > 0
such that  a Now for k large enough we

a, so that

But then unk 2014~ 0 strongly in H, and therefore c = f ( unk) = 0,
which is false..

The previous result will be used through the following proposition.

COROLLARY 2.12. - Let un (un - 0) be a PS sequence for f at some
level c > 0. Then there exists a sequence (Tn ) n C R such that:

(i) no subsequence of un ( ~ + Tn) tends to zero weakly in H;
(ii) no subsequence of Tn is bounded, that is, |n| ~ +oo.

Proof. - For each n let Tn be a point such that ] and
set Vn ( t) = un (t + Tn). Then we must show that no subsequence of vn
tends to zero weakly in H. Indeed if some vn~ -, 0 in H, then vnk -~ 0 in
L~loc, so that in particular vnk (0) ~ 0. But then ~unk~~ unk = |vnk (0) ] ~ 0,
against Proposition 2.11.

Next, to prove that |n| ~ +00, recall first that we are dealing with the
case 0 weakly in H, as it is pointed out in Remark 2.10. Then assume
for contradiction that there is some subsequence Tn~ which is bounded. In
this case, by uniform convergenc.e of unk to zero on compact sets we have

] -~ 0, which again is false..
The next result is fundamental for the study of the Palais-Smale sequences

for functionals of the form f (/3, .). It shows that functionals f (,~, ~ ) with
different /3’s are uniformly close in a C 1 sense whenever the functions /3’s
are close in L°° .
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LEMMA 2.13. - Let E L°° ( R; R) and let B be a bounded subset
of H. Then there exists a constant S, depending only on B, such that for
all u E B,

Proof - Let us start with (i):

Now since B is bounded there exists a constant K = K(B) such that
for all u E B, C ] C K. By the assumption on G there exists
M = M(K) such that implies ~G(x)~  Mlxl2. Therefore

KM; setting S = KM we
obtain

For the second part, with a similar calculation we have

and the conclusion follows as above, by the assumption on G..

Remark 2.14. - The situation that we will soon meet is the following.
Suppose we have a bounded sequence (Un)n c H and a sequence

C L°° such that j3 in L°° . Then Lemma 2.13 allows us
to say that as ?~ 2014~ oo,

Before we proceed any further we need to introduce some notation.
For every T E R we define an isometry Tr : L°° -~ L°° (and also
Tr : H -~ H) by setting
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With some trivial changes of variable, it is immediate to see that

so that in particular Tru) = u), and that

which also T03C6 = ~f(03B2, u) . 03C6. In the sequel, with
abuse of notation, we will denote by V u) o Tr the unique element in
H such that V u) o Tr . p = ~ u) . Trp, for all ~p E H.
The next lemma is the final step towards the description of the Palais-

Smale sequences of f. We recall that we have proved so far that if un is a
PS sequence for f at a level c > 0, then we can assume that un - 0 weakly
in H, and that there exists a sequence (Tn)n C R with the properties that
|n | ~ oo and that no subsequence of TTn un tends to zero weakly in H.

LEMMA 2.15. - Let un (un ~ 0) be a PS sequence for f at a level
c > 0. Then there exist a function 03B21 E A03B1, a function vl E H, v1 ~ 0,
a sequence Tn of real numbers such that for a subsequence of TTn un, still
denoted TTn un, the following properties are satisfied:

Proof. - Let (Tn)n C R be a sequence given by Corollary 2.12. Then
(iii) is trivially satisfied and we must show that the remaining properties
also hold true.

The sequence is bounded in H, and therefore it contains some

subsequence, still denoted such that vi weakly, for some
vi E H; note that by Corollary 2.12, v1 ~ 0. Therefore (i) is satisfied.
Consider the (sub) sequence TTn a: by Bochner’s criterion, there exist still
another subsequence, again denoted Tn 03B1 and a function /31 E Aa such that

Summing up, we see that by passing to convenient subsequences, we can
make sure that we have both

Tn un  vx weakly in Hand TTn 03B1 ~ 03B21 uniformly in R.
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Setting TTn un = vn we have that vi in H; let us prove that (ii)
and (iv) hold.

For all ~p E H, by Proposition 2.2 we can compute

because the first term vanishes by Lemma 2.13, while the second is zero
because

since un is a PS sequence for f and Tn 03C6 is bounded. (ii) is proved.
Let us turn to (iv): we have

as one immediately sees by using Proposition 2.7 and Lemma 2.13. This
shows that f( Un - tends to c - vl ) .

Finally, note that

by Proposition 2.7. The proof is complete..
We can now prove the main result of this section. This is the result that

appears in almost every paper on homoclinic solutions, see e.g. [8]. In our
case, though, it takes a slightly different form.

PROPOSITION 2.16 (Representation lemma). - Let un (un - 0) be a PS
sequence for f at a level c > 0. Then there exist a number q E N, depending
only on c, q functions 03B2i E Aa, q functions vi E H, vi ~ 0, a subsequence
still denoted un and q sequences 8n of real numbers such that
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Proof. - Applying Lemma 2.15 we find a subsequence of un, a function
03B21 G Aa, a function vi E H, v1 ~ 0, a sequence Tn such that (setting
9n = -Tn ~, we have

Therefore un - T03B81n v1 is a PS sequence for f at level c - vl ); this
implies that  c. Two cases may present.
Case I: = c. But then f (un - -~ 0, which implies that

T03B81n v1~ ~ 0, so that the proposition is proved with q = 1.

. 

Case II: = ci  c. In this case the sequence un := un - vi
is a PS sequence for f at level c - ci > 0. Applying Lemma 2.16 we find
a subsequence of u~, a function /32 E a function v2 E H, 0, a
sequence Tn such that (setting 0fl = -T~ ), we have

Proceeding as above, if v2) = c - cl, then the proposition is proved
with q = 2.

Otherwise we iterate the application of Lemma 2.15, starting with the
PS sequence un := To prove that this procedure ends, it is
enough to show that for some q E N, vq) = c - cl - ... - cq_1. But
this follows plainly from Proposition 2.5: for all i = 1,2,... we have

so that after at most q : := b ~ steps we obtain = 0.

Finally, to see that for all j ~ k we have ( 8n - Bn | ~ oo, we can work
exactly as in [8], and therefore we omit the details..
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3. THE KEY ARGUMENT

We now come to description of the fundamental argument which will
allow us to find a solution to problem (P). As in the previous section we
will proceed by a series of simple steps.
We begin by fixing some notation.

DEFINITION 3.1. - Recalling that A~ _ E C(R, R) / a   ~,
dt E R~, we define

and

11111 l.tr

A few comments are in order. The representation lemma says that the
Palais-Smale sequences of f are sums of solutions to = 0

(where j3 is a uniform limit of translates of a), up to negligible quantities
in H. These clearly belong to Aa. Actually the set Aa is larger than
the set of uniform limits of translates of a, but this fact will not bother
the rest of the argument.

Also note that the functions in are not elements of H, but are sums
of squares of elements of H. Since is a Banach algebra, Qoo
is contained in H~ (R; R). The set is also larger than necessary, but
its use simplifies some proofs.

Finally we alert the reader that in the sequel we will denote 
both the norm in H and the norm in HI(R; R). The context will rule out
any possible ambiguity.
The first result concerns a qualitative property of elements of 

PROPOSITION 3.2. - There exists 8 > 0 such that for all ~p E 

In particular, we see that below a uniform quantity, no function in Q~
can have a local maximum.

Proof. - First note that since the elements of are built using solutions
of equations of the v) = 0, they are C2 functions, so that their
second derivative is well defined. An easy computation shows that if
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then

vi) = 0, ~i = 1,... p, for some 03B2i E Aa, we have (replacing
Vi in the last expression)

Now let e > 0 be so small that 1 - o;e > 0 and take 6 > 0 such that

~x~ I  implies ]  this is possible by (G2).
Let t E R be a point where 0  p(t)  26; then we also have, for each

i = 1,... ,p, that ]  2s. But then _ ,

so that

and the proof is complete..
Remark 3.3. - Note that in Proposition 3.2 we actually proved that there

exists 8 > 0 such that for all ~p E 

This slightly stronger statement will be used below.
The next proposition shows that if un is a Palais-Smale sequence for f,

then not only its subsequences are close (in H) to sums of solutions to
problems of the = 0, but also that their squares are close
to always in a jH~ sense.

PROPOSITION 3.4. - Let un be a sequence as in the representation lemma,
that is, assume

for some vi E Aa and 8~,, E R. Then

Proof. - The proof is divided in a series of steps.
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Step 1. Let u, v E H and let 8n , Bn be sequences of real numbers such
that 9n - [ -~ oo as n - oo . Then

Indeed, let e > 0 be fixed; then, setting On = 8n - we have

since -~ 0 in Lc’ This shows that 0 in L2 (R, R).
Next, with the same change of variable, we have 

~t

Taking e > 0, we just have to choose a compact KE such that
 e to see that

_ - 

,-- ,

For the second integral in (3.0) the estimate is the same, and this concludes
the proof of Step 1.

Step 2. Let un , vn be bounded sequences in H, and assume that

vn~ ~ 0 as n ~ ~. Then

Since un and vn are bounded in H, and therefore in L°°, we have

which shows the first part.
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To see that the same holds for the derivatives it suffices to compute

Step 3. Conclusion. Adding and subtracting the same quantity we have

Now the first term in the right-hand-side tends to zero as 7~ 2014~ oo, by step 2.
For the second term note that squaring gives

by step 1 (recall that 8n ( 2014~ oo as n - oo). )!

The next definition introduces the fundamental tool for the conclusion
of the proof.

DEFINITION 3.5. - For all 03C6 E Q~ we define a set of real numbers
by letting

where 8 is the number introduced in Proposition 3.2. Note that since 8 can
be taken as small as we please, by Proposition 2.5, we can assume without
loss of generality that Z ( cp ) ~ for all p E 
Next we define a function T : R by

Remark that T is well defined, since for all (/? E Z ( cp) is compact
and nonempty.
We now study some properties of Z ( cp ) and T.
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PROPOSITION 3.6. - For all cp E the set discrete.

Proof. - Let t* E Z ( ~p ) , and let ~ * be a neighborhood of t * such that
dt e Ut*, cp(t)  2~. This neighborhood exists by continuity of By
Proposition 3.2 in Ut* we have cp" > 0, so that is strictly increasing.
If t* is not isolated, then there exists a monotone (increasing for example)
sequence tn -~ t*, with tn E Z ( ~p ) . But then, for all n there exists
rJn such that = 0. Thus cannot be strictly increasing,
as it should..
The preceding proposition allows us to define a function Tl : 

by setting it equal to the predecessor of T ( cp) in Z ( cp), namely,
}.

PROPOSITION 3.7. - For all 03C6 E Qoo, there exists ç T(p) such
that > 28.

Proof. - Let $ be a point such that = cp(t). Clearly,
ç > ~l (p), since otherwise would be a point of local maximum, and
we know that there are no such points where p  2 b . Therefore > 2 b,
and since by definition of T, cp ( t )  b for all t > T ( cp ) , it must be

ç 

PROPOSITION 3 . 8. - Let B be a bounded (in R) ) subset Then

Proof. - By Proposition 3.7 we can find, for each cp, a point
ç where 03C6(03BE) ~ 203B4. But then

Therefore,

because B is bounded..

Remark 3.9. - The argument used in the last proposition can be applied,
without any changes to prove the following stronger statement. Let B be
a bounded subset of then

This result will be referred to in the next propositions.
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We wish to prove that the function T enjoys some continuity properties.
The main estimate need is given by the following result.

PROPOSITION 3.10. - Let B be a bounded subset of Then there exist

p > 0 and q > 0 such that

Proof. - We know that by Remark 3.3 there exists a constant

b :== 2(1 - > 0 such that

Let r~ = = max {t E R / cp(t) = 2b~. This number is well defined,
as it was the case for (by compactness).
We claim that for all t > r~ we have  0. Indeed, suppose for

contradiction that there exists ti > r~ where cp’ (tl ) > 0; in this case it is

plainly seen that there also exists t* > r~ where ~p’ (t* ) = 0 (it can’t be
p’(t) > 0 > r~ because cp tends to zero at infinity). By definition of r~, we
see that 0  cp ( t*)  2$, so that t* is a strict local minimum for p. Therefore
in the interval ~t* , there must be at least one local maximum. Since p
at local maxima must be larger than 2b there is also a point t2 E ~t* , +oo[ [
where = 28, and this contradicts the definition of r~.

This and Remark 3.9 allow us to say that there exists v > 0 such that

Consider now the function ~T(~p) - v, R given by

differentiating we see that E~(t) = bcp(t))  0 for all t e
Therefore E;~ is decreasing, and since Ecp( t)  0,

we see that it must be Ecp(t)  0 for all t e [T(~) - ~ +oo[.
Now let p > 0 be so small that

Such p exists by virtue of the same argument of Remark 3.9. In particular,
in ~T (cp) - p, 2~(cp) + p~ we have Etp(t) > 0, for all ~p E B. Thus in this
interval we have
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and since cp’  0 we obtain that =: -~, for all
t E ~T ( cp ) - p, T(p) + p] and all p E B..

We can now show that the function T enjoys some continuity property
which we will use in the last step.

PROPOSITION 3.11. - The function T : R is locally Lipschitz
continuous on bounded subsets of 

Proof - Precisely we shall show that given a bounded subset B of Qoo
there exists a constant a > 0 such that

where 1 = is the constant provided by Proposition 3.10.
Let v > 0 be the number defined in Remark 3.9 and let p be given as in

Proposition 3.10. Note that we can assume without loss of generality that
p  v : the inequality (3.1) holds with the same ~y.

Let cp E B; first of all we see that by Proposition 3.10,

This and a similar computation show that

Let cr  min(03B303C1, b), and let 03C8 E B verify 03C8~  Q_ Then

and similarly, + p)  8. Therefore there exists t* 

T( cp) + p[ such that y>(t*) = 8.
We claim that t* = T(y). Indeed if t* ~ T(y), then it must be

t*  Tl (~). Now by Proposition 3.7 there is a point ~ (’~l~), where
= 26. But p = 

The function cp is decreasing for t > T(cp)-p, so that cp(~)  = 6.

Therefore

which is a contradiction. This means that it must be t* > Tl (~), and so,
necessarily, t* = TT(~); the claim is proved.
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Finally, if > T(p), we find

and likewise, if T( ’lj;)  T(p), then 0  ~~cp - ~~~ - T(~)).
These two inequalities show that

and the proof is complete..
The following two propositions contain the last properties we need.

PROPOSITION 3.12. - Let un be a Palais-Smale sequence for f at some
level c > 0. Then

where dist is the R) distance.

Proof. - If (3.2) is false then for some subsequence, still denoted un,
we have

Passing (if necessary) to another subsequence, by the representation
lemma we know that

for some suitable q, vi, 9n. By Proposition 3.4 we have

and this shows that dist (~2Gn~2, Q~) -~ 0, contradicting (3.3)..
PROPOSITION 3.13. - Let un be a Palais-Smale sequence for f at some

level c > 0. Assume moreover that

Vol. 13, n° 6-1996.



810 E. SERRA, M. TARALLO AND S. TERRACINI

Then there exists a sequence (Tn ) n C R such that

Proof - Since 0, there exists 03C6n e Q~ such that
] -~ 0. Let Tn = To begin with, we have

by the hypothesis and Step 2 of Proposition 3.4. Now by uniform continuity
of T on bounded sets we obtain

To complete the proof we just have to note that since ~ |un 2 - cpn ~~ ~ 0,
then

as n - oo, which proves (i)..
With the last proposition we are in a position to conclude the proof of

Theorem 0.1.

End of the proof of Theorem. 0.1. - Since the functional f satisfies the
geometric assumptions of the Mountain Pass lemma (Proposition 2.3), the
application of Theorem 1.2 yields a PS sequence, namely a sequence

0 such that

By Proposition 3.13 we know that there exists a sequence Tn (it can be
assumed without loss of generality that ~ oo) such that -~ 0

and TTn un (0) has no subsequences converging to zero. Set vn = Tn un .
The almost periodicity of the function a implies that there exists a

sequence (ak)k C R such that -~ oo and + ak) - -~ 0.

Since -~ 0 as 7z ~ oo, we can extract from Tn a subsequence
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Tn~ such that Tnk ~ 0 as k - oo. Moreover, since vnk is bounded,
it contains some subsequence vn~ such that

We claim that v is the desired solution to problem (P) Indeed note that

because the first term tends to zero by uniform continuity of a, and the
second by definition of Then for all p e H we have, by Remark 2.14
and weak continuity of the gradient,

so that with the familiar changes of variable we obtain from (3.4)

because unk is a Palais-Smale sequence for f = f(a, .). The fact that v
does not vanish identically concludes the proof..
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