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ABSTRACT. — In this paper we prove the existence of at least one
homoclinic solution for a second order Lagrangian system, where the
potential is an almost periodic function of time. This result generalizes
existence theorems known to hold when the dependence on time of the
potential is periodic. The method is of a variational nature, solutions being
found as critical points of a suitable functional. The absence of a group of
symmetries for which the functional is invariant (as in the case of periodic
potentials) is replaced by the study of problems “at infinity” and a suitable
use of a property introduced by E. Séré.

RESUME. — Dans cet article on démontre I’existence d’une solution
homocline pour un systéme Lagrangien du deuxiéme ordre ol le potentiel
dépend du temps d’une fagon quasi périodique. Ce résultat généralise
le cas ou le potentiel est une fonction périodique du temps. La méthode
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784 E. SERRA, M. TARALLO AND S. TERRACINI

utilisée est variationnelle, les solutions étant trouvées comme points critiques
d’une fonctionnelle. L’absence d’un groupe de symétries pour lequel la
fonctionnelle est invariante (comme dans le cas des potentiels périodiques)
est remplacée par I'étude des points critiques « a I'infini » et par une
propriété introduite par E. Séré.

0. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

In this paper we prove the existence of at least one homoclinic solution
for a class of second order Lagrangian systems. In particular, we study
the problem

—i(t) + u(t) = a(t)VG(u(t))
(P)
limy 400 u(t) = limy 400 4(t) = 0

where « is a continuous positive almost periodic function (see Definition 0.3
below) and G € C*(R™;R), N > 1, satisfies suitable superquadraticity
assumptions.

The main reason of interest for this kind of problem is to try to extend
some results obtained in the study of homoclinic orbits, a subject which
has received much attention in the last few years, especially when the
potential is a periodic function of time. Indeed, starting from [7], [8] and
[14] the problem of homoclinic and heteroclinic solutions has been widely
investigated by people working with variational methods. Existence and
powerful multiplicity results were given in [1], [2], [5], [8], [12], [13]
for second order systems and in [7], [14]-[16] for the case of first order
Hamiltonian systems. See also [6] for the asymptotically periodic case.

A second feature of interest is that this problem may serve as a model in
the study of the existence of orbits of a conservative system, homoclinic to
a given almost periodic solution. In this context see also the papers [3]-[4],
[10],[11} (where the problem of homoclinics is seen from a different point
of view) and the references therein.

We will prove the following result.

THEOREM 0.1. — Assume that
(Gl) G € C*(RM;R) and a € C(R;R)
(G2) There exists § > 2 such that for all x € RN \ {0},

0< 0G(z) < VG(2) -z
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HOMOCLINIC SOLUTIONS 785
(G3) « is almost periodic, in the sense of Definition 0.3, and

a = inf a(t) > 0.
teR

Then Problem (P) admits at least one nonzero solution.

Remark 0.2. — We point out that the same result holds for systems of
the form

when A(t) is a symmetric positive definite almost periodic matrix and
G(t,x) is almost periodic in ¢ uniformly in z and satisfies (G2) uniformly
in ¢. We shall work with the simpler problem (P) in order to avoid heavy
technicalities.

Also note that superquadraticity of G (assumption (G2)) is standard
when one deals with second order systems, as well as positivity of .
In particular therefore, Theorem 0.1 generalizes existence (though not
multiplicity) results established in the periodic case.

We will study the existence of solutions to Problem (P) by means of
a minimax procedure. Indeed let H = H*(R;R™) and let f : H - R
be the functional defined by

) = 5 [ D0F + 1)~ [ a(oGate)

= 31l = [ a6

It is readily seen, following for example [8] that if (G1)-(G3) hold
(actually much less is enough) then f € C?*(H;R) and

Vf(ﬂ)~<p=/

[@-@+u-pldt — / aVG(u) - pdt,
R

R
so that critical points of f are weak (and, by regularity, strong) solutions
to problem (P).

In the search for critical points of a functional like f one generally
needs two different arguments. First, a change in the topology of some
of the sublevel sets of f; secondly, some compactness property such as
the Palais-Smale condition. In this context, it is easy to see that under
assumption (G2) (and independently of any other assumption on «, as long
as o # 0 is nonnegative) the function z(¢) = 0 is a strict local minimum for
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786 E. SERRA, M. TARALLO AND S. TERRACINI

[, and f is not bounded from below. This amounts to say that f satisfies
the geometrical assumptions of the Mountain Pass Lemma.

In contrast, f does not satisfy in general the Palais-Smale condition,
owing to the fact that the embedding of H into L*(R;R") is not
compact. However, if « is positive and bounded, it can be proved that
for every Palais-Smale sequence u,, at a level ¢ # 0 there exists a sequence
(tn)n C R such that the sequence u,(- + t,) converges weakly to some
limit uy Z 0.

These are the general features appearing in every problem concerning
homoclinic solutions. Now, in order to highlight the difficulties that one has
to face in the case when « is not a periodic function we first describe the
easier problem with « periodic and then we examine the main differences
between the two cases, from the point of view of existence results.

When « is periodic one can assume without loss of generality that the
sequence t,, introduced above is made up of multiples of a period of a.
Therefore, by the invariance of f, the sequence u, (- + ¢, ) is still a Palais-
Smale sequence for f and, as noted above, it contains some subsequence
converging weakly to some o #Z 0. To conclude the proof it is enough to
note that Vf : H — H is continuous for the weak topology: this shows
that V f(up) = 0.

If o is almost periodic but not periodic f is no longer invariant for the
action of a group of translations. In particular this means that the sequence
un(- +t,) is not a Palais-Smale sequence for f, unless ¢, is a sequence
of e,-periods of «, with £,, — 0. To overcome this difficulty we will show
that for those Palais-Smale sequences which satisfy the additional property
Hun — un—1|| — 0, there exists a sequence t,, of &,-periods of « such that
(a subsequence of) u, (- +t,) converges weakly to some ug Z 0. The weak
continuity of V f then shows that u, is a critical point for f.

The accomplishment of this program involves a careful analysis of some
qualitative properties of the solutions to the problems “at infinity”. As an
example, in the simplest case where «a(t) = a;(t) + as(t), with @1 and ay
periodic functions of periods 77 and 75 respectively (% ¢ Q), the family
of the problems at infinity is given by the equations

(Pop)  —u(t) +ult) =[oa(t+0) + a2t + 9)]VG(ult)), 0,0 €R.

We note that unless 6 = ¢ this problem is not equivalent to (P).

Finally, we point out that the existence of Palais-Smale sequences with
the further property ||u, — un—1|| — 0 is due to E. Séré (see [14], [7])
where it has been used to find multiple homoclinic solutions in the periodic
coefficient case. It seems to us that the full force of this property is well
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HOMOCLINIC SOLUTIONS 787

demonstrated in the study of problem (P), where it plays a central role;
the fact that it is used here in a different way provides a new application
of this general principle.

The proof of Theorem 0.1 is divided in a series of steps. In Section 1
we prove the existence of a Palais-Smale sequence wu,, satisfying Séré’s
property ||un, — un—1|| — 0. Section 2 is devoted to the study of the
functional f and of its Palais-Smale sequences. Lastly, in Section 3 we
examine some qualitative properties of the problems at infinity which will
allow us to conclude the proof.

Before entering the proof of Theorem 0.1 we recall for the sake of
completeness some definitions and properties concerning almost periodic
functions. These are taken from [9], to where we refer the reader for further
details and proofs.

DermNiTION 0.3, — (i) A set P C R is called relatively dense in R if there
exists a number A > 0 such that every interval of length X contains at least
one element of P. (ii) Let @ : R — R be a continuous function. Given
€ > 0, a number 7 € R is called an e-period of « if

sup |a(t + 7) — a(t)] < e.
teR

(iii) A continuous function & : R — R is called almost periodic if for
every € > 0, there exists a relatively dense set P. C R of e-periods of «.

The next is a classical result on almost periodic functions and will be
used at the core of our argument.

THeOREM 0.4. (Bochner’s criterion). — Ler C(R;R) be the space of
continuous, bounded functions on the real line, endowed with the sup norm.
A function a € C(R;R) is almost periodic if and only if the set of its
translates {a(-+7) / 7 € R} is precompact in C(R;R).

Notations. — H := H'(R;RY) denotes the Sobolev space of L?
vector-valued functions whose distributional derivative is (represented
by) an L? function. This is a Hilbert space endowed with the norm
[ul]* = fglul>dt + [q [u>dt. We recall that H is continuously (though not
compactly) embedded into C°(R; R”) and L?(R; R"), forall p € [2 +00],
and that in particular ||ul|. < ||u||, for all w € H.

By u - v we will denote both the scalar product in RY and in H The
context will always rule out possible ambiguities.

Likewise, we use V to denote both the gradient of an R¥ -valued function
and the gradient of a functional defined over H, that is the unique element
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788 E. SERRA, M. TARALLO AND S. TERRACINI

of H which represents the differential of the functional via the Riesz
isomorphism.

1. AN ABSTRACT RESULT

The aim of this section is to restate a celebrated result due to E. Séré
(see [14], [7]) in a form which will turn out to be useful for our purposes.
Although we will give a proof of Theorem 1.2 below, we wish to make
clear that we do it only for the convenience of the reader; nearly all the
arguments used can be traced in the works [7], [14].

We start by recalling some definitions.

DerNTiON 1.1, — Let (H, || - ||) be a Hilbert space. With the term
deformation of H we mean a continuous map 7 : H x [0,1] — H such
that ’I](,O) = Idgy.

Given a functional f : H — R and numbers a,b € R we denote
fo={ueH/ f(u) <a} fo={ueH/ f(u) > b}, and fi = * N fi.

By minimax class for f at level ¢ € R we mean a class I' of subsets
of H such that

= inf .
o= sl
We say that a minimax class I is invariant for a deformation 7 if A € I’
implies n(A,t) € T, for all ¢ € [0,1].
The following is the main result of this section.

TueoreM 1.2. — Let f € C?(H;R) and let I" be a minimax class for f
at level ¢ € R. Assume that there exists €g > 0 with the property that I'

is invariant for all deformations n such that n(-,t) is the identity outside
fc+2€0

c—2eg*

Then for all € €)0, o], there exists a sequence (), C H such that

(1) lim f(un) € [C —&c+ E]v
(ii) lim Vf(u,) =0,
(1ii) im Hu, — un—1]] = 0.
Proof. — The proof is a slight variant of well-known deformation

techniques, so that we will be rather sketchy at some points.
Let x : R — [0,1] be a C? cut-off function such that

(s) = 1 if s € [c — €0, + €0]
XU =N 0 if s ¢)c — 2e0, ¢+ 2e0]
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HOMOCLINIC SOLUTIONS 789

and consider the Cauchy problem

v u,
{ (. t) = ~x(F(n(u, 1) TRy
n(u,0) = u.

Notice that since the right-hand-side of the above differential equation
is locally Lipschitz continuous and is uniformly bounded in norm by
1, the flow 71 is uniquely defined for all v € H and all £ > 0, and
of course is a continuous function. Moreover, since x(f(u)) = 0 if
f(u) ¢le — 2e9, ¢ + 2e¢[, we see that (-, t) is the identity outside f_+22§§
so that by assumption the class I' is invariant for 7.

Now let € €]0,&0[ and define a function 7 : H — R by setting

T(u) = min{t > 0/ f(n(u,t)) = c—¢e} if this set is not empty
| +oo otherwise.

It is not difficult to show that the function T is continuous at all points u
where T'(u) is finite; we leave the details to the reader.

Let Q. = {u € f°t° / T(u) < +oo}, that is, the set of points in the
sublevel f°*< which are pushed by the flow 7 below the level ¢ — ¢ in a
finite time. Note that T is continuous in €),.

We claim that §, # fete.

Indeed if this is not the case, namely if T is finite at all points of ¢, then
consider the map 7 : f°* x [0,1] — H defined by 9(u,t) = n(u, T(u)t).
Plainly, by Dugundji’s theorem this map can be extended to another
continuous map, still denoted by 7, such that #(u,t) = u for all ¢ > 0 and
all w ¢ fe+t2?<o_ This and the fact that T(u) = 0 if u € f¢=2% show that
the class I' is invariant for the deformation 7). Let A € T be a set such that
sup, f < ¢+ ¢; in particular, therefore, A C Q.. Then by construction we
have 7(A,1) C ¢, and this contradicts the fact that /(4,1) € T.

This argument shows that there must be at least one point 4 € f¢*¢ such
that T'(u) = 400, or, in other words, f(n(u,t)) > ¢ — ¢ for all ¢ > 0. We
now use this fact to conclude the proof. Let g : [0, +co[— R be the function

IV f (nu, )]
L+ [V (n(u, )]

Note that g is C' and that f(n(u,t)) — f(u) = g(t), as one immediately
sees from the definition of 7. Moreover g is nonincreasing and is bounded
from below, since

dt.

o(t) = - / x(F(n(u, £)))

infg(t) = lim g(t) = lim f(n(u,t))— f(u) > ~2e.

t>0 t—
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790 E. SERRA, M. TARALLO AND S. TERRACINI

Let (s,)n, C R be a minimizing sequence for g such that s,, — +o0o and
|sn — sn—1| — 0. Applying Ekeland’s variational principle to g yields a
sequence t,, such that

1.1 ty — sn| — 0, t, inf g, ()] = 0.
(1.1) | | — g( )H[O}Ew[g lg'(tn)] —

Set u, = n(u,t,). Then (1.1) says (also using the fact that n(u,-) is
1-Lipschitz continuous),

un = wnall = 0w, tn) = 0w, ta)ll < ltn = taa] = 0,
which proves (iii). Next, since f(n(u,t)) € [c—¢,c+ €] for all ¢, it is clear

that also (i) holds. Finally because of (i) we see that x(f(n(u,t))) = 1
for all ¢, so that by (1.1),

_ V(w1
L+ [V (n(u, e )]

that is, ||V f(u,)|| — 0, and the proof is complete. M

o(1) = g'(tn) =

Remark 1.3. — With the terminology of [7] we can say that under the
assumptions of Theorem 1.2, there exists a PS sequence for f at some
level between c— € and ¢+ ¢. Actually, with some slight changes one could
obtain a better estimate on the level, namely lim f(u,) € [¢,c + €]. Since
we do not need this, we give no details. However it is also quickly seen
that in general the estimate from above can be no better than this. Indeed if
one takes f(z) = cosz + cosmz, and for I the class of one-point sets, one
sees that inf{,ycr sup,e(,y f(z) = infr f = —2 but this value is never
attained. One therefore sees that for each € > 0 the flow lines converge to
one of the local minima of f at some level strictly between —2 and —2+¢.

Theorem 1.2 above will be used only at the end of the proof. From
now on we just keep in mind that whenever we speak of a Palais-Smale
sequence u,, it can be assumed without loss of generality that wu,, is in
reality a PS sequence, that is, it satisfies |[u, — u,_1]] — 0 as n — oo.
We wish to point out that this property is not inherited by subsequences.
A considerable amount of work in this paper is devoted to establish results
which hold for an entire PS sequence, so that one can make use of the
full force of the property ||lu, — un_1]| — 0.

Remark 1.4. — We wish to make clear the difference with Z-invariant
functionals, such as those associated to the periodic in time potentials.
Indeed we cannot say that the P.S condition is satisfied, and therefore we
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cannot prove a real deformation Lemma as in the papers [8], [14]. We
only prove that the existence of a PS sequence implies the existence of a
solution to our problem. The underlying reason is that when the potential is
periodic in time one uses assumptions like finiteness or discreteness (modulo
translations) of solutions to problems at infinity to prove the deformation
Lemma. In that case the problems at infinity coincide with the original
problem and these assumptions are reasonable. In our case, on the contrary,
the structure of critical points at infinity is much more complicated, and
this type of assumptions would not only be an arbitrary imposition, but
they could even be not satisfied a priori in some situations.

2. SOME BASIC PROPERTIES

In this section we will state some of the properties that we will use in
proving the main result. From now on, in the statement of propositions,
we tacitly assume that (G1)-(G3) hold. It is clear that many results hold
without the totality of these assumptions, but it seems to us that there is no
need to specify each time the minimal conditions that could be used.

For future reference note that (G2) implies that G(z) = o(]z|?) and
VG(z) = o(|z]) as z — 0; these facts will be used repeatedly.

DeriNTION 2.1, — If o satisfies (G3), then it is bounded above by some
constant @, see [9]. In the sequel we will denote by A, the set

A, ={B€CR,R)/a<fB(t) <a, vteR).

Let f : H — R be the functional defined in the introduction. As a first
result concerning f we have

PRrOPOSITION 2.2. — V f is weakly continuous, in the sense that
of un — v weakly in H then V f(u,)— Vf(u) weakly in H.

Proof. — Let J(u) = [pa(t ))dt. Since f(u) = 3|u||*— J(u), and
the quadratic part has the des1red property, we only have to check that the
same holds for J. To this aim, pick ¢ € H, fix ¢ > 0 and let R, > 0 be
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so large that fltl >r, lpl*dt < €% Then we have

(VT () ~ VI(w)) - ] = ] [ al¥6tu) - w6t wdti

R,
<a / VG (un) — VG () [l

R
+ sautl . IVG(un) — VG(u)let)%

Now the first integral tends to zero as n — +oo because u,, — u strongly
in Lj;; the second integral is bounded independently of n (since w, is
bounded in H). The fact that ¢ is arbitrary concludes the proof. Wl

We now list some of the geometric features of the functional f.

ProPOSITION 2.3. — (i) uw = 0 is a strict local minimum for f; (ii) there
exist p > 0 and 0 > 0 such that ||u| = p implies f(u) > o; there exists
v € H such that f(v) < 0.

The proof is straightforward and we omit it. We note that Proposi-
tion 2.3 states that the functional f verifies the geometric assumptions of
the Mountain Pass Lemma.

The next property shows that some estimates hold uniformly in A,. In
order to make this point clear, and also because we will soon need it, we
introduce some notation.

DerINITION 2.4. — For every 8 € A, we define a functional f(3,-) €
C?*(H,R) by setting

$8) = 5 [ 1) + uoPlat - [ )Gu(o)ar
= gllf = [ oGt

The expression V f(8,u) stands for V, f(3,u) and it is understood that
f(o,u) will be denoted simply by f(u).

PrOPOSITION 2.5. — For 3 € A,, let Kg = {u€e H/u £ 0, Vf(8,u) = 0}
be the set of nonzero critical points of f(83,-). Then we have:

@ Jnf inf ]| > 0
(ii) ot inf f(8,u) > 0
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Proof. — Let 6 > 0 be such that 1 — @6 > 0 and let o > 0 be so
small that |z| < o implies [VG(z)| < é|z| (this is possible by (G2)).
Now let u € H verify ||u]| < o. Since ||ullo < , we have that
IVG(u(t)) - u(t)] < 6|u(t)|? for all t. Now for any 3 € A, there results

VF(Buw) u= |l / BYG(u) - udt > [Jull® - § / Bluf2dt

> [lul[? — @8] ulf} > (1 - @8)l[ull” > o.

This shows that if ||u|| is small, then u cannot be a critical point of any

To prove (ii), just note that if v is critical for some f(3,-), then

1

8,0 = 168, = 5VS 8.0 u > (5 - 5 )l

so that invoking (i) the proof is complete. M

We now begin the study of the Palais-Smale sequences for the functionals
of the form f(/,-). To this aim we will first prove some technical lemmas
which show that the behavior of these functionals with respect to some
limit operations is somewhat uniform on A,. The type of uniformity is the
same as that of the previous proposition.

LemMa 2.6. — Let ug € H and let (v,), C H be a sequence such that
vp, — 0 weakly in H. Then

(i) sup
BEAL

/Rﬁ[G(vn +ug) — G(vn) — G(uo)]dt’ —0 as n — oo;

(ii) sup sup
BeAa |loll=1

/Rﬁ[VG(vn + ug) — VG(v,.) — VG (up)] - npdt' —0

as n — oc;

Proof. — Fix ¢ > 0 and let R > 0 be free for the moment. Split the
integral in (i) as f -+ f!tl> g note that for any fixed R the first integral
tends to zero as n — oo, because of the strong L2, convergence of v, to
zero. Therefore it is enough to show that, given € > 0, we can find R = R,
such that the second integral is, say, less than ¢ for all n.
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By the Mean Value Theorem we have, for some convenient numbers
&, €10,1],

BIG(vn + o) — G(v,,) ~ G(uo)]dt’

iti>R

< a/ VG (v, + & ug) - uoldt + 6/ |G(ug)|dt
[ti>R

[t|I>R
for all 8 € A,.

Now, by (G2), for all M > 0, there exists Kj; > 0 depending
only on M, such that [z| < M implies both |G(z)| < Kp|z|* and
|VG(z)| < Karlx|. Choose M so large that (by boundedness) |uo(t)| < M
and |v,(t) + Luo(t)] < M for all t € R and all n. Then

a/ltleVG(vn + & ug) 'uoldt—}—a/ |G(ug)|dt

it|I>R

gaKM/lt|>R Ivn(t)+§ftu0(t)|]u0|dt+aKM/ luo|*dt

[t|I>R

< @Ky (sgp Ivnll2 (/|t|>R 1“012‘”)% - /,t,>R [uOlzdt>

This shows that given ¢ > 0 we only have to take R = R, so large
that the last quantity is less than e, which is possible since the function
R fltl>R luo|?dt tends to zero as R — +oo0; part (i) is proved.

The proof of part (ii) is analogous: after splitting the corresponding
integral as above, and keeping in mind that v,, — 0 in L$, the only

loc?

relevant part is to show that for every ¢ > 0, there exists R. such that
/ 1B(VG(vn + ug) — VG(v,) = VG(up)) - p|dt < e
[tI>R.

for all {[p|| = 1 and all 8 € A,. But this is readily accomplished, using
as above the fact that |[VG(z)| < Kj|z| and, this time, also the fact that
VG is lipschitz continuous (with lipschitz constant L,;) on the compact
set {|z| < M}. Then plainly, by Holder inequality,

/FﬁlMVG@n+wﬂ—VGWJ—Vwa%Mﬁ_

SaléRWGWAWM—V@meﬁ+/

iti>
<a(Lpy + Kur) (/H . |u0|2dt)

and the conclusion follows as above. B

VG (uo)||pldt
R

(ST
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Lemma 2.6 will be immediately used to prove the following basic result.

PrOPOSITION 2.7. — Let (vn)n C H be a sequence such that v, — v
weakly in H. Then

(1) sup lf(ﬂ?vn_ )_f(ﬂ)vn)_}'f(ﬂv’UO)[_’O as n — 005

BEAa

(ii) Sup IV £(B,vn —vo) = Vf(Bva) + VF(B,v0)|la — 0
: as n — 00;

Proof. — Let us begin by (i). We have, as n — oo,

f(ﬂ?vn ﬂvvn)_}'f(ﬂaUO)
/,6 (v, — Vo) — G(vn) + G(vo)]dt.

Setting v,, — vo = 2z, We see that z, — 0 weakly in H and therefore

sup |f(B,vn = vo) = f(B,vn) + £(B,v0)] < o(1)

BEAa

+ sup /R]ﬂ[G(zn + ) — G(zn) — G(w)]|dt,

BEAL

and this quantity tends to zero as n — oo, by Lemma 2.6, part (i).
We now verify that (ii) holds. To this aim, note that for every ¢ € H,

IVF(B,vn = v0) -0 = Vf(B,v0n) - 0+ VF(B,v0) - ¢l

_ /R BVG(vn — v0) = VG(vn) + VC(vo)] - wit

If, as above, we set v,, — vg = z,, we see that

ﬁseuf{) ”Vf(ﬂvvn - UO) - Vf(ﬂv Un) + Vf(,B,Uo)”H

< sup sup
BEAq llpll=1

/ BIVG(zn + vo) — VG(2,) — VG(vp)] - @dt|,

which tends to zero by Lemma 2.6, part (ii). MW

We are now almost ready to describe the Palais-Smale sequences of
the functional f. The next result is the first step towards a complete
characterization. Analogous results in this direction can be found in almost
every paper on homoclinic solutions, see e.g. [5]-[8], etc.

Vol. 13, n°® 6-1996.



796 E. SERRA, M. TARALLO AND S. TERRACINI

ProposiTioN 2.8. — Let (uy, ), C H be a Palais-Smale sequence for f at
level ¢ € R, that is,

flup) — ¢ and Vf(u,)—0 in H, as n— oo.
Then there exist a subsequence (still denoted u,,) and ug € H such that

i) wu, —up weaklyin H,;
(i) Vf(uo) = 0;

(ili) wun — ug 15 a Palais — Smale sequence for f at level ¢ — f(uyp).

Proof. — The proof is a standard technique in the variational approach to
homoclinic solutions. Being very short, we report it for completeness.
Since

1 2
- )l

we see that u, is bounded in H. Then there exist a subsequence, still
denoted u,,, such that u,, — wug weakly in H (and therefore strongly in
L), for some ug € H.

Now since u, — wuo weakly in H and Vf(u,) — 0 in H, by
Proposition 2.2, for all ¢ € H,

¢+ o(1) + [lunllo(1) = f(un) — %Vf(un) Ftn 2

[

0= Jergon(un) - = Vf(u) -,
which proves (i). To prove (ii) it is enough to invoke Proposition 2.7,
with § = «:
f(un = uo) = f(un) — f(uo) + 0(1) = ¢ = f(uo) + o(1).
Finally, since V f(u,) = o(1) in H and V f(ug) = 0, we have
V f(tn ~ o) = V f(un — o) = Vf(un) + Vf(uo) + o(1) = o(1)
by Proposition 2.7. The proof is complete. W

Remark 2.9. — The full generality of Proposition 2.7 (uniformity over
A,) has not yet been taken into account, but it soon will.

Remark 2.10. — The way Proposition 2.8 will be used in the sequel is
the following. The functional f satisfies the geometric assumptions of the
Mountain Pass Lemma (Proposition 2.3); by Theorem 1.2 one can find
a Palais-Smale (actually PS) sequence wu, for f at some level ¢ > 0.
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By Proposition 2.8 there is a subsequence u, converging weakly to some
ug € H, which is a critical point for f. If uy # 0, then we have found a
solution to our problem, and there is nothing left to say. Therefore in what
follows we shall always assume, without loss of generality, that if w,, is a
PS sequence at some level ¢ > 0, then u,, — 0 weakly in H.

We now turn to a nonvanishing property of PS sequences.

PrOPOSITION 2.11. — Let w,, be a PS sequence for f at some level ¢ > 0.
Then there exists a > 0 such that liminf, o ||un||ec > a.

Proof. — Assume for contradiction that liminf,,_, ||tn||eo = 0. Then for
some subsequence u,, we have limg_,oo ||Un, |lcc = 0. Choose a number
¢ > 0 such that 1 — @e > 0, and note that by (G2), there exists ¢ > 0
such that |z| < o implies [VG(z)| < €|z]. Now for k large enough we
have |[[un,|leo < o, so that

0(1) = Vf(unk)’unk 2 /R'[]/il’nk|2+Iu"kl2_aslu"k|2]dt > (1‘55)”“’%“2'

But then u,, — O strongly in H, and therefore ¢ = limg_,00 f(tn,) = 0,
which is false. W
The previous result will be used through the following proposition.

COROLLARY 2.12. — Let u,, (u, — 0) be a PS sequence for f at some
level ¢ > 0. Then there exists a sequence (T,)n C R such that:

(1)  no subsequence of un(- +1,) tends to zero weakly in H;

(i) no subsequence of T, is bounded, that is, |1,| — +oo.

Proof. — For each n let 7, be a point such that |u,(7,)| = ||tn]|e and
set v,(t) = un(t + 7). Then we must show that no subsequence of v,
tends to zero weakly in H. Indeed if some v,,, — 0in H, then v,, — 0 in
L3, so that in particular vy, (0) — 0. But then ||[un,||oo = [vn, (0)] — 0,
against Proposition 2.11.

Next, to prove that |7,,| — +oo0, recall first that we are dealing with the
case u, — 0 weakly in H, as it is pointed out in Remark 2.10. Then assume
for contradiction that there is some subsequence 7,,, which is bounded. In
this case, by uniform convergence of u,, to zero on compact sets we have
[[teni lloo = |tny (Tn, )| — O, which again is false. W

The next result is fundamental for the study of the Palais-Smale sequences
for functionals of the form f((3,-). It shows that functionals f(3,-) with
different 3’s are uniformly close in a C! sense whenever the functions /’s
are close in L.
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LemMA 2.13. — Let 1,3, € L=(R;R) and let B be a bounded subset

of H. Then there exists a constant S, depending only on B, such that for
all v € B,

0y |f(Br,u) — f(B2,u)] < SIIB1 — Balloos
(i1) IV f(Bryu) = VI(Bau)llg < S1B1 — Belloo-

Proof. — Let us start with (i):

|f(Br,u) = f(Ba2,u)] = /R(ﬂz*ﬂl)G(u)dt

<181 = B2lloo sup/ G(u)dt.
wEB JR

Now since B is bounded there exists a constant K = K(B) such that
for all u € B, ||u|l < ||ul|] < K. By the assumption on G there exists
M = M(K) such that |z| < K implies |G(z)] < M|z|?. Therefore
Supyep JpG(u)dt < sup,cp M [p|ul?dt < KM; setting § = KM we
obtain

VUGB, lf(ﬂl’u)_f(ﬂ%u)l Ssllﬂl_ﬂ2”oo
For the second part, with a similar calculation we have

1

2

IVF(Br,u) = VEBe, e < B = Bollo sup (/RIVG(U)th) ;

and the conclusion follows as above, by the assumption on G. W

Remark 2.14. — The situation that we will soon meet is the following.
Suppose we have a bounded sequence (u,), C H and a sequence

(Bn)n € L% such that 8, — B in L*®. Then Lemma 2.13 allows us
to say that as n — oo,

|f(ﬂnaun) - f(ﬂ?un)i - 07 and va(ﬂn’un) - Vf(lgvun)HH — 0.
Before we proceed any further we need to introduce some notation.
For every 7 € R we define an isometry T, : L — L* (and also

T. : H — H) by setting

(Tru)(t) = u(t + 7).
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With some trivial changes of variable, it is immediate to see that
(B, Tru) = f(T-+B,u),
so that in particular f(T.8,T,u) = f{(/3,u), and that
VB, Tru) - = VI B,u) - T_rp,

which also yields Vf(T,3,T:u) - T-¢o = Vf(3,u) - ¢. In the sequel, with
abuse of notation, we will denote by V f(/3,u) o T the unique element in
H such that Vf(B,u)o T, - ¢ = Vf(B,u) - Tre, for all ¢ € H.

The next lemma is the final step towards the description of the Palais-
Smale sequences of f. We recall that we have proved so far that if u,, is a
P S sequence for f at alevel ¢ > 0, then we can assume that u,, — 0 weakly
in H, and that there exists a sequence {7,,), C R with the properties that
|7n| — oo and that no subsequence of T, u,, tends to zero weakly in H.

Lemma 2.15. — Let u,, (u, — 0) be a PS sequence for [ at a level
¢ > 0. Then there exist a function 3, € A,, a function vi € H, v; Z 0,
a sequence T, of real numbers such that for a subsequence of Ty u,, still
denoted T’ u,, the following properties are satisfied:

1) Tr un — vy

(i) Vf(Br,v1) = 0;

(i) |7a] — oo;

(iv) (un —T_r,v1)n is a PS sequence for f at level c — f(B1,v1).

Proof. — Let (1,), C R be a sequence given by Corollary 2.12. Then
(iii) is trivially satisfied and we must show that the remaining properties
also hold true.

The sequence T’ u, is bounded in H, and therefore it contains some
subsequence, still denoted T, u, such that T, wu, — v; weakly, for some
v1 € H; note that by Corollary 2.12, v; # 0. Therefore (i) is satisfied.
Consider the (sub) sequence T, «: by Bochner’s criterion, there exist still
another subsequence, again denoted 7', « and a function 8, € A, such that

T., o — 31 uniformly in R.

Summing up, we see that by passing to convenient subsequences, we can
make sure that we have both

T;,un—v: weaklyin H and 7T, o — f; uniformlyin R.

Vol. 13, n® 6-1996.



800 E. SERRA, M. TARALLO AND S. TERRACINI

Setting 7T, u, = v, we have that v, — v; in H: let us prove that (ii)
and (iv) hold.

For all ¢ € H, by Proposition 2.2 we can compute

Vf(ﬂhvl) P = hrrlnvf(ﬂlvvn) =
hTILn[Vf(ﬂl,’Un) i Vf(TTnIBI’;UTL) : 50] + hTILIl Vf(TTnﬂlvvn) = 0’

because the first term vanishes by Lemma 2.13, while the second is zero
because

Vf(Trn/Bh'Un) P = Vf(un) . TrnSD = 0(1)a

since u, is a PS sequence for f and T, ¢ is bounded. (ii) is proved.
Let us turn to (iv): we have

fun = T_r 01) = flun) + f(Br,v1)
= [f(Tr.a,vn —v1) ~ f(Tr,,v0) + f(Tr, a,v1)]
— [f(Tr, 0, 01) = f(Br,v1)] = o(1)
as one immediately sees by using Proposition 2.7 and Lemma 2.13. This

shows that f(u, —T_. v1) tends to ¢ — f(B;,v1).
Finally, note that

Vf(un = T_r,v1) + o(1)
=Vflupn—T_ 7 v1) = Vf(un) + V(T a,v1)0 T},
=V, a,v, —vi)oT, —Vf(T, a,v,)o0T,
+ VT, a,v)o T, =o0(l)

by Proposition 2.7. The proof is complete. M

We can now prove the main result of this section. This is the result that
appears in almost every paper on homoclinic solutions, see e.g. [8]. In our
case, though, it takes a slightly different form.

ProposiTION 2.16 (Representation lemma). — Let u, (u, — 0) be a PS
sequence for f at a level ¢ > 0. Then there exist a number q € N, depending
only on ¢, q functions 3; € A, q functions v; € H, v; # 0, a subsequence
still denoted u,, and q sequences 8", of real numbers such that

q
)] Hun_ZTO:'LUiH -0 as n — 00;
i=1
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q
(iii) c=Y f(Biv);
=1
@iv) |67 — 6% = oo, Vi £k, as n — 00.

Proof. — Applying Lemma 2.15 we find a subsequence of u,,, a function
p1 € A,, a function v; € H, v; Z 0, a sequence 7, such that (setting
6! = —71,), we have

Vf(Bi,v1) =0

|62] = 00 as n — oo,

f(un = Tyrv1) — ¢~ f(Br,v1)
Vf(un—Tpv;) >0 in H.

Therefore u, — Tpiv; is a PSS sequence for f at level ¢ — f(3;,v1); this
implies that f(31,v1) < ¢. Two cases may present.

Case I: f(f1,v1) = c. But then f(u, — Tp1v1) — 0, which implies that
lfun — To1v1]| — 0, so that the proposition is proved with ¢ = 1.

Case II: f(f1,v1) = ¢; < c. In this case the sequence u) := u,, — To1 vy
is a PS sequence for f at level ¢ — ¢; > 0. Applying Lemma 2.16 we find
a subsequence of ui, a function B, € A,, a function v, € H, vy 20, a
sequence 72 such that (setting #2 = —72), we have

Vf(B2,v2) =0

62| = 00 as 7 — oo,

f(ui - T93U2) —Cc—C — f(ﬂz,vz)

Vf(ui - Tg%’l)g) —0 in H.
Proceeding as above, if f(f82,v2) = ¢ — c1, then the proposition is proved
with ¢ = 2.

Otherwise we iterate the application of Lemma 2.15, starting with the
PS sequence u2 := u} — Thzvo. To prove that this procedure ends, it is
enough to show that for some ¢ € N, f(f3,,v,) =c~c¢; —... — cq—1- But
this follows plainly from Proposition 2.5: for all : = 1,2,... we have

B NS g _.
¢ = f(Bi,vi) > ﬁlenf{, ulenchﬁ f(B,u)=:b>0

c

so that after at most ¢ := [3] steps we obtain f(f8,,v,) = 0.
Finally, to see that for all j # k we have |8 — 8%| — oo, we can work
exactly as in [8], and therefore we omit the details. W
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3. THE KEY ARGUMENT

We now come to description of the fundamental argument which will
allow us to find a solution to problem (P). As in the previous section we
will proceed by a series of simple steps.

We begin by fixing some notation.

DEFINITION 3.1. ~ Recalling that A, = {# €e C(R,R) / a < B(t) < &
vVt € R}, we define

Ko ={veH/v#0, 30 € A, Vf(B,v) =0},

and

= {p € H'(R,R) / o(t) me )?, vi € Koo, 6; € R, Vi}
finite

A few comments are in order. The representation lemma says that the
Palais-Smale sequences of f are sums of solutions to problems Vf(3,-) = 0
(where £ is a uniform limit of translates of «), up to negligible quantities
in H. These ’s clearly belong to A,. Actually the set A, is larger than
the set of uniform limits of translates of «, but this fact will not bother
the rest of the argument.

Also note that the functions in (J, are not elements of H, but are sums
of squares of elements of H. Since H'(R;R) is a Banach algebra, Qo
is contained in H*(R;R). The set Q. is also larger than necessary, but
its use simplifies some proofs.

Finally we alert the reader that in the sequel we will denote by || - ||
both the norm in H and the norm in H!(R;R). The context will rule out
any possible ambiguity.

The first result concerns a qualitative property of elements of Q.

ProposITION 3.2. — There exists § > 0 such that for all ¢ € Q,
0< @(t) <25  implies ©"(t) > 0.

In particular, we see that below a uniform quantity, no function in Q)
can have a local maximum.

Proof. — First note that since the elements of (). are built using solutions
of equations of the form V f(8,v) = 0, they are C? functions, so that their
second derivative is well defined. An easy computation shows that if

P

o(t) =Y |Touit)’,

i=1
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then
p
7 t):2Z‘T911)’L +2ZT9 ’Ul Tg ’Ul >22Tg ’Uz Tg ’Ul )

Since Vf(8;,v;) =0, Yi =1,...,p, for some §; € A,, we have (replacing
9; in the last expression)

P P
©"(t) =2 [Toui(t)]* — 28 Y VG(Ty,vi(t)) - To,vilt).
=1 =1
Now let € > 0 be so small that 1 — @e > 0 and take § > 0 such that
|z| < V26 implies [VG(z)| <
Let t € R be a point where 0 < ¢(t) < 24; then we also have, for each
i=1,...,p, that |Tp v;(t)] < V26. But then [VG(Ty,v;(t))| < e|Tp,vi(t)],
so that

o) > 2(1 —ew) ) |To,uilt)]* >0,

=1
and the proof is complete. W

Remark 3.3. — Note that in Proposition 3.2 we actually proved that there
exists § > 0 such that for all ¢ € Qu,

0<(t)<26  implies  ¢"(t) > 2(1 —e@)p(t).

This slightly stronger statement will be used below.

The next proposition shows that if u,, is a Palais-Smale sequence for f,
then not only its subsequences are close (in H) to sums of solutions to
problems of the type Vf(5,-) = 0, but also that their squares are close
to Quo, always in a H! sense.

PROPOSITION 3.4. — Let u,, be a sequence as in the representation lemma,
that is, assume

q
- Z Tpi v; — 0 strongly in H,
i=1
for some v; € A, and 0} € R. Then

q
Jun|® — Z ITe;Ui|2 — 0 strongly in H'(R,R).

=1
Proof. — The proof is divided in a series of steps.
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Step 1. Let u,v € H and let 61,62 be sequences of real numbers such

n*’n

that |0} — 62| — oo as n — oo. Then
Toru-Tyzv — 0 strongly in H'(R;R).

Indeed, let € > 0 be fixed; then, setting A,, = 62 — 61, we have

/ |To1 - Toev|?dt = / lu- Ta,v*dt
R lu(t)|<e
+/ lu-Ta, v’dt < €2||U||L2(R,R) + o(1),
Ju(t)[>e

since v(-+A,) — 0in LS. This shows that Tp: u-Tpz v — 0 in L2(R, R).
Next, with the same change of variable, we have

(3.0) /R d

E(Tg}‘u . Tg%’l])

2
it <2 / fio- Ta vfdt +2 / T o2t
R R

Taking ¢ > 0, we just have to choose a compact K. such that
Jrix, [4l*dt < € to see that

/]ﬂ-TAnUIZdtS/ IﬂIQITAnv|2dt+/ 2| T, of2dt < o(1)+]|v]o.
R K. R\K.

For the second integral in (3.0) the estimate is the same, and this concludes
the proof of Step 1.

Step 2. Let u,,v, be bounded sequences in H, and assume that
[|n — vn|| = 0 as n — oo. Then

|unl® = Jva|> = 0 strongly in H'(R,R).

Since u,, and v,, are bounded in H, and therefore in L°°, we have

[tin|* = Ja]

L2(R,R)

- 2
< sup(||unle + anlloo)/ | un] = Jon] ["dt < Cllun — vall,
n R

which shows the first part.
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To see that the same holds for the derivatives it suffices to compute

d
—(Jun|? = [va?)
Hdt L*(R,R)
S 2||un . (un - bn)”L?(R,R) + 2HUTL ’ (Un - ,Un)”LQ(RaR)

< 2S:pHuan°/Rmn — B, |2 dt + 2|[un — vnllwAlbnl2dt — 0.

Step 3. Conclusion. Adding and subtracting the same quantity we have

p
E Tg;‘b V;
i=1

P 2

Junl® = | Tos vi]?
i=1
p 2 p
St - 3t
=1 =1

Now the first term in the right-hand-side tends to zero as n — oo, by step 2.
For the second term note that squaring gives

p 2 P
|15 7] - S
=1 i=1

by step 1 (recall that |6} — 62| — oo as n — oc0). M

lunl® -

S ’

i

— 0

E Tgiui . ng;Uj
i#j

The next definition introduces the fundamental tool for the conclusion
of the proof.

DeriNiTION 3.5. — For all ¢ € (), we define a set of real numbers
Z(p) by letting
Z(p) = {t e R [ p(t) = 6},

where § is the number introduced in Proposition 3.2. Note that since § can
be taken as small as we please, by Proposition 2.5, we can assume without
loss of generality that Z(y) # @, for all ¢ € Q.

Next we define a function 7 : Q. — R by

T (p) = max Z(¢p).

Remark that 7 is well defined, since for all ¢ € Q., Z() is compact
and nonempty.
We now study some properties of Z () and 7.
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PROPOSITION 3.6. — For all ¢ € Q, the set Z(yp) is discrete.

Proof. — Let t* € Z(yp), and let Uy~ be a neighborhood of ¢* such that
Vit € Up, p(t) < 26. This neighborhood exists by continuity of . By
Proposition 3.2 in U, we have ¢” > 0, so that ¢’ is strictly increasing.
If t* is not isolated, then there exists a monotone (increasing for example)
sequence t, — t*, with ¢, € Z(y). But then, for all n there exists
Nn €]tn, tns1] such that ¢'(n,) = 0. Thus ¢’ cannot be strictly increasing,
as it should. H

The preceding proposition allows us to define a function 77 : Qo — R
by setting it equal to the predecessor of 7 (yp) in Z(yp), namely,
Ti(p) = max{Z(p) \ {T(¥)} }.

PROPOSITION 3.7. — For all ¢ € Q, there exists £ €|T1(p), T ()] such
that p(§) > 26.

Proof. — Let £ be a point such that ¢(¢) = max,>7,(,) ¢(t). Clearly,
& > T;(yp), since otherwise T (¢) would be a point of local maximum, and
we know that there are no such points where ¢ < 26. Therefore p(£) > 26,
and since by definition of 7, ¢(t) < é for all ¢ > T (yp), it must be
£ ETi(p),T(p) ™

PROPOSITION 3.8. — Let B be a bounded (in H' (R; R)) subset of Q. Then

inf (T(p) - Talg)) = > 0.

Proof. — By Proposition 3.7 we can find, for each ¢, a point
€ €]T1(¢), T (p)[ where (&) > 26. But then

13
5 < lol€) — o(Ti ()] < / 1Pl < VEST el

Ti(p
Therefore,
)

T() = Ti(p) 2 &= Ti(p) > supp 1o =

>0,

because B is bounded. W

Remark 3.9. — The argument used in the last proposition can be applied,
without any changes to prove the following stronger statement. Let B be
a bounded subset of Q..; then

inf inf{|t —s| / @(t) =6, p(s) =26 } =:v > 0.
pEB

This result will be referred to in the next propositions.
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We wish to prove that the function 7 enjoys some continuity properties.
The main estimate we need is given by the following result.

ProposiTION 3.10. — Let B be a bounded subset of (). Then there exist
p > 0and v > 0 such that

(3.1) O'(t)<—y, Vte[T(p)-p,T(p)+p], YpeB.

Proof. — We know that by Remark 3.3 there exists a constant
b := 2(1 — @) > 0 such that

0< p(t) <26 implies " () > by(t), Yo € Q-

Let n = n(p) = max{t € R / (t) = 26}. This number is well defined,
as it was the case for 7(¢) (by compactness).

We claim that for all ¢ > n we have ¢'(¢) < 0. Indeed, suppose for
contradiction that there exists ¢; > 7 where ¢’(¢;) > 0; in this case it is
plainly seen that there also exists t* > 7 where ¢/(¢*) = 0 (it can’t be
¢'(t) > 0Vt > 7 because ¢ tends to zero at infinity). By definition of 7, we
see that 0 < ¢(t*) < 26, so that ¢* is a strict local minimum for . Therefore
in the interval [t*, 400 there must be at least one local maximum. Since ¢
at local maxima must be larger than 26 there is also a point ¢5 € [t*, +o0[
where ¢(t3) = 26, and this contradicts the definition of 7.

This and Remark 3.9 allow us to say that there exists v > 0 such that

¢'(t) <0  Vte[T(p)—v,+oo, Vo€ B.

Consider now the function E, : [T (¢) — v, +00[— R given by

E,(1) = 210 ~ 2le0f
differentiating we see that E] () = ¢'(t)("(t) — bp(t)) < 0 for all ¢ €
[7 () ~v, +-00[. Therefore E,, is decreasing, and since lim,_, , o, E,(t) > 0,
we see that it must be E,(t) > 0 for all t € [T (¢) - v, +o0].

Now let p > 0 be so small that

6 36

hdt t =
2<90()< 5

Such p exists by virtue of the same argument of Remark 3.9. In particular,
in [T(¢) — p,T(p) + p] we have E_(t) > 0, for all ¢ € B. Thus in this
interval we have

vte[T(p)—p,T(p)+pl, VeeB.

PO > b = b
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and since ¢’ < 0 we obtain that ¢'(t) < —\/5% =: —=, for all
te[T(p)—p,T(p)+plandall p € B. M

We can now show that the function 7 enjoys some continuity property
which we will use in the last step.

ProposiTION 3.11. — The function T : Qo — R is locally Lipschitz
continuous on bounded subsets of Q.

Proof. - Precisely we shall show that given a bounded subset B of Qo
there exists a constant o > 0 such that

|T<@>—T<w>|s§||so—wn, Vo,w € B, llp-vl <o,

where v = «(B) is the constant provided by Proposition 3.10.

Let v > 0 be the number defined in Remark 3.9 and let p be given as in
Proposition 3.10. Note that we can assume without loss of generality that
p < v: the inequality (3.1) holds with the same ~.

Let ¢ € B; first of all we see that by Proposition 3.10,

T(e)+p
o(T(p) + p) — (T (p)) = /T( | @'dt < —p.

This and a similar computation show that

e(T(p)+p)<b6—vp and (T (p)~p) > 5+p.

Let ¢ < min(vyp,$), and let ¢y € B verify ||¢ — 9|| < 0. Then

YT (0)—p) = YT (0)=p)—0(T(0)=p)+e(T(p)—p) 2 —o+b+7p > §,

and similarly, ¥(7 (¢) + p) < 8. Therefore there exists t*€]7 (¢) — p,
T(p) + p[ such that ¥(t*) = é.

We claim that t* = T (¢). Indeed if t* # 7T(y), then it must be
t* < Ti(). Now by Proposition 3.7 there is a point £ €]71(v), T () where
¥(€) = 26. Butsince £ —t* > v, then { > v+t* > p+T (@) —p = T(p).
The function ¢ is decreasing for ¢ > T (p)—p, so that (£) < (T (p)) = 6.
Therefore

6§ <P(&) — () S lY -l <o <,

which is a contradiction. This means that it must be ¢* > 7;(%), and so,
necessarily, t* = 7 (1); the claim is proved.
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Finally, if 7(¢) > 7T (¢), we find
0=9(T(¥) — e(T(9)) = Y(T ) — (T ¥)) + (T (¥)) — 9(T(9))

T (%)

<llo— il + / it < [lp - $l| — (T (W) - T(v))

T(v)

and likewise, if 7(4) < T(g), then 0 < |l¢ — || — ¥(T(») — T(¥)).
These two inequalities show that

ltf(so)—T(w)ls%uw—wn, Yo, € B, |lo—l <o,

and the proof is complete. W
The following two propositions contain the last properties we need.

PROPOSITION 3.12. — Let u,, be a Palais-Smale sequence for f at some
level ¢ > 0. Then

(3.2) dist (|un|*, Qo) = 0 as n — oo,

where dist is the H*(R, R) distance.

Proof. - If (3.2) is false then for some subsequence, still denoted wu,,,
we have

(3.3) lim dist (|un]?, Qoo) > 0.

Passing (if necessary) to another subsequence, u,, by the representation
lemma we know that

q
Up — E Te;ﬂ/i
i=1

for some suitable g, v;, 6. By Proposition 3.4 we have

— 0 as n — 00,

q
[un]? — Z |Ty: v;]* — 0 strongly in H*(R,R),

i=1
and this shows that dist (Ju,|?, Qw) — 0, contradicting (3.3). W

ProposiTioN 3.13. — Let u,, be a Palais-Smale sequence for f at some
level ¢ > 0. Assume moreover that

|t — Un—1]| = 0 as n — oo.
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Then there exists a sequence (7,,), C R such that

) liminf |7, u,(0)] > 0,
(ii) lim |7, — 71| =0

Proof. — Since dist (|u,|?, Qo) — 0, there exists ¢, € Qo such that
|| {un|* = @nl| — 0. Let 7, = T(g,). To begin with, we have

[lon =@nall < [l@n=fun "1+ 1] Jun|* = Jtn-1 2| +[}0n-1 = [tn-1[*]] = 0,

by the hypothesis and Step 2 of Proposition 3.4. Now by uniform continuity
of 7 on bounded sets we obtain

170 = Tnoa| = [T(pn) = T(¢n-1)| — 0.

To complete the proof we just have to note that since || [un|? — @nlloo — 0,
then

|Tr, tn (O)]* = [ ()2 = @n (7)) + 0 () = 0(1)+0n(T (00)) = 0(1)+6

as n — oo, which proves (i). M

With the last proposition we are in a position to conclude the proof of
Theorem 0.1.

End of the proof of Theorem. 0.1. — Since the functional f satisfies the
geometric assumptions of the Mountain Pass lemma (Proposition 2.3), the
application of Theorem 1.2 yields a S sequence, namely a sequence
u, — 0 such that

6] lim f(un) >0,
(ii) lim V f(u,) =0,
(iii) lim ||juy ~ un_1]] = 0.

By Proposition 3.13 we know that there exists a sequence 7, (it can be
assumed without loss of generality that |7,,| — o0) such that |7, ~7,, 1| — 0
and 7T, u,(0) has no subsequences converging to zero. Set v, = T; uy,.
The almost periodicity of the function « implies that there exists a
sequence (ox)r C R such that o] — oo and {|a(- 4+ 0%) — aflee — 0.
Since |1, — T,—1] — 0 as n — oo, we can extract from 7, a subsequence
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Tn, such that |oy — 7,,,| — 0 as k — oo. Moreover, since v, is bounded,
it contains some subsequence v,, such that

Up, —UVED weakly in  H.
We claim that v is the desired solution to problem (P) Indeed note that
lla(-+7n,) = alloo < [la(-+70,) = a(- 4+ 0k)loo +lla(- + 0k) —allec = 0,

because the first term tends to zero by uniform continuity of «, and the
second by definition of oy. Then for all ¢ € H we have, by Remark 2.14
and weak continuity of the gradient,

(34) Vf(a,v)-¢= liin Vila,vn ) ¢ = liin VAT, a,vm) -,
so that with the familiar changes of variable we obtain from (3.4)

Vi(e,v) ¢ = hin Vi(a,ug,) - T—‘Fnk‘p =0,

because u,, is a Palais-Smale sequence for f = f(«,-). The fact that v
does not vanish identically concludes the proof. M
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