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ABSTRACT. - We study nonlinear oblique boundary value problems for
nonuniformly elliptic Hessian equations in two dimensions. These are

equations whose principal part is given by a suitable symmetric function of
the eigenvalues of the Hessian matrix D2u of the solution u. An interesting
feature of our second derivative estimates is the need for certain strong
structural hypotheses on the boundary condition, which are not needed
in the uniformly elliptic case. Restrictions of this type are natural in our
context; we present examples showing that second derivative bounds may
fail if we do not assume such conditions.

1. INTRODUCTION

In this paper we shall study nonlinear oblique boundary value problems
of the form
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508 J. URBAS

on bounded uniformly convex domains H C 1R2. The function F is of a
special type, as in [2]. It is given by

where denotes the eigenvalues of the Hessian D2u of u and f is a
suitable symmetric function defined on an open, convex, symmetric (under
interchange of Ai and ~2) region E C ~2. ~ is assumed to be closed under
the addition of elements of the positive cone T+ _ {~ E R~ : Ai, A2 > ~~,
i. e., if A E E, A E r+, then A + A E E. Clearly then we are interested in
solutions u E C2(0) of (1.1) such that at each point of 52 À(D2u) belongs
to ~. We shall refer to such u as ~-admissible, or briefly just admissible.
We assume that f E n is a positive function such that

and for any compact set K C ~ there is a positive constant C(K) such that

This follows automatically from (1.4) if f E In addition we assume

and

Since f is generally only Lipschitz continuous, f i exists only almost
everywhere on ~, and (1.4) is to be interpreted in this sense. We adopt
this convention throughout the paper.

Conditions (1.4) and (1.5) imply that (1.1) is elliptic on admissible
solutions, while (1.4) and (1.6) imply that F is a concave function on
M ( ~ ), the set of 2 x 2 real symmetric matrices whose eigenvalues belong
to £ (see [2]). It is easy to verify that Fij = is diagonal if D2u

is diagonal, and that the eigenvalues of [Fij] are f 1 and /2.
We also assume that f satisfies the following structure conditions:

and
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for any ~, > 0 and some positive constant 7o = It follows from

(1.4) and (1.8) that E does not contain the origin and, also using (1.7),
that aE is asymptotic to (a, a) + ar for some number a > 0 and some
open, convex, symmetric cone r with vertex at the origin and containing
r+. We shall assume without loss of generality that a = 0. If of / 0 we
can replace E by E = -(a, a) + E and by f (a) = f ((a, a) + .~).
If f is a E-admissible solution of

then u = u + 2 is clearly a E-admissible solution of (1.1), (1.2). It

will be clear that g, b satisfy similar regularity and structural hypotheses as
g, b, with possibly new, but controlled, structural constants.

Since we are assuming a = 0 and we are in two dimensions, only two

types of E can arise: either

(i) aE is asymptotic to 9F+,
in which case we say E is of type 1, or

(ii) 9E is asymptotic to 8F and T $ F+,
in which case we say E is of type 2. We shall deal almost exclusively
with type 1 regions in this paper, and henceforth we assume E is of

type 1 unless otherwise stated. In case (ii) (1.1) is uniformly elliptic, so
existence results for a large class of oblique boundary conditions follow
from the work of Lieberman and Trudinger [8]. To prove uniform ellipticity
for type 2 regions, let A 6 E be a point at which exists and let

= f(A) + E 03BBi) for any  E R2. Then w > f in E, so
L = f ~, : = 0} lies outside E. Consequently, L can be translated to
give a parallel supporting line L to 9E. Since is normal to L, we
see that the ratio fl(~)/f2(.~) is bounded between two positive constants
in case (ii). Thus (1.1) is uniformly elliptic in this case, and in addition,
also strictly elliptic wherever g(x, u, Du) is bounded, by virtue of (1.9).

In contrast, by similar reasoning we see that for type 1 regions,
(1.1) is necessarily quite strongly nonuniformly elliptic. Consequently, the
arguments used to obtain a priori estimates are somewhat different from
those used in the uniformly elliptic case. Furthermore, the class of allowable
boundary conditions is different in the two cases. For type 1 regions we
shall allow the semilinear Neumann boundary condition

Vol. 12, n° 5-1995.
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for suitable ~, where v denotes the inner unit normal to but not the

more general oblique boundary condition

unless the vector field /3 satisfies a certain structure condition (see (1.19))
which is not required in the uniformly elliptic case. Similarly, one of
the structure conditions (see (1.27)) we shall require for fully nonlinear
boundary conditions excludes the capillarity boundary condition

unless 8 is negative, a condition which is impossible to satisfy in our setting.
The reasons for excluding (1.11) and (1.12) are not merely technical; for
type 1 regions second derivative estimates may fail to hold if we do not
make these strong assumptions on the boundary condition. We shall explain
a little later why these hypotheses are natural for the problems we are
considering.

Let us now proceed to our hypotheses on g and b. We assume that 0
is a C2,1 uniformly convex domain in 1R2 and g E x R x R~) is

a positive function satisfying

We remark here that the positivity of f and g is convenient but inessential;
it would be sufficient to assume

It is convenient to consider the semilinear boundary condition (1.11) and the
fully nonlinear case separately. For (1.11) we assume that § E C1°1(aS2 x R)
satisfies

for some constant N, and
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uniformly for x E aS2. We also assume that /3 E ~2~ unit
vector field on aS2 with

and

for all (x, z ) E 80 x I~, where T is a unit tangent vector to 9f! at x and
8 = ( bl , 82) denotes the tangential gradient operator relative to c~~ given by

Notice that ( 1.19) is automatically satisfied if ~3 - v, or more generally if
~3 is a vector field with constant normal and tangential components; this
follows easily from ( 1.15) and the uniform convexity of S~. 

’

For the case g = g(x, u) we then have the following result.

THEOREM 1.1. - Under the above hypotheses on ~, ,~? ~, and the

boundary value problem

has a unique admissible solution u belonging to for some
a e (0, 1).

If g depends on Du we need to strengthen our hypotheses on f . We
assume either

for any ~c > 0, or in the case that g is convex with respect to Du, the
weaker condition

for any ~c > 0. Here and below T = f l + f 2 . We then have the following
result for the case g = g(x, u, Du).
THEOREM 1.2. - Assume the above hypotheses on ~, f, ~, g, ~ and ~,

including ( 1.21 ) or ( 1.21 )’ in the case that g is convex with respect to D~~
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Assume also that there is an admissible subsolution ~c E n of
(1.1). Then the boundary value problem ( 1.1 ), ( 1.11 ) has a unique admissible
solution u belonging to C2~~(SZ) for some a E (0,1).

Analogues of Theorems 1.1 and 1.2 are valid in the uniformly elliptic
case (ii) without a condition like (1.19) and we do not require S2 to be

convex; however, if g depends on Du we need some restrictions on the
growth of g with respect to Du (see [8]).

In our paper [16] on the oblique boundary condition (1.11) for two

dimensional Monge-Ampere equations we assumed in place of (1.19) the
condition

for all (x, z) E 80 x R, where T is as in (1.19). Unfortunately, the proof
of the second derivative bound given in [16] is not completely correct;
we need (1.19) rather than ( 1.19)’ to obtain the estimate (2.34) in [16].
Alternatively, ( 1.19)’ suffices if we assume in addition that ( ~,~ - 
is sufficiently small.
We now consider fully nonlinear boundary conditions. We assume the

strict obliqueness condition

for all (x, z, p) E 80 x R x R~. It follows then that (1.2) can be written
in the form

We assume furthermore that § E x R x ~Z) satisfies the conditions

for some constant N, and

uniformly for (x, p) lying in any compact subset of ~S2 x R~, where
pT = p - (p . v(x)) v(x). We also assume that § satisfies the concavity
condition

for all (x, z, p) E aSZ x I~ x 1~2 where T is a unit tangent vector to aS2 at x.
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We shall prove the following two results, for the cases g = g(x, u) and
g = g(x, u, Du) respectively.
THEOREM 1.3. - Let 03A3, f, 03A9 and g satisfy the hypotheses of Theorem l.l

and let 03C6 satisfy the hypotheses above. Then the boundary value problem

has a unique admissible solution u belonging to some a E (0,1 ).
THEOREM 1.4. - Let ~, f, SZ and g satisfy the hypotheses of Theorem 1.2,

including either ( 1.21 ), or ( 1.21 )’ in the case that g is convex with respect
to Du, and let 03C6 satisfy the hypotheses of Theorem 1.3. Assume also that
there exists an admissible subsolution u E C2 ( SZ ) n C 1 ( SZ ) of ( 1.1 ). Then
the boundary value problem ( 1.1 ), ( 1.23) has a unique admissible solution
u belonging to C2’a (S~) for some a E (0,1).
Once the basic existence theorems above have been proved, it is

also possible to obtain existence results in cases where the monotonicity
assumptions ( 1.13) and ( 1.15) (respectively ( 1.24)) on g and 03C6 are dropped.
In these situations we do not have uniqueness in general. We now require
the existence of an admissible subsolution u E n of the

boundary value problem in question, not just of’the differential equation as
in Theorems 1.2 and 1.4. With this assumption condition ( 1.17) (respectively
(1.26)) becomes redundant.

THEOREM 1.5. - Suppose in each of Theorems l.l to 1.4 the hypotheses
are modified as above and in addition to assuming (1.21) (respectively
( 1.21 )’) if g depends on Du (respectively if g depends in a convex fashion
on Du), we also assume ( 1.21 )’ if g = g(x, u) and ( 1.13) is not satisfied.
Then each of the boundary value problems considered in Theorems 1.1 to
1.4 has an admissible solution u belonging to C2 ~ ~ (Q) for some a E ( 0,1 )
and satisfying u > u in Q.

In the semilinear case it suffices to assume ~SZ E C2’‘x for some a > 0,
but in the most important case where ,~ - v we automatically have
aSZ E C2~1 since ,~ E ~2). Higher regularity of the solutions
obtained in the above theorems follows from elliptic regularity theory [5],
Theorem 6.30 and Lemma 17.16, in accordance with the regularity of the
data. In particular, if f, g, and ~03A9 are Coo, then the solution u belongs
to C °° ( SZ ) .

Conditions ( 1.19) and ( 1.27) are used in the second derivative estimation
and, despite first appearances, seem to be natural for the problems we are
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considering. To see why, let us consider the semilinear boundary condition
(1.11). As we shall see later, it is relatively simple to estimate Dr(3u and

on where T is a unit tangent vector field on In the uniformly
elliptic case we can then solve (1.1) for Drru to obtain a bound for Drru
on but this is not possible in our situation. We need to use the boundary
condition to estimate Drru. After some computation we find that

where b is a bounded function and a is equal to the left-hand side of
(1.19). If a is positive, which is equivalent to (1.19), an upper bound for

follows at each boundary point where C. This inequality
can in fact be established at a suitable boundary point, leading to a full
second derivative bound.

For the fully nonlinear boundary condition (1.23) we can show that

for a suitable oblique vector field /3, where b is a bounded function and now

If C at some boundary point, we obtain a bound of the form

at that point provided a is positive, which is equivalent to (1.27).
In Section 6 we shall present examples showing that tangential second

derivatives of the solution can become unbounded at points of 8Q where a
goes to zero, both for semilinear and fully nonlinear boundary conditions.
We do not have an example in two dimensions with D2 u unbounded and
a negative everywhere on However, in higher dimensions we have
an example involving a linear oblique boundary condition for which the
quantity corresponding to a is negative. This suggests that a > 0, rather
than a ~ 0, is the correct hypothesis on the boundary condition in the two
dimensional case, at least for a semilinear boundary condition. It seems

likely that this is also true for fully nonlinear boundary conditions of the
form (1.23). It would be interesting to resolve this question in view of the
fact that for the capillarity boundary condition (1.12) (rewritten in the form
~I,~,3)) ~ ~ 0 if 8 is positive, which is a natural assumption in our context.

It will be evident from the proofs that some slightly more general
boundary conditions could be handled by the same arguments. For example,
(1.11) could be replaced by
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for E > 0 sufficiently small, provided § and /3 satisfy the hypotheses of
Theorem 1.1 and 03C8 E C1°1(aSt x R x R2) satisfies

and

for some positive constant C and all (x, z, p) E aSZ x R x 1R2 and ç E R2. We
could also add u, Du) to the boundary condition (1 .23) if 03C8 satisfies
(1.34), (1.35) and (1.36) with C  1. We also note that conditions (1.21),
( 1.21 )’ in Theorems 1.2, 1.4 and 1.5 could be weakened by imposing
appropriate conditions on g instead.

For the special case of the Monge-Ampere equation

for which we take f(A) = (~1~2)1~2, condition (1.21) is not satisfied but
(1.21)’ is. However, the special structure of the determinant function allows
us to prove the analogue of Theorems 1.2 and 1.4 for this case without any
convexity conditions on g. Furthermore, in this case the existence of an
admissible subsolution in Theorems 1.2 and 1.4 can be replaced by suitable
structure conditions on g. This is also true for more general equations. We
shall discuss these points further in Section 5.

In [4] Delanoe studied the boundary value problem

where 0* is a uniformly convex domain in R~ (see also Pogorelov [11] ] for
generalized and locally smooth solutions of this problem). The boundary
condition can be reformulated in a more conventional way as

where h is a uniformly concave defining function for i. e., 0* .-_. ~p ~
R~ : h(p) > 0} and Dh ~ 0 on It is clear that if u is a convex
solution of (1.38), then H = h(Du) is positive in Q and zero on and

it follows that (1.39) is a degenerate oblique boundary condition on convex
solutions. It is not immediately clear, however, that we have an a priori
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strict obliqueness estimate

so this type of boundary condition is not necessarily expressible in a form
suitable for the application of Theorems 1.3 and 1.4. Nevertheless, we are
able to treat this problem for a general class of Hessian equations. Our
hypotheses on f and g are now somewhat different. We assume that f
satisfies the conditions of Theorem 1.1 and in addition

for some real valued, continuous, increasing function G on [0,oo) with
G(0) = 0. It follows that £ = r+ . Further, we assume that h E C2 ~ 1 ( ~ 2 )
is a uniformly concave defining function for some C2 ~ 1 uniformly convex
domain H* c R~. Concerning g we assume that g E x R x R~) is
a positive function satisfying

uniformly for all (x, p) E SZ x SZ* . We then have the following result.

THEOREM 1.6. - Let ~, f, g, h, S2 and SZ* satisfy the above hypotheses and
in addition ( 1.21 ) in the case that g depends on Du (( 1.21 )’ suffices if g is
convex with respect to Du). Then the boundary value problem

has a convex solution u belonging to for some a E (0, 1). If in
addition

the solution is unique.
Our proof of Theorem 1..6 differs from that of Delanoe [4] for the

Monge-Ampere case in that we establish directly the strict obliqueness
estimate (1.40) and thereby reduce the second derivative estimation to the
technique used in Theorems 1.3 and 1.4. Delanoe’ s method exploits the
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special structure of the determinant function, and it does not appear to

extend to more general Hessian equations without making strong structural

hypotheses on f ; essentially one requires conditions of the type satisfied by
the Monge-Ampere equation in two dimensions. As before, no convexity
of g with respect to Du is required for the Monge-Ampere equation, even

though in this case (1.21) is not satisfied. Higher regularity of the solution
u follows as before from elliptic regularity theory if we have more regular
data.

Apart from the papers [4], [ 10], [ 16] which deal exclusively with Monge-
Ampere equations, the only result of which we are aware for oblique
boundary value problems for nonuniformly elliptic Hessian equations is the

paper [13] of Trudinger. The results there are very restrictive in that only
the linear Neumann problem on balls is considered, although this is done
in all dimensions. In future work we hope to extend our results here to
Hessian equations in higher dimensions and to curvature equations. So far
we have only partial results in these directions.
The rest of the paper is set out as follows. In Section 2 we prove some

technical inequalities which we need to prove Theorems 1.1 to 1.6. In

Section 3 we explain how to prove existence for (1.1), (1.2) using the

continuity method, and we prove solution and gradient estimates. We also

give some sufficient conditions for the existence of admissible subsolutions,
as required in Theorems 1.2, 1.4 and 1.5. In Section 4 we prove second

derivative estimates and complete the proofs of Theorems 1.1 to 1.6. This
is the central part of the paper. The main ideas for second derivative bounds
come from our earlier work [16] on Monge-Ampere equations, but even
for this special case the results on fully nonlinear boundary conditions of
the form (1.23) are new. In Section 5 we discuss extensions of our results
to the degenerate situation where conditions (1.4), (1.5) and the positivity
of g are weakened, and also the case that condition (1.8) is dropped and
9E is no longer assumed to be asymptotic to a cone. Finally, in Section
6 we discuss the necessity of conditions such as (1.19) and (1.27), and of
conditions (1.9), (1.21) and ( 1.21 )’ .

2. PRELIMINARY -LEMMAS

In this section we shall prove a number of technical inequalities which
will be used in later sections of the paper. Unless otherwise stated, we
assume f satisfies conditions (1.4) to (1.9) and £ is of type 1, but it will
be clear from the proofs that we do not need (1.4) and (1.5), and we could
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assume instead the weaker condition

In fact, this follows automatically from the concavity and positivity of f ,
and the fact that E is of type 1. We write fj in place of and denote

f ~ + f 2 by T. For convenience we also assume f E C1 ( ~ ) in the following
three lemmas, although this is not really necessary. In any case, for a

number of technical reasons we will need to approximate (1.1), (1.2) by
problems with more regular data than we have assumed in Section 1.

LEMMA 2.1. - The following are true.
(i) S f (~) -f- aT where (a, a) is the point where the line ~1 = ~2

intersects c~~.

(ii) For ar2y tc > 0 and any A E 03A3  = {03BB e E : f(03BB) ~ } with 03BB1 ~ À2
we have fi > 1 0- where 03C30 is the constant from (1 .9).

(iii) lim f (t, t) = oo.
(iv) ~ 0 as 03BB2 - oo, A E 03A3 .
If in addition f satisfies ( 1.21 )’, then
(v) /i ~ ~ as 03BB2 ~ oo, A e and

(vi) lim f(8, t) = oo for any s > 0.
t-o

Froof. -- (i) (1.6) and (1.7) imply

which is (i).
(ii) The concavity and symmetry of f evidently imply f 2 if

À2. (ii) follows from this and (1.9).
(iii) This is an immediate consequence of (1.9) and the symmetry of f.
(iv) First observe that if A E ~,~ with Ai  ~2, then either Ai  a or

so by (iii) there is a number 60 = 60( f, > 0 such that bo. For

each ~ E (0, define

is a convex curve in £ passing between (0, 0) and ( bo , 80) and
asymptotic to a translate of c~~’~. Clearly { f l, ,~~) is normal to .~(~), so

--+ 0 as ~~ -~-~ oe along any ,~(~~, uniformly for all (0, ~c~.
Annales de Henri Analyse non linéaire
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(v) For A with ~ 1  ~2 we have T  2fl, so ( 1. 21 )’ clearly
implies (v).

(vi) Let (w(t), t) E a~, so w (t) -~ 0 as t -~ oo. Then, using (1.6) and
(1.7), we obtain

for all t > s so large that (s, t) ~E ~. (vi) now follows from this and (1.21)’.

LEMMA 2.2. - Assume f satisfies ( 1.21 )’ and in addition there exist positive
constants K, L and positive functions ~2 : ~l , 00) -~ R such that

and

for all t > 1 and all 03BB ~ 03A3 with L. Then for any number
R > 1 there is a number a = a( f, K, L, R) > 0 such that

for all t > L.

Proof. - For any t 2: L and any a > 0 we have

and

so it clearly suffices to prove there exists an a > 0 such that

But this follows immediately from Lemma 2.1 (vi).

Remark. - The technical conditions (2.3) and (2.4) in Lemma 2.2 are

automatically satisfied (with K = L === 1 and (t) -i ~ if f is
homogeneous of degree d E (0,1].
Vol. 12, n° 561995.
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LEMMA 2.3. - For any ~c > 0 and any E > ~ 0 there is a positive constant
C(E), depending only on ~, f, ~ and E, such that

Proof. - Let A E E~ with ~2. From the proof of Lemma 2.1 (iv)
there is a constant 60 > 0 such that ÀI  60. Thus soT, so only
the term needs to be estimated. For ~ E (0, ] define by (2.2).
We consider two cases.

(i) is asymptotic to aT+ for all r~ E This is the simpler
case. Let E > 0. Then, since L(jj) is asymptotic to ar +, there is a number
N = N( f, E) > 0 such that if A E L(~,) with ~Z > N, then Ai  E. But then,
since f is increasing with respect to Ai, for any A E E~ = L( r)
with ~2 > N we have Ai  E. Since the point (E, N) lies inside all the
curves L(r) (i. e., in the convex one of the two regions into which 
divides R~), it follows that for any A E we have

For ~2 > 2N we therefore have

The estimate (2.6) now follows easily after replacing e by E/2.
(ii) Not all E (0, are asymptotic to ~T+. Let E > 0 and

consider any ~ E (0, ] for which is asymptotic to (a, a) + ar+ for
some a E [0, E~. Clearly, if 0  ~’  ~, then L(~’) also has this property,
so we can assume ~7 is the largest number in (0, ~~ with this property. Then
there is a number No = No( f, E) > 0 such that A E and ~2 > No
imply Ai  2E. But then A E L(r~’) and .~2 > No imply ~1  2E for all

~7’ E (0, ~~ By the argument used in case (i) we obtain

for all A E 03A3~ with 03BB2 > 2No. If ~ == jj we are finished; if not, we still
need to consider the cases r~’ E ~r~, 
To do this we first observe that case (ii) occurs only if f is bounded

on the set £ n [0, bo~ x [0, oo). In fact, if case (it) occurs, then is

asymptotic to (a, a) + 9F+ for some a > 0. Since 9E is asymptotic to
9F+, there is a number NI = such that A E 9E and ~2 > ~Vi
imply Ai  a /2. Thus by the concavity of f and the fact that f - 0 on o~~,
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for ~2 > Nl. But then, again using the concavity of f,

for ~2 > Nl. Using (2.1) we conclude that

From this, the concavity of f and the fact that c~~ is asymptotic to 9F+, it
follows that there is a number N2 = N2 (~, E) such that -

where C depends on and 80, but not on E.

Since f is bounded on £ n [0, bo~ x [0, oo) and increasing with respect
to a2, f (al) = t) exists for all ~1 E (0, bo~. Moreover, (2.9)
implies that the convergence to the limit is uniform for all Ai E ~E, 
Thus for any E’ > 0 there is a number to = to (£, f, E, E’) > N2 such that

for all t > to and all Ai E ~E, 60~. Since f is concave,

for all t > to and all Ai E ~E, 60~. Consequently,

for all A 6 E n [e, 60] x [2to, oo). Using (1.9) and (2.10) we then obtain

on ~~ n x Recalling now that is asymptotic to

(E, E) + 9F+, we see, after setting E’ = E, that (2.7) and (2.11) imply

The estimate (2.6) follows from this after replacing E by (4 + 2~01 )-1 E.
Vol. 12, n° 5-1995.
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Kemarks. - (i) Lemma 2.3 is much easier to prove if £ = r+ and f
satisfies (1.21)’. For then, by Lemma 2.1 (i) with a = 0,

and nence, since J1i > U,

It f satisfies ( 1.21 )’, then for any E > 0 there is a number > 0
such that A E ~~ and ( ~ ~ > imply T > Thus (1.9) and
(2.13) imply

(ii) If we also assume the structure condition (appearing in [2]) that
for any compact set K C ~ and any number C > 0 there is a number
R = R(~, f, K, C) > 0 such that

men we ao not need to consider the second case in the proof of Lemma
2.3. It is not difficult to verify that (2.14) is equivalent to ( 1.21 )’.

(iii) The estimate (2.6) cannot be significantly improved without assuming
further conditions on f. Suppose for example that the level line {/ = 1 ~
is given by

Let ~(~) _ Ai - (log ~2)-l. Then along ~~ = 0} we find that

Since 
D03A6 |D03A6| 

= 
1// 

along (lF - 0) we conclude that

o along {/ = 1 ~ .
To conclude this section we make a few remarks about our hypotheses

on £ and f. If £ satisfies either condition (i) or (ii) of Section 1 and f
Annales de l’Institttt Henri Poincaré - Analyse non linéaire
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satisfies (2.1), (1.6) and (1.7), then (1.8) and (1.9) can be derived from
the alternative condition

To see this, first note that (2.15) implies that for any compact set K C ~
and any number C > 0 there is a number R = R(~, f, I~, C) > 1 such that

In particular

This is clear if E satisfies condition (i); if E satisfies condition (ii) it is only
a little more difficult and is left to the reader to verify. To prove (1.8) (which
is trivial for E of type 1) we use the positivity and concavity of f to obtain

for all A 6 E and all t > 1. (1.8) follows from this by dividing by t -1 and
letting t 2014~ o. To prove (1.9) we use the concavity of f and (1.8) to obtain

for any T > 0 such that (T, T ) E ~. (1.9) follows from this and (2.15).
To summarize, in place of (1.8) and (1.9) we could have assumed (2.15),

but then we would have had to impose (i) or (ii) as additional hypotheses
on £ in order to derive (1.8) and (1.9). Some results for the case that
(1.8) is dropped and £ does not satisfy either (i) or (ii) of Section 1 will

be given in Section 5.

3. SOLUTION AND GRADIENT BOUNDS

In this section we use the method of continuity, which is discussed in [5],
Sections 17.2 and 17.9, to reduce the proofs of Theorems 1.1 to 1.4, and
of Theorem 1.6 in the case that (1.45) holds, to the derivation of suitable
a priori estimates. We also prove estimates for u and Du, and give some
simple sufficient conditions for the existence of subsolutions, as required
in Theorems 1.2, 1.4 and 1.5.
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For functional analytic reasons the method of continuity requires more
regular data than we have assumed in Section 1, and it requires the

monotonicity hypotheses (1.13) and (1.15) (respectively (1.24)), or (1.45)
in the case of Theorem 1.6. In addition, the second derivative estimates
of the following section will be proved for solutions u belonging to

C4 ( SZ ) n C3 ( SZ ) (the proof in fact requires only u E n C3 ( SZ ) ) , a
regularity hypothesis which is not guaranteed by our regularity assumptions
on the data. For these reasons we shall assume initially that all the data are
C°° . Theorems 1.1 to 1.4 and Theorem 1.6 in the case that (1.45) holds
then follow by standard approximation arguments coupled with uniqueness
results for admissible solutions of the appropriate boundary value problem.
In each case, if u and v are two admissible solutions, then by the mean
value theorem w = u - v satisfies a linear elliptic oblique problem

with c  0 (c  0 in Theorem 1.6 if (1.45) holds) and,  0 (-y - 0
in Theorem 1.6). Uniqueness is then an immediate consequence of the

maximum principle and the Hopf boundary point lemma.
When the monotonicity conditions (1.13) and (1.15) (respectively (1.24))

or (1.45) do not hold, as in Theorems 1.5 and 1.6, the continuity method
alone is not sufficient to prove existence. We also need a suitable fixed

point theorem. This procedure and the proofs of Theorems 1.5 and 1.6 will
be given in Section 4.

Since gz > 0, in the case g = g (x, u) (and more generally if

g = g(x, u, Du) is bounded with respect to Du), for suitable positive
constants A and B

is an admissible subsolution of (1.1). If g depends on Du, we take u to be
the subsolution whose existence is assumed in Theorems 1.2 and 1.4. Since

g is positive and f - 0 on c~~, it is clear that there is a number 8 > 0

such that uo (x) = b ~x ~ 2 is admissible and

For t E [0, 1] consider the family of boundary value problems
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For t = 1 this is our original problem (1.1), (1.2), while uo is an admissible
solution of (3.4) when t = 0. By our structural hypotheses in Section 1,
standard linear elliptic theory ([5], Chapter 6) and the implicit function
theorem ([5], Theorem 17.6), the set S of t E [0,1] for which (3.4) is

solvable with admissible solution ut E C2~~ (SZ) for some a E (0,1) is

relatively open. If we can also prove the a priori estimates

for some a E (0,1) with C independent of t, then S is also closed, and
hence equal to [0,1]. Thus our original problem (1.1), (1.2) is solvable.

Clearly, gt and bt given by

and

satisfy similar structure conditions as g and b, with structure constants
controlled independently of t, and by (3.3), (3.4), u is a subsolution of

for each t E [0,1]. In proving our a priori estimates we shall therefore
ignore any dependence on t.

We begin with the estimate for u. This part of the argument does not

require b to have a special form such as (1.11) or (1.23). All we require
is that b satisfy

for some constant Nl,

for any compact set K C R~ and some number N2 = together
with the degenerate obliqueness condition

It is easily checked that (3.7) and (3.8) hold for oblique boundary conditions
of the form (1.11) (respectively (1.23)) by virtue of our hypotheses (1.16)
and (1.17) (respectively (1.25) and (1.26)).
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Since u is convex, u attains its maximum on say at a point xo E an,
and hence

Using (3.9) we obtain

which implies, with the aid of (3.7),

To obtain a lower bound we observe that by the mean value theorem u - u
satisfies a linear elliptic differential inequality

with c  0 by virtue of (1.13), and hence by the maximum principle ~ 2014 ~
attains its maximum on say at a point Yo E Thus

and hence by (3.9),

which implies, by (3.8),

It follows then that

so the estimate for u is proved.
We now come to the gradient bound. Here we take advantage of the

convexity of u and use the following result [10], Theorem 2.2.
° 

LEMMA 3.1. - Let S~ be a Cl bounded domain in and u E 

a convex function satisfying
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for some constant M, where ~ is a unit vector field on aS2 with

for some positive constant Then

where C depends only on n, M and Q.

Lemma 3.1 immediately implies a gradient bound in the semilinear case
(1.11 ) if /3 satisfies (1.18). In the case of a boundary condition of the form
(1.23) with § satisfying (1.27), we immediately obtain

and a gradient bound follows from Lemma 3.1.

Remark. - Gradient estimates can also be obtained for boundary
conditions of the form (1.23) under more general structure conditions

than the concavity condition (1.27). However, we cannot obtain second
derivative bounds under such general conditions, and for this reason we
shall not pursue this further here.

We now consider the boundary value problem (1.44). If u, h and SZ* are
as in Theorem 1.6, then H = h(Du) is positive in SZ and zero on so

DWH > 0 and ~ = 0 on 9H. Thus

Since D2u is invertible, we see that

where uvv = uijvivj and == [D2u]-1. Thus (1.44) is degenerate
oblique. However, from (3.15) we also see that

Combining this with (3.16) we obtain

which is positive provided u E ~’~~5~~ with ~~~ ~ 0. Thus (1.44) is
in fact strictly oblique on convex ~’~{S~~ solutions if g is positive, and

12, nO s~~~~~.
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so the method of continuity can be used. Later we shall prove the strict
obliqueness estimate (1.40).
To set up a suitable family of problems for (1.44) we assume for

convenience that S2 and S2* both contain the origin. For t E [0,1] let 
be a family of smooth, uniformly convex domains in ~$Z, uniformly bounded
in the C3 sense and with curvatures bounded from below by a positive
constant independent of t, and with S2o = Bl (0) and S21 = S2 as

t --> 1. Let uo(x) = 2 Ix12, ho(p) = 2 (1 - set

where hi = h is a smooth, uniformly concave defining function for

SZ* . Then ht is a smooth, uniformly concave defining function for

S2t = {p E 1R2 : ht (p) > 0}, and since h0, h1 > 0 in for some

r > 0, we see that Br(O) for each t E [0,1]. Evidently ~ht~C3(03A9*t)
is bounded independently of t, and we can also assume without loss of
generality that

for each t E [0,1].
Consider the family of boundary value problems

By construction uo is a convex solution of (3.20) for t = 0. As before,
we see (using our hypotheses in Section 1, strict obliqueness, linear elliptic
theory and the implicit function theorem) that the boundary value problem
(1.44), which coincides with (3.20) when t = 1, is solvable with convex

solution u E for some a E (0,1), provided we can prove the
estimates (3.5). We also note that the hypotheses (1.42) and (1.43) are
satisfied uniformly for t E [0, 1] for the function gt given by

It suffices therefore to prove the estimates (3.5) for t = 1. We also note
that the solution of (1.44) which we obtain by this procedure satisfies

Du(SZ) = SZ*, since = S2t for t = 0 and this is preserved by
the homotopy.
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We now proceed to the estimates for (1.44). The gradient estimate is

trivial since Du(S2) = Q*. To prove an upper bound for u we observe that
the concavity of f implies

for all b > 0 such that (b, b) E E, and hence

where 0" = fl(b, b) > 0. Fixing a suitable b and integrating this over S2,
we obtain

The hypothesis (1.42) now implies that u is bounded above somewhere
in S2, and hence also

since Du is bounded.
To obtain a lower bound, we use (1.41) to obtain

The hypothesis (1.43) then implies that u is bounded from below at some
point of 03A9, and hence also

We conclude this section by giving some simple sufficient conditions
for the existence of admissible subsolutions. We assume that f satisfies
conditions (1.4) to (1.9) and ( 1.21 )’ and £ is of type 1, although not all of
these conditions are needed for the construction of admissible subsolutions.
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In addition, we assume that f satisfies the technical condition of Lemma
2.2. Namely, there exist positive constants K, L and positive functions
~ 1, ~2 : ~ 1, oo ) --~ R such that

and

for all t > 1 and all A 6 E with ~2} > L. Recall that this

condition is automatically satisfied if f is homogeneous of some degree
d E (0,1]. We also assume that for some positive constant C such that
(C, C) e E we have

for all (x, z, p) ~ 03A9 x R x R2 with z  0. Under these conditions we can

construct an admissible subsolution u E of (1.1). Our construction
is similar to one of Lions [9], Section IV (see also [I], Section 7) for the

special case of the Monge-Ampere equation.
Let 03C8 be a C2 uniformly convex defining function for 0 with D21j; > I

in Q and let

for some positive constants  and a to be determined. We shall first fix

a, and then fix J-L, depending on cx, but for now all we need is that ,u
and a are such that

so that E ~. Differentiating u we obtain

since D2~ > I in f2. The eigenvalues of [8ij + are 1 and

1 + so

Let 8 = (2C)-1 where C is the constant in (3.25). We consider two cases.
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In this case, (3.28) and Lemma 2.2 imply that for a fixed sufficiently
large we have

provided ~ is so large that

For convenience here and below we denote f (t, t) by f (t).

In this case (3.28) implies

provided

Consequently, for a fixed as above and jj fixed so large that (3.27) and
(3.30) are satisfied, we see that u is an admissible subsolution of (1.1).

It is worth observing that the growth condition on g given by (3.25) is
generally optimal. This is shown by the Monge- Ampere equation

Since det D2u is the Jacobian of the gradient map Du : SZ --~ R2, by
integrating we obtain

The last integral is infinite 2, but is finite if r > 2. So for

r > 2 we cannot construct a convex subsolution of (3.31) on domains of

arbitrary measure. But if diam SZ is small enough, we can always construct
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subsolutions, not just for (3.31), but also for (1.1). Furthermore, for this we
do not need to assume ( 1.21 )’ or the technical conditions (3.23) and (3.24).
To prove this, let 03C8 be as above and set

for some positive constant A to be chosen. Since D2~ > I, we have

for A so large that (A, A) E ~. We now fix A so large that

for all x E H, 1 and |p|  1. Since 03C8 E C2(S2) 0 on

ao, we have

for some positive constant C depending on sup03A9 |D203C8|, where d = diam SZ.

Thus for d so small that

we see that u is an admissible subsolution of (1.1).
A straightforward argument also shows that if

uniformly for x E S2 and z E R, then 1J. given by (3.32) is an admissible
subsolution of (1.1) for A fixed sufficiently large.

Finally, if we strengthen (3.25) by requiring it to hold for all (x, z, p) E
H x R x 1R2, not just for z  0, we see that for u given by (3.26), u + N
is an admissible subsolution for any constant N. Likewise, if we assume

for some constant C and all (x, z, p) E H x R x R~ with Ipl ~ 1, then

A03C8 + N is also an admissible subsolution of (1.1) for any constant N,
provided A is sufficiently large and diam H is sufficiently small. For any
oblique unit vector field /3 on 9H and U = u + N we have
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Consequently, if there exists a number N such that

for all x E aSZ, then is an admissible subsolution of (1.1), (1.11). The

argument for the boundary condition (1.23) is virtually identical. Since
0 on we now require the existence of an N such that

for all x 

Finallv, we remark that if f satisfies

for some strictly increasing function G, criteria for the existence of

admissible subsolutions can be obtained from various existence results

for the Dirichlet problem for Monge-Ampere equations (see [1], [3], [6],
[9], [11], [15]).

4. SECOND DERIVATIVE BOUNDS

In this section we shall prove second derivative bounds. This is the most

difficult of the a priori estimates, and it is here that the two dimensionality
enters in a crucial way.

Since we have already bounded u and Du, we have

for some positive constant ~c. Similarly, for the function § in (1.23) we have

for some positive constant [1. A similar inequality of course also holds for
the function § in (1.11). Furthermore, for (1.23) we have

Since u and Du have already been bounded, the vector field /3 =

bp (x, u, Du) / ~ ] satisfies
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for some positive constant /?o. The use of/3to denote the vector field ]
is convenient and should cause no confusion with the /3 appearing in (1.11).
The concavity condition (1.27) can now also be rewritten in the form

for all directions T tangential to 8Q at x and some positive constant O.
We now differentiate equation (1.1) twice in a direction ~ to obtain

and

Using the concavity of F and (4.1) we obtain

If g is convex with respect to Du, or g is independent of Du, we instead
obtain

or

respectively. In obtaining (4.8)" (but not (4.8) or (4.8)’) we have also used
(1.13); if we do not assume (1.13), we get

Let E > 0, to be fixed later. We denote by C(e), Co ( E ) , ~’1 ( E ) , ... various
positive constants depending on E as well as on other parameters. Any
constants not depending on E will be denoted by C, Co, C1, .... As usual,
different constants will often be denoted by the same symbol.
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Let

where M = sup03A9 |D2u| and K is a positive constant to be chosen,
and assume that w attains its maximum over all points of S2 and all

directions 03B3 e Sl at G S2 x S1. We will show that if S2, then

C(E). In case (4.8) we have

Using (1.21) we see there is a constant 1 such that if

Co(6). then T > and consequently EMT. So

whenever Co(6) and hence also T > we find that Lw > 0 for

K > 2Ci and E  C21. Fixing K = 2Ci we conclude that if and

(assuming the origin is contained in H), then

In cases (4.8)’ and (4.8)" the argument is almost identical, except that for
(4.8)’ it is sufficient to use (1.21)’ in place of (1.21), while for (4.8)" it

suffices to consider in place of w the function

and it is not necessary to assume ( 1.21 )’ and to introduce M and E. In

case (4.8)"’, which occurs only if (1.13) is not satisfied, we assume ( 1.21 )’
and argue as for (4. 8 )’ .

In all cases then, we need to consider the possibility that w attains its
maximum at xo E and a direction ~ E Sl. We shall carry out the
argument for the general case g = g (x, ~c, Du), and only indicate where a
simplification occurs if g is independent of Du.
We make a rotation of coordinates so that at xo vi = v ~ el and v2 = v ~ e2

are nonnegative, and so that ç is a coordinate direction, say £ = e2. Then
we have
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which can be rewritten as

To proceed further we need to prove some preliminary second derivative
bounds. This part of the argument does not require the boundary condition
to be written in a particular form, or indeed, does not even require the
boundary condition to be oblique, although to obtain useful estimates we
should assume 0. We therefore carry out this part of the proof for the
general boundary condition (1.2). We assume that the function b has been
extended in a CI,1 fashion to Q x R x R~. Differentiating (1.2) tangentially
we obtain

so

where T is any unit tangent vector to 8Q at ~o and /3 = 
Next, differentiating the function B = b(x, u, Du) we obtain

Using (4.6) we obtain

We now need to estimate the various terms in (4.13). Most of these can
be estimated in an obvious way, but those involving products of Fij and
Djku require a little explanation. For example, the term FijbxipkDjku is
the trace of the product X YZ of the three matrices X = = ]
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and Z = [Djku], so if Q is an orthogonal matrix which diagonalizes DZu
(and hence also at some point x E 0, we have

It is sufficient therefore to estimate Fijbxipk Djku under the assumption that
D2u and [Fij] are diagonal. Thus if Ai and ~ 2 are the eigenvalues of D2u
and f l and f 2 are the eigenvalues of we have

Here we have used Lemma 2.1 (i) and (1.9), together with the fact

that Ai and ~2 are nonnegative, to obtain the last inequality. The terms

FijbzpkDiuDjku and bzFijDiju can be estimated similarly. We proceed in
the same way to estimate the quadratic term bpkplFijDikuDjlu. With the
aid of Lemma 2.3 we find that for any E > 0 we have

Finally, if g depends on Du, so gp fi 0, we can use ( 1.21 )’ and (1.9)
to estimate

for any E > 0. Inserting the above estimates into (4.13) and replacing E by
for a suitable constant C, we arrive at the inequality

for any E > 0. If 03C8 is a C2 uniformly convex defining function for S2 with
DZ~ > I, we see that for A 2: C(E)

Since (A + B = 0 on 8Q we conclude that

and hence

Combining this with (4.12) we obtain

for any direction, E S 1.
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Remarks. - (i) If b is a semilinear boundary condition, the term

bpkplFijDikuDjlu does not appear in (4.13) and it is not necessary to

use Lemma 2.3. If g is independent of Du, the term bpk gPl Dklu does not
appear and it is not necessary to assume ( 1.21 )’.

(ii) In the uniformly elliptic case in two dimensions all the second

derivatives at xo can be estimated from (4.16) and equation (1.1) itself,
but this is not possible in our situation. We need to use the inequalities
(4.11) and the boundary condition.
We now express various vectors at xo in the basis el, e2. Recall that

we have assumed that v . ei and v . e2 are nonnegative at xo and £ = e2.
At xo we have

for some nonnegative constants a, b satisfying a2 + b2 = 1. Let

so that T is tangential to ~SZ at xo. Let c, d be constants satisfying c2~-d2 = 1
and such that at xo we have

Since = 0 we have

so by (4.16),

We therefore need to consider only the case that ~d~ is small, say ~d~  do
for a suitably chosen positive constant do.
The main step now is to show that the two inequalities (4.11 ) imply

provided ] is sufficiently large and 1d~ is sufficiently small. This

part of the argument depends strongly on the two dimensionality. Once we
have this, the required bound for will follow with the aid of our

hypotheses on the boundary condition.
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To prove (4.21) we first differentiate (1.1) in the directions ei and e2.
Noting that = 0, we obtain at xo

and

Using (4.17), (4.18), (4.19), (4.22) and (4.23) we then obtain at xo

Next, using the obliqueness condition

for some positive constant we see that

provided

Vol. 12, n° 5-1995.



540 J. URBAS

Assuming henceforth that (4.25) is satisfied, we obtain, since a2, c2  1
and a ~ 0,

and hence also

and

Using Lemma 2.1 (iv) we see there is a constant No = such
that if

then

If we assume in addition that

we obtain

Next, from (4.27), (4.28), (4.29) and (4.30) we obtain

Finally, to control the last term of (4.24), we observe that if g is independent
of Du, this term is bounded, by Lemma 2.1 (ii), while if g depends on Du
and we assume ( 1.21 )’, then by Lemma 2.1 (v), for any E > 0 the last term
of (4.24) is bounded by C6(l + M) provided

for some positive constant Ni = Using the above estimates
and (4.11) in (4.24) we finally arrive at (4.21), provided (4.25), (4.26),
(4.29), (4.31) and (4.34) are satisfied.
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We now need to show that (4.21) implies a bound for We

first consider the semilinear case (1.11). Computing the second tangential
derivatives of (1.11) on aS2 we get

and hence at xo,

Using (4.16) and (4.21) we obtain at xo

To proceed further it is convenient to choose coordinates so that T = ei
and v = e2 at xo . Then (4.37) becomes

To control the second term on the left, we observe that since /3 is a unit
vector field, b~,~~2 = 0 on aS2, and so

If we now write e2 = ael + b/3 at xo, we find that a = and

b = It follows then that at xo

by virtue of (4.16). Inserting this into (4.38) we obtain
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at xo, and this in turn gives us a bound

by virtue of (1.19).
We now write

Since /3 satisfies the strict obliqueness condition (1.18) we have

and hence, using (4.16) and (4.40),

at xo. For the function w = + K(1 + EM) ~x~2, which attains its

maximum at (xo, ~), we then have

At the point y0 ~ 03A9 at which = M = sup03A9 |D2u| we therefore

have

For E > 0 finally fixed so small that and so that any other

smallness requirements on E are satisfied, this gives

This completes the proof of the second derivative bound for the semilinear
boundary condition (1.11).
We now complete the proof in the fully nonlinear case (1.23). After some

computation we see with the aid of (4.2) that at xo we have
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Using (4.2) once again, the concavity condition (4.5) and the estimate

(4.21) we obtain

The remainder of the proof proceeds as before, so the second derivative
bound is proved for (1.23) as well.

Remark. - It is evident from the proof above that somewhat weaker

inequalities than (4.11) would suffice. In the case of a semilinear boundary
condition we still require the estimate (4.11) for but for

suffices to show

This is clear since the coefficient of D222u in (4.24), namely 
2abd2 c 

+

2abc Fz2 , is small if |d| and F2z are small. The smallness of F22 follows
from Lemma 2.1 (iv) if is large. In the case of a fully nonlinear

boundary condition (1.23) with 03C6 satisfying (1.27), the estimates

for E > 0 sufficiently small and

are sufficient.

The hypotheses (1.7) and g > 0 and the second derivative bound imply
that the eigenvalues of D2 u lie in a fixed compact subset of ~. Thus (1.4)
and (1.5) imply that equation (1.1) is uniformly elliptic. Consequently, we
can apply the theory developed in [7] and [8] to deduce a second derivative
Holder estimate

for some a > 0. As noted in [8] (see also [7], Theorem 3), the estimate
(4.44) can be proved much more easily in two dimensions than in higher
dimensions, and in the two variable case (4.44) is in fact valid under

our somewhat weaker regularity hypotheses. In particular, at this stage we
require only ~S2 E C2~’~ for some, > 0. The proofs of Theorems 1.1 to
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1.4 for the case of C°° data are now complete. However, once we have
this result, the above estimates and a standard approximation argument
(approximating f, g, /3, ~ and H by smooth functions and domains satisfying
the appropriate structure conditions of Section 1 and having uniform
bounds in suitable norms) lead to Theorems 1.1 to 1.4 under our regularity
hypotheses. We note that it is clearly possible to carry out this procedure
in such a way that the subsolution u in Theorems 1.2 and 1.4 is also a

subsolution of the approximating equations. With these observations our
proofs of Theorems 1.1 to 1.4 are complete.
Remark. - An examination of the proof above shows that it suffices to

assume aSZ E C2~’~ for some ~ > 0 in Theorems 1.1 and 1.2. Of course, in
the important special case /3 = v, the regularity requirement on /3 implies
~03A9 E C2,1. A similar weakening of the regularity hypothesis on aSZ is not
evident for the fully nonlinear boundary condition (1.23), since the form
of the boundary condition and the second derivative estimation seem to
require v E 
As mentioned in the introduction, for the Monge-Ampere case =

(1.21)’ is satisfied but (1.21) is not, so the above proof of the
second derivative bounds does not include the Monge-Ampere equation
(1.37) in the case that g depends in a nonconvex fashion on Du. We now
show how the proof needs to be modified to work for this case as well. It
suffices to consider only the semilinear boundary condition (1.11); the fully
nonlinear boundary condition (1.23) can be handled more simply.

For this it is convenient to write the Monge-Ampère equation in the form

where 9 = g2. Then

and

Since u and Du are already bounded and g is positive, there is a number
80 > 0 such that

By Theorem 1.1, for each p E (0, 1) there is a unique convex function
v = vp E C2(O) solving the boundary value problem
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where ~ E C2°1(St) is any uniformly convex function with  0 on

8Q. In particular, if 9Q E CZ°1, ~ can be chosen to be a defining function
for 52. By the estimates proved above

for some positive constant A, independent of p E (0,1). From (4.50) and
the fact that 80 > 0, we also obtain

for some positive constant Ao, independent ot p E (U,1 ) . Setting v = v + pw
we see that 

’

so fixing p > 0 small enough we have

By the mean value theorem u - v satisfies an elliptic differential inequality

together with the boundary condition

for some negative function ~y. From the maximum principle we deduce that
u - v  0 in Q, and hence that v)  0 on 852. Thus

for some positive constant a.
We now consider on Q x Sl the function

where v E is the unique convex solution of (4.49) with p E (0,1)
fixed as above, and a is a positive constant to be chosen. As before, we
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need to bound w from above. Assume first that w attains its maximum at a

point xo E S2 and a direction ~ E Sl. Differentiating w = w(~, ~) we obtain

Differentiating (4.45) twice in the direction ~ we get

Using these inequalities and (4.51) we see that at xo we have

Since Dw(xo) = 0, (4.54) implies that at xo we have

To handle the third derivative terms we make a rotation of coordinates so
that is diagonal with 03BE a coordinate direction, say 03BE = e2. Using
(4.46) and (4.47) we see that at xo
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Since 9 = g2 and g satisfies (4.1), we have

Inserting (4.58), (4.59) and (4.60) into (4.57), and also observing that
T = Au, we obtain at x o

A bound for and hence for w (xo, ~), now follows by fixing a
sufficiently large.
We now consider the case that w attains its maximum at a point xo E ao

and a direction ~ E Assuming as before that ç = e2 and v . el, v . e2
are nonnegative, we have

which can be rewritten in the form

and

at xo. The remainder of the proof of the second derivative bound (including
the proof of (4.16)) now proceeds as before with (4.63) and (4.64) being
used in place of (4.11). The only observation that needs to be made is that

the coefficient of D222u in (4.24), namely c + 
2abc F22 F11, is small if

|d| and = D 11 u are small enough..
Fll D22u

Remark. - As noted in the remark following (4.43), weaker conditions
than (4.63) and (4.64) suffice for the proof. In particular, in the case of a
fully nonlinear boundary condition (4.11 )" and (4.11 )"’ are sufficient. To
obtain these it suffices to consider the function

in place of wand there is no need to introduce v. Consequently, the lower
bound 80 for g(x, ~c, Du) is not needed in this case.
We now complete the proof of the second derivative bound for the

problem (1.44). To do this it suffices to establish the strict obliqueness
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estimate (1.40); since h is uniformly concave, the argument used above
to bound D2U can then be applied with only very minor modifications,
while the second derivative Holder estimate follows from uniformly elliptic
theory as before.
To prove (1.40) we consider the function

where x = hPk H = h(Du) and A is a positive constant to be
chosen. Here v is assumed to have been extended in a fashion to
H. We have

and

Consequently,

As in the second derivative estimation, the term 2FijDiluDjvkhpkpl can
be estimated under the assumption that and D2U are diagonal at the
point at which we are computing. Thus

To handle the term which is quadratic in D2u we use the uniform concavity
of h and fix A so large that this term is negative. The remaining terms are
easily estimated, and we arrive at

Now let xo be the point on d52 at which attains its minimum. We
want to prove
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for some positive constant co. To do this we first show that

This is clear in the case that g is independent of Du, for then

j = w (xo ) + where ~ is a C2 uniformly convex defining function for
H and B is a large positive constant, is a lower barrier for w at xo. But if

g depends on Du, we need a more careful barrier argument. We adapt the
one used in [I], Section 7, to our situation.

Suppose for convenience that xo is the origin with the positive x2 axis in
the direction of the inner normal to ~03A9 at 0. Near 0 we can represent 9H as

where ~ > 0 is the curvature of dSZ at 0. In 52E = S2 n we shall

use the barrier function

with 03C3 > 0 fixed so small that x - a > 0. First we fix N > 2 so that

for E > 0 small enough, where c is a positive constant. To do this, first

observe that

for some positive constant ci. Let lif be the matrix N = diag(l, N). We
assume N is so large that (1, N) E ~. Then, using the concavity of F,
we see that

and consequently

Since I  C, we see that in S2E
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Assuming now that (1.21)’ holds, we see from Lemma 2.1 (vi) that we
can fix N so large that

If we now require 6 to be so small that

we obtain (4.69) with c =  co.
2

Next we examine v on On 8Q n B~ we have, by (4.68)

and hence

for 6 small enough, On the remaining part of where |x| ( = E, we

consider two cases.

In this case, since x2 > we have on S2 n ~B~

for some positive constant c2 and for E small enough, depending only on
a and .~, which have already been fixed.

On this portion of n n aBE we have
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for some positive constant c3, again depending only and N.

Consequently,

for E small enough, depending only on a and N. Finally, fixing E > 0 so
small that (4.71), (4.72), (4.73) and (4.74) are satisfied, we conclude that

v(0) = 0 and v  0 on ~0~.
Returning now to (4.65), we see that for B > 0 sufficiently large,

Bv + w(xo) is a lower barrier for w at xo, and (4.67) follows.
We now show that (4.67) implies a positive lower bound for x at ro.

Recalling the definition of w we see that (4.67) can be rewritten as

We now make a rotation of coordinates so that the positive x2 axis is in
the direction of v(xo). Then (4.75) implies at xo 

.

Since H = h(Du) = 0 on we also have

Assume now that x(xo) = is small, say 0  x(xo)  E. Since

(see (3.19)), we see from (4.77) that

Together with the convexity of u, this implies
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which simplifies to

Inserting (4.81) into (4.76), using the fact 00 for some

positive constant 00, and fixing E > 0 sufficiently small, we deduce

But then, the estimates (4.79) and (4.81) imply

and this in turn implies

for some positive constant a, since g(x, u, Du) has a positive lower bound.
If we now use (4.83) and (4.84) in (3.18), we obtain the strict obliqueness
estimate (1.40). The proof of Theorem 1.6 is now complete, in the case
that g satisfies (1.45).
To conclude this section we show how to prove the existence of solutions

under the modified hypotheses of Theorem 1.5. We shall use the Leray-
Schauder fixed point theorem [5], Theorem 11.6, which was used for a
similar purpose in [8]. Our procedure here is a little more complicated
because we wish to find a solution u > u.
We consider the semilinear case first. We assume initially that 

and c~~ are C°° . These assumptions will be removed later. We fix a

constant K > 0 so that

for all x G 9H and any direction T tangential to aSZ at x. We also fix

constants ao > 0 and ai E R so that

and
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Recall that u E CZ(52) n C1(S2) is assumed to be an admissible subsolution
of the problem

i. e., 1J. satisfies

Let uo be the unique admissible solution of

Such a uo exists by (4.85) and Theorem 1.1, and moreover, by elliptic
regularity theory [5], Theorem 6.3 and Lemma 17.16, we have uo E 
For t E [0,1] and v E C3(O) consider the family of problems

By (4.85), Theorem 1.1 and elliptic regularity theory, for each such v
and t (4.91) has a unique admissible solution ut E for any

a  1. Consequently, the map T : C3 ( SZ ) x [0,1] --~ C~(Q) given by
T (v, t) = ut - uo is continuous and compact, and T (v, 0) = 0 for all

v E C3 ( SZ ) . If we can also show that for all the fixed points of T ( ~ , t ),
t E [0,1], i. e., for any admissible solution ut of

we have

with C independent of t, then by [5], Theorem 11.6, T(~,1) has a fixed
point, or equivalently, (4.88) has an admissible solution u belonging to

C~(Q), and hence also to C°° ( SZ ) by elliptic regularity theory. We shall
prove (4.93) and in addition
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First, by arguing exactly as in Section 3, using (1.16) and the boundary
condition in (4.92), we see that

To prove the lower bound (4.94) we first observe that by our choice of ao
and is a subsolution of (4.92) for each t E [0,1], and in fact, a strict
subsolution if t  1; consequently uo > JJ in H. Since T is continuous,
we then also have ut > u in Q for t sufficiently small. Let t E [0, 1] be
the smallest number for which ut > u in 03A9 with equality somewhere. If
there is no such t, or if t = 1, then (4.94) is trivially true. If t  1, then

equality cannot occur at an interior point, since for t  I u is a strict

subsolution of (4.92). Thus equality can occur only on aSZ, say at a point
Xo E 80, in which case we have

by the Hopf boundary point lemma. However, since we

see easily from the boundary conditions in (4.89) and (4.92) and our choice
of cxl that

which contradicts (4.96). So equality cannot occur on 9H either, and (4.94)
is proved.
A gradient bound for ut now follows directly from Lemma 3.1, while the

second derivative bound is proved exactly as before. We need only observe
that (4.85) implies that the analogue of the structure condition (1.19) for
the problem (4.92) is satisfied. Higher order estimates, and in particular
(4.93), follow as before from the uniformly elliptic theory, so Theorem 1.5
is proved for the semilinear case with smooth data.
To obtain the result under the stated regularity hypotheses we approximate

and H by smooth functions and domains in the usual way, as
explained previously. The only point that needs to be noted is that since
u E 02(n) n C 1 ( SZ ) , the approximation procedure can be carried out in
such a way that u is a subsolution of the approximating problems. This is
clear, since we can find a family of smooth, uniformly convex subdomains
SZE C C S2 uniformly bounded in the ~’2n sense and with in the

C2~~ sense for any a  1 as E -~ 0, such that
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The remaining details of the approximation procedure are straightforward.
The fully nonlinear case can be handled in a similar way. We fix ao > 0

as before, but now fix a 1 E R so that

Nhere now u E C2(S2) n C1(S2) is an admissible subsolution of

We now take uo to be the unique admissible solution of

and in place of (4.91) we consider the family of problems

The solutions ut corresponding to fixed points of T are then admissible
solutions of

The remainder of the proof is as before, except of course that now we
use the strict concavity condition (1.27) on § for the second derivative
estimation in place of condition (1.19) for /3. This completes the proof
of Theorem 1.5.

Finally, to prove Theorem 1.6 without the monotonicity condition (1.45),
we proceed in a similar fashion. We consider the family of problems

where uo is the unique convex solution of

Vol. 12, n° 5-1995.



556 J. URBAS

5. EXTENSIONS

In this section we present some extensions of the results proved in the
previous sections.

(i) Degenerate Equations
The arguments we have used in the previous sections allow us to prove

existence theorems for oblique boundary value problems for certain types
of degenerate equations. In our situation the equation can degenerate in two
ways. First, if g is merely nonnegative rather than positive, the eigenvalues
of D2u may not lie in a compact subset of £ even if D2u is bounded,
and so in general we cannot deduce uniform ellipticity in the way we did
before. Second, in place of (1.4) and (1.5) we may assume the degenerate
ellipticity condition

In fact, this follows automatically from the positivity and concavity of f,
if E satisfies either condition (i) or (ii) of Section 1. An example of such
a degenerate function f is

Using a suitable approximation argument, which we shall describe below,
we can obtain admissible solutions of (1.1), (1.2). Admissibility should
now be interpreted as meaning that the eigenvalues of D2u belong to £
wherever D2U exists.
To find suitable approximations to f we consider a number of cases. First,

if 9E c r+, we define f to be 1 on c~~ and extend f to be homogeneous
of degree one. For E > 0 we set

where / = f - 1. In the second case, if 9E n ~T+ ~ 0, we have

(~E - 9F+) - BR(0) = 0 for some sufficiently large R. We may then
set /(A) = (~l~z)1~z and define fE by (5.3). In either case, we easily
verify that if f E n satisfies (5.1) and (1.6) to (1.9), then

fE satisfies (1.4) to (1.9) (with C(K) in (1.5) now depending on E and
K), with the possible exception of (1.7), which is satisfied in the first case

c r+). In the second case we instead have
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Consider the family of problems

where FE corresponds to f E in the usual way. In the case a~ c r+ we
take R = 0. Under the hypotheses on g and b assumed in Theorem 1.1

(respectively Theorem 1.3), with the exception that g is now merely
nonnegative rather than positive, we see that for E > 0 problem (5.5) has a

unique admissible solution uE E for some a E (0,1), depending
on E. This follows directly from Theorem 1.1 (respectively Theorem 1.3);
in the case that f E satisfies (5.4) rather than (1.7), we need only replace
~ E ~ : > Furthermore, the bounds of Sections 3
and 4 imply is bounded independently of E for E E (0,1).
Here we use the observation that these bounds do not depend on a positive
lower bound for g(x, u) or on positive upper and lower bounds for fl and
f 2. Consequently, as E 2014~ 0+ uE converges in any (SZ) norm, a  1,
to a (SZ) admissible solution u of the limit problem

We have therefore proved the following extension of Theorems 1.1 and 1.3.

THEOREM 5.1. - Suppose all the hypotheses of Theorem 1.1 (respectively
Theorem 1.3) are satisfied, except that g, f 1 and f 2 are merely nonnegative
rather than positive. Then the boundary value problem ( 1.20) (respectively
( 1.28)) has a unique admissible solution u belonging to 

Exactly the same procedure works in the case that g depends on Du,
provided we also assume (1.21), or ( 1.21 )’ if g is convex with respect to
Du, and we can find an a priori bound

with C independent of E for E > 0 sufficiently small, for admissible

solutions uE of the approximating problems

This follows as in Section 3 provided we can find a strict admissible

subsolution u E Cz(52) n of (1.1), I. e., u satisfies
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We can then conclude the following degenerate analogue of Theorems 1.2
and 1.4.

THEOREM 5.2. - Suppose all the hypotheses of Theorem 1.2 (respectively
Theorem 1.4) are satisfied, except that now g, fl, and f2 are merely
nonnegative rather than positive, and u E n is now a

strict admissible subsolution of ( 1.1 ). Then the boundary value problem
(1.1), (1.11) (respectively (1.1), (123)) has a unique admissible solution u
belonging to 
We can also obtain a degenerate version of Theorem 1.5 by a similar

procedure. We need to strengthen the hypothesis on v, only slightly by
requiring u E C2(S2) n to be an admissible function satisfying

We cannot obtain solutions of (1.44) in the degenerate case
0, because a positive lower bound for g(x, u, Du) enters

into the obliqueness estimate (1.40), which in turn is used in the second
derivative estimation. But we can allow a degeneracy of the type (5.1)
and still obtain solutions. The structure condition (1.41) is clearly
preserved by the regularization

Finally, we mention that if 9E C F+ and (1.4) is satisfied, then (1.5)
holds for any compact set K c E. In this case we obtain admissible

solutions u E (SZ) for some a > 0 in Theorems 1.1 to 1.5 even if g
is nonnegative rather than positive.

(ii) Monge-Ampere Equations
In the case of the Monge-Ampere equation (1.37), the second derivative

estimate proved in Section 4 is independent of a positive lower bound for

g(x, u, Du) if g is convex with respect to Du. This is true even if g is

not convex with respect to Du in the case of the fully nonlinear boundary
condition (1.23) (see the remark following (4.64)), but it is not true for

the semilinear boundary condition (1.11). Recall that in the semilinear case
the dependence on inf g(x, ~c, Du) > 0 enters through the construction of
the function v in (4.49). However, it seems reasonable to expect that the

convexity condition on g can be dropped in this case as well, although we
shall not pursue this here.
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As we have already mentioned in the introduction, the existence of a
subsolution u in Theorems 1.2 and 1.4 for the Monge-Ampere case can
be replaced by suitable structure conditions on g. The relevant estimate for
supo u ~ is proved in [10] for a semilinear degenerate oblique boundary
condition of the form (1.11), but the same argument is applicable to more
general oblique, possibly degenerate, boundary conditions. The following
theorem summarizes our results for the Monge-Ampere equation.

THEOREM 5.3. - Let n be a C2~~ uniformly convex domain in ~2 and let
g E x R x R2) be a nonnegative function such that

and

for all (x, p) E SZ x 9~2 and some constant N, where g, h are nonnegative
functions in respectively such that

(i) If 03C6 and ,Q satisfy the hypotheses assumed in Theorem 1.1 and g is
convex with respect to Du, then the problem

has a unique convex solution u belonging to 
(ii) If ~ satisfies the hypotheses assumed in Theorem 1.3, then the problem

has a unique convex solution u belonging to 
(iii) If in addition g is positive in S~ x ~ x 8~2, then the solutions in (i)

and (ii) belong to ~’2~a (SZ) for any a  l, and the convexity condition on
g in (i) can be dropped.

Remarks. - (i) The hypothesis in Theorems 1.2 and 1.4 concerning the
existence of an admissible subsolution can be dropped if f satisfies the
structure condition (1.41) and g satisfies (5.12) and

Vol. 12, n° 5-1995.



560 J. URBAS

for all (x, p) ~ 03A9 x 1R2 and some constant N, where g, h are nonnegative
functions in satisfying (5.14). This is also true in the case
of Theorem 5.2, provided that for small enough E > 0 the approximating
functions f E and gE = g + e(R -~- 1 ) in (5.3) and (5.8) satisfy the above
conditions for suitable G, 9 and h.

(ii) For the special case of the equation of prescribed Gauss curvature

conditions (5.13) and (5.14) take the simple form

(iii) Type 3 Regions
It is also possible to obtain some existence results if we drop condition

(1.8). In addition to the two possibilities (i) and (ii) in Section 1 (possibly
modified by translation along the diagonal Ai = a2), we now also have
a third:

(iii) 9E is not asymptotic to the boundary of any cone.
In this case we say £ is a type 3 region.
If £ satisfies either (i) or (ii) of Section 1 (modulo a translation along

the diagonal) and f satisfies (1.4) to (1.7) and (1.9), then we can make a
translation so that o~~ is asymptotic to the boundary of a cone with vertex at
the origin. This changes the equation and boundary condition as explained
in Section 1. Now, (1.9) trivially implies

and as observed at the end of Section 2, (5.20) implies (1.8) if £ is of type
1 or 2. Thus for type 1 or 2 regions we reduce either to the case considered
above, or to the uniformly elliptic case treated in [8].

For type 3 regions, however, some additional complications arise and we
cannot obtain results of the generality of Theorems 1.1 to 1.4. If we make
a translation along the diagonal so that the origin belongs to o~~, we have

by (1.7) and the concavity of f, but in place of (1.8) we have the weaker
condition
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Now consider the problem

where Q is a C2u uniformly convex domain in 1R2, 9 E is positive,
/3 E ff~2 ) is a unit vector field satisfying (1.18) and (1.19), and

~y E with -y  for some positive constant As in

Section 3, we easily get a bound

while from Lemma 3.1, or more precisely, from an examination of its proof
in [10] to see that the bound depends linearly on sup~ ~ lul, we obtain

where

To estimate the second derivatives, we observe that as before w =

+ KlxI2 attains its maximum at a point Xo E and a direction

ç E provided K is sufficiently large. Thus if we choose coordinates so
that v . ei and v . e2 are nonnegative at zo and ç = e2, we have

To estimate the second derivatives at zo we proceed as before. By
tangentially differentiating the boundary condition (5.24) and using (5.25)
and (5.26) we obtain

To estimate we extend 03B2, 03C6 and 03B3 in a fashion to SZ and
set h = D f3u + ~yu + ~. We find that

As before, the term Djku can be estimated by first making a
rotation of coordinates so that D2 u and [Fij] are diagonal at the point at
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which we are computing. Thus if ÀI  À2 are the eigenvalues of D~u and
/i,/2 are the eigenvalues of [Fij] at that point, we obtain

Here we have used (5.21) and (5.23) to obtain the second inequality.
Estimating the remaining terms in (5.29) with the aid of (5.21), (5.22),
(5.25) and (5.26) we arrive at

If now 03C8 is a C2 uniformly convex defining function for H with I,
we see that

for A > C, and consequently

We now proceed as before using (5.27). We see that if /3 satisfies (1.18)
and (1.19), then

However, since E is of type 3, M = o(M) where M = sup~ and

consequently, we finally obtain

Second derivative Holder estimates now follow from the uniformly elliptic
theory of [8], as explained before. Thus for £ of type 3 we have the
following result.

THEOREM 5.4. - Under the hypotheses made above on 03A3, f, g, 03B3 and 03C6,
the boundary value problem (5.23), (5.24) has a unique admissible solution
u belonging to for some a E (0,1).

Remarks. - (i) Because of the way in which M enters into the estimates
(5.26) and (5.30), the second derivative estimation above depends strongly
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on the linearity of the boundary condition and the fact that g is independent
of u and Du. If we allow a nonlinear boundary condition or more general
g~ the argument breaks down in general.

(ii) The use of Lemma 3.1 to obtain the gradient bound can be avoided
by carrying sup~ through the computations, and finally obtaining in
place of (5.33) the estimate

Bounds for Du and D2u then follow by interpolation. But this does not
avoid the introduction of M, since it also enters in estimating the terms
2FijDi03B2kDjku and 03B3FijDiju in (5.29). It is not clear how this can be

avoided.

(iii) If we could prove in place of (5.28) and (5.31) the stronger estimate

we could conclude a full second derivative bound without having to assume
the structure condition (1.19) on /3. For at xo we can write

for some controlled (since /3 is strictly oblique) constants a and b, and so, by
(5.35), is bounded from above unless Drru(xo) is positive. But
if Drru(xo) is positive, then for equal to the minimum eigenvalue
of D2u, we have for suitable controlled constants a and b,

at xo, by (5.35). However, this also implies an upper bound for 
since

for any s E R. The proof of this is almost identical to the proof of Lemma
2.1 (vi). The only difference is that if £ is of type 3, the function w satisfies
w(t) -~ -oo as t -~ oo, and the proof is valid for any s E R, not just
for s > 0.

(iv) Using (5.36) we easily see that if £ is of type 3 and f satisfies
(1.4) to (1.7) and (1.9), then for any  > 0 {A e E : /(A) > } is also a
type 3 region. This implies that f l / f 2 grows relatively slowly as ~2 -~ oo
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along any level line of f, so in this respect type 3 regions are intermediate
between type 1 and type 2. The mild nonuniform ellipticity for type 3
regions suggests that it may be possible to drop the structure condition
(1.19) on /3 and to allow H to be an arbitrary C2,1 bounded domain in
R2, at least for a certain class of type 3 regions. We may investigate these
questions further in the future.

(iv) Other Hessian Equations

Relatively minor modifications of our arguments yield estimates and
corresponding existence theorems for equations of the form

subject to boundary conditions of the types (1.11) or (1.23), where g, /3 and
(~ satisfy the appropriate hypotheses from Section 1 and a E (SZ x 1~) is
a 2 x 2 symmetric matrix valued function. We should also assume, at least
initially, that 0. This requirement can then be dropped, along with
the monotonicity conditions on g and ~, provided we have an admissible
subsolution u E C2 (SZ) n Cl (S~) of the boundary value problem in question.
Admissibility is now taken to mean that at each point of Q the eigenvalues
of D2u - a(x, u) belong to ~.

6. EXAMPLES

In this section we present a number of examples showing the necessity of
some conditions such as (1.19) and (1.27). We shall first give examples in

higher dimensions and later we shall construct examples in two dimensions.
However, our examples in two dimensions have the disadvantage of being
degenerate. We shall also give some examples showing the necessity of
(1.9), and of (1.21)’ (at least) if g depends on Du.

(i) Higher Dimensions

We recall an example of Pogorelov [12]. He showed that for any n 2: 3
the function

is a convex generalized solution of the equation
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in a small ball B = C R", where /3 = 2 - 2 / n . Evidently, for p
sufficiently small g is C°° and positive, while u E and is C°°

except along the xn axis.

Near the point (0, p) E o~B consider the vector field

where 9 is a positive constant and x’ - (x 1, ... , xn _ 1 ) . After some

computation we find that

If we set

we see that + au = 0 on aB near (0, p) and furthermore, /3 is
smooth and strictly oblique on aB near (0, p) and a  0 for 0 sufficiently
large, depending only on n and p. By reflection we can define /3 and a
near (0, -p) to have the same properties. On aB away from (0, :i:p) u is
smooth, so there we can define /3 and a so that /3, a and D {3u + au are
C°° with /3 strictly oblique and a negative. We see then that u given by
(6.1) is a convex generalized solution of

where and § are CCXJ, 9 is positive in B, /3 is strictly oblique and
a is negative. From the construction of /3 it is clear that we can make /3
close to v in the C° norm, but not in the C~ norm.

It is interesting to examine (6.6) a little further. From [ 10] we know that
(6.6) has a unique convex solution u E C°° ( B ) provided g, a and § are
C°° with g > 0 and a  0, and /3 _ v. In fact, since B is a ball, we
can say a little more. Let us assume for convenience that B = B1 (0); this
can be achieved by a suitable rescaling of the coordinates. Following the
argument of [10], Section 4, we see that for K fixed sufficiently large,
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attains its maximum on say at a point Xo E ~B which we may take to
be (0,..., 0, -1 ) by a suitable rotation of coordinates. Thus

which implies

Here we have used the fact that

is bounded on 9B, by virtue of a standard barrier argument, for example
the one used in Section 4 (see also [10], Section 3).
To proceed further, we tangentially differentiate the boundary condition

twice, as we did in Section 4, to obtain

at any point x E c~B and any direction T tangential to at x. In particular,
summing over T = el, ... , T = en-l at xo and using (6.8), we obtain, at xo,

If we rotate the ei,..., en- i directions so that is diagonal,
then (6.10) becomes

at ro .
As in the two dimensional case, at Xo we write

so that a03B1 = -03B2 03B2n 
and b 

= 2014. 
We then find that at x0
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since is bounded for any tangential direction T at this follows

as in the two dimensional case by tangentially differentiating the boundary
condition in the direction T. Combining this with (6.11) we obtain, at xo,

Since 0, an upper bound

for each a = 1, ... , n - 1 follows whenever the coefficient of each 
in (6.12) is positive, that is, when

at xo for each a = 1, ... , n - 1 and some positive constant o-o. A full

second derivative bound

then follows. Coupling this with the solution and gradient estimates proved
in [10] and the second derivative Holder estimates proved in [8], we
conclude that (6.6) has a unique convex solution u E C°° (B) whenever
g E CCXJ(B) is positive, (1 E C°° (aB) is negative and ,Q ~ ~n )
is strictly oblique and satisfies (6.14) at each point Xo E each

a = 1,... n - 1, in any coordinate system such that xo = (0, ... , 0, -~-~ 1).
We have not assumed ~,Q ~ = 1 on aB to arrive at (6.14), but if we

assume this, in the two dimensional case (6.14) can be put in the form
(1.19), as in Section 4. Thus (6.14) appears to be the analogue of (1.19)
in higher dimensions.
We also note that a similar argument works for the fully nonlinear

boundary condition (1.23), provided § satisfies conditions (1.24) to (1.27).
For the vector field /3 given by (6.3), the left hand side of (6.14) at

(0, p) for a = 1 is

which can be made less than any preassigned negative number by choosing
8 large enough. So (6.14) fails for this vector field. This example also
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suggests that in two dimensions we need (1.19) to derive second derivative
bounds, and that it is not sufficient to assume merely that the left hand
side of (1.19) is nonzero. However, we do not know of a two dimensional
example showing that this is indeed the case.
We also observe that u given by (6.1) is the unique convex generalized

solution in C1 (B) of (6.6). To prove this, let v be another such solution
and suppose w = u - v > 0 somewhere in B. We show this leads to

a contradiction. If w  0 on 9.B, then by the comparison principle for
generalized solutions of Monge-Ampere equations (see [3] or [11]) w  0
in B. If w > 0 somewhere on 9B, let xo be the point where w/aB
attains its maximum. Then £ = u - u(xo) and v = v - v(xo) satisfy the
same equation as u, v on 9.B. By the comparison principle for
generalized solutions A  v in B. Consequently £ - v attains its maximum
at Xo and

But from the boundary condition in (6.6) we have

contradicting the above inequality.
One can also verify that u given by (6.1) is a convex generalized

solution of

where

~ "-

For this boundary condition we see that

on for p small enough, where as usual T is any direction tangential to
9J3 at x. Thus for p small enough, the data in (6.16) satisfy the regularity
and structure conditions necessary to derive a second derivative bound by
the method used above. But the solution u does not satisfy the necessary
regularity hypotheses; the argument above requires u E ~ o~ ( B ) n C3 ( B ) .

It is also interesting to observe that (6.16) has a globally smooth convex
solution in addition to the nonsmooth one given by (6.1). This follows
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from the a priori estimate (6.15) proved above (or the results in [10],
[13]) and an argument very similar to those used at the end of Section
4 to prove Theorem 1.5. All we need to do is find a convex subsolution

u E C2(B) n C1(B), and this is easily done. Since 7 > 7o for some

positive constant qo if p is small enough, we see that

satisfies

if A and B are fixed large enough.
Next we demonstrate the necessity of (1.27). Straightforward

computations show that on o~B we have

for some smooth functions A and B. Thus on ~B

If /3 and a are now as in (6.6), we see that u satisfies the strictly oblique
boundary condition

Here the concavity condition (1.27) fails at (0, ~p).
Now let 03C8 be a smooth bounded function on R with |03C8’| ~ C and

= t2 for ~t~  1. Then, since a  0, we see that for E and p small

enough, u also satisfies the boundary condition

and the left hand side is strictly decreasing with respect to u. An argument
very similar to other one given above shows that u is the unique convex
generalized solution of (6.2), (6.18) belonging to 
The above example shows that second derivative bounds may fail if we

do not assume strict inequality in (1.27). Since u given by (6.1) also satisfies
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they can also fail if we have the weak convexity condition

for all (x, ~.~$ x R x (~n and all directions T tangential to 9B at x.
But we do not know of an example showing that second derivative bounds
fail under the stronger condition

for all x Rn and all T as above. As mentioned in
the introduction, it would be interesting to resolve this question, since the
capillarity boundary condition (1.12) satisfies (6.21) under the natural (in
our context) condition 8(x, u) > 0.

Although we have used the Monge-Ampere equation to construct our
examples, we can easily obtain examples involving more general equations.
We illustrate the technique here. Near (0, p) e 9B let /3 be given by
(6.3) with f) a positive constant. For a given by (6.5) we then have
Df3u + 0 in a neighbourhood of ~+ - (0, p), say in B n 
for some r .~ r ( 8 ) > 0. By reflection we obtain a vector field /3 with
similar properties in B n BT (~_ ) where ~_ - (0, -p). Using the fact that
u is smooth everywhere except along the zn axis, we can define /3 on
all of B - so that ,Q and + au are smooth, and x  0
in this region. Now let ~ be a smooth, nonnegative function with ~ ~ 1
such that 7~ ~ 1 on BB and r~ - 0 in Define a vector field $
on where Bp (0), N > n, is the open ball in I~N of radius p
centred at the origin, by

where X = (x1,...,xN) ~ ~B, x -.- (x 1, ... , xn ) and ej are the unit
coordinate vectors in RN. Clearly ,~ is smooth on and it is strictly
oblique since

which is negative by our construction of /3 and our definition of r~. If we
now extend u given by (6.1) to be constant in the xn+1, ..., xN directions,
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and similarly extend cr and define % == we find that Du + u is
smooth on 9.6 and u solves

in the generalized sense of [14] or [17]. Here Fn is given by

where À1, ... , AN are the eigenvalues of D2u. Recall that (6.23) is one of
the main examples of Hessian equations considered in [2] and [13].
We can follow a similar procedure and show that u also satisfies a

boundary condition similar to (6.17) on 9j3. We leave this to the reader.

(ii) Two Dimensions

In the two dimensional case it appears to be more difficult to construct

examples which are nondegenerate because we do not know of an explicit
nonregular solution of a suitable nondegenerate equation as we do in higher
dimensions. But degenerate examples are easy to construct and we shall
be content with this. Recall however, that the second derivative bounds

proved in Section 4 for the boundary conditions (1.11) and (1.23) are
independent of any positive lower bound for g, and are valid even if

(1.4) and (1.5) are replaced by the degenerate condition (~.1 ). The only
exception to this is the special case of the Monge-Ampère equation (1.37)
with g depending on Du in a non-convex fashion, and even this only
for the semilinear boundary condition (1.11). So despite being degenerate,
our two dimensional examples show that some conditions such as (1.19)
or (1.27) are necessary for second derivative estimates, and we cannot
dispense with these without somehow using the positivity of g or imposing
some additional conditions on f.
For E ~ 0 let

so that

Let B be the open unit ball in 1R2 and let f3 = (0,1) near (0, =1). Then
f3 is strictly oblique and Df3u = 0 on 8B near (0, -1). As before, we can
extend /3 to all of 8 B and obtain a smooth, strictly oblique vector field with
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for some smooth function ~. However, u and Du are bounded independently
of E for E E (0,1], while Dxxu = E-1 along x = 0. In this example we can
also make (3 close to v in the C° norm, but not in the C1 norm.
Next we have

so u also satisfies the boundary condition

Again we see the necessity of assuming (1.27), at least in the degenerate
case 9  0.

By arguing as in the higher dimensional case, we can also obtain

counterexamples for the equation

where is defined by (6.24) with n = 2.
Next we give an example where g is positive, but the equation has a

degeneracy of the form (5.1). Let

Then if f is given by

we see that u solves

But for the same vector field as above we find that

for some smooth function ~. In addition, a computation shows that on
8B we have

so for any positive integer m u satisfies

For any positive integer k we can fix m so large that the right hand side
of (6.34) is bounded in the C~ (B) norm independently of E E (0,1]. This
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shows the necessity of some conditions such as (1.19) or (1.27) even if

g is positive.

(iii) Conditions (1.9) and (1.21)’
We now give some examples showing the necessity of (1.9), and of

(1.21)’ (or a stronger condition such as (1.21)) if g depends on Du.
An example of [2] shows the necessity of (1.9). For any positive integer

k the function f given by

satisfies (1.4) to (1.8) on E = {.~ E F+ : f(A) > 0}, but not (1.9). In the
unit ball B c R2 the function

is a convex solution of

where g > 1 belongs to Ck(B), but not to Ck+1(B). However u ~ 
Clearly u also satisfies the boundary condition

Next, consider the same function ic, but now take

Then f satisfies (1.4) to (1.9) on 03A3 = F+, but not ( 1.21 )’, since

For the function it the eigenvalues of are given by

We find that
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where A = A(r) = (1 - r2)i/2. Evidently the right hand side of (6.41) is
smooth for 0 C r  1, but not at r = 1. Let r~ be a smooth nonnegative
function such that ?? = 1 in B1~4, r~ - 0 in Bl - B3~4, and for E > 0 small
enough, let  be a smooth positive function on R2 such that Ixl
outside BE. Then since A(r) = 2 - we see that for E > 0 small

enough

and the right-hand side is a smooth function of x and Df. Thus f solves

for some smooth positive function g.
This shows the necessity of some condition such as (1.21)’ if g depends

on Du, but we do not know whether (1.21)’ needs to be strengthened to
(1.21) if g depends on Du in a nonconvex fashion, or whether some weaker
condition suffices. As we have already observed, for the Monge-Ampere
case f(A) = (~1.12)1~2 (l.21) just fails, but we do not need a convexity
condition on g (except in the degenerate case 9  0 with a semilinear
boundary condition). Presumably (1.21), and possibly even ( 1.21 )’, can be
weakened in certain other cases by somehow exploiting the finer structure
of f. From the proof of the second derivative bounds it is clear that

(1.21) (respectively (1.21)’) can be weakened slightly by requiring 
(respectively T) to be sufficiently large (depending on g, ~3, ~ and S2) as
(~~ -+ oo on {~ E E : f (~)  ~~ for any g1 > 0. But this is no

longer a condition just on f .
We also assumed (1.21)’ in the case g = g(x, u) and g does not satisfy

We do not know whether this is necessary in general. It is evident from the

proof of the second derivative bounds that (1.21/ can be dropped if

for ~ > 0 small enough, depending on g, 03B2, 03C6 and S2. The necessity of
(1.21)’ if (6.44) fails, and of (1.21) in the case that g depends in a

nonconvex fashion on Du, is evidently closely related to the question
of whether a global second derivative estimate follows from a boundary
second derivative estimate under these conditions.
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