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ABSTRACT. - We prove a pointwise estimate for the solution u of a
nonlinear variational inequality in terms of a function which is solution
of a suitable variational inequality with spherically symmetric data. Using
this result a lower bound for the measure of the set {x : u( x) = 0 ~ and
a priori estimates for the V-norm and the of u are obtained.
An existence result is also given.

On demontre une estimation ponctuelle pour la solution u
d’une inequation variationnelle non lineaire en fonction de la solution
d’une inequation variationnelle opportune dont les donnees sont a symetrie
spherique. En utilisant ce resultat on obtient une borne inferieure de la
mesure de l’ensemble {x : u(x) = 0~ et une estimation a priori des normes
LP et de u. De plus est donne un resultat d’existence.

1. INTRODUCTION

Let H be an .open bounded set - of Rn. We consider the operator
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where Au = -div a(x, u, and

are Caratheodory functions which satisfy the following conditions:

(i) a(x, r~, ~) ~ > for a.e. x E 52, Vç E R’~, p > 1

(ii) ~H(~, ~)~  for a.e. x E n, E R~

(iii) g(x, > 0 for E S2, ~~ E R.
Let us assume that there exists a function u E solution of the

variational inequality

In this paper we will prove a pointwise comparison between the function
u solution of (1.2) and the solution of a suitable variational inequality
defined in a ball with spherically symmetric data. More precisely we
consider the problem

where S~# is the ball of R~ centered at the origin with measure and

f ~ (x) is the spherically symmetric decreasing rearrangement of f. In § 2
we will prove that this problem has a unique spherically symmetric solution

v(x) = v#(x) and ~c#(x)  holds a.e. in This result allows us to

obtain sharp estimates for u in terms of the function v, moreover we can
find an optimal lower bound for the measure of the coincidence set of u.
The proof of this result is based on properties of the level sets of u and

uses as main tools the isoperimetric inequality (see [11]) and the coarea
formula (see [ 14]). The method was introduced by Talenti ([22]) who get a

comparison result for the solution of a linear elliptic equation, and then was

developed by many authors in different directions (see for example [23],
[24], [ 1 ], [ 13] for linear and nonlinear elliptic equations). In this contest
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the first results for variational inequalities are due to Bandle-Mossino ([5])
and Maderna-Salsa ([17]); other results can be found in [2], [19] and [20].

Using this comparison result we give a priori estimates for the LP -norm
of u and of in terms of the norm of f in suitable Lorentz spaces (see
also [23], [24], [6], [12] in the case of equations). As a conseguence we
obtain also an existence result for problem (1.2). Other existence results for

problems involving operator of the type (1.1) can be found in [9], [12] for

elliptic equations and in [10], [8], for variational inequalities.

2. COMPARISON RESULTS

Firstly we recall some definitions about rearrangements. If H is an open
bounded set of Rn, we will denote by its measure and by SZ# the
ball of Rn centered at the origin whose measure is ( SZ ~ . Moreover if p
is a measurable function,

is the distribution function of cp and

is its decreasing rearrangement. If Cn is the measure of the n-dimensional
unit ball,

is the spherically symmetric decreasing rearrangement ot an

exhaustive treatment of rearrangements we refer, for example, to [4], [18].
Let us consider the problem

We will prove that such a problem has a unique spherically symmetric
solution which is decreasing with respect to the radius.
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If R is the radius of SZ# the function

is the unique spherically symmetric solution of the Dirichlet problem

The derivative of w(p) is given by

Firstly we observe that, if f+(x) = {max f(x), 0} - 0, then = 0

is solution of (2.1); if J /~R 0 exp(-Br) dr > 0 then is

solution of (2.1). Let us consider the non trivial case 0 and
pR

J exp(-Br) f #(T)r"~-1 dr  0. In such a case there exists 0  p  R

such that
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This means that w(x) takes the minimum value on the boundary of the
sphere of radius p. Let us put -K = min w(x) = w(p)

If is solution of the variational inequality (2.1), then in the set

E = {x : v(x) > 0} v(x) verifies the equation

Therefore is such that

where h  K. We want to show that the only possibility is h = K. To
this aim we choose as test function in (2.1)

T’hen set pl = I {~ ~ v~C~~~ ~}I 1 l n, we have

Vol. 12, n° 5-1995.



582 M. R. POSTERARO

which gives

This quantity is strictly positive because for r  p, by (2.3), we have

Since the problem (2.2) has a unique spherically symmetric solution,
the above arguments show that also the variational inequality (2.1) has a
unique spherically symmetric solution.

Therefore we have proved the following

THEOREM 2.1. - If w(x) = w(~:~~) is the solution of the Dirichlet problem
(2.2), the variational inequality (2.1) has a unique spherically symmetric
solution = v#(:z) given by = 0 if f#  0; = if
R

 exp(-Br)f#(r)rn-1 dr ~ 0; and

where -K = min = the remaining cases.

Now we will prove the pointwise comparison between the rearrangement
of a solution u of the variational inequality (1.2) and the solution v of the
symmetrized variational inequality (2J).
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THEOREM 2.2. - If u is solution of the problem ( 1.2) with conditions (i),

(ii), (iii), we have

where = v#(x) is the solution of the problem (2.1).

Proof. - The proof is based on techniques used, for example in [23],
[1], [13], [6] in the case of equations and in [2], [5], [19] in the case of

variational inequalities. If u - 0 (2.4) is trivial, so we will suppose that
u is not identically 0. Taking h > 0 and t E [0, sup u[, we choose as test
function in (1.2) U where

We have

and by (i), (ii), (iii), letting h go to 0, we obtain

Isoperimetric inequality [ 11 ], Fleming-Rishel formula [ 14], and Schwartz

inequality give (see also [1], [23])

We evaluate the first term on the right hand side of (2.6) using Höelder

VoL12,n°~1995.



584 M. R. POSTERARO

inequality and (2.7); we have

Since Hardy inequality gives

by (2.6), we have

Now we put

and then (2.9) becomes

for a.e. s E > 0~~. With standard tools (see for example [1], [2],
[25]) we obtain

Annales de l’Institut Henri Poincaré - Analyse non linéaire



585ESTIMATES FOR SOLUTIONS OF NONLINEAR VARIATIONAL INEQUALITIES

Using the definition of cp(t), by (2.7) (see [25]) we have

and then, by (2.10), we get

Now we consider the solution = v#(x) of the problem (2.1). By
theorem 2.1 setting s = we have

Now we will prove that

Clearly, because of (2.11) and (2.12), (2.13) holds in [0, min{|u > 0|, Iv >
0|} [. We will show that lu > 0| ~ |v > 0|. If |v > 0| = |03A9| there is nothing
to prove. If |v > 01  we suppose ab absurdo that |u > 0| > |v > 0|.
If lu > 01 > s > 0~, setting

by (2.11 ) we have
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By theorem 2.1 we 0~) = 0, that is

Moreover since f*(s) is decreasing

holds and then (2.14), (2.15), (2.16) give (-u*~ (s))’’-1  0 that is absurd.

Thus we have lu > 0~  ~v > 01 and integrating (2.13) between sand
~ v, > 0 ~ we obtain

that implies (2.4)..

The comparison result just proved gives an optimal upper bound for the
measure of the set {x E SZ : u( x) > 0~ or, that is the same, an optimal
lower bound for the measure of the coincidence set of u. In fact theorems

2.1 and 2.2 give the following

THEOREM 2.3. - and v(:c) are solutions respectively of problems
(1.2) and (2.1) we have

More precisely

otherwise v > 0 ( is the unique solution of the equation

Techniques used to obtain the pointwise comparison between the solutions
of the variational inequalities (1.2) and (2.1) allow us to establish a

comparison between the LP-norm of the gradients of u and v.
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THEOREM 2.4. - Under the same hypotheses of theorem 2.1, if u and v are

solutions of the problems (1.2) and (2.1) we have

Proof. - Starting from (2.10) we obtain

As we have already seen (see proposition 2.1) we have

then, using (2.7) we get

Now, integrating between 0 and +00 we have

By proposition 2.1 it is easy to show that the right hand side of this

inequality 
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3. A PRIORI ESTIMATES

The comparison theorems establish an optimal upper bound for the LP-
norm and the of a solution of the variational inequality (1.2) in
terms of the norms of the solution of a suitable variational inequality. Now
we will give these a priori estimates in terms of the norm of f in suitable
Lorentz spaces (see also [24], [6], [12]). To this aim let us introduce the
Lorentz spaces. Let cp be a measurable function; for 1  p  oo, we put:

We say that cp belongs to the Lorentz space L (p, q) if  oo. It is

well known that L(p, q), 1  q  oo, with this norm, is a Banach space.
An important property of Lorentz spaces is that they are "intermediate"
between LP spaces. More precisely, L(p, p) coincides with LP (S~) and, for
1  p  oo and 0  q  oo, the following inclusions hold:

Moreover we will denote by L(1, q), 0  q  ~, the space of function

cp E L1 (0) such that

For an exaustive treatment of Lorentz spaces we refer to [7]. Finally we
recall a result wich will be useful in the following (see [ 15]).

PROPOSITION 3.1. - Suppose that q > 1 and K(s, t) is non-negative and
homogeneus of degree -1 and

Then

If K(s, t) is positive, there is inequality unless f = 0.
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Now we can prove the estimate for the norm of the solution u of the

problem (1.2) in Wo’P(S2).
THEOREM 3.1. - If u is a weak solution of variational inequality (l.l) with

conditions (i), (ii), (iii), f+ = max{ f (x), 0} E if p ~ n

and f+ E L1(S2) if p > n the following estimate holds

where

Proof. - In theorem 2.4 we have obtained

and then, defining C as in (3.2),

which gives (3.1)..

The following theorems give a priori estimates for the Lq-norm of the
solution of the problem (1.2).

Vol. 12, n° 5-1995.
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THEOREM 3.2. - If is solution of (1.2) with conditions (i), (ii), (iii)

and f+ E L C n , 1 1 J with p  n then the following estimate holdsp P

where

Proof - We start from (2.13). Using (2.12) and defining C1 as in (3.3),
we have

Then, integrating between 0 and |u > 01 we get

and then the assert..

THEOREM 3.3. - If u is solution of variational inequality ( 1.1 ) with

conditions (i), (ii), (iii) and Cl (n, p, B, is defined as in (3.3) we have

where p  n, np’ n+p’ ~ r  n p, q = nr(p-1) n-rp.
Proof. - By theorem 2.2 we where v is solution of

(2.1). Then, using (2.12) and defining 01 (n, p, B, as in (3.3), we have
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then, using proposition 3.1 with K(s, t) = 1 we obtain

where

Then by (3.5), (3.4) easily follows..

Proceeding as in the theorem 3.3 we can obtain also estimates of the
norm of u in Lorentz spaces (see also [24], [6]).

4. AN EXISTENCE RESULT

In this section we will use the a priori estimate obtained in § 2 to obtain
an existence result for the variational inequality (1.2).

THEOREM 4.1. - Let hypotheses (i), (ii), (iii) be satisfied and let the
following conditions hold

If f+ E L n np~ ~ , p , ’ if p ~  n, and f+ E L ( SZ ) if p > n, then a~- p ~ 
function u E Wo ’p ( SZ ) solution of ( 1.2) exists.
We remark that the condition (vi) on b is given just to guarantee that the

formulation of the problem (1.2) makes sense.

Proof. - We consider the operator Lu = Au + H + g defined as in ( 1.1 ).
We will prove that it is pseudomonotone (see [ 16] for p  n, b  p* - 1 ).
We take a sequence u~ weakly convergent to u in Wo’p(SZ) and we suppose
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Firstly we observe that by Rellich-Kondrachov theorem there exists a

subsequence (still indicated with u~) such that

Moreover, since g(x, u) is a Caratheodory function,

If A C H by (v), if p  n, we have, Vv E 

and then Vitali theorem gives

Moreover (vi) and Fatou lemma give

and then by (4.1)

Since the operator Au + H is pseudomonotone (see [16]), we have

This means that (4.2) and (4.3) gives

that is the pseudomonotonicity of Lu.
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Now, following classical tecniques, we consider the problem

where e Wo ’P ( St ) : ~ ~ v ~ ( y1,1 ~ ~  > 0 ~ . We have that E~ is
bounded, closed and convex, then (see [16], Th. 8. l, p. 245) there exists
a function u~ G Ejb that is solution of the problem (4.4). Moreover the
function U where

is in Ek. This means that we can repeat the proof of theorem 3.1 to get
that the functions u~ are bounded in uniformly with respect to
k, therefore we can find k such that  k. Then, arguing as in

[21] (see theorem 2.5) we can say that u~ is solution of (1.2). In fact
0. Moreover for all v E Wo ’P ( SZ ) , v > 0, there exist a function

wEEk and c > 0 such that

Therefore from (4.4)

5. EXTENSIONS

In this section we will show that the results of the previous sections
can be obtained also if in the variational inequality (1.2) we substitute the
hypotheses (ii) with the hypotheses

We consider a function B(s) such that

Vol. 12, n ° 5-1995.
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According with a lemma in [3] the function BP(s) is weak limit of functions
which have the same rearrangement of Moreover let v(x) be the
solution of the variational inequality

with B(x) defined as in (5.1). Arguing as in theorem 2.1 it is possible
to prove that this problem has a unique spherically symmetric solution

= v#(x). Moreover the following theorem holds
THEOREM 5.1. - If u is solution of the problem (1.2) with conditions (i),

(ii’), (iii), we have

and

where v(x) = v#(x) is the solution of the problem (5.2).
Remark. - We observe that in this case the "symmetrized" problem

depends not only on the data of the problem ( 1.2), but also on its solution
u(x).

Proof - Proceeding as in the proof of theorem 2.1 and using the function
B ( s ) defined in (5.1 ), instead of (2.8) we obtain
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Arguing as in theorems 2.2 and 2.4 we obtain the desired result. *

As far as the a priori estimates concern, using the function B (s) defined
in (5.1), we can obtain results analogous to theorem 3.1 and 3.2. For

example we get the following

THEOREM 5.2. - If u is a weak solution of variational inequality (1.1) with

conditions (i), (ii’), (iii), f+ = E L(np’ n+p’,p’)
and f+ E Ll (52) if p > n the following estimate holds

where

Proof. - By the previous comparison theorem we have obtained

and then Hoelder inequality gives

Vol. 12, n° 5-1995.
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Using theorem 5.2 and proceeding as in theorem 4.1 also the existence
result can be stated

THEOREM 5.3. - Let hypotheses (i), (ii’), (iii), (iv), (v),(vi) be satisfied.

If f E L if p  n, and f E L 1 ( SZ ) if p > n, then a function
n -~ p’

u E solution of (1.2) exists.
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