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ABSTRACT. - Here we establish some connection between solutions of

Ginzburg-Landau equations and critical points of the renormalized energy
Wg introduced in the recent works of Bethuel-Brezis and Helein. In

particular, local nondegenerate minimums of Wg have their associated
solutions of GL-equations.

On etablit une relation entre les solutions de l’équation
de Ginzburg-Landau et les points critiques de l’énergie renormalisée

Wg introduite dans les travaux recents de Bethuel-Brezis et Helein. En
particulier, tout minimum local non degenere de Wg est associ~ ~ une
famille de solutions des equations de G-L.

1. INTRODUCTION

The aim of this article is to establish some connection between
the solutions of Ginzburg-Landau Equations and critical points of the
renormalized energy introduced in the recent work of Bethuel-Brezis-Helein
[BBH]. We shall use the following Ginzburg-Landau heat flow as a basic
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in proving such connections

Here 11 is a two-dimensional, smooth, bounded domain, E is a positive
parameter, u : 03A9 ~ R2, 9 : ~03A9 ~ R2 is smooth and |g| = 1. We also
assume that uo(x) = g(x) on ~SZ and 1. The motion of vortices
of solutions u of (1.1)-(1.3) will be our main concern. Based on formal
asymptotics, various authors have arrived at the same conclusion that

vortices move in the time scale of size see e.g., [N], [E], and [PR].
Under some special assumptions, it was shown in [RS] that it will take
at least time for a vortex to move a distance 1. On the other

hand, for the steady state solutions UE (x) of ( 1.1 )-( 1.2) that is, the critical
points of the functional

with = g, a complete characterization of asymptotic behavior (as
E -~ 0+) for vortices of uE is given in the recent book [BBH].

Let us recall one of the main results shown in [BBH] under the additional
hypothesis that SZ is star-shaped. (Cf also [St] when SZ is not star-shaped.)
THEOREM [BBH]. - Let SZ, g be as above and let uEn be a

sequence of steady state solutions of ( 1.1 )-( 1.2) (with E = En).
Then there is a subsequence such that --~ u* (x) in

a2, ..., a~~), I~  g). Here u*(x) is given by

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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and

For conveniences, we shall always assume d > 0.
If, in the addition, that are minimizers of (1.4), then in the above

formula for u*,1~ = d, dj = 1, for j = l, ... , l~. Moreover, the point
a = (al , ... , ad ) E SZd is a global minimum point of the renormalized

energy Wg(b) defined on SZd where for b = (b1, ... , 

and lF is the solution of

a

R is given by

From the above theorem, it is then natural to ask if there is a relation

between the critical points of the function (1.4) and those of the renormalized
energy Wg(b), cf the open problems in [BBH]. For this we have the
following result.

THEOREM A. - Let a = (al, ... , ad) E 03A9d be a non-degenerate local
minimum point for the renormalized energy Wg. Then there is a family
ue, 0  E  EO, of steady state solutions of ( 1.1 )-( 1.2) such that

where

and u* = g on aSZ.

Vol. 12, nO 5-1995.
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Here we say a = ( a 1, ... , ad ~ is a nondegenerate local minimum of Wg if

is positive definite. In fact, we shall prove a somewhat more general result in
which the hypothesis being positive definite may be relaxed a bit.
The strategy of proving the above theorem is, for all sufficiently small

e, to construct suitable initial data and then solve ( 1. I )-( 1.3) with

u(x, 0) = ua(x). Let us denote uE(x) the asymptotic limit of u(x, t) as
t 2014~ oo, then is the desired family for 0  E  Eo. The key point
in verifying the later statement is to control the locations of vortices of
u(x, t) for all t E (0, oo). In general, we let t) to denote the solution
of (1.1)-(1.3). We consider the following two limits.

and

For the initial data used in the proof of Theorem A, these two limits turn
out to be the same. However, it is not the case for general initial data. In
fact, these two limits may be characterized by the following.

THEOREM B.

(i) The lim t) = uE (x) exists, and is a steady state solution

of ( l..1 )-( 1.2}.
(it) lim (x) exists (up to subsequences). Moreover, these limits are those

u*(x) of form given in (1.5). If we choose the initial data uo (x) suitably,
then k = d, and dj = l, for j = 1, 2, ... , d, in the formula (1.5). The

singular points ..., ad are so that the point a = (al, ..., ad) is a critical
point of ~~,.

(iii) By choosing properly, one has lim uE (x, t) - uo(x), and
uo(x) is of form

with 0 in Q. Here b = (b1, ... , bd) can be an arbitrary point
(depending on u~~ of S~d such that bi ~ bj , for i ~ ,~.
The paper is written as follows. In the next section we shall start the proof

of Theorem B and we shall establish various preliminary facts. Theorem A

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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is proved in Section 3. Some of the arguments are employed to verify
one statement needed in proving Theorem B, part (iii). This and some

generalizations of Theorem A are discussed in the final section. Moreover,
we shall also show the existence of mountain-pass type critical points of
(1.4) whenever the renormalized energy Wg has a critical point of the
mountain-pass type.

2. PROOF OF THEOREM B

Under the forementioned hypothesis on SZ, and the global existence
of a unique classical solution for ( 1.1 )-( 1.3) follows from the
standard parabolic theory, cf [LSU]. Moreover, the solution t) satisfies

(2.1) implies, in particular, that

Therefore, there is a sequence ~tn ~, tn --> oo, such that 

converges, say in norm, to a steady state solution uE (x) of ( 1. ~ )~( 1.2).
It follows from a deep theorem of L. Simon [S] that converges
to as t --~ oo by the analyticity of 1)~. This proves (i).
The statement (ii) was proved in [BBH, Chapter 2], In order to have

k = d, 1, j - 1, 2, ..., d in (1.5), it suffices to construct the initial

data so that 03C0d log + Co, for some constant Co.
Indeed, in such a case, one also has Trdlog - + Co. The fact
that k = d, and each dj is 1 for j = 1,..., d, follows from the arguments
in [St] or [BBH]. To show (iii), we let b1,... , bd be arbitrary d.distinct
points in S2, and let uo(x) be a function as w(x) in the proof of [BBH,
Lemma VIII. I]. That is, uo(x) = g(x) on and for some p > 0,

where

For the definition of 7(e,p), see (3.4) below (cf [BBH]).

Vol, 12, nO 5.1995.
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In particular, as E - 0 and p --~ 0, one has

Here = 0 in 52. Let t) be the solution of (1.1)-(1.3) with the
initial data ~,o(x) as above. Then we have the following estimates,

Whose ~(~) in (2.5) should be chosen suitably, and here all the constants
may depend on g and S2 but they are independent of E.
The estimates (2.4) follow from the energy identity (2.1), the choice

of uo(x) (so that (2.2) is true) and the lower energy bound discovered
in [BBH]. In the estimates (2.5), ~ can be any of the following
functions, for xo E S2~{bl, ... , bd}, let 2r = = min 

and § E with § * 1 on BT~2(x). In fact,

where C(~) is simply (2.5) then follows from (2.6) by a
simple integration and by using the estimate (2.4).
From (2.4) and (2.5), we obtain, for all 0  E  1, that

for any 8 > 0, T E (0, oo ) .
Annales de l’Institut Henri Poincaré - Analyse non linéaire
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We can now prove (1.10). First we observe that

Since (2.4), (2.7), we see, for any sequence En 1 0, there is a

subsequence (still denoted by En) so that t) -~ uo(x, t) weakly
in Hlo ~ ( S~ I ~ b 1, b2 , ... , bd ) x R+) and strongly in x R+). The later
is because that 1. Moreover, = 1 a.e. in 03A9 x R+. We
deduce from (2.8) and (1.1)-(1.3) that

Note that uo(x, t) is smooth in SZ/ ~bl , ... , bd ~ x R+. Indeed, by
(2.4), (2.7), one may deduce that, for any t > 0,0  p 

po, deg(uo(. , t), = 1, for all j = 1, ... , d. Hence, we may write
a _

It is then clear that t) satisfies the heat equation (1.10) away from

{bl, ... , bd} x R+, and thus uo is smooth in St/{bl, ... bd} x R+. Next,
we observe that

Here 0  R  pi = min{po, 1~. Since

Vol. 12, n° 5-1995.
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where = 2 ~VuE~2 + 4~2 (1 - ~uEl2)2 and v is the exterior unit normal
vector of dBR(bj), we conclude from (2.11) that

Here we have used the fact Ix - Ix - bjl ] as R  1. By Fubini’s
Theorem, (2.7) and (2.13), we deduce, for each j = 1,2,..., d, that

Here R E [pl/2, pl~ is chosen so that

Next we choose a small 6 > 0 (its precise value will be determined
later, see also discussion in the next section). Then there is t > ~ab so that

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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whenever 0  t  to, the set ~~ E (2 : contained in

x ~0, to). This follows from the small energy regularity theorems
in [CS], [CL] and our energy estimates.

In the final section we should use arguments in the next section and
estimates (2.4), (2.7) to show t) - ho (x). The conclusion (1.10) then
follows.

Remark. - It will be interesting to investigate also the case that ho(x)
is not harmonic in Q.

3. PROOF OF THEOREM A

We first consider the case that a = (al, ..., ad) is a global nondegenerate
minimum point for W~ defined on S2d. Hence, in particular, one has

By [BBH, Lemma VIII. I] and its proof, there is some po > 0 (depending
only on a and f2) such that, for every 0  p  po and every E > 0, one
may find some defined on f2 with Wf = 9 on aSZ and

On the other hand, Lemma VIII 2 of [BBH] shows that

In inequalities (3.2) and (3.3), the quantity I(E, p) is defined by

Vol. 12, n° 5 -1995 .
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Next, we consider the heat-flow (1.1)-(1.3) with the initial data given
by Let us denote the solution of (1.1)-(1.3) by t). Then the
following estimates hold:

Here the number p is suitably small but fixed, 0  e  e(p). The first
estimate (I) follows easily from (3.2) and (3.3). The second estimate (II)
can be easily obtained by consider the function u~(~x, ~2t) and the usual
parabolic estimates. Of course, the initial data w~(x) should be chosen
properly so that the estimate (II) will be valid for 0  t  e. This can
be done and we leave it to the reader. In fact, from discussions in the
previous section, we shall use (II) only for those t > to (for some to
depending on 60).
We let 6 = £ min{03B40, ]aj - az ] , I # j, I, j = I, ... , d) and let T~ > 0

be the first time that the set z e Q : T~)| ~ 1 2} interests the set
U 885 (a j ) . Suppose such time T~ does not exist, then the time asymptotic
j=i
limit u~ (z) = lim u~ (z, t) will posses the property that the set

If (3.5) is true for all sufficiently small E E (o, Eo), Eo  E(p), then we
are done. In fact, from the Theorem [BBH] stated in the introduction we
conclude that u* (x) = lim exists (up to subsequence). Moreover
each u*(x) is of form

for some

The last inequality follows from (3.5). By our assumption (3.1 ), we have
a = a and therefore the conclusion of Theorem A.

Annales de l’Institut Henri Poincaré - Analvse nnn linéaire
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Suppose now such time TE E (0, oo) exists, for a sufficiently small E. We
want to derive a contradiction from it. To avoid confusions that may arise

from the sizes of various constants, we point out the order of these constants

We assume, without loss of the generality, that n 

]  ~~~ ~. Then there is an xi E 52 such that

We choose x~j, j = 2, ... , d, so that ]zJ - 6 and T~)] ~ 1 2.
For each j, we may find aj e [a, 2a] , a = / , , such that16 + 1

where Bj = E(x) = TE), and C(a) is a constant
depending only on a, g and Q. The estimates (3.9) is an easy consequence
of the Fubini’s Theorem (3.2), and the energy estimate (I), see also [St].
Next, we let be such that it minimizes

d

with UE on Where OE = H/ U B j . Now we claim the
j=i

following two statements are true:

These two statements should be proved later. Suppose, for the moment,
that they are both true. Then, as E -~ 0, we may assume, by taking
subsequences if necessary, that

Vol. 12, n° 5-1995.
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Moreover, the corresponding subsequence of converges to !7(~) =

TI 
x - aj iH(x). 01,0; (O/{- -). h AH() 0 Th IC1,03B1loc(03A9/{a1, ..., ad) with 0394H(x) = 0. The later

statement follows easily from the assertions (3.10), (3.11).
In fact, for each .c e H~ we may find a disc D of radius ~, for some

/3 e [3~,4a], such that

(see (3.9)). Moreover, is a Lipschitz domain with Lipschitz

character independent of 6. n H,) = D,, the function 
minimizes the functional of form

and with boundary data gE on satisfying

Since > ~ on D D no one has also that

We write = on D,. Then it is clear that minimizes

and with E Thus, E LP(DE) for some

p a 2.
Then the function f E (x) = 1 - satisfies

in De with 0  fe  1 1  c x  4, and x E for some

q > 1. Moreover, on cE 4 , by (3.12). Therefore, elliptic estimates
yield f~ ~ c~1 4 + 
We now write on OE as

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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with 1 - cE 4 -   1. Let be such that e2°E (~) _
d 

x-x~fl 
~ - E , then OE is a multivalued harmonic function in and hE (x)

a -
minimizes the integral

We want to show c  oo. It then follows that

V hE E some p > 2. The convergence of icE to u( x) follows
easily as in [BBH, Chapter VI].
To show / c, we first choose a function on He

such that he(x) EE 0 on 2Bj) where 03A9~ = Bj, and 2Bj

is the double of Bj (with the same center), j = l, ... , d. Moreover,

|~~|2 ~ c(a, g), c(a, g). The later can be achieved due to the

conformal invariant of the Dirichlet integral and the fact that

Therefore, by minimality, one has

Next we wish to show and are uniformly
bounded. If we show this, then we deduce from the above inequality * and
the estimate 1 - c~1 4 - c~q-1 that

where we noticed that ~CJ ~ (x) ( 1 - c(E 8 + Eq-1-a) and we may
assume ~  ~ -- 1.

Vol. 12, n° 5-1995.



612 FANG HUA LIN

Finally, since OE is harmonic in S2E, one has

As we may always assume is bounded (depending only on g) the
last term in the above equation is clearly bounded.

Next, for each j, we write Qe(~) == ~j(~) + ~(~) is the argument
of (x - ~). Then, since 20142014 = 0 on and is harmonic inside

Bj, we have Y

where /~ is the average of /~ on 8Bj.
Now, via the fact that osc /~ on 9~ is uniformal bounded, we see each

/ -+ 0 as e -+ 0. This completes the proof of our statement
~

that /  

It then also follows from the definition of Wg in [BBH], that

- --v ,-, - 
-

Here o( 1 ) - 0 as e - 0, and p  6 is a fixed constant. Finally, to complete
our arguments, we look at the comparison map [(x),

Then, on the one hand, we have

and, on the other hand

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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By the convergence of UE to U(x) and by the definition of I(e, p), we see
the last term on the right hand side of (3.16) is larger than d7(6, p) + 0(p),
That is

We observe that  60, thus (3.1) yields 
for some C > 0.

(3.16) and (3.17) lead to a contradiction if we choose p is much small
than 62 to start with. This proves Theorem A, in the case a is a global
nondegenerate minimum point for Wg, modulo the statements (3.10) and
(3.11).

Remark. - Under the assumption (3.1), we first choose 6 =

~ j}. Then we fix p « 62 so that various 0(p)

terms can be bounded by 03BB0 4d|a-a|2. Finally we choose Eo  E(p) to make
all of the arguments go through.

Remark. - The assumption that a is a global minimum point of Wg is
used only to conclude (3.10) and (3.11). When a is a local nondegenerate
minimum point, we should introduce another argument to obtain the similar
statements as (3.10) and (3.11).

Proof of (3.10) and (3.11).
We start with the following lemmas.

LEMMA 1. - Let u be a minimizer of the functional

in the unit disc B with u = g on 88. Suppose that

for a constant Cl. Then, for all sufficiently small E > 0 (depending only
on Cl ) we have

whenever deg(g, d B) = 0, and

if deg(g, aB) - d ,~ 0.

Vol. 12, n ° 5-1995.
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Proof - From (3.18) one easily deduces that g E C 1 ~ 2 ( o~B ) and
> 1 - CE1~4 on aB, for a constant C depending on Cl. In particular,

the deg(g, is well-defined. In the case deg(g, aB) = 0, we may write
= on ~B. Let 03C8* be the harmonic extension of 03C8 into B,

and p* (r, 9) _ 1 on B1_E, p* (r, 0) is linear in r E ~l - E,1~ for each 8.
Then let U* = we have

This is (3.19). The estimate (3.20) is much hard to prove but it can be

found in [BBH].

LEMMA 2. - With the same hypothesis as Lemma 1, and suppose

deg(g, aB) = 0 Then > 4 in B whenever 0  E  ~1, for some El.

Proof - Suppose not, we would have a sequence E~ J 0, and a sequence
of minimizers uf~ = u~ with boundary data gn satisfying (3.18) and

= 0. Moreover, inf|un|  (.
Since |gn| ~ 1, C, We see > 4 whenever

C0~n, for some Co. Indeed, the function = satisfies

Vn(y)~  y~1~2 whenever 1 and x, y _ 

6n

and (b)|~Vn(x)| ~ R for R E (0,1) and ~ 1 ~n- R. Both (a) and (b)

follow from the standard elliptic estimates.

Hence, if  ~, then there is a ball {x : ~~~  C B,

for some r~ > 0 with ]  5 for all x,  Therefore

By Lemma I, E~n (un)  E~n (U§)  C2. Since gn - g = e" wealy
in H’(88), converges to where u/* is the

harmonic extension of u/. Thus limE~n (U§) ~ 1 2 /B ]Vy/J* |2dx. On the
other hand, un - u weakly in H’(B) with u = g on 88 and ]u] = I
a.e. in B. We have

~~~~ ~ ~~l~~ ~ ~ ~~~~ ~ ~ ~B ~ ~~~ ~~
Annales de l ’Institut Henri Poincaré - .. Analyse non linéaire
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We therefore obtain a contradiction.

Remark. - Both lemma 1 and lemma 2 remain true when we replace B
by a bounded Lipschitz domain.
To prove (3.10) and (3.11 ), we first show = 1, for

j = 1, 2, ... d. Indeed, 1, for j = 1 , 2 , ... , d, for
otherwise we may replace VE in one of the ball Bj by a new map ~
that minimizes the E~( ) on Bj and V on 8Bj. Since 

and since |~V~| [  2014? we conclude as in the Lemma 2 that

for some Co > 0 (see (3.21)). This will contradict the fact that (3.2), (3.3)
and the estimate (I).
By (3.20), we have

(by our choice of 03B1j) ~ 7r(c! - -)log- + 0(1). This combined with
(3.2) implies each = 1. Next, we want to show (3.10).
If for some ~ e ~J~e~e)) ~ -~ then there are two possibilities:
either 6~ or  In the first case,
we find a ball D around ~ of radius e (3~,4~) such that the
similar estimate as (3.9) is true. Then if = 0, we obtain a
contradiction from Lemma 2 and the fact that ~ is already a minimizer
on D. If 0, then the energy of ~ on D will be larger than
7r(l - 4a) log 1 ~ + 0(1). This contradicts the fact that the total energy of
~ on ~ is not larger 0(1). In the second case, may
find a point ~ E [  We again find a ball D around ~
Vol. 12, nO 5-1995.
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of radius ~03B2, for some {3 that

Since the domain 1 ~03B2(D ~ 03A9~) is clearly a bounded Lipschitz domain as
~~ , we apply Lemma 1 and Lemma 2 again to obtain a contradiction

as in the first case. We have therefore completed the proof of Theorem A
under the assumption that a is also a global minimum point.
We turn now to the case that a is only a nondegenerate minimum point.

We need to modify the part showing the statements (3.20) and (3.11). The

key point is that we may not have

Indeed, if we have (3.22), then above arguments apply to conclude that

U E~ x )~ - > 1 2 on H, and by (3.2), we must have 1, for

j = 1,2,..., d. Here one notices also that, since

Then as deg(i§ 8Bj) = 1, and e 03A9~, we may apply the

same arguments as before to obtain
2

where E  Eo. Here ‘a~ - all [ - b, 8. (cf. (3.15), (3.16) and

(3.17)). (3.23) will contradict to (3.1) whenever p is much smaller than b2

and E is sufficiently small.
Therefore, (3.22) can not be true for all j. Note that by our choice of TE,

we have == 1, for j = 1, 2, ... , d.
From now on, the first ball BI with center lies at distance 8 form ai

will be no longer used. We may assume, without loss of the generality, that

deg(V~,~B1) = 0. We then change V~ inside Bl by a minimizer of 
with the same boundary value as Since the estimate (II), Lemma 2,

(3.21) we see the energy of the new map (which is VE outside Bi and is the

minimizer inside B1), which we call V ‘, will satisfy EE ( V’ )  EE ( V~E ) - Co,

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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for some positive constant Co. We then pick up another point, say inside

such that |V’~(x1)| ~ 1 2. Note Bi, as |V’~| ~ 3 4 on B . We
repeat the same procedure for V’ as for VE, i.e., we choose a suitable ball

centered at and of radius ~3 E ( a, 2a ) such that the corresponding
inequality (3.9) is valid. We call this ball Di, suppose 0,
we stop. Otherwise we claim that we may replace V’ inside Di by a
minimizer with the same boundary value as Y’ on ~D1 and such that the
energy will again drop by at least Co. To see this, it suffices to observe

that VE (xl ) = and, by (II), there is a ball of size ^-_’ E on which

 3 . This ball will not interest any point y for which |V’~(y)| ~ 3 4.
In particular it will not interest the first ball B1. Then we apply Lemma 2,
(3.21) to conclude the energy dropping fact. We repeat this process, and after
a finite number of steps, we arrive at a ball DNl with 0.

Note the centers of all these balls Dj are required to lie in side 
We apply the same procedure to each = 2,... d. Eventually, we
find d-balls which we still call Bi,... Bd and a new map V~ as before
with ~Bj) = 1, j = 1, 2, ... , d, and co, for a

definite constant co > 0.

We go back to the estimates (3.15), (3.16), and (3.17) to obtain the

following: there is a point b , j = 1, ... , d, and
such that

By choosing /) ~ ~ « 1, (3.24) contradicts to the continuity of W~ at
a e This ends the proof of Theorem A.

4. FINAL REMARKS

Let a be a nondegenerate local minimum point for Wg, and let 
be as chosen in the previous section. In particular t~ satisfies (3.2). Then,
as a consequence of the proof of Theorem A, we see the solution t)
of (!.!)-(1.3) with = has the following property: The set

{(x,t) e H x R+ : ~ 1 2} is contained in x R+

whenever 6 is sufficiently small (depending only on 03B4, g, 03A9 and p in the
construction of we).

Vol. 12, n° 5-1995.
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Now we consider the case that the set K = {b E S2d : = 

is not isolated points. From the property of Wg, K is obvious a compact
set in S2d. We make the following assumption.

(4.1) The connected component Ka of K, which contains the point a
E nd, is a smooth k-dimensional manifold, 1  l~ ~ 2d - 1. Moreover, for
each point b E Ka, has (n - k)-positive eigenvalues.
From (4.1), we immediately see each b E Ka is a local minimum

of W~. Moreover, we have Ao = 0 is an eigenvalue of
V2Wg(b), b E is positive. Suppose wE (x) is chosen as before so that
(3.2) is valid. Then we conclude from the proof of Theorem A that the
solution t) of ( 1.1 )-( 1.~) with the initial condition 0) = 
has the property that the set

C I~a x R+ whenever E is sufficiently small. Here {x E

!1, dist (x, Ka)  b~. In particular, there is a point a* in Ka and a sequence
~ uE ~ of steady state solutions of ( 1.1 )-( 1.2) such that

for some harmonic function h in Q.

Open Problem. - Can every point b E Ka have the property (4.2)?
(Cf also [BBH, problem 6]).
On the other hand, one can follow the proof of Theorem A to show

the following.

COROLLARY. - Let K be a compact subset of and Ks = ~ b E
dist(b, K)  b~, b > 0.Suppose that b E ~I~s ~ >

b E K~. Then there is a family of steady state solutions
~ uE ~ , 0  E  Eo of ( 1.1 )-( 1.2) such that, for any sequence of
E~, ,~ 0, the sequence uEn (up to subsequences) converges to u* (x) -
d

fl a’ 
= 0 in S~, u* = g on for some a E .I~,~.

~=i 
x- aJ )

It is clear then = 0. Next we consider the critical points of
oon-pas type,
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We assume that

(H) there are two local minimum points a and b of W~ such that

where

Then, it is well-known (cf. [R]) that there is a E r- c and

0. For a, b E l1d as above, we can find two maps (as

for (3.2)) such that

Here E  E(p), P « 4 a~, Coi, Co = c - max{W9(a), 
We let r = ~~ E = where

We claim, for all sufficiently small E > 0, that

Suppose for the moment that (4.5) is true, then, as the functional EE ( ~ )
clearly satisfies the Palais-Smale condition (see [R]) and C1 on 
we conclude the following.

THEOREM C. - Suppose Wg has a mountain-pass critical point in SZd so
that (H) is valid. Then there is a family ~uE ~, 0  E  E° of critical points
of ( 1.4) of mountain-pass type.
To show (4.3), we let, E r, and assume, without loss of generality, that

and For any v E ~([o,1]), we solve
(1.1)-(1.3) with uo(x) = v(x). Denote v(x) - u(x, 1, v), where u(x, t, v)
is the solution of (1.1)-(1.3) with initial data v.
Then we find a new path connecting ua and ub as ua is connected to ua,

ub is connected to ub by the heat flow, and ua is connected to ub by the

path u(x, l, v), v E ~y([0,1]). We still denote this new path For any

s E [0,1], 03B3(s) will satisfies, in the addition, that for some

Vol. 12, n° 5-1995.
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constant Co. This follows from our choices of ub and the estimate (II).
In fact, Co will only depend on g and 52. It is also clear that max EE (u) on
this new path will be only smaller than on the original path.

Let Ka be the connected component of {b E Std : = 

containing a, and let Ka be the set {b E dist(b,  b}, 6 > 0.
By choosing 6 > 0 so small that we have Ka C S2~ and b E

ax~} > Wg(a) + for some > o.

Now we look at vortices of ry(s), s E [0, 1] . Let so be the minimum of
those s E [0,1] that there is a point x = (xl, ..., xd) E aKa with x1, ... xd

belonging to the E SZ : ~~y(so)(y)~  2 ~.
Then we claim EE(7(so)) - C(6) - 0(p) > C(8) > 0 for

all sufficiently small E, 0  E  eo  E(p), and p. Indeed, following the
constructions in the proof of Theorem A, we have either

or

for some definite constant co > 0 and some a E K. In either case, we have

(4.5). This completes the proof.

Complete the proof of Theorem B

Finally we wish to verify h(:c, t) = ho(x) which is needed in the

proof of Theorem B. For a fixed time t > 0, we look at the set

G(t) = {x E S2 : |u~(x,t)| ~ 1 2}. Since u~ -; weakly in

Hi~~(S2~{bl, ... , bd~ x R+) and strongly in L o~(S2~{bl, ... , bd} x R+). We
set that, for any 8 > 0, ~, and that 
1 for j = 1,...,d.

Let xj E n G(t), and choose a ball Bj of size J3  2a,
centered at ~~ so that the estimate similar to (3.9) is valid. We claim

t), = 1, for each j = l, ... , d. Otherwise, we simply follow
the same argument as in the proof of Theorem A (for the case of local

nondegenerate minimum) to obtain a new such that

for a definite positive constant Co. At the same time,
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for some b E Od with Ibj - 8. We note that (4.3), (4.4), and (2.2)
lead to a contradiction.
Thus we must have = 1 for all j = 1, ... d. Note

that the estimate (2.14) will further imply that xj - bj as E --~ 0, i.e.,

b = b in (4.4). 1
Similarly, we follow the previous arguments to obtain ~(~)~ ~ ~

d

on OE = 0/ U Bj. (For otherwise (4.4) will be true as it was shown in
j-=i

d

Section 3.) We write = on 0 with

] > 1. Note that is uniquely determined up to 203C0 (mod)

on each Since 03A9~ ~ 03A903B4 = 0/ U1=1 for any 8 > 0 whenever

e  f(8), we may rewrite t) as TT x - in SZs x [0, T].

We may also choose hE(x, t) so that it will be continuous in t in SZs x [0, T].
It is easy to see, for any 8 > 0, E  E(b), that

from our choice of the initial data. Since hE(x, 0) ~ ho(x) in H’(SZ) as
E - 0, we thus have t) - ho(x) for a.e. (x, t) E St x [0, T~.
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