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562 A. BAHRI AND P. H. RABINOWITZ

with V (t, ç) T-periodic in t and singular at § = 0. Under hypotheses on V
of 3-body type, we prove that the functional corresponding to (*) has an
unbounded sequence of critical points provided that the singularity of V
at 0 is strong enough.

Key 3-body problem; periodic solution; collision; generalized T-periodic solution.

1. INTRODUCTION

The study of time periodic solutions of the o-body problem is a classical
one. See e. g. [1]. Our goal in this paper is to present some new variational
approaches of a global nature to a class of problems of 3-body type. To
be more precise, consider the system:

Here l _>_ 3 and mi > o, 1  i _ 3, q = (ql, q2, q3), and V: F3 (R~) --~ R.
Here F~ (Rl) is the configuration space

Since our arguments are valid for any choice of 1 _ i __ 3, for

convenience we take mi =1, 1 _ i ~ 3 and write (1) more simply as:

Concerning V, we assume

where for each i, j the function Vi j satisfies
(V 1 ) Vi j (~~) E C2 (Rl B~ 0 ~, R),
(V2) V ij (x) ~ ~~
(V3) V ij ( q) and Vi j (R’) -~ 0 as I q I --~ ~ ~
(V4) V~j (R’) ~ - ~ as q -~ 0,
(V 5) For all M>0, there is an R > 0 such that implies

(V6) There exists R) such that as q - 0

Note that potentials like
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563HAMILTONIAN SYSTEMS OF 3-BODY TYPE

where and are positive satisfy (V1) - (VS). Moreover (V6) is satisfied
if ~i~~ >_ 2 for all i, j. For the classical 3-body problem, we have l,
1 _i~j_3.
The significance of hypothesis (V6) can be seen when (HS) is posed as

a variational problem. First we choose T > 0 and seek T-periodic solutions
of (HS). Let (R1)3), the Hilbert space of T-periodic maps
from R into (Rl)3 under the norm:

where

The functional corresponding to (HS) is

If V satisfies (V1) - (V6), then, as will be shown in paragraph 2, if
T (q)  oo , q e A where

Critical points of I in A are then easily seen to be classical solutions of
(HS).
Our main result is:

THEOREM 1. - If V sarisfies (V1) - (V6), then for each T > 0 , I possesses
an unbounded sequence of critical values.

As will be seen later in the proof of Theorem 1, no explicit use was
made of the fact that V is independent of t. Thus we also get the following
result:

THEOREM 1’~ - Suppose V = V (t, q): R X F 3 (R1) - R is T periodic in t
and otherwise satisfies (V1) - (V6). Then the functional

has an unbounded sequence of critical values which correspond to T

periodic solutions of

If (V6) does not hold, it is possible that I (q)  oo for q E E but qi (t) == qj (t)
for some i ~ j and T]. We refer to this possibility as a collision. When
collisions are possible, critical points of I need not be classical solutions
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564 A. BAHRI AND P. H. RABINOWITZ

of (HS) and a notion of a generalized solution of (HS) is needed. Following
a related situation in [2], we say q E E is a generalized T-periodic solution
of (HS) if:

(i. e. energy is conserved on the set on which it is defined).
Theorem 1, together with some of the ingredients in its proof and ideas

from [2] yields

THEOREM 2. - If V satisfies each T > o, (HS) possesses
a generalized T-periodic solution.

There is also an analogue of Theorem 2 for the case in which V = V (i, q)
and is T-periodic in t.

Our approach to (HS) is via the calculus of variations. A few recent

papers ([3]-[6]) have used variational methods to treat singular Hamiltonian
systems but for potential energy terms which have a milder singularity
than (2). E. g. ([3]-[6]) study (HS) for V’s having a point singularity like
V (q) = W ( ~ q ~ ) where W (s) _ - s ~ ~. More generally they treat V’s having
a compact set of singularities. They also have restrictions on the behavior
of V near the singular set like (V6). Under such hypotheses, the functional
correspondaing to I satisfies some version of the Palais-Smale condi-

tion - (PS) for short - and this fact plays an important role in the associ-
ated existence arguments. In work in progress, Coti-Zelati is studying a
class of time independent potentials of n body type ynder a symmetry
condition (~) = (~)). This symmetry and a clever observation allow
him to work in a restricted class of functions where (PS) holds. However,
in the current setting, under (V 1 ) - (V6) the functional defined by (2) and
(4) does not satisfy (PS) even after eliminating a translational symmetry
inherent in the form of (2). Roughly speaking, what goes wrong with (PS)
is that a sequence (qj) c E with I (qj) --~ c and I’ (qj) -~ 0 may "approach"
the triple (q1, q2, "oo") which is a solution of the two body problem
associated with (HS) by dropping all terms involving q3.
To briefly outline the remainder of this paper, the breakdown of (PS)

will be studied in a precise way in paragraph 2. Invariance properties of I
and the behavior of level sets of I, in particular of 
for small 8 will also be examined. A novel kind of Morse Lemma for

neighborhoods of infinity will be given in paragraph 3. This lemma combi-
ned with the results of paragraph 2 gives (modulo translations) a priori
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bounds for critical points of I, the bounds depending on the corresponding
critical values. In paragraph 4, it will be shown that I can be approximated
by a functional I with nondegenerate critical points (modulo translations)
and possessing other nice properties.
The proof of Theorem 1 will be carried out in paragraph 5 by means

of an indirect argument in which I is replaced by I. A key role in the
proof is played by a notion of critical points at infinity, corresponding to
limit two body problems arising from the breakdown of (PS), together
with their unstable manifolds. As will be shown in paragraphs 7-8, I" can
be retracted by deformation to IE1 U ~M U ~M where ~M is the union of
all unstable manifolds of critical points of I in 1 and similar
set for critical points of the limit 2-body problems at infinity. This enables
us to exploit the difference in topology as measured by rational homology
between A and its two body analogue. In paragraph 6 we prove
Theorem 2. Lastly in paragraph 9 under certain assumptions of nonde-
generacy of critical points (up to translations), we obtain Morse type
inequalities for critical points (Theorem 3). One consequence of these
inequalities, which will be pursued elsewhere, is that they enable us to
conclude that in certain situations, e. g. for simple potentials where one
has central configurations [satisfying (V~)] that the family of periodic
solutions we find is much larger than the known family of solutions.
Moreover, using these inequalities and ideas which can be found in

Klingenberg [18] and Ekeland [19], under generic conditions one can
establish the existence of either an elliptic orbit or infinitely many hyper-
bolic orbits on a given energy surface (see A. Bahri, B. M. D’Onofrio
[20]). If we drop (V6), these inequalities do not hold per se. However
under additional assumptions on V, one can show there are at most

finitely many collisions. This fact can be used to prove an analogue of
Theorem 3 when collisions can occur and likewise leads to applications
such as those just mentioned. These matters will also be pursued elsewhere.
We are grateful to E. Fadell and S. Husseini for helpful comments on

the proof of Theorem 1 and likewise to J. Robbin concerning the results
of paragraph 7.

2. SOME ANALYTIC PRELIMINARIES

In this section, several of the properties of I will be studied, especially
the breakdown of the Palais-Smale condition. For simplicity here and in
the sequel we assume the period T == 1. To begin we will show that if q E E
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566 A. BAHRI AND P. H. RABINOWITZ

anu  ~, then q E n. More precisely, we have:

PROPOSITION 2. 1. - Suppose V satisfies (V1), (V2), (V4) and (V6). Then
for any c > 0, there exists b = b (c) such that q E E and I (q)  c implies

. " , , , , , , -

Prooj. - Consider two distinct indices 1, 2, 3 ~. By (V2).

Since I (q)  oo, by (V4) there exists b 1= b 1 (c) > 0 and i E [o, 1 ] such that
I (c). It may be assumed that I = ~l for other-
wise the loop qi - qj remains outside a neighborhood of 0 of radius 61 (c)
and Proposition 2 . 1 is proved Observe that by (V2)

Using (V 2) and (V6), for any 6 E [o, 1],

Therefore

This last inequality together with (V 4) and (V6) implies the result.
Proposition 2. 1 allows us to seek critical points of I in A and thereby

exploit the topological structure of A. This will be done in paragraph 5.
The breaksown of (PS) will be studied in the next proposition. This will
lead us to define "critical points at infinity" and their "unstable manifolds"
in later sections.

PROPOSITION 2 . 2. - Let V satisfy (V 1) - (V 4) and (V6). Let (qk) c A be
a sequence such that I (qk) -~ c and I’ (qk) -~ 0. Then either

1° there exists a subsequence, again denoted by (qk) and a sequence
(Vk) c Rl such that q7 - Vk converges in i = 1, 2, 3, or

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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2° there exists a subsequence, again denoted by (qk), 1, 2, 3 ~, and
c R~ satisfying

a. I -~ °~, ~ ~ ~’k ~ ~L2 -~ 0, and 
b. if j, 2, 3 ~~~ i ~, converges in to a classical

solution of the two-body problem with potential Vjr + and as k - ~,

Remark 2. 3. - In fact we will show 1 2[qkj + qY] is a permissable cho-

ice for vk.

Proof of Proposition 2 . 2. - As in Proposition 2 . 1, the bounds on I (qk)
lead to bounds depending on c for ~ qk and

By Proposition 2 . 1, there is a ~ (2 c) > 0 such that

for all kEN, Te[0, 1] ] and The bounds on and standard

embedding theorems imply that converge along a subsequence -
which will still be denoted by weakly in E and strongly in L~ to q E A.
If for some r, j, [q~ - qk] ~ -~ oo,

in L°° via (V3). If [q~ - qr] is bounded, V~r (q~ - qY) converges via (V 1) and
(2 . 4). Thus V~r (q~ - q~) converges for all pairs r ~ j and

then implies qk converges in L2 to 4.
If [q~ - qY] ~ -~ oo for all 3 pairs of indices j ~ r, (2.5)-(2.6) show q == 0

and I (qk) -~ 0, a contradiction. Thus there is at least one pair of indices
such that [q~ - qY] is bounded. Without loss of generality we can

assume [q~ - qr] converges. Set

Then

converges in W 1 ° 2 as does q~ - vk. Let i E~ l, 2, 3 ~B~ j, r ~ . Either

(i ) ([q~ - is bounded, or (ii ) I -~ oo (along a subsequence). If

Vol. 8, n° 6-1991.
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(i ) holds, we way assume [qr ‘ qk] converges and therefore vk converges
in 2. This corresponds to case 1 ° of proposition 2. 2. If (ii ) occurs, by
(2 . 6), v’ ir qk), r V’ri(qki-qkr), V’ji(qkj-qkj), and V’ ij qk) j ~ 0 aS k ~ ~
since their arguments - oo uniformly in i as k - ~. Thus conver-

ges to 0 in W 1 i 2, i. ---~ 0 as k -~ and I -~ oo as k - oo .
This is precisely case 2° of Proposition 2. 2. The proof is complete.

COROLLARY 2 . 8. - Suppose q ~ A satisfies 0  u  I (q) _ b. Then there
exists ~0, co>O (independent of q), and indices j~r~{ 1, 2, 3}
such that if ‘f I’ 2  £o, then

Proof - This follows immediately from Proposition 2. 2.
For s > o, let

We now study IS for small s. ,

PROPOSITION 2 . 9. - Let V satisfy (Vl) - (VS). Then there exists an ~1 > 0
such that

(i) I’ (q) ~O for all q E I2 £1,
(ii ) For all ~, ? 1 and q E 

(iii ) For all 03BB~[1, 2) and 

(iv) there is an ~2  ~1 such that f 0  ~ ~ E2, IE 1 is homotopy equivalent
to the set

Proof - Without loss of generality, E 1  1. Since (q~,)~ = q~~ for all

03BB, ~1, if q~I~1 and

it easily follows that 1 for all ~, >_ 1. Hence (ii ) and also (i ) follow
from (2. 10). Now
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We rewrite each term in the V sum as

Since I (q) __ E1, by (V2) we have

Now (2.12)-(2.13) imply

Applying (VS), there exists a constant A such that

for I x ~A. Since 

For

by (V 1) and (V~), there is a Ti e[0, 1] such that

A~
Now (2.16) and (2.13) imply for s~ 2014=(Xi that

4

for all i E [o, 1]. Therefore if ~1  min (03B10, 03B11), we have

for all T =[(), 1]. Thus

and (2. 10), (ii ), and (i ) follow.
To prove (iii ), we need to calculate the derivative of for each À.

Using the fact that exp (~, - 2) -1 1 and (~, - 2) - 2 exp (~, - 2) -1 1 are bounded
for ~, E [ 1, 2), uniformly in À, the proofs is essentially the same as for (ii )
and will be omitted.

Vol. 8, n° 6-1991.
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Lastly we turn to the proof of (iv). Let

Using (iii), we can define a homotopy between I£1 and B via

1 ne contmuty of this retraction is clear. Observe now that by (V 1 ) and
(V3), for E small enough, e. g. E  si, the set

., ~. __.

is contained in B. Also indeed if b = 2 [c~],
then Now (V 1 ), (V2), and together with the fact that

for all bEB [which is a consequence of (iii)] imply that
cpb (~) _ - V (~, b) decreases monotonically to 0 on B as ~, -~ 00. Therefore
it is possible to define a function B ~ R via

Since - v (03BB b) decreases monotonically to 0 as X - oo, 03BB is continuous.
The map u : [0, 1] X B -~ B defined by
i ~ ,,, . ~. _ . . _ ,.,

retracts B by detormation and (iv) holds.
To prepare for the next result, note that I possesses an Rl symmetry.

More precisely, for § E Rl, let 03C8 (03BE) = (03BE, 03BE, 03BE). Then

lor a~t Therefore

tor all q E A Letting D denotes the duality map from E’ to E,
(2. 25) is equivalent to

iNow we have:

PROPOSITION 2 . 27. - Let !)= (~l, !)~ c~3) E Cl (A, A) .such that

all q E A. Let ~ (s, q) _ (~ 1 (.s, q), ~2 (s, q), ~3 (s, q)) denote the solution
of the differential equation

Annales clo l’Institut Henri Poincaré - Analyse non linéaire
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Then for all s for which the solution is defined,

Proof. - By (2.28)-(2.29),

Therefore

is independent of s. Hence (2. 30) follows (2. 29).
Now some properties of the "two body problem" with potential 

will be considered. For the sake of simplicity we take i =1 and j = 2.
Define

and

Propositions 2.1, 2.2, and 2.9 have the following analogues for the two
body problem associated with (2. 34):

PROPOSITION 2 , I’. - Let V12 satisfy (V1), (V2), (V 4) and (V6). Then
for any c>O, there exists b = b (c) > 0 such that qEA12 implies

PROPOSITION 2. 2’. - Let V12 satisfy (V1) - (V4) and (V6). Let A12
be a sequence such that I12 (qk) ~ c > O and I i 2 (qk) -~ 0. Then there exists
a subsequence, again denoted by and (vk) c Rl such that vk converges
in W 1’ 2 for Z = 1, 2.

PROPOSITION 2. 9’ - Let V 12 satisfy (V 1) - (VS). Then for E small enough,
(i)-(iv) of Proposition 2. 9 hold with I replaced by I12 and B (~) by

The proofs of these results follow the same lines as their earlier analogues
and will be omitted. Note that Proposition 2. 2’ says that I12 satisfies the
Palais-Smale condition up to translations. Case 2° of Proposition 2.2 has

Vol. 8, n° 6-1991.
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no analogue here since if e. g. ~ [qi] ~ --~ oo while [q2] ~ ] remains bounded,
then (qi - [c~i]) and (q2 - [q2]) converge to zero and therefore Ilz (qk) -~ 0,
contrary to hypothesis.
We also have an analogue of Proposition 2. 27 with the same proof:

PROPOSITION 2 . 27’. - Let ~12 -‘ (~1, ~2) E C1 (~12, A12) such that

for all Let r~ 12 (s, q) denote the solution of the differential equation

Then for all s for which the solution is defined,

Our final result in this section concerns the following important special
case of (2.29"):

For set

PROPOSITION 2 . 36. - Let q satisfy a _ I12 (q) _ b  oo and let ~12 (s, q)
be a solution of (2. 35). Then

(i) there exists a constant c (q) independent of s such that

( t~l 12 (s, ~ c (q) for any s for which

(ii) There exists a constant C (a, b) and a uni.f’orm p-neighborhood, N (p),
of ~ ~ 2 (a, b) such that whenever q E N (p), there is a satisfying
~(~12(s, q))-v(q)~W1,2~C(a, b), i =1, 2, for all s ~ 0 for which (2 . 37)
holds.

~’roof. - Arguing indirectly, assume there exists a sequence s~, for which
(2 . 37) holds and [~12 (sk, q)] | ~ ~. Then

while

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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If (Sk) were bounded, (2.38)-(2.39) would be contradictory. Therefore

and (2. 39) implies the existence of a sequence Tk --~ oo satisfying (2. 37)
and such that Ii~ q)) ~ o. Using Proposition 2. 2’, there exists

(vk) c Rl for which (~ 12 is strongly convergent, i = 1, 2. Propo-
sition 2 . 27’ then implies that (vk) is convergent. Therefore (~ 1 ~ q)) is

convergent.
Assume, without loss of generality, that

The argument just given shows the existence of y and M > 0 such that if
s E [0, oo ) and

Since I [~ 12 (sk, q)] ~ --~ oo as koo, (2 . 40) is

violated when for large k. Given sk, let Sk be the largest positive
value of s less than sk such that (2. 40) holds. The existence of (Sk) follows
from that of (ik). Observe that

for Now by (2 . 41) and (2 . 39),

But I [~ 12 since (2.40) holds Therefore

contrary to the choice of sk and (i ) follows.
To prove (ii ), an argument as in the proof of Proposition 2 . 2’ shows

there is a p > 0 and E (a, b) such that for any q e N (p) there exists v (q) E R~
satisfying

The constant C1 (a, b) is independent of q E N (p). Equation (2 . 35) shows

Vol. 8, n° 6-1991.
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Now arguing indirectly, we assume there exists a sequence (qk) c N (p)
and sk >_ 0 such that

Since I12 (q) = I i 2 (q - ~ 12 (~)) for all § E Rl, as in (2 . 38)-(2 . 39) we have:

As earlier (2 . 47) implies that sk ~ oo as k - oo . Arguing as in the proof
of (i ), consider a sequence ik -~ oo such that I i 2 qk)) ~ 0 and
a C I12 ~~ 12 (~k~ We will prove that 1~ 12 (’Gk, Cjk) ~ y’ 12 (Z~ (C~k)) has a
convergent subsequence. Indeed Proposition 2.2’ yields the existence of
(vk) c Rl such that

(2 . 48) (~l 12 qk)i - vk is convergent.

Proposition 2 . 27’ together with (2. 45) then implies

Thus the right hand side of (2.49) is convergent. By (2.44),
[c~i] + [q2] - 2 v (qk) is bounded. Therefore it can be assumed that vk - v (qk)
is convergent. Hence r~ 12 (ik, qk) - ~ 1 z (v (qk)) has a convergent subsequence
as stated. This shows, as in (i ), the existence of y and M > 0 such that if
(2 . 40) holds with and s E [0, then

Now (2 . 46) implies for large k. As in (i ),
the existence of T~ implies sk, the largest positive such that

~ ~ I i 2 (~ 12 (Sk~ well defined. Then

for s E sk] and

By (2 . 47), we conclude as in (i ) that

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Thus using (2 . 51 )-(2 . 52), we have

But (2. 53) contradicts (2. 46) and (ii ) follows. 

3. A MORSE LEMMA NEAR INFINITY

Proposition 2.2 describes the failure of the Palais-Smale condition for
I (q). Our main result in this section provides us with a kind of Morse
Lemma for a suitable neighborhood of the set where (PS) fails. For the
sake of simplicity this result is presented for the case 2

remains bounded while ~L2 ~ 0 and q3 - ]| ~ oo. Stated

informally, we will show there is a neighborhood of "infinity" in which
there is a change of variables q = (ql, q2, q3) ~ (ql, q2, Q3) such that

To state the result more precisely, let

and

PROPOSITION 3 . 1. - 1 ° Let V satisfy (V 1 ) - (V3). Given any C > 0, the~e
exists an oc (C) > 0 J 

such that whenever q = (ql, q2, q3) E A satisfies

for some v (q) E Rl, then there exists a unique ~, (q) > 0 and

such that

Moreover 03BB is differentiable.

Vol. 8, n° 6-1991.
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- 

2° Conversely let V satisfy (V1) - (VS). Given any C > 0, there exists
oc (C) >,0 such that whenever q2, Q3) E A satisfies

for some v (q) E Rl, then there exists a unique (ql, q2, Q3) > 0 and

such that

Moreover ~ (ql, q2, Q3) is differentiable.
3 ° If V satisfies (V 1 ) - (V 5 ) and oc (C) = a (C) are chosen still smaller, then

~ (ql ~ q2, q2, Q3) =1. and the transformations defined in 1 ° and 2°
are inverse diffeomorphisms.
Remark 3. 6. - Conditions (i )-(ii ) and (iii )-(iv) may be replaced by:

with q3 replaced by Q3 for (iv). Indeed if (ql, q2, q3) satisfies (i)-(ii), then

I [qi] - v (q)| _ C for i = 1, 2 and q2] - 
v (q) __ C. Therefore (i )-(ii )

imply (v)-(vi) with C 1= 2 C and [3 (C 1 ) replaced by a suitable new constant.

Obviously (v)-(vi) imply (i )-(ii ) with v (q) 1 [ql + q2]~
2

Proof of Proposition 3. 1. - 1 Let C > o, q satisfy (i )-(ii ), and set

vv3 = q3 - [q3]. To verify (3 . 3) we must show if a (C) is small enough, the
equation

has a unique solution ~, > o. The function

is nonincreasing in X. Clearly

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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and cpq (~,) decreases to 0 as 7~ -~ co unless [~’3~ 
- 1 [R’ ~ + R’2~ ~ If

2

then

Thus

Requiring that a (C)  4 (4 + C2) -1 shows (3.10) does not hold and cpq (~,)
is strictly decreasing for 03BB>0 and tends to 0 as X - ~. Consequently
(3 . 8) the implies that (3 . 7) has a unique solution if

Let for 1 _ i ~ j _ 3 . Then (3 . 11 ) is equivalent to

By (i )-(ii ),

Thus (3 .13) shows

as a (C) ---~ 0 for i = l, 2. Consequently (V2) - (V3) imply that if a (C) is

small enough, we have

for any q satisfying (I)-(it). If we further require a (C) 1, then by (11),2

Vol. 8, n° 6-1991.



578 A. BAHRI AND P. H. RABINOWITZ

and (3 . 12) is satisfied. Thus 1 ° is proved. Observe also that X is differentia-
ble since V E C2.

2° Let W3 = Q3 - ~Q3]. Suppose C>O and (ql, q2, Q3) satisfy (iii)-(iv).
We want to show if a(C) is possibly still smaller than in 1 °, the equation

has a unique solution y > o. Clearly is well defined if

for all 1] and i = 1, 2. Assume (3 . 17) for the moment. Let ~ be any
solution of (3 . 16). We consider the dependence of ~ We claim

and

uniformly for (ql, q2’ Q3) satisfying (iii)-(iv). To prove (3. 19), note that
at any ~ satisfying (3 . 16), by (V2) we have

Since [W3) = 0,

via (3 . 20) which yields (3 . 19). To get (3 . 18), note that by (iii) and (3.21),
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for i = l, 2. If there were a sequence q2, Q3) for which

r L Q k 3 - ql + 2 remained bounded while ’P (qk) ~ 0, then

would be bounded from below by a positive number uniformly in k as a

consequence of (V1) - (V3), and (3. 22). This would contradict (3 16).
Therefore (3 .18) holds for any solution ~.
Next observe that 03A8 (q) ~ 0 if and only if

or any (ql, q2, Q3) satisfying (iii). Indeed we have

and

is small is equivalent to a (C) is small since (ql, q2, Q3) satisfies

(iii) and (iv). We require that 
-

Then I is strictly by the argument following (3 . 10). There-
fore

oo . Since
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remains bounded, i = 1 , 2, as  ~ oo, we see from (V,) that
(3.25) is defined for large ~ and lim (Y) = 0.

JH -~ 00

The interval on which is defined can be characterized further. Byfor ~2014 i~ ~

Using (3 . 21 ), is defined if

As noted above, [Q3-q1+q2 2] is nonzero. Hence (3.26) defines an
interval co] since if (3.26) holds for some a, it holds for any > .Let us compare ~(~ij and T(~). Either

and thenby (3.16) and (V~), or

in which case

and for i = 1, 2,

By the above remarks, oc (C) small implies ~ ( q)  1. Hence there is an oco2
such that if a (C)  ao and i = 1, 2,

for all 1]. Now (3. 29), (3. 16), and imply the existence of a
constant [3 (C) > 0 such that
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where j3 (C) is independent of (ql, q2, Q3) satisfying (iii)-(iv) [provided
that a (C)  ao]. If we further choose a (C) so small, say oc (C)  al, so that

(3 . 30)-(3 . 31 ) show ~rQ (q) for case (b) as well as for case (a). This

coupled with (3 .23) shows that (3 .16) has a solution ~. Observe that any
solution satisfies (3.18)-(3.19). Hence (3.26) follows from (3.18)-(3. 19)
for ~, _ ~. provided is small enough. Therefore oo) if a (C)
is small enough.
To prove the uniqueness and differentiability of ~, we need only show

For i =1, 2, let

and

Then

From (3 . 18)-(3 . 19) and (iii), we know that for i =1, 2,

as T (q) -~ 0 and
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if a (C) is small enough. Using (V~), there is an a2 such that if cc (C)  cc2,

for i = l, 2. By (3 . 36), 03C8’Q ( )  0 if oc (C)  03B12 and the proof of 2° is

complete.
Lastly to prove 3°, let q3 be defined by (3.4). Then

and

Solving (3 . 37)-(3 . 38) for Q3 - yields:

and

In the proof of 2°, it was shown that 03A8 (q) ~ 0 is equivalent to a (C) - 0.
Consequently, recalling that W3 = Q3 - [Q3], (3 . 39)-(3 . 40), (3. 18), and

(3 . 21 ) show that ~3 q 1 + 2 q2 as a --~ 0. Hence

(ql, q2, q3) satisfies (i) and (ii) for a small. Therefore (3 . 2) holds. Compar-
ing (3 . 2) to (3 . 39)-(3 . 40) shows 03BB(q1, q2, q3) = -1(q1, q2, Q3). The com-
posite of the transformations of 1° 

° 

and 2° is then readily seen to be the
identity and 3° easily follows.

In paragraph 5, we will need the following consequence of Proposi-
tion 3 . 1:

COROLLARY 3 . 41. - Let (ql, q2)~12 and set

Then there exists a continuous function oc (q1, q2) such that if q3 .satisfies
(ii) of Proposition 3 . 1 with 03B1(q1, q2), then both systems of coordinates
given by Proposition 3. 1 are available at (c~l, q2, 

Proo,f: - By proposition 3 . 1 for any c~2) E A12 and C = CZ (ql, q2),
there is an a (2 C) for which the conclusions of the Proposition are valid
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at q2, q3) for any q3 satisfying (ii) ( with v=1 2 [q1+q2]). Note that (i)
is satisfied with C replaced by 2C for all points in a neighborhood

of ~~)- This gives us a covering of A~ which possesses a
locally finite refinement {W~}. Let be a smooth partition of unity
subordinate to {W~}. Now define

where is the a(2C) associated to some such that

where is the largest of the aw such that PWm(q1’ q2) ~ o. Since

Proposition 3 . 1 holds at (ql, q2, q3) where q3 satisfies (ii) with 
it holds a fortiori for a subclass of q3’s with a = a (ql, q2). 

’

Remark 3 . 43. - The function a (ql, q2) may be chosen so that it is
differentiable with derivative bounded by 8. Namely we can take p~
satisfying ) p for a suitable constant KW and then choose

a(C)W2-1 E.
We conclude this section with two more corollaries of Proposition 3.1.

The first of these provides, modulo translations, a priori bounds for critical
points of I which depend on the corresponding critical value.

COROLLARY 3 . 44. - Let V satisfy (V1)-(VS). Let M >_ ~~ > 0 be given.
Then there a constant C (~1, M) > 0 such that for any solution

q2, q3) of (HS) satisfying El __ I (q) _ M, there is a so that

Proof. - If the Corollary is false, these is a sequence (qk) _ ~’2, ~’3)
such that I (qk) --~ c E M], I’ (qk) --~ 0, and qk -  (~k) is not bounded in
WI, 2 for (~k) c R~. Since (I (qk)) c [E 1, M], qk is bounded in L2. Therefore
([qk] - ~r (~k)) is not bounded in R3 l. An argument as in the proof of
Proposition 2 . 2 shows [qk - c~~] converges (along a subsequence) for some

for otherwise I (qk) -~ 0. Hence without loss of generality, we can

assume [qk - k] converges. Let Then [qki]-03BEk is bounded,

i = 1, 2 and we can assume converges, i = 1, 2. As in the proof of
Proposition 2 . 2 again, this implies (qz - q3), (~2 - q3), etc. - 0
in L 00. Hence by (HS), q3 -~ 0 in Lx so q3 ~ 0 in L2. Choose C so that
qk satisfies (ii) of Proposition 3.1. Then for large k, qk also satisfies (ii)
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of Proposition 3.1. For such k, we may write

Therefore by Remark 3.6, q2, Q3) also satisfies (iii) and (iv) of

Proposition 3.1 for large k. By 2° (b) of Proposition 2.2,
I(qk) - I12 q2) --~ ~. Consquently the sequence enters the domain where
the map

is a diffeomorphism. In this domain, critical points of I (q) are also critical
points of

in the (qi, q2, Q3) coordinates. At such a critical point, [Q3] 2 2 [qi + q2].
As has been noted earlier, a (C)  4 (4 + C2) -1 1 implies this is impossible.
Thus I has no critical points in this region and there does not exist a
sequence as above. The Corollary is proved.
The final result in this section shows that the only "(PS) sequences" in

a neighborhood of infinity are those which have a "two body" limit.

COROLLARY 3 . 48. - Let V satisfy (V 1) - (V6). If C > 0 and 0  a  b,
then there exists an a (C, a, b) such that whenever (qk) is a sequence in A

satisfying (i) and (it) of Proposition 3 .1 with C and rJ. (C, a, b) and ,such
that I (qk) ~ e E [a, b] and I’ (qk) ~ 0, then I12 (qk1, q2) ~ c, (qk1, qk2) ~ 0,
and ’P (qk) --~ 0. In particular (iii) and (iv) of Proposition 3 . 1 are satisfied
by t~’i~ ~’2~ Q3) for large k.

Conversely let (c~ i, q2, Q 3) be a sequence in A satisfying (iii) and (iv) of
Proposition 3 . 1 and such that I12 (qi, q2) ~ c E [a, b], I12 (qk1, q2) ~ 0, and
~ --~ 0. Then I q2, q3) --~ c and I’ q2, q3) --~ 0. Iu particular (i)
and (it) of Proposition 3. 1 are satisfied by (qi, q2, q3) .for large k.

Proo. f. - Suppose (qk) satisfies (i ) and (ii ) of Proposition 3 .1 and

I (qk) --~ c, I’ --~ 0. Then either 1 or 2° of Proposition 2 . 2 holds. If 2°
holds, there is a subsequence of qk and a pair of indices r~j~{ 1, 2, 3}
such that [qr - q~] ~ I is bounded and [qk - i, ~ [qk - q~] ~ --~ ~e where i is

the third index. Then by (i) and Remark 3 . 6,

Thus (3.49) shows ~-?~ is bounded so 2° holds, {rj}={!, 2} and

~-~+~)1-~ Ii2~,~)-c
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and I i 2 (q i, q2) -~ o. Thus ~ -~ 0 along this subsequence. Therefore
(iii) and (iv) hold for large k along this subsequence.

If 2° of Proposition 2 . 2 does not hold along a subsequence, q~] ~ ]
is bounded for {1, 2, 3 }. We can take v - 1 k + ~] as in (2.7). By
1° of Proposition 2. 2, in Wi, 2 2, 3. By (3 . 49),

By Corollary 3 . 44, there is a such that

Therefore by (3 . 50)-(3 . 51 ),

Now by (ii ) and Remark 3 . 6,

Hence for large k, by (3 . 51 )-(3 . 53),

But as a (C) - 0, the left-hand side of (3. 54) -~ oo while the right-hand
side remains bounded. Thus (3 . 54) cannot hold for small a and we must
be in case 2° of Proposition 2 . 2 along our subsequence. Finally observing
that what has just been established holds for a subsequence of any sequence
satisfying I (qk) -~ c, I’ (qk) -~ 0, our conclusion must hold for the entire
sequence, and the first half of Corollary 3 . 48 is proved.
For the converse, suppose that (qi, q2, Q;) is such that I12 q2) -~ c,
{Ri ~ ~’2) --~ 0, and ~I’ (qk) --~ 0. Then the associated (ql, q2, q3) satisfy:

Therefore ~2, q3) -~ c and (3 . 55), (V2), (V~) imply

i = l, 2. Proposition 2 . 2’ implies the existence of vk such that (qk - v~)
converges for i= l, 2 along a subsequence. Thus (i) of Proposition 3 . 1
holds for large k along this subsequence. Also (3.56) shows that

~ [q3] - vk ~ --~ oo and Consequently I’ (qi, q2, q3) ~ 0
and (ii ) of Proposition 3. 1 is satisfied for large k along our subsequence.
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As in the first part of this corollary, is then follows for the entire sequence
and the proof is complete.

4. A MODIFIED FUNCTIONAL

Let 0  E 1  M with s~ 1 small and M large. To prove Theorem 1, we
would like to use the unstable manifolds for the negative gradient flow of
I corresponding to critical points of I in IM. Unfortunately the critical

points of I might be degenerate and the gradient flow does not satisfy the
(PS) condition so we cannot do this. Therefore we will approximate I by
a new functional which is well behaved enough to permit the above ideas
to work.
To help handle the fact that the critical points of I might be degenerate,

we use Corollary 3 . 44 which yields the existence of a constant M)

such that for any critical point q of I satisfying £1  I (q) ~ M + 1, we have

for suitable v (q) E Rl. Since our functional is invariant under translations
in the sense described in (2 . 24), (4. 1 ) and (HS) show the critical set of I

in I -1 E 1, M + 1 is compact after quotienting out the translations and

I’ on this quotient space, n, is Fredholm and proper in a neighborhood,
N, of this critical set. By (4. 1 ) and Proposition 2 . 9, we have

PROPOSITION 4. 2. - Let V satisfy (V1) - (VS). Then for any 03B4 > 0, there
exists a functional J E C2 (A, R) such that

1 
° 

J invariant under translations in the sense of (2 . 4),
2° J = I in 1 where N 1 is a small neighborhood of N

3° ~J - I ~C2 (, R)~03B4
4° J | has only finitely many critical points in N i
5° All critical points of J I~ under level M + I are nondegenerate and have

finite Morse index
6° J ~A .satisfies (PS) for sequences in N i
7° If 03B4 is sufficien tly small, if E 1 __ J (q) __ M + I and J’ (q) = 0, then for

a suitable v (q) E Ri,
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Moreover J = I on the complement of the set just defined.
8° E1 sufficiently small.

Proof. - The result follows in a straightforward way from approxima-
tion arguments due to Marino and Prodi [7] and extended by Bahri [8]
and Bahri-Berestycki [9].

Proposition 4.2 allows us to avoid problems of degeneracy for critical
points of I in We apply the above procedure to each "2-body
problem" associated with I. For the sake of simplicity, we restrict our
presentation to I12. Let b) denote the set of critical points of Ii~
with critical values between a and b. For p>O, let N (p) be a uniform p
neighborhood of K12 (£ 1, M + 1 ). Then taking the quotient A 12 of A 12
by the translational symmetry, I i 2 is Fredholm and proper on the image
N (p) of N (p). Therefore as in Proposition 4 . 2, we may replace I12 by a
new functional, J 12, which on A 12 between the levels ~ 1 /2 and M + 1 has
only finitely many critical points. These points are also nondegenerate and
have finite Morse index. We can also assume J12 is invariant under
translations and J12 ~~12 = I12 ~nlz outside N (p). Moreover we may choose
J 12 as close as we want to I 12 in the C2 norm. In particular for all b > o,
there is a J12 having the properties stated above and

Next we suitable modify J using the functionals Ji~ just constructed.

Proposition 2 . 36 (it) provides us with a constant C £l, M + 1 such that

for any q E N (p), there exists v (q) E Rl satisfying

for any s >_ 0 such that

For future reference, observe that (4.4) holds for J~~ and the correspond-

ing îiij with ~1 and M + 1 instead of 8i/2 and M + 1. Indeed either

q) EN (p), in which case applying (4 . 4)-(4 . 5) with s = 0, q = r~ i~ (s, q)
and ~1 2~03B4 of (4 . 3), we derive the conclusion, or q)~N(03C1). For this

latter case, let si 1 be the maximal time smaller than s such that

q) E N (p). Since outside N(p),

and the same conclusion holds. Therefore for future use we have: for all
q E N (p) which is a neighborhood of the critical set for J 12 between the
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levels 81 and M + 1, there exists satisfying

for any s > 0 such that g)) ? E 1.
As for (i )-(ii ) and (iii )-(iv) of Proposition 3.1 for I - see

Remark 3. 6 - we can replace the conditions (4 . 4) and (4 . 6) by

and by the same expression with instead of Conversely a condition
of the form (4. 7) implies a condition like (4. 4), (4. 6) with e. g.

for (4.4).
With C as in (4. 4) and (4.6), we now define

With this choice of C in Proposition 3 . 1, there is a corresponding Ci and
(3 (C 1 ) given by Remark 3 . 6 such that if q2’ q3) satisfy (v)-(vi) of
Remark 3.6, then Proposition 3.1 holds. We choose C1 still larger and

smaller so that in fact Proposition 3. I applies for this choice of
(C1), both in the (ql, q2, R’3) and ~’2, Q3) coordinates. Actually

we will be using this fact more for the (ql, q3, Q3) coordinates. We also
further restrict Ci 1 and  (C1) so that Corollary 3 . 48 applies. is

chosen still smaller, the three neighborhoods defined by (v)-(vi ) of Remark
3 . 6 in the Q~) coordinates are pairwise disjoint and do not intersect
the set

The following construction should be understood as being carried out
with a permutation of indices. Let

be a C °° function such that c~ 12 = 1 the set of (q 1, q2, 
1

satisfying (v)-(vi) (of Remark 3 . 6) with constants and

and a~ 12 = 0 outside of ~2, the set of (q 1, q2, 
1

satisfying (v)-(vi ) [with constants C 1 and 03B2 (C 1)]. Note that

,~1~ ,~2 C IM+ 1.
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We define a new functional I as follows:

where r E ~ 1, 2, 3 ~B~ i, j ~ . etc. in the natural way,
observe that in each neighborhood of type ~B 1 (i, j), the functional

and in each neighborhood of type ~2 (i, j),

due to the fact the sets ~2 (i, j) are pairwise disjoint. Observe also that
outside of the sets ~2 (i, j), î (q) = J (q). In particular, by the choice of
~i (C 1 ), I = J near the critical points of I having critical values between 8~ 1
and M + 1 since these points satisfy (4.9). Therefore (4 . 11 ) does not
change our previous modification of I near the critical set of I between
E 1 /2 and M + 1.
Note that for any 8 > 0, we may choose the functionals Ji~ so that

Indeed from (4. 12) and (3 . 5),

Since the ffii/S are fixed, for 8 sufficiently small, (4. 14), 3° of Proposi-
tion 4.2, and (4. 3) imply (4.13).
Our next step involves the definition of a suitable pseudogradient vector

field, Z, for I. For the sake of simplicity, we consider the case i = l, j = 2;
the other cases are obtained in the same way. Let

where

where ~31 _ ~i(C1)/4 is small constant which will be chosen after (8 . 1). Let
defined in the same way as ~o with ~i 1 replaced We
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will define Z in in the (ql, q2, Q3) coordinates since by our choice of
C1, and Proposition 3 . 1, they are alternate coordinates to

q2, q3) in ’~2.
Let Z12 (ql, ~’2) be a pseudogradient vector field for J 12 (ql, ~I2) on A12

or equivalently a pseudogradient vector field for J 12 on which is
invariant under translations in the sense of (2.24). We further require
that Z12 generates a Morse-Smale flow under the level M + 1. By condition
we mean the following: Consider

Note that any equilibrium point of this flow is a critical point of J 12 and
conversely. The flow is a Morse-Smale flow if the stable and unstable
manifolds corresponding to any critical point of J 12 intersect transversally
in sections to the flow, e. g. on each noncritical level set. The existence of
such a Z12 can be found e. g. as part of the proof of Theorem 7 . 2 for a
finite dimensional case and in the proof of Theorem 8.2 for our case.
Once Z 12 has been obtained, we further require that all points q2) on
the unstable manifolds of Z12 between the levels 81/2 and M + 1 satisfy
(4.15). That this is possible follows from (4.8) and the surrounding
paragraph related to the choice of C 1.
To get the pseudogradient flow in ~2, we first define it in ’~o where it

is given by:

This will be denoted more succintly in the q2, Q3) coordinates by

Let 03C912 be a function such that
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&#x26; 1 ~ = l on Wo, &#x26; 1 ~  l on &#x26; 1 ~ > ~ 2 on Y’i and l6 i ~ = 0 on

We extend 21~ to ©i as follows:

Next Z12 is extended to ~2. q2, q3) be the vector field

given by the right hand side of (4.21) expressed in the q2, q3) coordi-
nates. Observe that Y12 is defined on ~’2. Then our extension is via:

where 03C912 is defined in (4 . 10), and 03C912=1 on V1 and 03C912=0 on 

Carrying out this construction on each ’Y~2 (i, j), the resulting vector
field, which we denote by Z, is globally defined and C1. Consider the
corresponding flow

The following lemma obtains for this flow. For convenience, it is stated

for the case of i =1, j = 2.

LEMMA 4 . Z4. - Let

Then there exist constants K and b 1 > 0 such that for any

q E ~ 2 ( 1, 2)B~~ 1 ( 1, 2), we have:

provided that b is chosen small enough in (4. 3).

Proof - The arguments in (4 . 3)-(4 . 8) show CB 1 is independent of the
approximation of Ii~ by Jij’ ’Y~2 ( l, 2) is defined via (4 . 15)-(4 . 16) with C 1
replacing C 1 /4. Since ~o (1, 2) n (~2 ( 1, 2)B~ i (1, 2)) = 0, we have
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or

for all (ql’ q2, Q3) E ~2 (1, 2)~~i (l, 2). Suppose (ql, q2) satisfies (4. 25)
but (4.26) does not hold for (ql, q2, Q3). Since Z12 is a pseudogradient
vector field for J 1 z, there is a y > 0 such that

[where q = (ql, q2)]. By our choice ofC==C( £l, M + 1 , q must be outside
of N (p) which is a closed neighborhood of the critical set of Hence
there exists an Eo > o such and

for all q outside of N(p) and such that J 12 (q) >_ ~ 1- ~i (C 1 )/4 >__ E 1 /2 if

~3 (C 1 )  E 1 i2. Observe that I12 (q) __ M + 1 since (ql’ q2, Q3) E ~2. Thus for
this case J12 = I12 and J = I since (ql, q2, Q3) E ~2 which does not intersect
the set defined in (4.9). Hence

and

Now by (4 . 25) and Corollary 3 . 48, there is a ~o such that ‘2 >_ ~o on
V2(1, 2)Bfo (1, 2). Hence the lower bound for I’Z follows in this case.
Next suppose (4. 26) holds. Then, letting Y12 denote the 3rd component

of Y 12, we have

Under (4. 26), either

and then

or
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in which case

Since (ql, q2, Q3) E ’~2, by (4 . 16)

Furthermore

Hence by (4 . 31 ),

which by (4.33)-(4.35) is bounded from below by a number if is

small enough.
Thus in both cases (4. 32) and (4. 33),

Since ~1~ is bounded from below on by a positive constant by
Corollary 3 . 48 and since Y 12 is similarly bounded from below, we
have

provided that small enough and as is proved below,
are uniformly bounded. The boundedness of

on 
1 is also established below. Thus the first part of Lemma

4. 24 is proved.
For the second part, observe that there is a constant K~ 1 such that

!! I’ ~i whenever

Indeed

Now (4. 34), (V2), and (4) imply

By Proposition 2 . 1, where § depends on M+l, and by
(V1), (V3), K2 (b) for s I >_ b. Hence the existence of K1 follows.
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Similarly there is a K~ such whenever

I~~ (qi, q~)  M + 1. Since I I- I and I ~ - Ii~ are small, we then get
bounds for I I’ ( ( I W 1, 2 similar to those for I’, Hence we get
bounds for Zij’ The construction of Z from Zi~ and the bounds already
obtained then yield the bound for Z.
Lemma 4. 24 has the following interesting consequence:

COROLLARY 4.42. - Let q (s) be a trajectory of (4 . 23) with

~1 _ I (q (o)) _ M + 1 and Then there exists an depending
on q (0), i and j, such that for s > so, q (s) either remains in ’~’ 1 (i, j) or in

Proof - Let U c W be neighborhoods of ~ 1 such that W c ~’~2
and aW) > o. Suppose q(s) is a trajectory of (4.23) such

that for s2). Then for s2), the estimates of

Lemma 4. 24 apply and

and

Estimates (4 . 43)-(4 . 44) show that if q (s) E au and q (s2) E aW, the change
in I produced by going from 3U to 3W can be estimated by

Now if q (s) does not remain in ’~1 1 or in for all large s, either:

(i ) 1 for all large s, or (ii ) q(s) oscillates infinitely often
between (a) and a’~’~2, or (b) and or (c) and

(i ) occurred, we could apply (4 . 43) with U = W = ~’~ 2, and s2
arbitraly large. But this contradicts the fact that I >_ o. If (ii ) (a) occurred,
the estimates (4 . 45) can be applied infinitely many times again contracdict-

ing that The argument of case (i ) in fact shows q(s) ~ V1BV’1 for
all large s and thus if (ii ) (b) occurred, q (s) must oscillate infinitely often
between a~’~ i and a~ 1. The argument of (ii ) (a) excludes this possibility.
Finally estimates of Lemma 4 . 24 can be shown to hold for a neighborhood
r of ~"2 with a’~2) > o. Thus (ii) (c) follows from the above

arguments.
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5. PROOF OF THEOREM 1

In this section we show that (V1) - (V6) imply that the set of critical
values of I is unbounded. The proof relies in part on some technical
results whose verification will be carried out in paragraph 8.

Since the proof is rather lengthy, we begin with a sketch. Suppose the
set of critical values of I is bounded by a. Let M > a; a precise choice of
M will be made later. Recall that for s E R, IS = ~ y E A ~ I (q) _ s ~ . Let I be
given by (4 . 11 ) and let Z be the pseudogradient vector field for I con-
structed in paragraph 4. Finally let E1 be as defined in Proposition 2.9
and 2 . 9’. It will be shown in paragraph 8 that any trajectory q (s) of
(4 . 23) with y(0)eP~=I~~ 1 which does not enter IE1 i and pi or does
not converge to a critical point of I has a limit. The set of such limits,
~f, will be called the set of critical points at o0 of I and will be characterized
as

An "unstable manifold", will be associated with each such

Namely (qi, is the set of solutions of (4.23) whose limit
set as s ~ - oo has a nonempty intersection with Jf. For a critical point
q of I in 1, let Wu (q) denote its unstable manifold for (4 . 23). Let
aT denote the set of critical points for and n JM + 1.
Let ~’M + be the analogous set for I. Set

and

and let ~~ c ~2 be a set with a piecewise smooth boundary which
contains pi its interior. Let ’~£ _ ’~£ (~M + 1) be an E neighbor-
hood of By 6° Theorem 8.2, may be chosen so that

1 retracts by deformation onto

(5 . 1 ) U Y~
and ~’ °° retracts by deformation onto The sets ~£ and

are absolute neighborhood retracts, i. e. ANR’s - see e. g.

[10] - and their homologies vanish in dimension ~m+1 where m will be
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defined shortly. Roughly speaking, the Betti numbers (in rational homo-
logy) of (5 . 1 ) are uniformly bounded independent of M. (All references
below to Betti numbers are in rational homology.) Hence by 6° of Theo-
rem 8.2, the Betti numbers of A must be uniformly bounded. On the
other hand, we will show that A can be characterized as the loop space
of the set of pairwise distinct 3-tuples. By a theorem of Vigué-Poirier-
Sullivan [11], the Betti numbers of A are therefore unbounded. This contra-
diction establishes Theorem 1.

Carrying out the details of this sketch is a lengthy process. First we
need some estimates for the (generalized) Morse indices of the critical

points of I in IM + 1. The critical points of I lie in Ia so by Proposition 2. 1,
there is a ~ = b (a) such that for any critical point q of I in Ia, (2 . 1 )’ holds.
Moreover by Corollary 3.44, these critical points of I are uniformly
bounded in E (up to a translation) by a). For any such q and any
(peE,

The generalized Morse index of q is the dimension of the subspace of E
on which I" (q) is non-positive definite. The form of I" and above remarks
on 8 and a) show the Morse index of any critical point of I in F is
bounded above by some By (4 . 13) and Proposition 4. 2,

can be made as small as desired and critical points of I lie in a
small neighborhood of those of I. Hence m, being an integer, is also an

upper bound for the generalized Morse index of any critical point of I. it

can be shown that M + 1 is a Euclidean neighborhood retract - ENR - of
dimension at most m. In any case, in the sequel in is the dimension of

~M + 1 ~
Next choose k E N such that

(A further restriction on k will be imposed later.) Q).
Then {z} may be represented by a chain z having support in a compact
set K c A. Choose M > u such that Then ( z ~ can be interpreted
as a homology class in Hk (IM+ l, Q). Let

Observe that ~M + 1- ~a. For notational convenience we will generally
drop the subscript M + 1 from ~, ~ ~’ in what follows. ~’’ ~ in (5 . 1 )
retracts by deformation on ~’. Therefore
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Since and are ANR’s, the triad U ~, ~,, 
is excisive and the Mayer-Vietoris sequence holds:

[Here Q)~. If r > m, (~ ~). Hence
Hr U ’~£) = Hr = Hr (~) for r > m. Since k > m and ( z ~ is a hom-
ology class of order k, ~ z ~ E Hk (~). Ideally we would like to interpret ~ z ~
as an element of Hk (~), l. e. drop I£1 from ~. This is not quite possible
but something close to it is and will suffice for our purposes.
For i ~ j E ~ 1, 2, 3} and note that by (4. 15), there is a C1 > 0

such that

whenever q~, and J~~ (qi, q~) >_ E 1 /2. Let oc (qi, q~) be chosen via
Corollary 3 . 41 and Remark 3 . 43 [with C (q;, q~) constrained by (5.5)]
and further satisfying

Define

Note that since q~)  ~1 on W ~, I~~ = J~~ on this set and Corollary
3.41 and Remark 3.43 provide us with a diffeomorphism between
(qi, qj’ Qr) and (q;, coordinates provided that

But (5. 7) is satisfied here since Qr is a constant.
Let

Note that W ~ is a trivializable sphere bundle with fiber

Vol. 8, n° 6-1991.



598 A. BAHRI AND P. H. RABINOWITZ

over By Proposition 2 . 2’, in Recalling (5 . 6) and
further requiring

a simple retraction argument and Proposition 2.9’ show Q, has the
homotopy type of a subset of (Rl)2. Hence 

for Y>_3l- 1 .
Next set

and

Since 03B1(qi, qj)~ 03B2 (C 1 ), and 1 c C. Furthermore the choice of
implies the sets I£1 are pairwise disjoint. Working with the

coordinates given by Corollary 3 . 41, it is not difficult to see that the
injection of ~1 in rl is a homotopy equivalence. Therefore {z} can be
considered to be a homology class in C 1.

Set

Note that

and

Moreover

Let ~2 = ~13 U I£1 U ~32- It is easy to check that the triad
 12 U IE1, ‘~2) is excisive. Thus the Mayer-Vietoris sequence applies

and yields:

(5 . 15) Hr+ ~ (W) -~ Hr (I£1) ~ U IE 1) C Hr (~2) ~ HY (W ) ~ ...
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By Proposition 2.9, IE1 has the homotopy type of a subset of R3 l. Hence

A similar computation with ~2 replacing ~B 1 shows for r >_ 3 l + l ,

Now we will study the homology of B12 U IE1. We claim that the triad

(B12 U B12) is excisive. This will be shown in Lemma 5.23 below.

Assuming it for now and recalling (5.13), by the Mayer-Vietoris sequence
again,

Now (5.9), (5.16), and (5.19) show

for r >_ 3 l + 1. Therefore (5.17) gives

for r >_ 3 l + 1. Thus ( z ~ can be expressed as a linear combination of closed
chains having support in ~12, ~23, and ~31.

Using Corollary 3.41, let be defined in the (qi, q~, Qr) coordinates
by

Hence c Cij so ~ z ~ can be written as a linear combination of closed
chains with support in the ~~~ and ~ z ~ lies in the subgroup of Hk (A; Q)
generated by the images of the Hk (~~~; Q) in Hk (A; Q). Next let

The map

is a deformation retraction of onto is a bundle (which can be
trivialized) over Aij with fiber equal to the exterior of a ball. Hence the
homology of is obtained by taking the tensor product of the homology
of A~~ with Ho (Sl -1) O+ Hl _ 1 (Sl -1). Consequently m),
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i. e. the k-th Betti number of A is bounded by a linear combination of the
k-th and Betti numbers of Aj. Since Aij has the homotopy
type of the free loop space SI- 1, the Betti numbers, rank Hr are

bounded independently of j^ [11]. Hence by (5 . 20), the Betti numbers of
A are uniformly bounded. Note that this bound is independent of M.
We will show next that (5 . 20) does not hold for appropriately chosen k.

Let Y~ c (R1)j be the set of pairwise distinct i-tuples, j== 2.3. Then Y3
fibers over Y2:

where the fiber of p has the homotopy type of a wedge product of two
spheres Since l >_ 3, Y2 and hence Y3 is simply connected. The
cohomology ring of Y~ needs at least two generators. Our space A is

simply the set of W1, 2 loops in Y~ and this is contained in the set of

continuous loops in Y3, the inclusion being a homotopy equivalence.
Hence by a theorem of Vigue-Poirrier ans Sullivan [ 11 ], the Betti numbers
of A are unbounded. Now set

We further require that k satisfies

This contradicts (5.20).
The following lemma now completes the proof of Theorem 1.

’ LEMMA 5.23. - The triple U ~! 1,) i.s excisive.

Proof - Note first that IE1 has an open neighborhood in B12 ~ IEl

which retracts on namely int I2 E1 (~ (~12 U IE1). This can be seen using
the negative gradient flow for Z. (Indeed this fact can be used in the proof
that (Ci, U ~2) is excisive.)
To complete the proof, we need only show ~ 12 has an open neighbor-

hood in PJ 12 U I£1 which retracts on B 12’ It suffices to show that has

an open neighborhood (!) in A which retracts on for then

is an open neighborhood of fÀ 12 in 1 which retracts As

was noted after (5. 7), is a sphere bundle over Q 12 with fiber at each
point given by F (ql, q2). To define an open set in A which retracts on

we take a "larger" bundle over
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with fiber at each point

This latter set retracts continuously by deformation on the bundle over
Qi2 with fiber given by q2). Namely we contract Q3 to 0 and

appropriately adjust [Q3] in the process. Then using the gradient flow for
I i 2, Q i 2 can be retracted by deformation onto Q12’ Since is a sphere
bundle over Q12, the retraction by deformation of the base space lifts to
a retraction by deformation of the total space and the Lemma is proved.

Remark 5.24. - In paragraph 6, the extension of Theorem 1 to the
case where (V~) does not hold will be studied. For that purpose, a sharper
upper bound is needed for the smallest critical value of I. The following
corollary to Theorem 1 provides us with such an estimate.

COROLLARY 5 . 25. - Let cc~ be defined by (5 . 21 ). For r >_ 3 l + 1 such that

let A c Hr (A) have rank at least ~ + 1. Let K c A be compact and such
that the support of one representative z c K for all ~ z ~ EA. Let MER be
such that K c IM + 1. Then 1 ~ QS, i, e. I has a critical value in
IM + 1BI~1.

Proof - If not, the set N defined in paragraph 4 is empty and therefore
by Proposition 4. 2, + 1= Q~. The number k in (5 . 2) can now be chosen
independly of m and the argument involving (5.3)-(5.4) omitted. As
earlier (5 . 20) holds for k = r. But this contradicts (5 . 21 ) and (5 . 26). Hence
I has a critical value in IM + 1.

Remark 5 . 27. - In the proof of Theorem 1, no explicit use was made
of the fact that V is independent of t. Thus we also get:

THEOREM 1’ t - Suppose V = V (t, q) : R X F3 (Rl) ~ R is T periodic in t

and otherwise satisfies (V1) - (V6). Then the functional

has an unbounded sequence of critical values which provide T periodic
solutions of
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6. WEAKER POTENTIALS

Our goal in this section is to study the effect of dropping hypothesis
(V6) in Theorem 1. To begin, recall that (V6) implies Proposition 2. 1
which forces any q E W1~ 2 for which I (q)  oo to be in A. If (V6) is dropped,
there are periodic functions which correspond to "collisions", i. e.

for some and TE[O, T]. If this happens, (HS) is not
defined. Thus a notion of solution is required for this situation. Modify-
ing [2], we say q2, q3)EC(R, (Rl)3) is a generalized T-periodic sol-
ution of (HS) if (5) (i)-(iv) of paragraph 1 holds. Now we have:

THEOREM 6 . 1. - If V satisfies (V 1 ) - (V 5), then for each T > 0, (H S)
possesses a generalized T periodic solution.

Proof. - Again we can take T = 1. An approximation argument in the
spirit of [2], [13] will be used. Let R) such that the x (,s) = I if

2 and xM=0 For each §>0, let For

i ~ j E ~ 1, 2, 3 ~, let V~ (x) = Vi J (x) - b I x ~ 2 x~ ( ~ x ~ ). Then Vs satisfies
(VI)-(V6), if and

Set

and

By (6.2),

for all q E A. Since ~’~~ satisfies the hypothesis of Theorem 1, for each

~ > o, Is possesses an unbounded sequence of critical values. Moreover,
by Corollary 5 . 25, Is possesse a critical value in where a priori
M and ~1 depend on 8. Suppose Is (q) _ E1. Then the properties of ~r~ and
choice of ~1 small and I is large for

i~j~{1, 2, 3}. Hence for ~1 small I03B4(q)=I(q) for 1 can be
chosen independently of 8. Corollary 5 . 25 shows the choice of M depends
on the compact set K c A. Hence M can be chosen independently of 8 so
that 1 for all b E (o, 1 ). Thus for each such ~, there is a

qs E A n (Is + such that qb is a critical point of Is.
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We will show that as b -~ 0, a subsequence of (q’~) converges to a

generalized 1-periodic solution of (HS). To prove this, observe first that
Proposition 3 .1 and Corollary 3 .44 do not require (v6). An examination
of their proofs shows that they hold uniformly for e. g. ~ E [0, 1] and the
constant C(si, M) of Corollary 3 . 44 is independent of 8 E [0, 1]. Thus for
each 8 E (0, 1], we have

where ~§==-[~+~]. Since ~"~(~5) is also a critical point of I§ corre-
sponding to the same critical value, by (6.4) a subsequence of these critical
points converge weakly in W~’ ~ and strongly in L~ to ~. Moreover

Indeed for all 8 e(0, 1 ],

Consequently for E > 0,

Letting 6 - 0, it readily follows from (6 . 7) that

Thus letting E --~ 0 in (6 . 8) yields (6 . 5). Hence q satisfies (iii) of (5). Next
(6.8) and (V 4) imply that ~, as defined in (5) (i), has measure 0 and (5)
(i ) holds. If i E [o, 1 ]B~, there is an ~, p > 0 such that if 

I >_ ~ for each i ~ j E ~ 1, 2, 3 ~ . The system of differential equa-
tions :

shows qs(t) -~ q (t) in C2 for t - i ~  p and q satisfies (HS) on this set.
Thus (5) (ii ) holds. Lastly (5) (iv) is valid for q03B4 and Vs with and
a corresponding constant ys. Hence on passing to a limit, we get (5) (iv).
The proof of Theorem 6. 1 is complete.

COROLLARY 6.10.- satisfies (vl) - (v5) and
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then (HS) has infinitely many distinct generalized T-periodic solutions.

Proof. - We use a standard argument. By Theorem 6 . I, (HS) has a
generalized T-periodic solution qT. By (V~), qT is not an equilibrium
solution and therefore its minimal period is T/k1 for some ki eN. Invoking
Theorem 6 .1 again with T replaced by T/2 k 1, we find a second nonequili-
brium generalized T-periodic solution with minimal period in (0, T/2 kl].
Repeating this process gives the result.
As with Theorem 5 . 28, the proof of Theorem 6. 1 yields

THEOREM 6 . 11. - =  (t, q) is T periodic in t and satisfies (V 1 )-
(VS), then (5. 30) has at least one generalized T-periodic solution.

7. THE RETRACTION THEOREM AND RELATED RESULTS:
THE FINITE DIMENSIONAL CASE

A key fact used in the proof of Theorem 1 was that 1 retracts by
deformation onto the set given in (5 . 1 ). In this and the following section
we will establish this fact together with some related results. This will be
done in two stages. First in this section we will prove an analogue of
Theorem 8.2 for a Morse function on a compact manifold. Then in

paragraph 8, it will be indicated how to modify this simpler situation to
get Theorem 8 . 2.
To begin, recall R) where 6 c is a pseudo gradient

vector field for f if ~’ is defined and locally Lipschitz continuous on
and there are constants a  oc such that for all y in this

set: ...

Let denote the set of critical of.f Our main result in this section is
the following:

THEOREM 7.2. - Let :-~l ( c Rm) be a compact manifold and

R) be a Morse function. Let 03A8 be a C’ pseudogradient vector
field for f such that ~’ extends to all of __.~l as a C’ function and such that
the critical points of f are nondegenerate zeros of ~I’. Then in any C’

neighborhood of ~P, there exists another pseudogradient vector field, ~,
off satisfying: 

’

1° The critical points of f are nondegenerate zeros 
2° If the unstable manifold of x, (for the flow

generated by C) and the stable manifold of y, WS ( y), intersect transver-
sally ;
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3° and

then

4° If zEFx, there is an and a family of neighborhoods, Ur,
0  r  ro, of Wu (z) satisfying

(i) U r cUt if r  t,
(ii ) Ur is a trivial bundle over Wu (z) with fiber homeomorphic to

(iii) The trace of Wu (x) in Ur is a trivial subbundle over with
fiber diffeomorphic to Wu (x) n 

(iv) n 

(v) The diameter of the fibers tends to 0 as r -~ 0.
5° Let/’= If a  b are noncritical values of y and

Then Wu (a, b) is an ENR and fb retracts by deformation onto Wu(a, b).
Remark 7.3. - A~°tually a stronger statement than 5° is proved

in [15], namely that Wu (a, b) admits an isolating block in the sense of
Conley [14] which retracts by deformation on Wu (a, b).
We will now carry out the proof of Theorem 7 . 2. Statement 1° follows

from (7 . 1 ) and that C is C1 close to ~P. An induction argument will be
used to ptove 2° - 4° and for this some preliminaries are required. Suppose
dim = I. Let y E ~~ ( f) . Then there are local coordinates near y, given
e. g. by the Morse Lemma, such that Rl splits into E - Q+ E + where E - is
the unstable manifold of y for C and E + is the corresponding stable
manifold. Moreover, if X is the coordinate along E- and Y along E~,
near y

Suppose and Wu(x) is transverse to E + . We want to
understand how behaves along E - . Since both Wu (x) and E + are
invariant under the flow generated by C, transversality here means, of
course, transversality in sections to the flow lines; i. e. transversality of
the intersections of these two sets with

for p small enough. Thus we are assuming that for 0  p _ po  1, the two
manifolds:
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and

intersect transversally in Pp. The intersection is then a manifold which we
will denote by In a neighborhood of a point of ~ P, Wu (x) n Pp may
be thought of as a vector bundle over with fibers parallel to E - since,
by a version of the Implicit Function Theorem, in such a neighborhood,
any point of Wu (x) n Pp may be represented by an associated point on

and an abcissa on E’. This representation has a local character in
general, i. e. it cannot be extended to all even for a p’  p,
unless is compact or some other special feature occurs.
We assume that there is a C 1 diffeomorphism 03C8 such that for a p’  p,

where ^_’ denotes the diffeomorphism When (7.7) holds, we say
Wu (x) n Ws (Y) intersect transversally in a uniform wuy.

In order to understand how Wu (x) behaves along E-, let y be free for
the moment and let (Xo, 0), _ y be a point of E - . Let 03B8~R satisfy

and set

We will describe the set Se (Xo) n Locally the flow corresponding
to 03A6 is given by

This formula holds in a neighborhood of y, i. e. if

holds with a suitable a. We take y=a and p such that

If z = (Xo, Y) E So (Xo) E Wu (x), then

Indeed since by (7.8)-(7.9), I  pt and

p’e’~ 1 Y ( - P’. Thus Furthermore setting
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(8 (p’) -1 Xo, p’ 8 -1 Y) = Xo, et~ Y) with to >_ o. Condition (7 . 11 ) is sat-
isfied. Thus (8 (p’) -1 Xo, p’ 8 -1 (to, z) and since z E Wu (x),
(6 (p’) -1 Xo, p’ 8 -1 Y) E Wu (x). Hence (7 . 13) holds.

Conversely let p’ >__ ~, > 0 and Then

z = (Xo, ~, Y) E SP ~, (Xo). Setting

we have t 1 _ 0 and

Therefore (7.10) holds on [tl, 0] and

Choosing = e (p’) -1 in (7 . 7), (7 .10), and (7 . 17) establish a diffeomorph-
ism between Sa (Xo) n Wu (x) and {9 (pt) - 1 Xo } x ~ P. This diffeomorph-
ism is given by ~ (to, . ) ~ ~r where to satisfies (7. 14). Alternatively with

Observe that the restriction I Xo I __ y plays no qualitative role in what
was done above. Once (7 . 18) is established for Xo I _ y, it holds for any
Xo E E - or more generally in W u ( y). Indeed for any such point,

Thus we way choose t > 0 such that |X0 I = |~ (t (Xo), y and

(7.18) then holds at Xo. The result then transports to X~ through
11 (t (xo), . ). Moreover (7 . 18) extends in a natural way to

(7.19) BP, (Xo) ~1 wu (~~) _ (~ ( y ( c ~1 U ~) ~
through the map

Clearly (7 . 20) extends to all using the same argument as
for extending (7. 18). Observe also that [0, p’] X ~ P/~ 0 ~ X ~% P is home-
omorphic to (Wu(x) n U ~ x ~ . Indeed
(7 . 21 ) Wu (x) n Ws ( y) is diffeomorphic to x (0, (0),
the diffeomorphism being given by the flow, i. e.

Vol. 8, n° 6-1991.



608 A. BAHRI AND P. H. RABINOWITZ

where t (z) is the unique value of t such that r~ (t (z), z) This diffeo-

morphism can easily be modified to be a diffeomorphism to x (0, p’).
It maps a deleted neighborhood of x in (Wu (x) (~ WS (y)) U ~ x ~ into a
neighborhood of Y p X ~ 0 ~ in :Y p x [0, p’) and then naturally extends to a
homeomorphism which is a diffeomorphism outside any given neighbor-
hood of ~ x ~ : -

The above observations combine to give the following result:

PROPOSITION 7 . 24. - Assume W u (x) and WS ( y) intersect transversally
in a uni,form way, i. e. (7 . 7) holds for suitable constants p’  p  po. Then
W u ( y) is contained in W u (x) and there is a decreasing sequence ~° _ j~o,

of neighborhoods ofW u ( y) in Wu W u ( y) which are trivial bundles over
W u ( y) - see (7 . 20)-(7. 23) - with , fiber homeomorphic to

Moreover, UrBWu ( y) is a subbundle over ( y) with fiber diffeomorphic
to W u (x) (~ WS ( y). The diameter of the fiber tends to 0 as r -~ 0.

In order to continue the proof of Theorem 7.2, a stronger notion of
transversality than that given by (7. 7) is needed. Let

so ~r-1 (X‘, Y)=(X, Y). We assume hereafter that there is a uniform ~ > 0
such that if P _ and P + denote the projectors on E - and E +, we have

where ]) . )) is a norm on the tangent space to ~,~.
Condition (7. 25) means a uniform transversality in a strong sense since

it relies on the fact that there is a transversality coefficient a uniformily
along ~r-1 (Wu (~) n PP,). For a simple transversality, a may depend on
(X, Y).
We will say Wu (x) and E + intersect transversally and

if (7. 25) holds.
Now let K c Wu ( y) be compact. Let

be the fibration associated with Proposition 7 . 24. Since Wu (y) is contracti-
ble, its tangent bundle is trivial as is the tangent bundle of .~~~ along
Wu (y). This yields an extension of the tangent bundle of Wu (y) to a

neighborhood of K in Ur, i. e. a total space F (K) which is a vector bundle
over U~ (K), a neighborhood of K in Ur:
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such that

is the tangent bundle to Wu ( y) restricted to K. Taking r small enough,
we may assume that

where g is defined in (7 . 26). The fibers of gl are of course diffeomorphic
to the tangent space to Wu (y) at a given point. Heuristically, by continuity,
the direction of a g 1 fiber at approaches that of the tangent
space to at g (z) as z -~. g (z). Let ~, be a metric on ~~ and let.

be the normal bundle to F (K).

PROPOSITION 7.31. - There exists a subbundle of the tangent bundle to
Wu (x) along 

whose f iber is a subs pace of the tangent space to Wu (x) at the same point,
of dimension equal to dim Wu(y). Moreover G (K) has the following
property: For any z E g -1 (K) - K and any vector vZ E (G (K))Z, the fiber at
z for g3, splits naturally into hZ + kZ where hz E (F (K))Z, the fiber at z of gl,
and k~ E (F (K)1)~, the fiber at z of g2. Then

uniformly in z and vz or equivalently

in the norm associated with the metric ~..

Remark 7.34. - Conditions (7.32)-(7.33) together with the fact that
gi 1 extends the tangent bundle to Wu (y) restricted to K ((7 . 27)-(7 . 28))
means that the tangent space to Wu (x) contains a subbundle in a neighbor-
hood of K which extends the tangent bundle to Wu (y) along K.

Proof of Proposition 7. 31. - We use (7. 25) and (7. 20). The latter tells
us that for any z E U~ i  r, there exists to (z), t E (0, p’), t = ~~~,
and such that

where lim t (z) = 0, lim to (z) = oo. Equation (7 . 35) is written in the (X, Y)
r-+O

coordinates. Instead of (7 . 35), we will write:

Vol. 8, n° 6-1991.



610 A. BAHRI AND P. H. RABINOWITZ

where X’ ~  P’ ~ X ~ P, and (t (z) g (z), Y) _ (X’, Y’).
Since lim t (z) = o, we can use 03C8 if T is small enough.

~ -~ o

The flow rl (t, . ) expands coordinates in the direction of Wu ( y) by a
factor of e - and contracts in the direction of by a factor of et as
t --~ - oo . Therefore using (7 . 25) and setting

Proposition 7. 31 follows.
Now we are ready to prove 2° - 4° of Theorem 7 . 2. This statement will

be proved by induction on the critical values. Let ...  Cm be the
critical values of f For the sake of simplicity, each critical value will be
assumed to correspond to a single critical point. The set of critical points

..., and they are nondegenerate. Now Wu (x) and Ws (x) are
the stable and unstable manifolds of xi for C. We are going to perturb @
in the course of the proof. This of course causes perturbations of Wu (x)
and WS (xi). Nevertheless for convenience the same notation will be used
for the perturbed manifolds.

Statements 2° - 4° hold for the minimum, xi since they are vacuous.
Using the Morse Lemma, they also hold for x2. In the induction below,
c is a noncritical value. Let

and Jl (A, B) denote the distance between sets A and B. Let

be given. Recall that

We assume inductively that
(i ) If ~1 ~~ i, j  p - l ; if

and intersect transversally for

i, j _ p - 1 and the intersection is uniform and strong in the sense of (7 . 25).
(ii) (Wu Fx~ and for all non-

critical values i  p - 1. 
"

(iii) For given, i _ p - 1, let (0 (( U Wu (x~)) be an open neighborhood

of U Wu (x~). Then for any such C~ and any noncritical value 

x j E Fxi
is compact.

Conditions (i )-(iii ) are obviously satisfied for p - 1= 2. Later we are
going to prove that they are satisfied for any p after a suitable perturbation
of ~). Assuming for now that (i)-(iii) have been established, we will show
that (i )-(iii ) imply 2° - 4°. Indeed (i ) implies 2° and (ii ) implies 3°. Lastly
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4° follows from Proposition 7.24 and 7.31 and the strong and uniform
intersection property of (i).
Now we will prove (i )-(iii ). Clearly (iii) follows from (ii ). We will prove

(i ) and (ii ) by induction. We assume (i ) and (ii ) hold for i, j _ p -1. As
was already observed, (i ) and (ii ) hold for i, j _ 2. Three steps are needed
to get the result for p.

Step 1. - (i ) and (ii ) hold, after possibly perturbing D, for i = p, j = p - 1,
and 

In order to verify (i), we perturb the compact manifolds

Wu (xp) nf-1 (c) and so that they intersect transver-
sally. This corresponds, e. g. to perturbing C along the normal bundle to

in f-1 (c). The resulting transversal intersection in then
uniform and strong. Now (ii ) is immediate since

Step 2. - If (i ) is satisfied for i = p, r _ j _ p - 1, and (ii ) holds for 
with c a noncritical value, then (ii ) holds for i == p and noncritical

Here we consider two cases:

Then y (Wu (xp), WS (xr)) >_ pYp > 0 and the classical deformation theorems
tell us that if cr  c’  cr + and cr _  c  cr, then

for a suitable renormalization of the flow (so that 

deformed into~ in "time" - 1 where ~p is a uniform - p~ neighborhood
Therefore

since 11 ( -1, . ) is invertible and since (ii ) holds for c’,

Hence Step 2 follows for this case.

Case 2. - 

Then by (i ) these manifolds intersect transversally, strongly and

uniformly. From the proofs of Propositions 7.24 and 7.31,
Wu (xp) U Wu (xr) fibers locally over Wu (xr) with a fiber homeomorphic
to

and Wu (xp) locally is a subbundle with a fiber homeomorphic to

Wu (xp) n (contained in Wu (xp) U U ~ xr ~). These fibrations
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are transversal to the flow of C [see (7. 18)-(7. 20)] which leaves 
invariant. Therefore for (-Y~,) U Wu (xr)) and

Wu define local fibrations over Wt, with the same fiber.

Consequently n.fc c W~t (.Yp) and we have

(7 . 40) (W, (xp) U E Fxp and j>r-1})~fc ~ Wll (xp) 
Now consider a fixed neighborhood, Q, of All trajectories of 03A6 from

n.fc, which do not enter Q are images via an invertible diffeo-
of some trajectories of W u ~fc’, for cr  c’  1.

Since

these trajectories are contained in

The other orbits enter Q. In Q we way assume that the local picture is

known as in (7.7). The only accumulation points in Q which belong to
are in Wl~ These observations, together with (7 . 41),

yield the reverse inclusion to (7.40). Thus Step 2 is also valid for this

case.

Step 3. - If (ii ) is satisfied for i = p, with c a noncritical

value, and (i ) holds for i = p, r~ + 1 __, j  p - I , then (i ) holds for and

We consider again the two cases of Step 2:

Case 1. - W~t ~ WS ( ~,.) = Q~ . Then W~~ ( ~~~) (~1 WS = Q~ for any

x for otherwise W1, and WS ( ~,.) would intersect transversally

strongly and uniformly. Since Wu (xp) intersects transversally
strongly and uniformly, W1s (~.~J) is contained in Wu and

fibers locally over with fiber

This implies that Wz~ n WS (.~~,~) ~ Qj, con-

trary to our assumption. Indeed, let in a

given neighborhood of Xj with Let Sy be a section of the (trivializa-
ble) local bundle Wt~ (ap) U Wt4 (.~ J) associated to v, i. e. modulo

a trivialization chart, Sy. (_~) _ ( ~, o) for Then for v near y,
S,. (~.J)) intersects WS (~~.) since the intersection of W~, (.~,J) and Ws (iF.)
is strong and uniform and since Sv(Wu(xj)) is only a perturbation of

Any point in n lies in n Ws (-~,.). Hence
our claim that n 0 for any follows.

Since ~ and W~~ ( ~~) n WS ( ~r.) = Q~ for j  ~~, applying (i ) which
holds for j, r _ p - 1, we have
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Consider an open neighborhood, G~, of U Wu (x~). G~ may be chosen so

X~ E F~p
that

We claim that for noncritical values c E (cr, cp),

Indeed is a compact set. Clearly c U If
j>__r

(7 . 44) were false, we would have for some j >_ j~ + 1

Then G~ is a neighborhood of and by
(7 . 43), WS (xr) does not meet G’. Observe that the decreasing orbit 11 ( - t, . )
starting at x enters 6 and Moreover

so in any neighborhood of x we may find 
with WS (x~)) as small as desired. If this neighborhood is

small enough, then the decreasing orbit 11 ( - t, . ) starting at y will enter
G~, i. e.

a contradiction. Hence (7 . 44) holds and

Now (7 . 47), (7 . 43), and (ii ) imply

Fixing C E (cr, cr + 1 ), we get a lower bound WS ( ~r)) ~

Consider the reduction given by the Morse Lemma in a neighborhood
of This provides us with a description of the local behavior of the level
sets of . f for c close to cr. We choose c so that this description is available.
In local coordinates, the flow for C, rl ( - t, . ), t > 0 increases the distance
of initial points to WS (for a suitable choice for this distance). Therefore

for all t >_ 0. In particular ~, (rl ( - t, Wu ~r) >_ p I (c) > 0 for all
and we may deform to any level cr) using the flow

of C. We modify the parametrization so that this deformation takes place
within the fixed time t > o. For simplicity we keep the notation rl ( - t, . .).
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Therefore for any cY),

and

Since c’  cr, we also have

Hence

and (i ) is proved for this case.

Since (ii ) holds for and C E (cr, cr + 1 ), we have

Consider an open neighborhood W The intersections

Wu (~ WS (xr), j > r are transversal, strongly and uniformly. Therefore
U can be chosen so small that the same is true for the part of Wu (xp) in
U with respect to Indeed since (i) holds for i = p and r+ 1 __ j __ p -1,
Proposition 7 . 24 and 7 . 31 hold for and we have the

usual bundle structure of Wu over W,~ with the related tangent
bundle property. Therefore any strong and uniform transversality property
for translates to More precisely since the tangent bundle
to Wu (xp), along neighborhoods of compact subsets of Wu (x~), contains
a subbundle extending the tangent bundle to W u (x), the strong and
uniform intersection of Wu(x) and Ws(xr) implies that of Wu(xp) and
WS along neighborhoods of such compact subsets. If such neighbor-
hoods are removed, by (ii) we are left with neighborhoods of sets of the
type n WS xr), k  j, Indeed (ii ) implies that

Therefore we may choose a compact set in W u such that its complement
is a suitable neighborhood and our argument
above applies. This lowers the index j and ultimately shows, when all

possible indices are used, that Wu (xp) intersects Ws (xr) tranversally
strongly and uniformly in G’.

Consider then .f -1 (c). This is compact and so is

where Along the boundary of 

Wu (xp) is transverse to (c). By a standard perturbation
argument, we can make (c) transverse to

Ws (xr) nf-1 (c) everywhere by modifying the flow along the normal

bundle of WS ~1. f (c) in f -1 (c) without affecting the boundary. The

Annales de l’Institut Henri Poincaré - Analyse non linéaire



615HAMILTONIAN SYSTEMS OF 3-BODY TYPE

perturbed is then transversal to This

transversality is strong and uniform since it was so in (!) and since on the
sets Wu we are dealing with intersections along compact sets. Thus
(i ) is proved for Case 2 and the proof of Step 3 is complete.
The three steps together imply that (i)-(iii) are satisfied by (xp, x~) for

j  p and the proof of 2° - 4° is complete. Now we turn to the proof of
5°. First we will establish that Wu(a, b) _ ~ is an ENR. Since ~ c Rk, by
a theorem of Borsuk [12], it suffices to show that ~ is locally compact
and locally contractible. By 4° of Theorem 7 . 2, at any point Z E Wu (x),
~ locally is a bundle over Wu(x) with fiber iF= homeomorphic
to Note that y > x means that

The fiber ~ Z is contractible using the decreasing
flow. Since Wu (x) is a finite dimensional manifold, z has a contractible
neighborhood N in Wu (x). Therefore ~ is locally contractible at z, the
contractible neighborhood of z in D being N x Fz in a trivialization over
N about z. Furthermore by 3° of Theorem 7 . 2, ~ is locally compact since
~ _ ~. Hence £9 is an ENR.
To show that fb retracts by deformation onto ~, let b 1  ...  bm be

the critical values of f between a and b and ..., xm the corresponding
critical points. Each of these critical points admits a neighborhood of the
type

for some ~i > 0 where (X, Y) are local coordinates corresponding to a
Morse Lemma reduction, i. e. X is the coordinate along the unstable
manifold E - and Y is the coordinate along the stable manifold E + . We
will also use W u (xr) and WS (xr) to denote E - and E + . Further smallness
conditions will be imposed on s; later.

Let 11 ( - t, . ) denote the flow for D, t >_ o. Consider the balls ..., Bm
in the X, Y coordinates around ..., xm respectively. Let

and

Each set Wi is an I dimensional manifold with boundary where
I= dim This follows since the set
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is a section (3) for the flow for 03A6 which sweeps out W; outside Bi via
r~ { -- t, . ) .

Set

Clearly Wi defines a tubular neighborhood of W~ (xj, and hence a fibra-
tion over the fiber being diffeomorphic to the disk

D + _ ~ (o, Y) I Wu (xJ is compact, ti may be chosen so
that the diameter of the fiber remains small along K~. It is then easy to
extend the tangent bundle to Wu to Wi along Ki. In fact, as in (7. 27)-
(7.28), we can assume that this extension has been carried out on a fixed
neighborhood U (K;):

The fiber of g 1 is diffeomorphic to the tangent space to Wi~ (xi) and

is the tangent bundle to Wu (xJ restricted to Kt. Now g 1 l defines an

orthogonal bundle

If we are given another vector bundle G = G (KJ which is a subbundle
of the tangent bundle of and which is defined in a set O c U (KJ, we
can split G over F (K;) Q+ F (Ki)1-. The following notation will be used for
this situation. If v~ E (G (Ki))~ denotes a vector in the fiber of G at z
and vz can be written as vz = h= + kz where h= E (F and k’ E ((F (Ki))|)z.
To complete the proof of 5°, the following result is required. Here R +

denotes the positive reals.

PROPOSITION 7 . 64. - There exist continuous functions cpl, ... , 

(R+)~-1 --~ R+ such tfiat ..., all i = l, ... , y~z,

then f or any p-tuple ..., 1 > 1, ..., p, I -_ p _ m, v~e

have 
~ ~ 

1° sup 
E ~ 0 x ~ U~

2° Fxir=1 = [xk~K(f)|Wu(xir+1)~Ws(xk)~0} for some index j,

then n 
j= 1 

3° If . 0 _ j -i- 1 p, then the sets intersect

transversally. Hence the intersection ~ ~W
) 

is a manifold
j= 1 

(~) See the note added in proof p. 649
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iI, ..., p). Furthermore its tangent bundle contains a
subbundle Gs, p) with the following property:

and dim Gz = dim Wu = dim (F (Kil))Z’ In (7 . 65) c denotes a noncritical
value with ce 

We delay the proof of Proposition 7.64 for now and complete the
proof of 5°. By the definition of UE, its boundary is made up of pieces of
f -1 (a) and pieces of awi. With the aid of Lemma 7 . 64, the intersections
of any number of these sets are transversal. Therefore such intersections
are manifolds ~~ (E, p). The closure of these manifolds may have a bound-
ary, e. g. if then io, il, ..., ip) is a boundary portion of
some part of ~~ (~, p). On each manifold ~~ (~, p), we may define an
inward normal to UE as follows: on n ... (~ the tangent planes
are independent. Therefore they intersect transversally and define indepen-
dent linear forms. We can pick one which points inwards for each of the

and thus for The same procedure applies is added.
Since the set of inward normals is convex for each linear form, we may
glue these normals continuously and thus, even though aU£ is not a

manifold, being made up of pieces of manifolds, we can continuously
define a vector field v along pointing inwards to UE:

where vz points inwards to Ug. Using e. g. a tubular neighborhood of 
v may be extended to all of ~~ with v = 0 outside of a given neighborhood
of 

To be precise, we require that v --_ 0 in U£, where ~’ _ (~i, ..., is such
that U£, c int U~. Since all of the critical point of f between levels a and b
lie in the interior of UE" there exists P > 0 such that

for all Hence for 8 small enough, ~ - 9 v is a pseudogra-
dient vector field for f in f-1 (a, b). We may choose 9 > 0 such that

for all x Efb n Consider the decreasing flow cp (t, . ) 
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Given any x (b), there exists a unique smallest t (x) such that

Indeed cp ( - t, x) must enter UE since:

if cp ( - t, x) (~ Furthermore since - 4$ is either tangent to
or points inwards to ~U£ and since 8 v strictly points inwards to aU£ the
trajectory cannot escape UE and t (x) is unique and continuous. The
deformation

retracts by deformation onto UE.
In order to conclude the proof, we must show that Ug retracts by

deformation b). Since ~ is an ENR, the Cech homology
of D and the singular homology of 9 coincide [10]. We established that
f b can be retracted by deformation onto U£, which is a subset of a

neighborhood of ~. Since 8 can be made arbitrarily small, it follows that
the homology of fb is isomorphic to the Cech homology of D and hence
to its singular homology. The above argument in fact shows that the

injection of D to f b is a homotopy equivalence since the argument extends
to homotopy groups [10]. Thus fb and D have the same homotopy type.
This is enough for the purpose of this paper. Establishing that this

homotopy equivalence can be taken to be a retraction by deformation is
more technical and we refer to [15] for this point.

Remark 7 . 73. - Taking c E (a, bi), the invariant set in the sense of C.
Conley referred to in Remark 7 . 3 would then be

We now conclude this section with the somewhat lengthy:

Proof of Proposition 7 . ~4. - Since the sets Wi are images by a decreas-
ing flow map of the B/s, 2° follows on showing that

Since W,~ 1 ) n WS (x~r) - QS, (i ) implies that

Thus
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Choosing

(7 . 74) follows from (7 . 76)-(7 . 77) if we can choose £ir+ so that

for all or if

Observe that (7 . 79) together with 3° of Theorem 7 . 2 implies 1° 
° 

of

Proposition 7. 64. Hence 1 ° - 2° of the Proposition follow from (7. 79).
Now (7 . 79) is a consequence of 3° - 4° of Theorem 7 . 2 as will be shown
next. The set W; is obtained from B~ by using the flow 11 ( - t, . ) for t >_ o.
Consider a fixed ball B - p), p > 0 in E - about x;. It is clear that for a
suitable p independent of ~~ and any x = (X, Y) such that
X E B - (x;, p), we have

This is simply due to the local behavior of the flow 11 ( - t, . ) which
contracts the Y-directions and expands the X-directions, i. e.

By (7 . 81), the same result holds on any compact set Ki c W u (xJ. Indeed
such a set is covered by rl ( - t(K;), B - (xi, p)) where t (Ki) E R depends
only on Ki and p. Hence for any having z e K; as base point in the
fibration W; - with fiber diffeomorphic to S~:

where

Thus we are left with those points x for which the base point z belongs
to a neighborhood of i. e. We
may assume that we start with base point z E àKi, the boundary of a
large ball in Wu and thus, using (7 . 82) with E~ small enough since z
belongs to a neighborhood with points x near
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Our goal is to prove that such points remain close to
{W u E = {W u E when they are subjected to the flow
r~ ( - t,. Therefore we return to the situation we started with but with a
lower index j  i. Using a decreasing induction, at the last step we arrive
at a situation where Wu = W2~ ( ~~); hence the result.
Now we will prove 3°. We claim the condition on the subbundle G (s, p)

may be replaced by a similar one with the constraint f ~(~ ) = c replaced by
the requirement that z= (X, Y), X ~ = p, ~ p for a fixed p. To justify
this, observe that the coordinates (X, Y) are local Morse reduction coordi-
nates about Since c E (bil _ l, bil) p may be chosen so that > c if

~, _ (X, ( Y ~ _ p. We know that as til ~ 0,

Therefore we may also assume that p) which may be written
in the (X, Y) coordinates, we have __ p. For ~il small enough and

~~2 (~, p) (c), the amount of time t, needed by r~ (t, =) to reach

{(X, Y) I X = p, Y (  p} is bounded from above by a constant

C = C (p, c). Conversely if ~’ E (E, p), ~,’ _ (X’, Y’), I X’ = p, Y’  the
amount of time, - t, needed by r~ ( - t, ~’) to reach f -1 (c) is bounded

from below by a constant - C (p, c). The map leaves

the tangent space to invariant. Since any point 
close and the time t needed to get from / (c) to

~’ _ (X’, = p, ~  p is globally bounded from above, we may
replace (7.83) by

Now 3° will be proved by induction on p. For p = 1, is a manifold
and we seek a subbundle of the tangent bundle to 1 

which satisfies

(7 . 84). Choosing til  p, let

The tangent space to aWil at a point (X’, Y’) E is the tangent space
to this sphere, i. e.

Consider a point (X, such that
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In fact ~~1  p. Such a point belongs to aWil if and only if

i.e. t=1 tog 203C12, Y = , or equivalently if
2 e.~ 2p

The tangent space at (X, Y) is the image under Dq (-1 2 log 2 03C12 ~i1,.) of2 E;i

the tangent space at (X’, Y’) = q (1 2 log 2 03C12~i1, (X, Y)) to the sphere, I. e.

where

or equivalently

Since

for any hi e E -, the vector

belongs to the tangent space to at (X, Y). By taking the image of
these vectors by .), t _>_ o, (7.94) defines a subbundle of

Furthermore if (X, Y) E and I X = p, then X = p,
I Y| = 2014 and setting

2p

we get
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where C is an upper bound for the norm of the projection from
onto (F (Kil))-L. We do this in order to conform to the

precise definitions (7.61)-(7.63). Otherwise we could simply take
E + with a suitable scalar product,

The inequality (7.96) implies (7.83) and (7.84) and hence the induction

Now we give the argument for arbitrary p. We start with

, is a manifold, the intersection of the
sets ji 1, ... , p is transversal, and the tangent bundle to (E, p)
contains a sunbundle G (~, p) satisfying (7 . 83) or (7 . 84) near xil. Now
we add another critical point Xio E Fxi to this family. It has a related Wio
and We want to study. 

We may always assure, without loss of generality, that there is no critical
point z such that and xi0 E Indeed, should such a z exist, we
could take it to be our present xio. Proceeding in this way, by induction
on all the possible intermediate elements z 1, ..., between xil and
xio z~ maximal in we would establish 3°of Proposi-
tion 7.64 for the whole chain of indices. The statement for the subchain

(io, ..., ip) follows immediately.
Therefore, in the sequel, Xio is maximal in Fxi , i. e. there is no z such

that z E Fxi and E Let (X, Y) be local Morse reduction coordinates
near Xio and (X’, Y’) be Morse coordinates near Let p > 0 be given
and let

Let

(7 . 99) C~ (K°) be a small closed neighborhood of K°
which does not contain xio.

Let

and let K c Wu be:

The set K is a section to the flow restricted to and thus, for any
there exists t (z) > 0 such that:
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where t (z) is bounded by a constant independly of z:

By continuity, we may assume that, if G (K°) is compact and small enough,
then there exists a compact set containing K 1, (~ (K 1 ), such that, for any
ze G (K°), there exists a t (z)  1 + C (p) such that rl (t (z), z) belongs to
C~ (K 1 ). It is not difficult to see that we may take .

Since G (K 1 ) is then transverse to the flow, t (z) is uniquely defined.
Our induction provides us with a subbundle

of the tangent space to ~~ (E, p), with a fiber having the dimension of
such that (7 . 84) holds on C~ (K 1 ). The tangent space to (~, p)

at is the image under Dr~ ( - t (z), . ) of the tangent
space at ~ (t (z), z) to M (~, p). Setting

then is a subbundle of the tangent bundle to p) on
(s, p) n (!) (K°), the fiber of which has the dimension of Wu G (E, p)

satisfies (7 . 84) on G (K1); D~ (t, . ) |Wu(xi1) leaves the tangent space to

Wu invariant; and t (z) is bounded by from above 1 + C (p). Therefore,
satisfies condition (7 . 84) on ~~ (E, p) n U~ (KO) i. e, there exists

an extension F ((~ (K°)) to (~ (K°) of the tangent bundle to Wu on K°
such any the fiber of G1 i at p) n CJ (K°), splits :

(K°)))Z, with hZ and kZ satisfying
(7 . 84) uniformly for z in ~~ (e, p) (K°).

Since the intersection and WS is transversal strongly and
uniformly, if t9 (K°) is small enough, there exists a a > 0 such that for all
z E (E, p) n G (K°), the tangent space to ~~ (8, p) at z contains a subspace
of the form

with o is independent of z. Here and so the
subspace given by (7 . 104) is a graph over 

Observe that if Eio is small enough, any is such that
11 (t, z) E uH (E, p) n U (K°) for a suitable t. Indeed points in
M (E, p) n ~Wi0 are images under 11 ( - t, . .), t >_ 0 of points in

and such points are clearly images of points in
(~, p) n O (K°). The tangent plane to ~Wi0 at a point
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ex, V)) and z = (X, then

and by (7 . 104), the tangent space at z to (E, p) contains a subspace of
the type:

G~ (K°) is fixed, compact and such that (Ko); Eio can then be chosen
so small that t, in (7 . 106), is large uniformly for 
Observe that the flow preserves ~~ (8, p) and is transverse to awio on

[see (7.105)]. Therefore, the intersection of these two sets is
transverse on On (7 . 107) defines a vector space
transverse to the tangent space to Indeed (et X, e-tB;X) is in this
vector space, while, since I X = ! Y L

for t large enough. Thus, the intersection of M (~, p) and ~Wi0 is transverse
along and is therefore globally transverse since any point of
~~ (E, p) n is obtained from ~~C (s, p) n (S o) + using the flow.
We now define ..., ..., and prove the second part

of 3° in the form (7.84). By defimtion, the fiber (Gn) at

Z E ~~’ (E, p) ~1 (S o) + is:

(7 .109) G~ = orthogonal projection of @ R (X, - Y)).
Observe that is a direct sum: (X, - Y) cannot belong
to because ( on and because t in (7. 106)-( 1 . 107) is

very large. Furthermore, as we have seen above, is
transverse to which is the tangent space to at z E~(S o) + . Extending
G to (E, p) via Dr~ ( - T, .), i >_ 0, we obtain a subbundle of the tangent
bundle to (E, p) of dimension

G~ may be expressed in another way if Setting
z = (X, Y) = rt ( - t, z), f = (X, Y) in (E, p) (’~ C~~ (K°), we introduce:

where

Observe that Jfl is tangent to (E, p) since it satisfies (7 . 105)-(7 . 107)
Gz may then be described as:
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since (X, - Y) is tangent to (E, p) along In order to prove (7 . 84),
we observe again that

is the image under 11 of ~l’ (E, p) (~ the time T needed being very
large, T --~ oo as Eio - 0. We set

The fiber of G (Eio, ... , x~o, ... , Xip) at z is

where

Equation (7 . 114) can be written as

since (7 .116) defines a space of dimension equal to dim Wu contained
in ... , ... , xip). Since X ~ = I Y ~, (7. 108) and (7. 111)
imply: 

~ 

for ~to small enough. Therefore if

and if we take, for the sake of simplicity, E - (B E + for the decomposition
of Vz = hZ + kZ, we have

uniformly as Eto - 0. As can easily be seen, (7. 84) can be written with
such a splitting so (7 . 84) holds for G (Eio’ ..., Ei , xio, ... , xip). Thus the
induction is established and the proofs of Proposition 7.64 and
Theorem 7. 2 are complete.
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8. THE RETRACTION THEOREM AND RELATED RESULTS:
THE INFINITE DIMENSIONAL CASE

In this section, the results of paragraph 7 will be extended so as to
apply to the functional I introduced in paragraph 4. In the process a set
of critical points at infinity for I will be introduced and its stable and
unstable manifolds relative to the pseudogradient flow generated by Z will
be characterized.
The notation of paragraph 4 will be used freely here. Again Jf(I)

denotes the set of critical points of I, etc. We henceforth take E1 1 as in

Proposition 2.9 and assume

Also let Wu (ql, q2), WS (ql, q2) denote the stable ans unstable manifolds
corresponding to (q 1, q2) E aT (J 12), etc.

THEOREM 8. 2. - Let I be as defined in paragraph 4. Then
1° Any trajectory of (4. 23) with q (0) E I~+ 1 which does not enter I£1 i

or does not converge to a critical point of I has a limit. The set of limits,
~, can be written as

where

2° In the (ql, q2, Q3) coordinates,

where q1, q2) E M12.
3 12 (ql, possesses a Fredholm stable manifold, (ql, and a

.finite dimensional unstable manifold, (ql, q2). These manifolds can be
characterized in (ql, q2, Q3) coordinates as:

a. (q l, 1 is a bundle over q2)Bint J~1-03B2112 1 with fiber
F q2~ over (ql, q2) given by
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b . Let c = J 1 ~ (g i , and 0  e  ~ fl (c i ) . Then
2

where (ql, fibers over WS (ql, q2) n with fiber at (ql, q2) given
by 

’

4° 2° and 3° hold for any 
5° In any C1 neighborhood of I’, there exists a perturbation L of I’

possessing the following properties :
a. L = Z in ~2 (i, j), i ~ j.
b. L is a pseudogradient vector field for I.
c. For any q E 

+ 1 and E ~M + 1, the stable manifold
(qi, L) for L through (qi, is transverse to Wu (q; L).

d. For any Wu (q; L) is transverse to L).
e. For any q~) E ~M + 1~{ qL, L) is tranverse to

L).
6° The set IM + 1 retracts by deformations onto

where

is piecewise smooth, and ~E (~M+ 1) is a small neighborhood 1.

Moreover

a. ’~°° retracts by deformation onto I£1 U ~M+ 1~
b. ’~£ (~M + 1 ) and ’~£ (~M + 1 ) n ~ ~ are ANR’s.
c. ~M + 1 is an ENR of dimension m and the homologies of (~M + 1 )

and ’~£ (~M + 1 n ’Y~’ ~ ) vanish in dimension larger than m.

Remark 8 . 3. - (i) On the basis of 5°, we can assume Z = L and our
original stable ans unstable manifolds Wu (q), (q), etc. have
transversal intersections. (ii ) A stronger result tan 6° is valid: I~ + 1 retracts
by deformation onto IE 1 U ~M + 1 U ~M + 1. See Bahri [ 15] .

Proof of Theorem 8. 3. - Let us recall the construction of Z given in
paragraph 4, in particular (4. 15)-(4.23). First Z12 was chosen to be a
pseudogradient vector field for J 12 such that the stable and unstable
manifolds for Z12 in the region ~1~J12 (q) _ M + 1 have a transversal
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intersection. Points on the unstable manifold between levels E1 1 and M + 1
satisfy (4. 15). Then Z was defined in (4. 20)-(4. 22) as follows:

where Y12 expressed in the q2, Q3) coordinates in ~~’~2 (l, 2) is given
in component form by

Now we will prove 1 °-2° of Theorem 8 . 2. We first want to describe
the critical points at infinity of I, i. e. by Corollary 4 . 42, the limits of
decreasing trajectories for (4. 23) which remain in ~’~ (1, 2) for large T.

On Z = Y 12 . Therefore we are dealing with (4.21). Let
a solution of (8.5) for i > 0 such that

We claim (q (T), q2 (T)) converges to a critical point
of J 12 as provided that J 12 (ql (T), q2 (i)) +-~ 0. Since on

’ 1.

we have

Choosing (3 (C 1 )  E l, (8 . 7) implies

for all T>O such that Hence as T -~ o~, (T), q2 (i)) converges
to a critical point of J 12 with

By {8 . 5) (ii),
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as T - oo. Since (qi (T), q2 (T)) -~ q2), for large T we have

Now consider (8 . 5) (iii). It shows

is nondecreasing as T -~ oo . Combining this observation with (8 . 10) implies

as T -~ oo . We claim ~ > 0, for if J.l = 0, then for large T,

Now (8.11)-(8.12) imply that (ql, q2, Q3) (T) for large T. Therefore

( 1- ~ 12) (q (i))) = 0 for large T and (8 . 5) (iii) implies

for large T, contrary to ~ = 0. Since p > 0, (8. 12) shows we have

where

Since q (i) E ~1, we have

for large T. Thus if ~i (C1)  2,

Using (8 . 15), we get
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for T  To and To large. Combining (8 . 14) and (8 . 18) yields

Hence by (8 . 5) (iii),

Therefore w (T) = [Q3-1 2 (q1 + q2)](03C4) converges to a limit w~ as T - aJ .
Clearly I - &#x26;i~ (q (r)) then converges to 0. Therefore

via (4.16). Lastly observe that by Proposition 2.9’, any critical point of
J 12 satisfying (8 . 9) will satisfy

if ~1 is small enough. Now (8 . 9)-(8 .11 ), (8 . 20)-(8 . 22) imply that the
limits as T - 00 of the trajectories we are studying lie in Yt 12 where ~ 12
was defined in 1 ° - 2° of Theorem 8. 2. Conversely, any q~12 is the
limit as T -~ 00 of an orbit of (8 . 5), namely the one with initial data q.
This proves 1 

° - 2° of Theorem 8. 2.
Now we study the "stable" and "unstable" manifolds WS (ql, and

corresponding to points in Yt 12’ We begin with

Wu (qm 

(8 . 23) W,~ is a solution of (8 . 4) whose

limit set as T ~ - oo has a nonempty intersection

with Yt 12 and I(~(r))~8~ for all i  0 ~ .
Arguing as in the proof of Corollary 4 . 42, there is a To so that if 

For such T, q(T) may be expressed in (ql, q2, Q3) coordinates
and (8 . 5) holds for When To) decreases (8 . 5)
shows that nondecreasing while Q3 - [Q3] tends to 0 as

T ~ - oo . Hence

Similarly I [Q3-1 2 (q1+q2)] |(03C4) is nonincreasing as 
in (201400, To) while
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so

for Thus

for On the other hand, (q (i), q2 the

unstable manifold of Z12 at q2). Consequently

for T~To by (4.15) and the choice of C1. [See (4.17) and the
following paragraph.] Inequalities (8 . 26)-(8 . 27) imply that q (T) E ~ 1 for

i where Therefore To== 00, i. e. if q (T) (c~l, 
then (8 . 25) holds for 6 E ( - oo, oo) and

i. e.

Therefore (ql, q2)Bint IE1 fibers over Wu (ql, q2)Bint Ji2 al with fiber
q2) as stated in 3° a of Theorem 8 . 2. Furthermore since w12 = 0 in
the flow restricted to W~ I~1 has a nice representation:

These equations show each orbit in (q~, converges to a

point in ~ 12 as T -~ - 00.
Now we will describe (locally) the stable manifold q~) which

we define via

(8 . 32) q2) - ~ q (r) satisfying ($ . 4) I c~ (r) converges to
an element of ~ f ~ as T - 
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As was the case for W ~ q2), we could have started out with solutions
of (8 . 4) whose limit set, as T -~ oo, has a nonempty intersection with :Yf 12’
However the analysis of critical points at infinity carried out in (8.6)-
(8 . 21 ) shows that such trajectories converge to an element of Thus

(8 . 32) is an acceptable definition for (ql, R’2). For any

q (T) E (ql, q2), there exists To such that

For such T, q (T) satisfies (8 . 5) which implies

Let us consider a neighborhood E of in VVS (ql, having the
following properties:

(i ) L is invariant under the flow

(ii) For any 

Since by (4.15),

such a set £ can be found. Clearly for any q (T) q2), there exists
a such that

Moreover since ~l we have

for i > i 1. Using (8. 3 5)-(8 . 36), the analusis carried out in (8. 6)-(8 . 21 )
holds and any orbit of (8 . 4) satisfying (8 . 35)-(8 . 36) lies in W~° 
Observe that if

and
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then by properties (i)-(ii) of 03A3 if q (T) = (ql (T), q2 (i), Q3 (t)) is the solution
of (8 . 4) with initial data q (0), q (T) satisfies (8 . 37)-(8 . 38) for any T>O.
Indeed (8. 37)-(8. 38) show (8 . 4) has the form (8 . 5) for small T > 0. Hence
properties (i )-(ii ) of L and the fact that the left hand side of (8. 36) is

nonincreasing with T via (8. 5) imply that (8.4) has the form (8 . 5) for all
T > 0 and that (8 . 37)-(8 . 38) holds for any with such initial data.
Now (8.33)-(8.34), (8.37)-(8.38) and our above remarks show that

W~° can be described locally as a bundle over L with fiber 
where for (ql, q2) ~ ~, 

Let

We will make a particular choice of E. Let

Certainly (i) hold for small 8. Moreover since q2) satisfies (4. 15) and
L (s) ~ (ql, in W1, 2 as E ~ 0, a fortiori 03A3 (e) - (q1, ij2) in L~ and (ii)
follows for where E2 depends on C1 (and M). We can further assume
that

for all E + 1. Let

and set

Dropping the (ql, for convenience, W~ (E) is clearly a connected

neighborhood of 12 in W~s (ql, q2). We will describe W~s (E) n V1.
On 

and the flow has the simple form (8 . 5).
Consider the following set:

{ q (0) E W~° (~) ~ the solution q (r) of (8 . 5) remains in ~1 for all
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The argument used above in (8 . 34)-(8 . 39) shows that if q (0) (E),
there is a 03C40>0 such that for We claim that in fact

for all i. e.

Indeed assume that 1 and q(03C4)~ 1 for 03C4~03C41, i 1 > o. Since (8 . 5)
holds on [il, oo), (ql (i~), (q2 q2). Since ($ . 45) holds and
since > ~)~ (q (i~)~ q2 (W)) E WS (qm q2) ~1 and

hence (q 1 (i 1 ), Therefore 1 [since 1

and (q (il), (E) and hence (ql (il), q2 (’~1)) ~ c~ (~). This

implies that either

which is impossible by (ii ) of the definition of 03A3 (~) or that

which is also impossible since then

a contradiction. Hence (8.46) holds.
Using (8 . 45) and the definition W~ (~) is a bundle over ~ (~)

with a fiber as described in 3° b of Theorem 8.2. Moreover (s) is a

Fredholm manifold. Indeed £ (~) is a Fredholm manifold since J i 2 is

Fredholm and proper near q2). Thus Z12 may be chosen to be

Fredholm and proper near q2). The set q2~ is also a Fredholm

manifold and (e) inherits this from the product structure. This comple-
tes the proof of 3° (and 4°) of Theorem 8. 2.
To obtain 5° and 6°, a few preliminaries are needed. Note first that if

then WS ’ (E) is a uniform neighborhood of ~ 12 in (c~ 1, q2) ~ Indeed if

Observe also that (8. 5) holds on WS (E) and provides us with following
information about the behavior of the (decreasing) flow restricted to
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W~° (E):

where ~, (T) converges to a limit v as T ~ oo such that >_ (( 1 / ~i 1 ) -1 ) 1 ~2 .
Lastly observe that a Morse Lemma is available around ~12 for Z in the
following sense: Let neighborhoods of
(Ql, Q2) in A12 such that

in ~V’2 where (X, Y) are coordinates along q2) respectively and

for all (ql, q2) E ~V’i, i = 1 , 2.
For i = 1, 2, let

Then by the definition of ~B.c=~. Moreover since M~(~)-’- on
~2B~i. by the argument of Lemma 4.14, there are constants y and K~
such that

for all Furthermore, (8 . 5) holds in ~2 and shows that
if q(T) is a solution of (8. 5) such that i E [o, io], then
q (i) _ (X~ Y, Q3) (i) with

where
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if and only if dist (q (T), ~’~o) ~ 0. Now (8 . 54)-(8 . 55) show that ~l’~2
has similar properties to neighborhoods of critical points for functionals
satisfying the Palais-Smale condition. Indeed the explicit formulas of

(8.55) show (PS) is satified in along any given trajectory. Moreover
~2 is a neighborhood of ff 12 on which Z has the reduction provided in
(8.55) which splits along the q2, Q3) coordinates yielding a product
structure for the flow corresponding to - Z.
As a last preliminary observe that ~,1~~’2 is small enough, JV 2 c ~,~lr’ (p) as

defined following Proposition 4 . 2 and any solution (ql, q2) (T) of (8 . 5) (i)

starting in %2 satisfies (8 . 52) for any T such that q2 (i)) ~ 2 1.
This implies that (8 . 5) holds for any decreasing flow trajectory q (i)

starting in ’~2 as long as I (q (i)) >_ ~1 and therefore

J 12 (q 1 (i), q2 (03C4))~~1 2 since (3 (C 1 )  E 1; see (8 . 5)-(8 . 7)

Now we are ready for the proofs of 5°-6°. These proofs are essentially
the same as those of 2° and 5° of Theorem 7. 2. However there are a few
differences which will be indicated next. The proof of 2° of Theorem 7.2
relied on a two step induction. In particular, recalling the idea of the
proof, given two consecutive critical values c~  c2 with corresponding
critical points xl, x2, WS and Wu (x2) intersect transversally, strongly
and uniformly. This insures that if 1 and intersects W u (x 1)
transversally, then W u (x 2) intersects transversally in a neighbor-
hood Therefore if we want to guarantee that Wu (x2) intersects
WS (xo) transversally, we need only take care of a part of W~ (x2) which
does not lie in a neighborhood of Wu (x 1 ). Since we are interested in

Wu (x2) U Ws (xo), we may consider Wu (x2) n~f’-1 (c) for c E (co, cl). Then
the part of Wu (x2) nf-1 (c) which does not lie in the given neighborhood
of is compact and making it transversal to follows from
the standard transversality theorem [16].
As in the proof og 2° of Theorem 7. 2, in order to insure the tranversal

intersection in the strong and uniform sense of WS (xl) and Wu (x2), or
WS (xo) and W,~ (xl), (PS) is needed outside of suitable neighborhoods Cr’i of
the critical set including the critical points at infinity. These neighborhoods
should be small enough so that they do not intersect a level set f -1 (c)
for a fixed c between two critical levels. In order to guarantee that the

strong and uniform transversal intersection of WS (xo) and Wu ( x ~ ) implies
that and in a suitable neighborhood a Morse

Lemma is needed for the flow in the ~y’s. Since (PS) is satisfied outside
the the part of which is then left intersects f - ~ (c), for

c E (co, in a compact set. Thus our induction can continue. Neighbor-
hoods Oi are available for our present framework, i. e. for I between the
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levels ~1 and M + 1, at least to the extent that (PS) is satisfied outside of
these sets. The sets ~’2 defined in (8.51)-(8.55) can be used as the W;’s
for critical points at infinity. The fact that the flow 11 (T, . ) is Fredholm
and locally proper near the remaining critical points in I -1 (E 1, M + 1 )
provides for such points.
Now we will more precise. Let c, M + 1] be noncritical values

of I. The critical points at infinity, i. e. sets of type ~ 12 provide us with
a continuum of critical values for Z. Namely corresponding to we

have for [il]. This is, of course, an artiface of the
method we are using which introduces a vector field, Z, with a hyperbolic
manifold of rest point at each level where (PS) fails. Nevertheless we will
argue as if this manifold were a single point. The hyperbolic structure
displayed in 1 ° - 2° of Theorem 8. 2, in (8 . 31) and (8. 55) allows us to do
so. For the sake of precision note that a noncritical level c will either
satisfy i or Since B1 1 satisfies (8 . 1 ), these
critical interval levels do not overlap.

For any classical critical, ii, of I and in particular for those in
I -1 ~1, M + 1 ), is finite dimensional. Therefore if c’  I (q) and is
larger than the next critical level of I, Wu (q) (~ I -1 (c’) is compact. Since
(PS) holds outside ( 6’; ), the first step of the induction argument of 2° of
Theorem 7.2 is possible for ii. This ensures a transversal intersection of
Wu with Ws (ii’) or W~° (ii’) at the next critical level since in both cases
(Ws or we will have to ensure the uniform and strong transversal
intersection of a compact manifold with a Fredholm (possibly unbounded)
manifold. Given another critical level c"  I (c~) which corresponds to a
classical critical point or to a critical point at infinity, the same argument
guarantees the strong and uniform transversal intersection of W~ (q") or
WS (4") with the trajectories originating in Wu ~ I -1 (c’) which do not
enter the (!) /s between the levels c and c’. Here c"  c and c is less than
the next larger critical level. Thus the first step of the induction argument
of 2° of Theorem 7.2 is available for classical points. The second step is
also, since it relies on a Morse reduction about a classical critical point.
This is available here by the local properness and Fredholm character of
I and Z.
Thus we are left with critical points at infinity. For such points the

following direct argument shows that both steps of the induction procedure
are available. First observe that for any (iji’ and q’ such that

Indeed (8.31) shows that the decreasing flow, restricted to (qi, c~~)
splits in the product structure between Wu and the fiber with
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[Qr-1 2 (q;, * Const. = y. Moreover y ) > ((1/03B21)-1- 1)1/2. If fl i is

small enough, this fact implies (8. 56) for then if g’ has the form

(4?, 4), Ql),

while if q’ cannot be so represented, no constraint is needed for 
The remaining case to consider is n W~° (q~, where

the indices i, j are the same for these sets since the sets which

contain (qi, are pairwise disjoint. Using (8.31) again shows

Wu r1 is a bundle over W u R’.;) ~1 WS 
described via

Since and are assumed inductively to intersect

transversally, strongly and uniformly, Wu q~) and also do

so. Observe that the transversality occurs in the base of the bundles W;:
and Wj’ , not in the [Qr] fibers. Now recall that we chose ~’~2 c ~’~ (p) so
that any decreasing flow trajectory starting in a set ~’2 satisfies (8. 5) as

long as I (q (i)) >__ £l. This fact, together with (8 . 55) and the transversality
in the base of the bundles which was just pointed out implies that the
second inductive step is also available for critical points at infinity: if

W~ (q) or We; (q) intersects W~° (ij’) transversally, strongly and uniformly,
between the levels Ei 1 and M + 1, then or W~u (q) will intersect any
other (q") transversally, strongly and uniformly in a neighborhood
of (ij’) provided that Wu (ij’) intersects (q") transversally, strongly
and uniformly. Thus we have 5° of Theorem 8 . 2.
Now we turn to 6° of Theorem 8.2. It is almost simpler to prove it

here than in Theorem 7.2 due to the representation we have for the flow
at infinity, in particular (8. 31). However a complication is created due to
that fact that 3° of Theorem 7.2 does not hold here. Property 3° was

used in both the ENR and retraction parts of 5° of Theorem 7.2 so we

must study this situation carefully.
To see what happens to 3°, we consider a simple case where 

and the largest critical value c smaller than I (q) occurs at oo, i. e. Z has a
set of rest points, say ~12 (ql, with stable manifold W~° (ql, and
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and consider Wu (q) (~ W~° (ql, n I -1 c + £). Our assumptions on E, I
(q), c imply that ~ 12 (ql, c I~ + ~9~ 10> E. Moreover Wu (q) being finite

dimensional, is homeomorphic to a finite dimensional
sphere and therefore is compact. Consequently

is compact. It is also useful to observe at this point that the intersection
WS (ql, can be made transversal in a standard

way since it represents the intersection of a compact manifold with a
Fredholm, and closed manifold.

Since E  03B2(C1) 2, the description of given in 3° of this

theorem, shows W~s (q1, q2)~Wu(q)I-1(c+~)~V1(1, 2). With C 1
sufficiently lage and small, it may be assumed that if

(ql, q2, Q3) E (ql, n then (ql, q2) E ~ as defined after (8 . 34)
and Q3 satisfies (8 . 36). Then as noted earlier, the flow for - Z on
W~° (ql, n takes the form (8 . 5), i. e. splits nicely. In particular
this form holds on W ~ n W u (q) n I -1 (c + E) . Therefore

W ~ n W u (q) n is the image under this flow of the compact
set W~° n Wu (q) n 1-1 1 (c+ E).

It was shown earlier in (8.12)-(8.13) that for a trajectory in

W~° (q , 1 q 2 ), the limit, j~, , of / 1 + Q3 - 2 1 ~ql ( ) i -1 as i -~ oo is

nonzero. Thus Q3 - 2 1 (ql + q2) ( ) i does not tend to oo along this

trajectory. The same is true uniformly for all trajectories originating in
the compact set Hence 3° of Theo-
rem 7. 2 does not hold here. Only part of ~12 lies in Wu (q) due to the
fact that the single critical point occuring in Theorem 7.2 is relaced by
the entire set, ~ 12, here. However as the above remarks show, we do
have transversal intersections at least for the critical points at infinity and
also for the intersection of the unstable manifold of a classical point with
the stable manifold of a critical point at infinity if there is no other critical
value between the two critical values considered.

In the classical framework, as in the proof of 3° of Theorem 7.2 and
5° of Theorem 8.2, these facts together with the Morse Lemma allowed
us to conclude that all intersections, without restriction, were transversal.
The retraction result then followed. In the present situation, the Morse
Lemma available for the critical points at infinity is special since we have
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manifolds of critical points at infinity. We could break up these manifolds
into a finite number of points by modifying the functional, and use then
the finite dimensional result. However, this leads to new technical problems
so we prefer to argue directly. The problem is the following: since we
have a whole set Yt 12 of critical points at infinity, the sum of the tangent
space to Wu and the tangent space to W~° any of these
critical points is not direct. There is a direct sum: the sum of the tangent
space to w~’ (ql, at q = (ql, Q3) and the subspace of the tangent

space at q defined in the coordinates ql, q2, Q3 - CQ3], Q3 - 
W + q2 ])

by

In (8.59), refers to the tangent space at to

~); {0} refers to the zero in the tangent space to

W~([0, T], Rl) with coordinates ~~-[Q~], fQ3-~(~i+~)1). .
Comparing (8.59) with (7.25), we should take E’ here at

to be X ~ 0 ~ (using the same coordinates). With the
above definition of E -, E - is invariant under the linearized flow [see
(8.31)]. With this modification, the statement of Proposition 7.31 holds.
After (7 . 38), we established (i ), (ii ) and (iii) inductively. Here, due to the
presence of the critical points at infinity, (ii ) cannot hold and is replaced
by the inclusion:

(iii) remains the same (when generalized in order to take into account
the critical point at infinity). With this modification, (i ), (ii)’ and (iii) hold
and their proof is nearly the same as in the classical case. The modifications
are related to the fact that (7 . 24) does not hold here; i. e. there is no local
fibration of over q2) ~ QS, due to
the fact that Wu (q) does not necessarily contain all of (ql, in its
closure. However, the arguments using the fibration may be replaced, for
the proof of (i ), (ii )’ and (iii), by the transversality, property, i. e. by
Proposition 7.31.
Again using the above definition of E-, Proposition 7.64 holds in this

extended framework, the proof being essentially the same. This proposition
provides us with a neighborhood of IE1 U 1 U ~M + 1, invariant under
the decreasing flow, of the type ~°° U 1/, where 1/ is a neighborhood of

1 with a piecewise smooth boundary, intersecting transversally.
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W~ also has a piecewise smooth boundary. W~, V and V ~ W~ are

therefore ANR’s.
For later purposes, we point out that we may suppose that - Z points

inwards on ~~ U ~. This is obtained by modifying slightly the deforma-
tion argument of (7.66)-(7.72). We have shown there, up to a change in
notation, that we can find a vector field v, which vanishes on

1 and such that v points inwards on ’Y~ °° U ~. We
were using v in order to show that - Z (q) + E v points inwards on

U ~. We can argue differently and assume that U 1/ is con-
structed by using the flow of - Z (q) + E v in (7 . 58) [instead of the flow of
- Z (q)], with 8 sufficiently small. If Z (q) is tangent at any point q to such
a U ~, then v has to point outwards to ~ °° at such a q.
However, when E -~ 0 the boundary of ~~ U 1/ approaches the boundary
of the similar set for - Z (q) and v points inwards on this set. Therefore,
we have a contradiction, and - Z (q) is transverse to ~~° U 1/ along its
boundary.

Using the same kind of argument as in paragraph 7, to establish that
W u (a, b) is an ENR, we can prove that is an ENR. Namely, 1

is locally contractible for the same reason Wu (a, b) is locally contractible.
1 is locally compact since ~M + 1 is a union of finite dimensional

manifolds and since ~M + 1 is locally closed. (Indeed
1 C U 1 U IE 1 ) ~ Since - Z is tangent to ~M + and on 

it points inwards to ~ °°, retract of an open subset in

f!2M + 1 (namely U 11 (s, ~_~ 1 (~ and therefore is also an ENR of
SER

dimension at most m. Thus we have established that ~£, W°~, W°~ n ~E
are ANR’s and that ~M + 1 and are ENR’s of dimension at
most m.

The sets ~£, depend on small positive parameters El, ..., Er
(respectively ... , These parameters allow us to define the balls
B (xi, Ei) in the proof of Proposition 7 . 64, from which the set ~E (and
if/oo) is constructed. These Ei and E~° obey constraints of the type:

Since ql) n Ws (q) = QS, does not depend on E1, ..., Ei _ 1, i. e.
the constraints on ~~i are of the type

We may therefore fix ..., thus obtaining the set and consider
... , ~r) with small 8/s. The intersection ~ (E) n is

transverse and is a piecewise smooth manifold. If ~’ (E) n were a

manifold, then when E~ -~ 0, j =1, ..., r, the pair (~ (E), ~ (~) (~ 
would deform through an isotopy and we would then very easily obtain a
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retraction by deformation onto (~M + 1, 1 n ~x~). The statement
about the homologies of V (~) and V (E) of Theorem 8 . 2 would
follow.

Unfortunately, ~’~ (E) (~ ~~ is only a piecewise manifold and therefore
the retraction by deformation argument is trickier (see Bahri [ 15]). Observehowever that if 0  ~~  ~~, (~~ small enough), then ’~’~ (~’) is a retract bydeformation of V (E) and, using the fact that the intersection is transversal,V (E’) r1 W~ is a retract by deformation of V (~) ~ W~. Therefore, the
homology of V (e) and the homology of V (e) n W~ do not depend on £,
for e small. Since 1 and are ENR’s and since

and ~(V(~)~W~)=DM+1~W~, V (E) has the hom-
E E

ology of 1 and has the homology of (If
we want to avoid the construction of the retractions by deformation of

(~) on V (~’) and V (E) ~ W~ on V (E’) n W~, we can consider Cech
homology. The argument in (5.4) of section 5 then holds in Cech homo-
logy. Since ’~~ is an ANR, Cech homology coincides with the usual
homology for ~’~°~; the same result holds for the other sets. Therefore,
the argument may be continued as stated.)
The proof of Theorem 8 . 2 concludes now by showing that ’~~’~ x’ has

the homotopy type of IE1 U We observe that (8 . 5) holds in a

neighborhood of ~M’+ 1 and we have the nice splitting situation alreadydescribed. Therefore, in such a neighborhood 1 for example), we may
construct ~’~x out of a similar kind of neighborhood for the associated
two-body problem and a neighborhood in Wi, 2 of the set

Since the associated two-body problems satisfy the Palais-Smale condi-
tion and since the gradient of Ii~ is Fredholm, the results of paragraph 7,
in particular Theorem 7.2, generalize immediately to this framework.
The neighborhoods considered provided by Proposition 7.64, have the
homotopy type of the union of the unstable manifolds for the critical
points of the two-body problems. This yields the result about ~ ’~ °~ , except
for some minor details which we omit for simplicity.

9. A REFINED VERSION OF THEOREM 1

In this section we will prove a refined version of Theorem 1 under
further assumptions that the critical points of I are "nondegenerate".
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More precisely, let q be a critical point of I and let m (q) denote its Morse
index, i. e. m (q) is the number of negative eigenvalues of I" (q). Let m (q)
denote the generalized Morse index of q, i. e. m (q) = m (q) + the number

of 0 eigenvalues of I" (q). By (2 . 24), m (q) - m (q) >_ l. Observe also that
the degeneracy directions, at a critical point, satisfy a second order ODE
in (R1)3. Therefore m (q) -- m (q) + 6 l.

Let Bk (A) be the k-th Betti number of A and let Nk denote the number
of critical points, q, of I such that m (q) = k. Then we have

THEOREM 3. - Let V satisfy (V1) - (V6). Assume that if I’ (q) = 0 and
m (q) >_ k, then m (q) - m (q) = I, i. e. q is a nondegenerate critical
point of I modulo translations. Then

Proof - The inequalities (9 . 1 ) can be interpreted as a version of the
Morse inequalities. However, due to the fact that critical points of the
two-body functionals Iij, provide us with critical points at infinity and
since we have no control on the number of these critical points, the

standard proof of the Morse inequalities cannot be used here. The proof
given here bypasses these difficulties (and also provides a proof of the
Morse inequalities in the standard setting).

There exists M > 0 such that any homology class [c] in Hk (A) may be
represented by a chain c having support in This is the case since Hk (A)
is finitely generated (A is the loop space of the fibration p: Y3 -~ Y2, see
section 5, with fiber equal to the wedge of two spheres Sl -1. That Hk (A)
is finitely generated follows from [17]. Let

As was pointed out in paragraph 4, after a perturbation argument, it may
be assumed that all critical points of I in 1M are nondegenerate (modulo
translations). Set

Let

and

Using 6° of Theorem 8.2, the chain c with support in 1M representing
[c] E Hk (A) may be represented as a chain in
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with

Each such chain c is spanned by simplices of dimension k. Therefore the
support of c is provided by continuous maps a from the standard k-
simplex into Using a transversality argument (after suitably approxi-
mating 6 by differentiable maps) we may assume that the image of cy,

Im o, transversal to for all where

Therefore

for any 
1 such that m(q»k, Since the support of c does not

meet the stable manifolds of the critical points with m (q) > k, ~’~£ 
may be reduced and thus each chain of Hk (A) may be represented as a
chain in U U Letting E --~ 0 and arguing as for

paragraph 8, the chains may be represented in

The next step in the proof of Theorem 3 is to establish:

where ~~‘~ ~’ will be defined shorthly. Set

[compare with (5 . 10)]. Using Corollary 3 . 41 and arguments close to those
of paragraph 5, it is not difficult to to ~l~~x’, a neighborhood

of ~1~I~1 1 U U Z~ij) which retracts by deformation on ©’[ . This can
be done since qj)~03B2(C1) with a defined in Corollary 3 . 41. Since

p~+ ~ = -~,~-°", each chain of H~ (A) may be represented as a chain of

Next we show that

To prove (9.8), we employ a variation of an argument of paragraph 8
which allowed us to deform 1 onto U ~’~£. This argument was
based on the transversality of the pseudogradient flow to along its
boundary and on the local fibering given by Proposition 7 . 24 of W u (q)
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onto Wu (q’) if Ws (q’) n Wu (q) ~ (p. Observe that

is invariant under the flow (4.23). Moreover by Proposition 7.24,
Ak ~ Bk-1 i fibers locally over Therefore 1

has the homotopy type of U Hence

By excision,

as claimed above.

Since any generator of Hk (A) can be represented in

via the above remarks and this representation is injective,

Using (9 .11 ) together with the exact sequence for the pairs

yields (9. 7).
Next we will prove

To do so, we first show

where n ~~~~). To obtain (9.13)-(9.14), observe that
Bk -1 i is the union of manifolds of dimension at most k - 1 and that by
the transversality of the intersection of Bk -1 i with ~’ °~ - see the proof of
6° of Theorem 8. 2 - Bk - i o is the union of manifolds of dimension
at most k - 2. We will prove (9 . 13)-(9 . 14) by induction on the number
of these manifolds. Proposition 7.24 holds for the critical points of

and provides a local fibering of Wu(x) UWu(y) over Wu(y) if

Wu(x) (1 It follows that has a neighborhood ~’~y in

W u (y) U Wu (x) which (i ) retracts by deformation on Wu (y) and such that
(ii ) Wu(x) n 1/; is open in and distinct from Wu(x). Since 
is a disk of dimension at most k -1 and (ii ) holds,
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Again using the fact that Wu (x) is a disk of dimension at most k -1 1

and (i )

Therefore using the Mayer-Vietoris sequence applied to the excisive triad
~y, Wu(x)), we see that

This result extends by induction (based on Proposition 7.24 or more
properly a variant of it involving more than two critical points) and leads
to (9 .13).
Now we turn to the proof of (9. 14). The idea behind its proof is the

same as the one just employed, but with a shift of one dimensions. It was
pointed out in the proof of 6° of Theorem 8.2 that ’Y~~ may be chosen
so that the flow (4. 23) is transverse to along its boundary. Since this
flow is tangent to any Wu (y), the fibrations of Proposition 7 . 24 are

transverse to W~ along its boundary, i. e. if Wu (y) intersects Wu (y)
being contained in Bk-1’ and if Wu (x) also being
contained in Bk_ 1, then (Wu (y) (~ fibers locally over

Wu (y) (~ in the sense of Proposition 7 . 24 with a fiber homeomorphic

Each set Wu (x) n ~W~ is a union of manifolds of dimension at most

k - 2 since this intersection is transversal. Using the fibrations as earlier
we may construct excisive triads

with

and

Therefore arguing as for (9.13),

Using the fact that the flow (4 . 23) is transverse to Bk-l 1 may be
retracted by deformation onto Bk _ 1. Hence U 1, Bk-1) is

excisive,

and (9. 14) holds. Therefore the Mayer-Vietoris sequence implies

Combining (9.22) and (9. 7) yields (9. 12).
For the final step of the proof of Theorem 3, note that by the arguments

of paragraph 8 for ~~’~ °~ , jjíoo has the same homotopy type Then
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by similar arguments to those used for 1 in paragraph 5, for k >_ 3 l + 1,

where U W ~ was defined following (5 . 6). The set BIT
has the homotopy type of X where

. , 1

Jsing (5.6)-(5.8), is a retract by deformation of

Therefore using the pseudo gradient flow (4.23) again, ffij has the homo-
topy type of

Applying Theorem 7.2 [or actually a generalization to the analogous
infinite dimensional compact and Fredholm framework - see e.g. ( 15)] we
obtain that has the homotopy type of Ai J. Therefore BIT has the
homotopy type of Aij x and

As was shown in paragraph 5, Aij has the homotopy type of the loop
space of Sl -1. Therefore

and by (9. 23)

for k >_ 3 l + 1. Combining (9 . 12) and (9. 29) yields Theorem 3.

Remark 9.30. - As mentioned in the Introduction, Theorem 3 has

consequences for e. g. homogeneous potential like those yielding central
configuration solutions [under (V~)]. Modulo scaling, these special solu-
tions are generated by a compact family of solutions. Therefore the

contribution of the whole family (after scaling) to the homology groups
of A is bounded. Hence there must exist periodic solutions other than
these special solutions. The same argument may be applied to treat the
multiplicity of hyperbolic of elliptic solutions of fixed energy as mentioned
in the Introduction. These results will be pursued elsewhere.
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Remark 9.31. - If V is autonomous, the requirement in Theorem 3
that m (q) - m (q) = I cannot be satisfied. Indeed the resulting S invariance
of I implies that critical points occur in circles. Thus m (q) - ~z (q) >_ l + 1
for any critical point q of I. In this setting we can define Nk, the number
of critical circles of Morse index k. Now we have:

COROLLARY 9. 32. - Assume V satisfies (V 1 ) - (V6) and V is autonomous.
Suppose that any critical point q of I with m (q) _ k or m (q) >_ k satisfies m
(q) - m (q) = l + 1. Then

Proof. - By perturbing I slightly, any circle of critical points of I can
be broken up into two critical points, one of Morse index k and the other
of Morse index k + 1. Doing this for ea~h circle of critical points of I and
applying the argument of Theorem 3 yields (9. 33).
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Note added in proof (see p. 616): As pointed out by Mrs. Riahi, QJ is tangent to S~ along
its boundary. Therefore, S~ is not a section for 0 in the strict sense. However, Wi is still an
I-dimensional manifold and the proof of this fact is quite similar to the strict case; in fact,
S~ is the exit-set of 0 from Bi and behaves as a section to 0.
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