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562 A. BAHRI AND P. H. RABINOWITZ

with V (7, £) T-periodic in ¢ and singular at £=0. Under hypotheses on V
of 3-body type, we prove that the functional corresponding to (%) has an
unbounded sequence of critical points provided that the singularity of V
at 0 is strong enough.

Key words . 3-body problem; periodic solution; collision; generalized T-periodic solution.

1. INTRODUCTION

The study of time periodic solutions of the n#-body problem 1s a classical
one. See e. g. [1]. Our goal in this paper is to present some new variational
approaches of a global nature to a class of problems of 3-body type. To
be more precise, consider the system:

v
(D mg+ —(@)=0, 1<i<3

oq;
Here ¢;eR’, /=3 and m;>0, 1<i<3, ¢=(q;, 45, ¢3)> and V: F;(RH) > R.
Here F; (R") is the configuration space

Fy (Rl): { 41> 925 ‘13)€(R1)3|51i75‘1j if i?é./}

Since our arguments are valid for any choice of m;>0, 1<i<3, for
convenience we take m; =1, 1 <i<3 and write (1) more simply as:

(HS) G+V'(q)=0.

Concerning V, we assume
3
) V= Z Vij(qi_qj)
=1
ijij
where for each i, j the function Vi satisfies
(V1) V() e C*(RIN\{ 0 |, R),
(Vy) Vij (x)<0,
(V3) V;;(9) and Vi;(g) - 0 as |q| - o,
(V) Vi(q) > —oc as ¢ -0,
(V5) For all M>0, there is an R>0 such that ]ql >R implies
Vii(@).q>M[Vi(g)|.
(V) There exists U;;e C' (R*\ {0}, R) such that U;;(q) —» o as g0
and —V;2 | Uj|%

Note that potentials like

3
3) Vig=- ¥ -
ij=1 l%'q]" Y

i#j
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HAMILTONIAN SYSTEMS OF 3-BODY TYPE 563

where a,; and B;; are positive satisfy (V,)—(V5). Moreover (V) is satisfied
if B;;22 for all i, j. For the classical 3-body problem, we have f;;=1,
l=i#j=3.

The significance of hypothesis (V) can be seen when (HS) is posed as
a variational problem. First we choose T >0 and seek T-periodic solutions
of (HS). Let E=WL 2 (R, (R)?), the Hilbert space of T-periodic maps
from R into (RY)® under the norm:

lob=( [ larasar)”

where
1 T
=— s5)ds.
4} TL q(s)

The functional corresponding to (HS) is

T 1 .
@ o= || JiaF v

0

If V satisfies (V,)—(V,), then, as will be shown in paragraph 2, if
T(g)< 0, ge A where
A={qeE|q,(n)#q;() for all i#j and 1€[0, T }.
Critical points of I in A are then easily seen to be classical solutions of
(HS).
Our main result is:

THEOREM 1. — If'V sarisfies (V{)— (V) then for each T>0, I possesses
an unbounded sequence of critical values.
As will be seen later in the proof of Theorem 1, no explicit use was
made of the fact that V is independent of 7. Thus we also get the following
result:

THEOREM 1" —  Suppose V=V (t, g): RxF;(RY) > R is T periodic in t
and otherwise satisfies (V,)—(Vg). Then the functional

(s) J (%myzw(z, q))dt

has an unbounded sequence of critical values which correspond to T
periodic solutions of

(6) G+V, (1, 9=0.

If (V) does not hold, it is possible that I(g) < oo for g€ E but g;(1)=g, (1)
for some i#j and 1[0, T]. We refer to this possibility as a collision. When
collisions are possible, critical points of I need not be classical solutions
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564 A. BAHRI AND P. H. RABINOWITZ

of (HS) and a notion of a generalized solution of (HS) is needed. Following

a related situation in [2], we say g€E is a generalized T-periodic solution
of (HS) if:

(i) 2={1€0, T1|q;(t)=g;(1) for some i+#j} has measure 0.
(i) geC? on [0, T\ Z and satisfies (HS),

(7) ) (iii) - f V(g (t))dt< oo and
(iv) %|q (O]*+V (g () =constant for 1e[0, T\ Z

(i.e. energy is conserved on the set on which it is defined).

Theorem 1, together with some of the ingredients in its proof and ideas
from [2] yields

TueoreM 2. — If V satisfies (V,)—(Vs), for each T>0, (HS) possesses
a generalized T-periodic solution.

There is also an analogue of Theorem 2 for the case in which V=V (¢, q)
and is T-periodic in ¢.

Our approach to (HS) is via the calculus of variations. A few recent
papers ([3]-[6]) have used variational methods to treat singular Hamiltonian
systems but for potential energy terms which have a milder singularity
than (2). E.g. ([3]]6]) study (HS) for V’s having a point singularity like
V(g)=W(|q]) where W (s)=—s"*. More generally they treat V’s having
a compact set of singularities. They also have restrictions on the behavior
of V near the singular set like (V). Under such hypotheses, the functional
correspondaing to 1 satisfies some version of the Palais-Smale condi-
tion — (PS) for short —and this fact plays an important role in the associ-
ated existence arguments. In work in progress, Coti-Zelati is studying a
class of time independent potentials of n body type ynder a symmetry
condition (V;(§)=V;(&)). This symmetry and a clever observation allow
him to work in a restricted class of functions where (PS) holds. However,
in the current setting, under (V,)— (V) the functional defined by (2) and
(4) does not satisfy (PS) even after eliminating a translational symmetry
inherent in the form of (2). Roughly speaking, what goes wrong with (PS)
is that a sequence (¢) < E with I(¢Y) — ¢ and I’ (¢’) - 0 may “approach”
the triple (g4, ¢,, “‘00”") which is a solution of the two body problem
associated with (HS) by dropping all terms involving ¢.

To briefly outline the remainder of this paper, the breakdown of (PS)
will be studied in a precise way in paragraph 2. Invariance properties of I
and the behavior of level sets of 1, in particular of I'={g€eE|I(g)<¢}
for small & will also be examined. A novel kind of Morse Lemma for
neighborhoods of infinity will be given in paragraph 3. This lemma combi-
ned with the results of paragraph 2 gives (modulo translations) a priori
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HAMILTONIAN SYSTEMS OF 3-BODY TYPE 565

bounds for critical points of I, the bounds depending on the corresponding
critical values. In paragraph 4, it will be shown that I can be approximated
by a functional T with nondegenerate critical points (modulo translations)
and possessing other nice properties.

The proof of Theorem 1 will be carried out in paragraph 5 by means
of an indirect argument in which I is replaced by T. A key role in the
proof is played by a notion of critical points at infinity, corresponding to
limit two body problems arising from the breakdown of (PS), together
with their unstable manifolds. As will be shown in paragraphs 7-8, T# can
be retracted by deformation to 1\ 2y, \U 2% where 9,, is the union of
all unstable manifolds of critical points of T in TM\ F* and 9 a similar
set for critical points of the limit 2-body problems at infinity. This enables
us to exploit the difference in topology as measured by rational homology
between A and its two body analogue. In paragraph 6 we prove
Theorem 2. Lastly in paragraph 9 under certain assumptions of nonde-
generacy of critical points (up to translations), we obtain Morse type
inequalities for critical points (Theorem 3). One consequence of these
inequalities, which will be pursued elsewhere, is that they enable us to
conclude that in certain situations, e.g. for simple potentials where one
has central configurations [satisfying (V)] that the family of periodic
solutions we find is much larger than the known family of solutions.
Moreover, using these inequalities and ideas which can be found in
Klingenberg [18] and Ekeland [19], under generic conditions one can
establish the existence of either an elliptic orbit or infinitely many hyper-
bolic orbits on a given energy surface (see A. Bahri, B. M. D’Onofrio
[20D). If we drop (V,), these inequalities do not hold per se. However
under additional assumptions on V, one can show there are at most
finitely many collisions. This fact can be used to prove an analogue of
Theorem 3 when collisions can occur and likewise leads to applications
such as those just mentioned. These matters will also be pursued elsewhere.

We are grateful to E. Fadell and S. Husseini for helpful comments on
the proof of Theorem 1 and likewise to J. Robbin concerning the results
of paragraph 7.

2. SOME ANALYTIC PRELIMINARIES

In this section, several of the properties of I will be studied, especially
the breakdown of the Palais-Smale condition. For simplicity here and in
the sequel we assume the period T=1. To begin we will show that if geE
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566 A. BAHRI AND P. H. RABINOWITZ

and I (¢)< oo, then ge A. More precisely, we have:

ProvosiTion 2. 1. — Suppose V satisfies (V1), (V,), (V) and (V). Then
Jor any ¢>0, there exists =3 (c) such that qgeE and 1(q) < ¢ implies

inf |€/i(’)_q]'(’)|z5-

i#j,te]0, 1]

Proof. — Consider two distinct indices i,je{l,2, 3} By (V,).

1
- J Vii(q:(n—g; () dt=c.
0

Since T(g) <o, by (V,) there exists 8,=38,(c)>0 and €0, 1] such that
|4: (1)~ g;(1)| 28, (). It may be assumed that |4;(1)—q;(1)| =8, for other-
wise the loop ¢;—¢; remains outside a neighborhood of 0 of radius 5 (o)
and Proposition 2.1 is proved with d(c)=38,(c). Observe that by (V,)

again, ’4f‘7j”L2§\/2‘c' Using (V) and (Ve), for any c €0, 1],
cz J Vii(gi—q)dt
1] lgi—d
25~ f (VU (q—q) 2 de J |G~ ¢1* dr
1 T ° ’
22‘0<J VU;(@:—4) - (4:—4q)) dl)
1
=21 Us0:(0) = 4;(0) = Uy (@: ()~ g, i)
Therefore

Uij(qi (0)_‘1,‘ (G))§\/Z/’+Uz’j(ql‘ (T)_qj'(r))
< 2¢+ sup U (x)<oo.
\/ fx| =81 () !
This last inequality together with (V,) and (V) implies the result.
Proposition 2.1 allows us to seek critical points of [ in A and thereby
exploit the topological structure of A. This will be done in paragraph 5.
The breaksown of (PS) will be studied in the next proposition. This will

lead us to define “critical points at infinity” and their “unstable manifolds”
in later sections.

Prorosition 2.2. — Let V satisfy (V)= (V,) and (V). Let (¢*) < A be
a sequence such that 1(g*) — ¢ and ' (¢) — 0. Then either

1° there exists a subsequence, again denoted by (¢*) and a sequence
(ve) = R such that qf — v, converges in W2 for i=1, 2, 3. or
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HAMILTONIAN SYSTEMS OF 3-BODY TYPE 567

2° there exists a subsequence, again denoted by (¢), ie{1, 2,3}, and
(v, < R satisfying
@ [ 1g1 5] 0, | & 2~ 0, and
b.if j,re{1,2,31\{1}, (¢~ qf —2,) converges in W2 to a classical
solution of the two-body problem with potential V ,,+V,; and as k — oo,

[ 50 1ap V@ Vaa—a |ae

1
Remark 2.3. — In fact we will show 5[qu-%q’,‘] is a permissable cho-

ice for v,.

Proof of Proposition 2.2. — As in Proposition 2. 1, the bounds on 1(g%)
lead to bounds depending on ¢ for || ¢*||.2 and

1
*J Vij(Qi‘(“q};)dt’ 1<i#j<3.
0

By Proposition 2.1, there is a 8 (2¢)>0 such that

(2.4) |4 (D —¢k ()] 238 (20)

for all keN, t€[0, 1] and i#j. The bounds on | ¢*[| .2 and standard
embedding theorems imply that ¢*—[¢*] converge along a subsequence —
which will still be denoted by ¢* — weakly in E and strongly in L* to geA.
If for some 1, j, |[q¥—¢}]]| - oo,

2.5) Vi (gi—4) —0

in L® via (V). If [¢% — /] is bounded, V}, (g% —gF) converges via (V) and
(2.4). Thus V;, (¢5—g;) converges for all pairs r#; and

(2.6) I'(d) -0

then implies ¢* converges in L2 to 4.

If |[¢* —¢¥]| - oo for all 3 pairs of indices j#r, (2.5)-(2.6) show §=0
and 1(¢*) - 0, a contradiction. Thus there is at least one pair of indices
j#r such that [¢¥—g¢}] is bounded. Without loss of generality we can
assume [¢% — g¥] converges. Set

1
2.7 vk=§[q§+qi‘]-
Then

1
g~ u=q; g1+ g = 4]
converges in W"? as does ¢i—v,. Let ie{l,2 3}\{j, r}. Either
(i) ({gf —¢¥]) is bounded, or (ii) |[g¥—4¥]| > o (along a subsequence). If
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568 A. BAHRI AND P. H. RABINOWITZ

(i) holds, we way assume [g* — ¢*] converges and therefore ¢¥ — v, converges
in W' 2, This corresponds to case 1° of proposition 2.2. If (ii) occurs, by
(2.6), Vi.(gi = a), V5i(gf— ), Vii(g5—qi), and V;(gi—¢}) > 0 as k —> o0
since their arguments — oo uniformly in t as k — co. Thus ¢* —[gf] conver-
gesto 0in Wh 2, e ||¢¢|l2 > 0 as k - oo, and |{gF—v,]| = o0 as k > 0.
This is precisely case 2° of Proposition 2.2. The proof is complete.

CoroLLAaRY 2.8. — Suppose geA satisfies 0<a=<I(g)<bh. Then there
exists &y, ¢o>0 (independent of q), v(q)eR', and two indices j#re {1, 2, 3}
such that if || U (q) lwt. 2 <€, then

lg;=ollwe2+ g —vllwr 250

Proof. — This follows immediately from Proposition 2.2.
For >0, let

F={q=(q,, 4, g)eA|1(q)<s}.

We now study I® for small s.

ProposiTion 2.9. — Let V satisfy (V,)—(Vs). Then there exists an g, >0
such that

(i) I'(q)#0 for all ge1**1,
(ii) For all x21 and qe 1,
@ =rlgl+ 17" (g [ghel*,
(iii) For all Le[1, 2) and g 1*1,
gG=rlgl+exp(I1+ A=2)"") (¢~ [ghel”
g.=2[qlel",

(iv) there is an g,<g, such that if 0<e=<g,, I’t is homotopy equivalent
to the set

Q(E)E{(Xla X2, x3)e(R1)3l 'V(xlv x23 xs) éﬁ}
Proof. — Without loss of generality, €, <1. Since (g1),=g,, for all
A, 21, if gel®t and

<0,
=1

d
(2.10) al(qk)

it easily follows that ¢, eIt for all A=1. Hence (ii) and also (i) follow
from (2.10). Now

1 3 1
=—j‘ ]‘j'zdt_ Z J‘Vt{j(qi_qj)

0 ij=1 J0

x ([qz'_qj‘]”(‘h_[Qi]_4j+[‘1j])) dt.

d
2.11) al(‘]x)
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HAMILTONIAN SYSTEMS OF 3-BODY TYPE 569

We rewrite each term in the V sum as
1

(2.12) —flVEj(qi—qj) - (qrqi)dt+2j Vi (g~ g
i ’ (g~ [g]+ (g1~ 4 .
Since I1(¢)<g,, by (V,) we have
(2.13) “%-“[%’]HL“’+ H‘Ij“[qj'] HL“"§ HquL2+ H‘L‘”L2§2\/El-
Now (2.12)~(2.13) imply
.14) %( J Vo (@)~ (@) dr)

0

r=1

1 —_—

= J [—Vl{j(qi_qj) - (qi_qj)+4\/81 ]Vl{j(qi_qj)‘]dt'
0

Applying (V), there exists a constant A such that

2.15) —V;(x) . x+4|V;(x)| <0

for | x| 2 A. Since I(g)<¢g,,

1
- J Vilgi—g)dr=e,.

0o
For
g, <%= min (—V;(x)),
Ix1<2A
by (V) and (V,), there is a T, €[0, 1] such that
(2.16) lq:(t)—q;(t) | Z2A.

2

Now (2.16) and (2.13) imply for g, <é4~zoc1 that

2.17) l¢:(0—q;(D] A
for all t€[0, 1]. Therefore if &, <min (o, o), we have

(2.18) —Vi(¢:(0—q;(0) - (6:(D—q; (D) +4 /o1 | Vi (:(1) —¢; ()| <O
for all t€]0, 1]. Thus

<0
r=1

1
2.19) i(— f Vo (@)~ @) dz)
dh 0

and (2. 10), (ii), and (i) follow.

To prove (iii), we need to calculate the derivative of 1(g,) for each A.
Using the fact that exp(L—2)" ! and (A—2) 2exp(A—2)"! are bounded
for Ae[l, 2), uniformly in A, the proofs is essentially the same as for (ii)
and will be omitted.
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570 A. BAHRI AND P. H. RABINOWITZ

Lastly we turn to the proof of (iv). Let

(2.20) B={2[q][qel’“'1}.
Using (iii), we can define a homotopy between I and B via
(2.21) [0, 1]xIf1 5 T

0. 9) > Gy 4o

The continuity of this retraction is clear. Observe now that by (V,) and
(V3), for & small enough, e. g. £<g,, the set

B(e)= { (xy, x5, x3)€(R)? l —V{xg, x5, x3)=¢ }
is contained in B. Also by (ii), AbeB if be B and A=1; indeed if b=2]q],
then 2 b=2[g,]. Now (V,), (V,), and (V,). together with the fact that
—V(b)<e, for all beB [which is a consequence of (iii)] imply that
@ (M) = — V(A b) decreases monotonically to 0 on B as A — oo. Therefore
it is possible to define a function X:B — R via
(2.22) X(b)=inf{kgl|-V(Kb)§s}.
Since — V(A b) decreases monotonically to 0 as A - o0, A is continuous.
The map u [0, 1]x B — B defined by
(2.23) u(®, by=(1-0)b+0X(b) b
retracts B by deformation on % (g) and (iv) holds.

To prepare for the next result, note that I possesses an R' symmelry.
More precisely, for EeR’, let (&) =(&, &, £). Then

(2.24) g+ () =1(g)
for all ge A and £ eR'. Therefore
(2.25) (@)Y (e)=0

for all ge A and £eR’. Letting D denotes the duality map from E’ to E,
(2.25) is equivalent to

(2.26)

™M

[DI' (9)];=0.

1

I

i
Now we have:

ProrosiTiON 2.27. — Let = (®,, ®,, ®,)e CL (A, A) such that
3

(2.28) 3 [@:(g)]=0

i=i

Jor all ge A. Let n (s, g)=(n, (s, q), N, (s, @), N5 (s, q)) denote the solution
of the differential equation

d
(2.29) £=®(n), N0, g)=geA.
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HAMILTONIAN SYSTEMS OF 3-BODY TYPE 571

Then for all s for which the solution is deﬁned
3

(2.30) Y its, 9= Z

i=1 i=

Proof. — By (2.28)-(2.29),

2.31) é[dn,} Z

ds dSl 1

Therefore
3

(2.32) 2. [M: (s, 9)]

i=1
is independent of s. Hence (2.30) follows (2.29).

Now some properties of the “two body problem” with potential V;;+V,;
will be considered. For the sake of simplicity we take i=1 and j= 2
Define
(2.33) A={(:. 1) WP 2R, (R))|q; (0#4q, (1) for all €[0, 1]}

and
(2.34) 1,04, 99=1,()

B
= Jv |:E(|q1 |2+ 142)_(\,12(‘11_‘12)_}'\,21(CIz_ql))}dt.
0

Propositions 2.1, 2.2, and 2.9 have the following analogues for the two
body problem associated with (2.34):

ProposITION 2.1". — Let V,, satisfy (V,), (V,), (V) and (Vg). Then
for any ¢>0, there exists 8=38(c)>0 such that ge A, and 1,,(q) < c implies

inf |‘h (t)_‘h(f)l =3d.

tel0, 1]

PrOPOSITION 2.2'. — Let V, satisfy (V,)—(V,) and (V). Let (¢*) = Ay,
be a sequence such that 1,,(q*) —» ¢>0 and 1, (¢*) — 0. Then there exists

a subsequence, again denoted by (q*) and (v*) = R' such that gf —v* converges
in W2 for i=1, 2.
PRrRoOPOSITION 2.9 — Let V, satisfy (V,)— (V). Then for e, small enough,
(1)-(iv) of Proposition 2.9 hold with 1 replaced by 1,, and % (¢) by
B, (e)= { (x1, xz)e(Rl)z [ _vu (xq, xz)ég}
where V ,=V, ,+V,,.
The proofs of these results follow the same lines as their earlier analogues

and will be omitted. Note that Proposition 2.2 says that I,, satisfies the
Palais-Smale condition up to translations. Case 2° of Proposition 2.2 has

Vol. 8, n® 6-1991.



572 A. BAHRI AND P. H. RABINOWITZ

no analogue here since if e.g. |[¢{]| » oo while |[¢}]| remains bounded,

then (¢ —[¢%]) and (g% —[4%]) converge to zero and therefore 1, (¢*) — 0,
contrary to hypothesis.

We also have an analogue of Proposition 2.27 with the same proof:

ProrosiTion 2.27". — Let ©,,=(®,, ®,)eC* (A,,, A,) such that

g

(2.28") [@:(9]=0

i=1

for all ge A,,. Let n,, (s, ¢) denote the solution of the differential equation

Il

, d
(2.299 2,;2:@12(7112), N2 (0, g9d=geA,,.

Then for all s for which the solution is defined,

2 2
(2.30") Z M1 (s, @)= Z {q:].
i=1 i=1

Our final result in this section concerns the following important special
case of (2.29"):

d !
(2.35) 3;2:_112(1112)7 N2(0, 9)=¢.

For 0<a<b< o0, set

A1, (a, b)"_—‘{quu!I’u(Q):O and a§112(4)§b}

ProposiTION 2.36. — Let g satisfy a<l;,(@)<b< oo and let n(, (s, q)
be a solution of (2.35). Then

(i) there exists a constant c¢(q) independent of s such that
{12 G, Q|| =c(g) for any s for which
(2.37) asl;(n(s. 9)=b.

(ii) There exists a constant C(a, b) and a uniform p-neighborhood, N (p),
of A ,,(a, b) such that whenever qeN (p), there is a v(q)eR' satisfying
M2 @)= 2@ |lw2=Ca, b), i=1,2, for all s20 for which (2.37)
holds.

Proof. — Arguing indirectly, assume there exists a sequence s, for which
(2.37) holds and |[n,, (s, ¢)]| = co. Then

(2.38) Hnlz(sk’ Q)‘QHW1'2§ — C

JSk H I, (M2 (s, 9) le. 2 ds

while

(2.39) <b-a.

f (e G, ) a2 ds

0

Sy d
J ;1,;[(7112(57 q)) ds

0
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HAMILTONIAN SYSTEMS OF 3-BODY TYPE 573

If (s,) were bounded, (2.38)-(2.39) would be contradictory. Therefore

lim s, %+ c0

k—
and (2.39) implies the existence of a sequence T, — co satisfying (2.37)
and such that I}, (n;, (1, 9)) = 0. Using Proposition 2.2', there exists
(v,) = R* for which (n,, (T, 9));— v, is strongly convergent, i= 1, 2. Propo-
sition 2.27 then implies that (v,) is convergent. Therefore (n,, (14, q)) is
convergent.

Assume, without loss of generality, that

lim s, = c0.

k— o
The argument just given shows the existence of vy and M >0 such that if
s€[0, o) and

(2.40) ||II12(n12(S, Q))”wlvzé%

then ||n;,(s, @)|lwt.2<M. Since |[N; (s, 9)]| = 0 as k— oo, (2.40) is
violated when s=s, for large k. Given s,, let 5, be the largest positive
value of s less than s, such that (2.40) holds. The existence of (5,) follows
from that of (t,). Observe that

(2.41) [T (a2 (s @) |lwr 22y
for se[s,, ). Now by (2.41) and (2.39),

(2.42) I[Thz(ska 9)— M1z (S Q)]] = fSk

Sk

I, (N2 (s, ) ||lwe 2 ds

1 {5 _
= *J‘ HI’12(T112(S, Q))H%vl,za'sg b_yg

Sk

But |[n,, 5 ¢)]| <M since (2.40) holds for s=35,. Therefore

(2.43) |1 (5 q)]lgM+”_Y"

contrary to the choice of s, and (i) follows.
To prove (ii), an argument as in the proof of Proposition 2.2 shows

there is a p>0 and ¢, (a, b) such that for any ge N (p) there exists v(g) e R*
satisfying

(2.44) lg:—v(@|lwr2=Ci(a, ), i=1,2
The constant C, (g, b) is independent of ge N (p). Equation (2.35) shows
(2.45) M2 =V, (0(@)i=MN12 (s @i~ v(g), i=1,2.
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Now arguing indirectly, we assume there exists a sequence (¢*) = N(p)
and s, =0 such that

bz1, (M2 (5 ¢) 2a
(2.46) { and
HThz(Sk’ qk)_‘)’u(v(qk)) Hw‘-2 — 0 as k- co.
Since 14, (q)=11,(g— Y, (E)) for all Ee R, as in (2.38)-(2.39) we have:
(2.47) fkillaz(mz(s, N3 2ds<b—a;
0

Sk
J‘ T (My2 (8, ¢ [jwr2ds > o0 as k — oo,
0

As earlier (2.47) implies that s, — c0 as k — co. Arguing as in the proof
of (i), consider a sequence t, — oo such that I, (N, (1, ¢°)) = 0 and
asl,(Ny, (5, ¢)=b. We will prove that ny, (1, ¢°) =V, (v(g") has a
convergent subsequence. Indeed Proposition 2.2" yields the existence of
(v,) = R such that

(2.48) My, (1 ¢9;— v, s convergent.
Proposition 2.27 together with (2.45) then implies
2 2
(2.49) Z My (T qk_\)hz(vk)))i]: z [Qﬂ_zvk-
i=1 i=1

Thus the right hand side of (2.49) is convergent. By (2.44),
[4%1+14%1— 22 (g") is bounded. Therefore it can be assumed that v, — v (")
is convergent. Hence 1, (1,, ¢°) — U, (v (¢")) has a convergent subsequence
as stated. This shows, as in (i), the existence of ¥ and M >0 such that if
(2.40) holds with g=¢* and 5¢[0, s,], then

H N2 (s, qk)_‘Jr’lz (v (¢") le’ 2 <M.

Now (2.46) implies that |1}, (N1, (s ¢%) |lwt-2>7v for large k. As in (i),
the existence of T, implies §, the largest positive s<s, such that
110 (M 12 G ) |lwt-2=7 is well defined. Then

(2.50) [Ti2 (Miz (s, @D [lwr 22y
for sels,, 5] and
(2.51) '!n12(§ke qk)_‘l’u(v(‘lk))HwLZéM'

By (2.47), we conclude as in (i) that

(2.52) Hnn(sk’ qk)_n12(§k, q°) Hw1~2§ j_kHIIu(Thz (s, qk))le,zds

1 [ b—a
= - J} ”1’12(7112(S: f]k))H%vl-zdsgb‘-
Y Jse Y
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Thus using (2.51)-(2.52), we have

b_
(2.53) (M2 G 9=V, @ (@) w2 M+ Y“.

But (2.53) contradicts (2.46) and (ii) follows.

3. A MORSE LEMMA NEAR INFINITY

Proposition 2.2 describes the failure of the Palais-Smale condition for
I(¢). Our main result in this section provides us with a kind of Morse
Lemma for a suitable neighborhood of the set where (PS) fails. For the
sake of simplicity this result is presented for the case where || g% — g% ||w1.2

¢_%+%
> 2

informally, we will show there is a neighborhood of “infinity” in which
there is a change of variables g=(q,, ¢,, q5) = (¢,, ¢,. Q;) such that

1
3~ (g1 +4,)/2)] ‘2.

T

Y(g)= %f | Qs 2di+ 2.

remains bounded while |[¢4],2—0 and — o0. Stated

_ L o,p
I(Q) I1z(‘11= q2)+2J\0 [Q3’ dt+ 1+I[Q

To state the result more precisely, let

[Qs_(q1+qﬁ]

QE(1+
2

and

ProrosiTion 3.1. — 1° Let V satisfy (V1) —(V3). Given any C>0, there
exists an a(C)>0 such that whenever q=(q,, q,, ;)€ A satisfies

) !"11_1’(‘1)HL°°+ ][‘Iz_v(ﬂl)llwéc and
1 1
(i) 43 [[f2+ - <a(C
i) l14s 12 HHM—MMZQ()
Jor some v(q)eR!, then there exists a unique ’(q)>0 and

1 2 1 1 2
(3.2 Q3=@+i(‘]3_[(13])+7¥<[‘13_£]‘;—qJ)

such that

(3.3) Hg)=1,,(41, g2) + ¥ ().
Moreover \ is differentiable.
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576 A. BAHRI AND P. H. RABINOWITZ

2% Conversely let V satisfy (V)= (Vs). Given any C>0, there exists
o (C) >0 such that whenever (q,, q,, Q3) € A satisfies
(i) [, =v (@) |lu=+ [ g2 = 2 (@) || = = C and
D 1 _
) Qs+ —— = —<5(0)
20 1 [Qal o)

Jor some v(g)eR’, then there exists a unique p{(q,, q,, Q3)>0 and
+ 1 +

I G R Ry
2 i) 2

such that

(3.5 141, 420 4)=112(41, 92) + ¥ (9).

Moreover u(qy, q,, Q,) is differentiable.
3° IV satisfies (V) —(Vs) and a(C) = o (C) are chosen still smaller, then

Mq1s 925 4314y, 44, Q3)= 1. and the transformations defined in 1° and 2°
are inverse diffeomorphisms.

Remark 3.6. — Conditions (i)-(ii) and (iii)-(iv) may be replaced by:
2
[9:+ 4.l
™ Y g~ 2%y <Cand
i=1 2
1

1+ 1[43“((611 +42)/2)H
with q5 replaced by Q for (iv). Indeed if (41, 92, q5) satisfies (1)-(i1), then

llg]l=v(q)| £C for i=1,2 and ‘[ql%qz]—v(q)!§c. Therefore (i)-(ii)

(vi) 3 43 2 + _<B(C)

imply (v)-(vi) with C,=2C and B(C,) replaced by a suitable new constant.
. 1
Obviously (v)-(vi) imply (i)-(ii) with v(q)= E[q1 +g,]-.

Proof of Proposition 3.1. — 1° Let C>0, g satisfy (i)-(ii), and set

W3 =q;— [g5]. To verify (3.3) we must show if o(C) is small enough, the
equation

1 1 1
(3.7 ‘J | vy |2 dt +
222 ), 14225~ (9, + g2)/2)] |2
21(41342»43)_112(%342)

has a unique solution A>0. The function

1 1
A= — Wy |2 dt+
@) 2VL| UEA e
is nonincreasing in A. Clearly
3.8) lim @, (M) =1

A—-0

[
g5 — (g, + a2)/D1
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and ¢, (L) decreases to 0 as & — 0 unless [¢3]= %[q1 +q,]. If

2= Lig, +

gs]= El‘h q2l,
then

1 C
(3.9 1[613]‘0(4)l§§.z\[qi]*v(q)|§5'
Thus
[ 2, 1 4

(3.10) 5“‘13“1, + 1+|(q3)“v(q)lzg4+C2’

Requiring that o (C)<4(4+C?) ! shows (3.10) does not hold and ¢, (%)
is strictly decreasing for A>0 and tends to 0 as A — co. Consequently
(3.8) the implies that (3.7) has a unique solution if

(3.11) 1(gy, 42, 93) — 1121 92 <1
Let V,;(x)=V,;;(x) + V;;(—x) for 1 <i#j<3. Then (3.11) is equivalent to

(3.12) j (%Walz_vla(‘11—‘13)—\723(42_43)>dt<1~
0

By (i)-(ii),
G.13) |gs—aql2|a:—2@| = 2@ —a| 2 gl -2@ | — {g5 — [g3]]
~|o(g) —4:|Z |lgs] =@ ] = 45/l (@ — g

LI 12 .
g(a(c) 1) QaC)?-C, i=1,2.

Thus (3.13) shows

inf |q5(0)—q, ()] > 0
tel0, 1]

as o(C)— 0 for i=1, 2. Consequently (V,)—(V;) imply that if a(C) is
small enough, we have

1
(3.14) _J (\713(511—43)+v23(‘12_‘13))d1<%

0

for any ¢ satisfying (i)-(ii). If we further require o (C) < %, then by (ii),

L 1
(3.15) EL|q3| dt<oz(C)<E
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and (3. 12) is satisfied. Thus 1° is proved. Observe also that A is differentia-
ble since Ve C2.

2° Let W3=Q;—[Q;]. Suppose C>0 and (¢,, ¢, Q;) satisfy (iii)-(iv).
We want to show if «(C) is possibly still smaller than in 1°, the equation

(16 Vo= J W, [2di

. + + I
_J Vﬂ([ql?qz]wq%vql 7q2’]]>+;W3—ql>dr
[¢] = Z
Lo +4 g, +q 1
_J V23<[q1/2]+11<[Q3_—_“/1 IZ:DJF“Ws"Iz)df:\P(‘/)
0 2 2 H

has a unique solution p>0. Clearly Y, (1) is well defined if
+ + 1
Gap M +u<[03~ B ) W00
u

for all te{0, 1] and i=1, 2. Assume (3.17) for the moment. Let g be any
solution of (3. 16). We consider the dependence of 1L on ¥ (g). We claim

- +
(3.18) lim 1 [Q3 f’—l—ﬂz}
w(g) -0 2
and
(3.19) lim ()" | W, . =0
¥ig) -0

uniformly for (g,, ¢,, Q,) satisfying (iii)-(iv). To prove (3.19), note that
at any p satisfying (3. 16), by (V,) we have

1
(3.20) EZJ WL Pdr<W(g).
2p” Jo
Since [W,]=0,
(3.21) [_3 <1Vl < Qw (g
B2

via (3.20) which yields (3.19). To get (3. 18), note that by (iii) and (3.21),
7l ([ Q- ‘“"JD AW, (=40
2 2 i

it
[Q" 2 }
4t
[Q3 ' ]
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for i=1,2. If there were a sequence (4%, 45, Q%) for which

k k
— q1tq
m [Q’%- 12 2]
'y (lditdel dit+ds 1
| ¥ Qt— 2 IV + —WE—g* |dt
13 5 5 m 3 4i
0 k

would be bounded from below by a positive number uniformly in k as a
consequence of (V,)—(Vs), and (3.22). This would contradict (3.16).
Therefore (3. 18) holds for any solution L.

Next observe that ¥ (¢g) — 0 if and only if

remained bounded while ¥ (¢*) — 0, then

1, -
Nt o =0
2HQ | 1+ Qs =2 (@

for any (q,, ¢,, Q3) satisfying (iii). Indeed we have
2

6. li-e@l =] e 252 ][+ 3 lw-e@
#‘I1+‘J2 C
§\[Q3 2] 2
and
20 [[e- L7 |l slei-s@i+; Xl

él[Qs]—v(q)H%-

Thus ¥ (¢) is small is equivalent to o (C) is small since (5, ¢, Q,) satisfies
(iii) and (iv). We require that

o (C)< :
© 4+C?
41t q; | : .

Then || Q, - is strictly by the argument following (3. 10). There-
fore

+

I»ll [Q3 _ q1 p) } - 0

2

as u — co. Since
W, [ +a _
2 ! L:‘C

Vol. 8, n° 6-1991.



580 A. BAHRI AND P. H. RABINOWITZ

remains bounded, i=1, 2, as W — 00, we see from (V,) that

(3.29) Vo (1) is defined for large u and lim Vg (1) =0.

B oo

The interval on which Vo (1) is defined can be characterized further. By
(ii1), for i=1, 2,

[%+qﬂ_% <3¢
2 e 2
Using (3.21), Yo () is defined if
N .
(3.26) 1 Q3-u gE-FM—FL
2 2 n

+
As noted above, [Q3_@?ﬂh] is nonzero. Hence (3.26) defines an

interval [u,, oo] since if (3.26) holds for some p, it holds for any [1> 1.
Let us compare Vo (1t;) and ¥ (¢). Either

1 .
(a) 2T12HW3 [t2>¥ (g)
and thenlby (3.16) and (V,), Vo (1) >Y¥(g) or
1 .
®) — | W, 22 ¥ (g)
2p3
in which case

(3.27) By [Q3—M] :3_9+1+ ”W3HL2§3‘C+]+(2‘P(Q))1/2
2 2 Ky 2
and for i=1, 2,
(3.28) [Mm([cag—M})+iwg<z)~q,~m
2 2 Hy
2 J—7 W 2 1 2
b Z qu] 2L(Q)| +{U(Q)*q1’(7)l+Li +P'1,:Q3“\q ;‘q }
i=1 1

S3ICHI+Q¥ (g2

_ 1 .
By the above remarks, o (C) small implies ‘P(q)<§. Hence there is an o,
such that if a(C)<a, and i=1, 2,
+ + W, (1
4, qﬂ+Lh< Q,- & qu)+ 20 o
2 2 Hq

for all te[0, 1]. Now (3.29), (3.16), and (V,) imply the existence of a
constant B(C)>0 such that

(3.30) Vo (n) 2B (0)

(3.29)

<343C
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where B(C) is independent of (gy, ¢, Q3) satisfying (iii)-(iv) [provided
that o (C) <. If we further choose « (C) so small, say o (C)<a,, so that

(3.31) Y (9)<B(C),

(3.30)-(3.31) show Vg (1) >¥ (g) for case (b) as well as for case (a). This
coupled with (3.23) shows that (3.16) has a solution p. Observe that any
solution satisfies (3.18)-(3.19). Hence (3.26) follows from (3.18)-(3.19)
for p=p provided that ¥ (¢) is small enough. Therefore pe(p,, o) if o (C)
is small enough.

To prove the uniqueness and differentiability of p, we need only show

(3.32) Wiy () <O.
Fori=1, 2, let

2
+ —_
y—[Qz. s qz}u 2W,,
2
and
_ +
Zi:_zu_lw3+qi_[il—qi]'
2
Then

(3.33) %(ﬁ)=—ﬁ_3j IWslzdt—f Vis (x). ydt

0 0

1 1 1
+J Vgl(_xl)'ydt_\[ V'23(x2).ydt+J Vi, (—x,). ydt

0 0 0

= _—_3J1 \Wz.lzdt_ﬁ_ljl 13 (xy). (e tzy)de

0 0

1
+j Vi (—x1) . (% +2,) = Vi3 (x3) . (x,+ 25)
0

+ V5, (—x,). (x, t2)dr.

From (3.18)-(3.19) and (iii), we know that for i=1, 2,
+ w 3
[Q3 _ 44 ) %} 3

—| —=C—-w
Ld}
(3.35) ||zi(z)||ng3_2C_+%V_3'—HL1§E
u

B39  |xO|zi -

m

as ¥ (g)— 0 and

+1
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if o (C) is small enough. Using (V), there is an o, such that if 2 (C)<a,,

Vgi(xi)‘xi—<§£+1>'V,3i(xi)l >0
(3.36) 2

—V§3(‘Xi)~x.~*<%+ l)ivzs(—xoi ~0

for i=1,2. By (3.36), V() <0 if a(C)<a, and the proof of 2° is
complete.

Lastly to prove 3°, let g, be defined by (3.4). Then

(3.37) [q3]=[qlquJ+u[Q3—‘ﬁ:"2}

and

(3.38) 93— [g3]1= 1" (Q3—[QsD.

Solving (3.37)-(3.38) for [Q;], Q; —[Q5] yields:

(3.39) [Qa]{?‘iﬂ}ul[qa—;“*qz]
2 2

and

(3.40) Q3 —[Qs]=n(g3[g5]-

In the proof of 2°, it was shown that ¥ (gq) — 0 is equivalent to a(C) — 0.
Consequently, recalling that W,;=0Q;—[Q;], (3.39)-(3.40), (3.18), and

+
(3.21) show that [qg,—fh 2‘”}

(g1, 95, g5) satisfies (i) and (ii) for o small. Therefore (3.2) holds. Compar-
ing (3.2) to (3.39)-(3.40) shows A(q,, ¢, 43) =K "' (g1, ¢3> Q3). The com-
posite of the transformations of 1° and 2° is then readily seen to be the
identity and 3° easily follows.

In paragraph 5, we will need the following consequence of Proposi-
tion 3.1:

— o0 and ||¢;]j.2~ 0 as o — 0. Hence

CororLary 3.41. — Let (q,, g,) €A, and set
2

C,(q1. 9)= Z

i=1

1
— =~ lgy +
q; 2[511 q,]

L

Then there exists a continuous function o (q,, q,) such that if ¢, satisfies
(i) of Proposition 3.1 with a(q,, q,), then both systems of coordinates
given by Proposition 3.1 are available at (g4, 45, q3).

Proof. — By proposition 3.1 for any (g, g,)€A,, and C=C, (¢,, q,),
there is an «(2C) for which the conclusions of the Proposition are valid
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1 .
at (¢, q,, q5) for any g, satisfying (ii) (with v=§[q1 +qz]>. Note that (i)

is satisfied with C replaced by 2C for all points in a neighborhood
qu’qz of (gq,, q;). This gives us a covering of A,, which possesses a
locally finite refinement {W, }. Let (p,) be a smooth partition of unity

subordinate to {W,, }. Now define
(3.42) (g1, 42)= ). 2 (2C)w,, Pn{q1> 42)

where a(2C)y, is the a(2C) associated to some qu,qz such that
Woe W, o Then by (3.42),

(g, 42) =a(Cly

where a(C)y, is the largest of the ay, —such that py (4, g,)#0. Since
Proposition 3.1 holds at (g, g5, g5) where g5 satisfies (i1} with a=0a(C)y,
it holds a fortiori for a subclass of ¢;’s with a=a(q,, ¢,). ’

Remark 3.43. — The function a(g;, ¢,) may be chosen so that it is
differentiable with derivative bounded by &. Namely we can take py
satisfying ’p§v| <Kwp for a suitable constant Ky, and then choose
a(C)w<2 1Ky &

We conclude this section with two more corollaries of Proposition 3. 1.
The first of these provides, modulo translations, a priori bounds for critical
points of I which depend on the corresponding critical value.

CoroLLARY 3.44. — Let V satisfy (V)-(Vs). Let Mz¢g, >0 be given.
Then there exists a constant C(g,, M)>0 such that for any solution
q=(qy, 92, q5) of (HS) satisfying e, <I1(g) <M, there is a v(q)eR’ so that

3
Y lla 2@l 2=Cer, M).

Proof. — If the Corollary is false, these is a sequence (¢“)=(q", 4%, ¢%)
such that [(¢*) — ce[e,, M], I'(¢") =0, and ¢“*— (£,) is not bounded in
W2 for (£,) = R Since (I1(¢*)) = [g,, M], ¢* is bounded in L2. Therefore
([4"1—¥ (&) is not bounded in R*!. An argument as in the proof of
Proposition 2.2 shows [q’i‘—qﬂ‘-] converges (along a subsequence) for some
i#j for otherwise I(g*) — 0. Hence without loss of generality, we can

1
assume [¢% —g%] converges. Let &, = E[q’; +4%]. Then [¢¥]—&, is bounded,

i=1,2 and we can assume ¢*—&, converges, i=1, 2. As in the proof of
Proposition 2.2 again, this implies Vi;(¢% —¢%). V5;(q%—¢%), etc. =0
in L. Hence by (HS), ¢5 -0 in L* so 4% = 0 in L2 Choose C so that
g* satisfies (i) of Proposition 3.1. Then for large k, ¢* also satisfies (ii)

Vol. 8. n° 6-1991.



584 A. BAHRI AND P. H. RABINOWITZ

of Proposition 3. 1. For such k, we may write
(3.45) 1(g") =11, (d}, ¢9)+¥ (¢

Therefore by Remark 3.6, (4%, ¢5, Q%) also satisfies (iii) and (iv) of
Proposition 3.1 for large k. By 2° (b) of Proposition 2.2,

Hg)—T1,,(¢", ¢%) — 0. Consquently the sequence enters the domain where
the map

(3.46) ®: (41> 92> 43) ~ (G15> 425 Q3)

is a diffeomorphism. In this domain, critical points of 1{g) are also critical
points of

(3.47) g1, 420 Q9)=11,(91, )+ ¥ (@)

. . . . 1
in the (¢,, ¢,, Q3) coordinates. At such a critical point, [Q;]= E[q1 +q,].

As has been noted earlier, «(C)<4(4+ C?)”* implies this is impossible.
Thus T has no critical points in this region and there does not exist a
sequence as above. The Corollary is proved.

The final result in this section shows that the only “(PS) sequences™ in
a neighborhood of infinity are those which have a “two body” limit.

CoROLLARY 3.48. — Let V satisfy (V,)— (V). If C>0 and 0<a<b,
then there exists an o(C, a, b) such that whenever (¢*) is a sequence in A
satisfying (1) and (i) of Proposition 3.1 with C and a(C, a, b) and such
that 1(g") - cela, b] and 1'(¢*) -0, then 1,, (g}, ¢5) — ¢, T1,(q}, 45) ~ 0,
and ¥ (¢*) — 0. In particular (iii) and (iv) of Proposition 3.1 are satisfied
by (¢}, 45, Q) for large k.

Conversely let (¢%, ¢5, Q%) be a sequence in A satisfying (iii) and (iv) of
Proposition 3.1 and such that 1,,(q¢%, ¢5) — cela, b], 11, (4%, ¢5) = 0, and
W (q") = 0. Then 1(¢%, ¢~, ¢%) — ¢ and 1' (4}, 4%, ¢%) = 0. In particular (i)
and (ii) of Proposition 3.1 are satisfied by (¢%, 45, 45) for large k.

Proof. — Suppose (¢*) satisfies (i) and (ii) of Proposition 3.1 and
1(4*) — ¢, I'(¢) » 0. Then either 1° or 2° of Proposition 2.2 holds. If 2°
holds, there is a subsequence of ¢* and a pair of indices r#je{1, 2, 3}
such that |[¢¥—¢%]| is bounded and |[g¥—q}]|, |[gf—4}]| » oc where i is
the third index. Then by (i) and Remark 3.6,

<C,.

L*

(3.49) y

1
qi— i[q’Hq’E]

Thus (3.49) shows |[¢% — %] is bounded so 2° holds, {r, j}={1,2} and
1
i=3. Hence by 2°, || 5],z >0, i[(lg‘ E(Clﬁ +6]‘§):H -, T,(q1, g5 ~¢
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and I',(¢%, ¢%) = 0. Thus ¥ (4*) — 0 along this subsequence. Therefore
(iii) and (iv) hold for large k along this subsequence.
If 2° of Proposition 2.2 does not hold along a subsequence, |[gf —¢"]|

1 .
is bounded for i#je{1, 2, 3}. We can take v,= E[q’§+q’§] asin (2.7). By
1° of Proposition 2.2, ¢g¢—v, - ¢© in W' ? for i=1, 2, 3. By (3.49),
(3.50) 147 I+ 1145 flu= = Cu-
By Corollary 3.44, there is a w(¢®)eR" such that

3
(3.51) T llg7=w(g™)lw12=C(a, b).

Therefore by (3.50)-(3.51),
(3.52) [w(g®)| £C+C(a, b).
Now by (i1) and Remark 3.6,

1

3.53
¢:9 B(Cy)

—1= |4 —v(gY)]

S A=) —1g51] + [[g51—w (g™ | + [w(g™)|.
Hence for large &, by (3.51)-(3.53),

[ 1
(3.54) B(CI)—1§1+2C(¢1, b)+C,.

But as o (C) — 0, the left-hand side of (3.54) —» oo while the right-hand
side remains bounded. Thus (3. 54) cannot hold for small &« and we must
be in case 2° of Proposition 2.2 along our subsequence. Finally observing
that what has just been established holds for a subsequence of any sequence
satisfying 1(¢*) — ¢, I'(¢*) — 0, our conclusion must hold for the entire
sequence, and the first half of Corollary 3.48 is proved.

For the converse, suppose that (¢%, g%, Q%) is such that I, (¢%, ¢%) —c,
I, (4%, ¢%) = 0, and W (¢*) — 0. Then the associated (¢*, ¢%, ¢%) satisfy:

(3.55) 1(¢}, 45, 45 =11, (41, 45)+ ¥ (¢").
Therefore 1(q%, ¢4, ¢5) — ¢ and (3.55), (V,), (V;) imply

1
(3.56) | gxllz = 0 and ‘"f Vis(gi—g8) dt -0,

0]
i=1, 2. Proposition 2.2’ implies the existence of v, such that (¢.—17,)
converges for i=1, 2 along a subsequence. Thus (i) of Proposition 3.1
holds for large k along this subsequence. Also (3.56) shows that
I[g51=v| > o0 and [[¢§— [43]]jwr.2 > 0. Consequently I'(g, g%, ¢%) — 0
and (ii) of Proposition 3.1 is satisfied for large k along our subsequence.
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As in the first part of this corollary, is then follows for the entire sequence
and the proof is complete.

4. A MODIFIED FUNCTIONAL

Let 0<g; <M with ¢, small and M large. To prove Theorem 1, we
would like to use the unstable manifolds for the negative gradient flow of
I corresponding to critical points of T in ™. Unfortunately the critical
points of I might be degenerate and the gradient flow does not satisfy the
(PS) condition so we cannot do this. Therefore we will approximate [ by
a new functional which is well behaved enough to permit the above ideas
to work.

To help handle the fact that the critical points of I might be degenerate,
we use Corollary 3.44 which yields the existence of a constant C, (g,, M)

such that for any critical point ¢ of I satisfying %gl(q)gM +1, we have

3
4.1) P Hq;v(q)uwx.zgcl(%l,M+1>

for suitable = (g) e R’ Since our functional is invariant under translations
in the sense described in (2.24), (4.1) and (HS) show the critical set of |

. € . o .
inl™! (—23, M+ 1) is compact after quotienting out the translations and

I’ on this quotient space, A, is Fredholm and proper in a neighborhood,
N, of this critical set. By (4. 1) and Proposition 2.9, we have

ProprosiTION 4.2. — Let V satisfy (V,)—(Vs). Then for any 8>0, there
exists a functional 1€ C* (A, R) such that

1° J invariant under translations in the sense of (2.4),

2° J=T1in AN\N, where N is a small neighborhood of N

I ||c2<X,R)§5

4° J|3 has only finitely many critical points in N,

5° All eritical points of J |5 under level M+ | are nondegenerate and have
finite Morse index

6° J |5 satisfies (PS) for sequences in N

7°If 8 is sufficiently small, if %§J(q)§M+l and J' (q)=0, then for

a suitable v(q)e R,
3

H‘]i*z‘(CI)Hsz<l+Cl<§2£’ M+ 1>.
i=1
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Moreover J=1I on the complement of the set just defined.

8° J'#£0 on I:1=J1 for g, sufficiently small.

Proof. — The result follows in a straightforward way from approxima-
tion arguments due to Marino and Prodi [7] and extended by Bahri [8]
and Bahri-Berestycki [9].

Proposition 4.2 allows us to avoid problems of degeneracy for critical
points of I in IM*!, We apply the above procedure to each ‘“2-body
problem™ associated with [. For the sake of simplicity, we restrict our
presentation to I,,. Let X;;(a, b) denote the set of critical points of I;
with critical values between a and b. For p>0, let N(p) be a uniform p
neighborhood of 4, (¢,, M+1). Then taking the quotient A, of A,,
by the translational symmetry, I}, is Fredholm and proper on the image
N(p) of N(p). Therefore as in Proposition 4.2, we may replace I,, by a
new functional, J,,, which on A, between the levels €,/2 and M+ 1 has
only finitely many critical points. These points are also nondegenerate and
have finite Morse index. We can also assume J,, is invariant under
translations and J,,|5,,=1;,[x,, outside N(p). Moreover we may choose
J1, as close as we want to [, in the C* norm. In particular for all §>0,
there is a J;, having the properties stated above and

(4.3) 1327 Ta 2 ay,m <8
Next we suitable modify J using the functionals J;; just constructed.

Proposition 2. 36 (ii) provides us with a constant C(%, M+ 1) such that

for any g& N (p), there exists v(g) € R’ satisfying

@-4) 1My 6 ) —o@llwr2=C, r=1,2
for any s=0 such that

€
4.5) éélq(mj(& $H=M+1.

For future reference, observe that (4.4) holds for J;; and the correspond-
ing ﬁij with ¢, and M+% instead of ¢,/2 and M+ 1. Indeed either
n;; (s, 9 e N(p), in which case applying (4.4)-(4.5) with s=0, g="n;(s, q)
and %;S of (4.3), we derive the conclusion, or ﬁ,-j(s, ¢q)¢ N (p). For this

latter case, let s; be the maximal time smaller than s such that
Ny (81, ) € N(p). Since J;; (x)=1;;(x) outside N (p),

ﬁij(ss q):nij(s_sls ﬁij(sls )
and the same conclusion holds. Therefore for future use we have: for all
ge N (p) which is a neighborhood of the critical set for J,, between the

Vol. 8, n° 6-1991.



588 A. BAHRI AND P. H. RABINOWITZ

levels &; and M + 1, there exists v (q) e R' satisfying
(4.6) (M6 ), —o(@lwr2£C r=1,2
for any =0 such that Jij(ﬁij(s, q)=¢€y.

As for (i)-(ii) and (ii)-(iv) of Proposition 3.1 for I1-—see
Remark 3.6—we can replace the conditions (4.4) and (4.6) by

2
1 ~
4.7 Z H(nij(sr q)), — 5[(”;1'(3': Q))1+(T1ij(S, )] Hw‘42§3c

and by the same expression with ﬁij instead of n;;. Conversely a condition
of the form (4.7) implies a condition like (4.4), (4.6) with e. g.

¢ (g)= %[(n,,- (5. )1 + (s 5. Qo)

for (4.4).
With C as in (4.4) and (4.6), we now define
(4.8) Cc=6C.

With this choice of C in Proposition 3.1, there is a corresponding C, and
B(C,) given by Remark 3.6 such that if (q,, q,, ¢5) satisfy (v)-(vi) of
Remark 3.6, then Proposition 3.1 holds. We choose C, still larger and
B(C,) smaller so that in fact Proposition 3.1 applies for this choice of
C,, B(C)), both in the (g,, 95, ¢5) and (q,, ¢,, Q;) coordinates. Actually
we will be using this fact more for the (q,, ¢5, Q;) coordinates. We also
further restrict C, and B(C,) so that Corollary 3.48 applies. If B(C,) is
chosen still smaller, the three neighborhoods defined by (v)-(vi) of Remark

3.6 in the (g;, ¢;, Q,) coordinates are pairwise disjoint and do not intersect
the set

4.9) {(‘]1» q;, q3)| Z ll‘Ii"U(Q)llw1~2<1

1

+C, (g,, M) for a suitable v (q)}

The following construction should be understood as being carried out
with a permutation of indices. Let

(4.10) ®,: A0, 1]

be a C* function such that ®,,=1 on ¥, the set of (g, ¢,, Q3)eIM*!
satisfying (v)-(vi) (of Remark 3.6) with constants C{=C,/2 and
B’ (C,)=B(C,)/2, and ®,,=0 outside of ¥",, the set of (¢, ¢,, Q;)eI*!
satisfying  (v)-(vi) [with constants C, and B(C,;)]. Note that
VL, ML
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We define a new functional T as follows:

@.1) T(@= (1 -2 wij(q)>J(q)

i<j

1 (Y, 1
+ D1 q. q)+ ~ dr+ !
E,-“’”(q)<”(q‘ 4 2LlQl ’ 1+|[Q,—<<qi+q,-)/2>1|>

where re{l, 2, 3}\ {4, j}. Defining 77, (i, j), etc. in the natural way,
observe that in each neighborhood of type ¥7, (i, j), the functional

1
1+[(Q,—(1/2)(g;: + g1
and in each neighborhood of type ¥7, (i, j),

T(Q)ZJU(%” qj)+1J‘ ‘Qr[zdt+
2Jo

(4.12) T(q)=w,-,-(q)<Jij(qz, q,-)+%J |Q, 2 dr
. 1
1+][Q,— (1/2) (g;+ g1 ?

due to the fact the sets ¥, (i, j) are pairwise disjoint. Observe also that
outside of the sets ¥, (i, /), 1(g9)=1J(g). In particular, by the choice of
B(C,), T=1J near the critical points of I having critical values between &,
and M+1 since these points satisfy (4.9). Therefore (4.11) does not
change our previous modification of I near the critical set of I between
g,;/2and M+ 1.

Note that for any £>0, we may choose the functionals J;; so that

)+(1—wi,~(q))J(q)

(4.13) =Tz <.
Indeed from (4.12) and (3.5),
(4.14) [T=J |2 < || Zey; (3= T+ 1= ) [|ca.

Since the ;s are fixed, for & sufficiently small, (4.14), 3° of Proposi-
tion 4.2, and (4.3) imply (4. 13).

Our next step involves the definition of a suitable pseudogradient vector
field, Z, for T. For the sake of simplicity, we consider the case i=1, j=2;
the other cases are obtained in the same way. Let

¥V o={(@1, 42, Q)€ A (g1, g2, Q3) satisfies (4.15)-(4.16)} N IM" !

where
2
4.15) y q—[%i} <C,/4
i=1 L®
(4.16) V(g =B,

where B, <(C,)/4 is small constant which will be chosen after (8.1). Let
¥, be defined in the same way as 7", with B, replaced by B(C,)/4. We

Vol. 8, n° 6-1991.



590 A. BAHRI AND P. H. RABINOWITZ

will define Z in ¥, in the (¢,, ¢,, Q;) coordinates since by our choice of
C,, B(C,), and Proposition 3.1, they are alternate coordinates to
(91> 92> 43) In ¥,

Let Z,,(q,, ¢,) be a pseudogradient vector field for J,,(q;, g,) on A,
or equivalently a pseudogradient vector field for J,, on A,,, which is
invariant under translations in the sense of (2.24). We further require
that Z,, generates a Morse-Smale flow under the level M + 1. By condition
we mean the following: Consider

d
(4.17) ;;—f; ~Z,(0). 00, (41, 22)=(q:. 42).

Note that any equilibrium point of this flow is a critical point of J,, and
conversely. The flow is a Morse-Smale flow if the stable and unstable
manifolds corresponding to any critical point of J, intersect transversally
in sections to the flow, e.g. on each noncritical level set. The existence of
such a 7, can be found e.g. as part of the proof of Theorem 7.2 for a
finite dimensional case and in the proof of Theorem 8.2 for our case.
Once Z,, has been obtained, we further require that all points (g, g,) on
the unstable manifolds of Z,, between the levels €,/2 and M +1 satisfy
(4.15). That this is possible follows from (4.8) and the surrounding
paragraph related to the choice of C;.

To get the pseudogradient flow in ¥~,, we first define it in ¥7, where it
is given by:

d
—(q1- 92)= —Z12(q1> 42)
ds :

d
(4. 1K) 1 QD= = Q- [QsD

d 4,74
Z1Q,— 12 |=0.
dsliQ3 2

This will be denoted more succintly in the (gq,, ¢,, Q3) coordinates by
d ~
(4.19) gy‘((ha G2, Q3)= =2, (q15 42. Q3)-

Let &,, be a function such that
(4.20) ®,,eC (7, 10, 1]
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1 ~
®,=1 on ¥, d,<1 on ¥\ ¥, 6312>§ on ¥, and ®;,=0 on

¥\ ;. We extend Z, to ¥, as follows:

d
—(41, 92)= —Z12(q1» 92)
ds

@.21) d%(Qf[Qﬂ): ~(@Qs-[Qs])

[Q;—((q: +42)/2]
|[Q3_((41 +Q2)/2)H
Next Z,, is extended to ¥",. Let —Y,(q;, ¢», g3) be the vector field

given by the right hand side of (4.21) expressed in the (q,, ¢,, g3) coordi-
nates. Observe that Y, is defined on ¥7,. Then our extension is via:

d 174> ~
dsI:QB_ %}2(1_(012((11’ 42> Q3))

d ' -
(4.22) %(41: 4y 43)=—0, Y, —(1-w,)]

where o, , is defined in (4.10), and ©,,=1 on ¥"; and ®;, =0 on AN ¥",.

Carrying out this construction on each #7, (i, j), the resulting vector
field, which we denote by Z, is globally defined and C'. Consider the
corresponding flow

(4.23) —~=—-Z(q).
The following lemma obtains for this flow. For convenience, it is stated
for the case of i=1, j=2.
Lemma 4.24. — Let
, - 1
v (1, 2):{(41’ 42> Q) ' ®15(q:> 92- Q3) = 5}

Then there exist constants K and 6,>0 such that for any
ge? , (1, 2N ¥ (1, 2), we have:

T(@Z(g)=3, and | Z(q)||wr.2<K
provided that & is chosen small enough in (4. 3).

Proof. — The arguments in (4.3)-(4.8) show C, is independent of the
approximation of I;; by J;;. 7, (1, 2) is defined via (4. 15)-(4.16) with C,
replacing C,/4. Since ¥, (1, 2Y N (¥, (1, 2\ ¥, (1, 2))= J, we have

4.25) Y

1
i~ =g +
q 2[611 9]

>C, /4

L
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or
(4.26) ¥(g)>B(Cy)/4

for all (g,, 95, Q3)e? L, (1, 2)\ 71 (1, 2). Suppose (g,, g,) satisfies (4.25)
but (4.26) does not hold for (¢,, ¢,, Q3). Since Z,, is a pseudogradient
vector field for J,,, there is a y> 0 such that

(4.27) Jo@Z (@zy][32 () |32

[where g=(¢,, ¢,)1- By our choice of (~3=(~3<8—2—1, M+ l), g must be outside

of N (p) which is a closed neighborhood of the critical set of J;,. Hence
there exists an £,>0 such that ||J}, (¢)|[%1.22¢, and

(4.28) J29Z:,(@)ze,v>0

for all g outside of N(p) and such that J,(g)=e, —B(C,)/d4=¢,/2 if
B(C,)<g;/2. Observe that I, (g) =M +1 since (¢, ¢,, Q;)e#",. Thus for
this case J,,=1,, and J=1 since (g,, ¢,, Q;)€ ¥ , which does not intersect

the set defined in (4.9). Hence

(4.29)  T(q1, 92, 93) Y12 (@5 92, 93)2T12 (15 92) Z12 (g1, 42) Z 80 Y

and

4.30) TZ,=0,TY,,+(-0)||T|E.: ~
Z(’)12807+(1_(’312)HI”|\ZNLZ~

Now by (4.25) and Corollary 3.48, there is a 8, such that T]2=8; on

v, (1, 2\ ¥4 (1, 2). Hence the lower bound for T'Z follows in this case.

Next suppose (4.26) holds. Then, letting Y, , denote the 3" component
of Y,,, we have

2
(4 11Q5—(1/2) (g, + )1 |*)?
1
X(l_d)lz)H;Qs_ 5(41+92)]

1
4.31) ‘P'(Q)Yuzj |Qs|?dr+

Under (4.26), either

1
(4.32) j | Qs Pdt=B(C))/8
0
and then
Y(9). Y, 2B(C))/R
or
1

4.33 =B (C,)/8
439 1+I[Qs*(l/Z)(qlﬁqu)]!Z"B( /

Annales de I'Institur Henri Poincaré - Analyse non linéaire



HAMILTONIAN SYSTEMS OF 3-BODY TYPE 593

in which case

(4.34 [Q—l( - )]2< 5y
. 3 5 g1 74> = 8(C,) .
Since (q1= 92 Q3)6,V27 by (4 16)
1 2 1
- — > - 1.
(4.35) H:Qs 2(%'*‘42)] 2 B(C,)
Furthermore
1
(4.36) ®y,5(91> 92- Q3) = 5

Hence by (4.31),

o o Q=12 @+ 9]
PO Q- (12D (4 + 9 )
which by (4.33)-(4.35) is bounded from below by a number if‘B(Cl) 1s

small enough.
Thus in both cases (4.32) and (4.33),

@.37) TZ=0,TY ;+(1-0)|T|[Hr220, VY,
+(1-w) T %v‘~2_(1_®12)HCOIMZHW1'2|I12’J1zl

— 0, || T2 12 lwe2[| Z12 [fwr. 2= Const. (1 —0,)|| I=Tlle | T w2

Since HT’ is bounded from below on ¥",\ ¥", by a positive constant by
Corollary 3.48 and since W'Y, is similarly bounded from below, we
have

(4.38) 7728,>0

provided that |J;,—1J,,| is small enough and as is proved below,
| Z|lwi.2 and ||Z,,||wt.2 are uniformly bounded. The boundedness of
|T"||wt.2 on M** is also established below. Thus the first part of Lemma
4.24 is proved.

For the second part, observe that there is a constant K, such that
T (9)||wt. 2 =K, whenever

(4.39) I(g)sM+1.

Indeed

(4.40) 1T @) [lwr2= [ g2+ [V (@) [l
Now (4.34), (V,), and (4) imply

(4.41) lgll=@M+ 1)V

By Proposition 2.1, ||q;—¢;|[L.~ =8 where & depends on M+1, and by
(Vy), (V3), V;;()<K,(8) for |s|=3. Hence the existence of K, follows.
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Similarly there is a K such that |/I}(g, ¢;)|lw:.2<K}| whenever
I;;(a; ) <M+1. Since |[T—1]|c2 and ||J;;—1;||c2 are small, we then get
bounds for [[T'|lw1.2, ||J};]|w?.2 similar to those for I', I;;. Hence we get
bounds for Z;;. The construction of Z from Z;; and the bounds already
obtained then yield the bound for Z.

Lemma 4.24 has the following interesting consequence:

C(zROLLARY 4.42. — Let q(s) be a trajectory of (4.23) with
e, S1(gO)EM+1 and s>0. Then there exists an s,20, depending
on q(0), iand j, such that for s>sy, q(s) either remains in v | (i, J} or in

Proof. — Let U= W be neighborhoods of 77| such that W< ¥,
and dist(dU, 6W)>0. Suppose g¢(s) is a trajectory of (4.23) such
that ¢(s)e WU for se(sy, s,). Then for se(s;, s,), the estimates of
Lemma 4.24 apply and

(4.43) TG -T@)= - JSZT' (q()Z(q(s)ds

51
S8,(s;—52)

and

@.44) (gl =g 2= F||Z<q<s>>}w1.z§l<<s2~sl>.

S1

Estimates (4.43)-(4.44) show that if ¢(s)edU and ¢ (s,) e ¢W, the change
in T produced by going from U to dW can be estimated by

4.45)  T(qs)-T@()Z ~8,(s,—s) =~ %dist (2U, aW).

Now if g (s) does not remain in ¥", or in AN\ ¥", for all large s, either:
(i) g(s)e ¥ N\ ¥, for all large s, or (ii) g(s) oscillates infinitely often
between (a) 0¥, and 0¥ ,, or (b) ¥°, and ¥ ,\ ¥, or (¢) ANY¥", and
¥,. If (i) occurred, we could apply (4.43) with U=7",, W=7",, and s,
arbitraly large. But this contradicts the fact that T=0. If (ii) (a) occurred,
the estimates (4.45) can be applied infinitely many times again contracdict-
ing that T>0. The argument of case (i) in fact shows g(s)¢¥",\\#"} for
all large s and thus if (ii) (b) occurred, ¢ (s) must oscillate infinitely often
between @77, and 0¥ ,. The argument of (ii) (a) excludes this possibility.
Finally estimates of Lemma 4.24 can be shown to hold for a neighborhood
¥ of ¥, with dist(d%, 8¥",)>0. Thus (i) (¢) follows from the above
arguments.
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5. PROOF OF THEOREM 1

In this section we show that (V,)—(V,) imply that the set of critical
values of I is unbounded. The proof relies in part on some technical
results whose verification will be carried out in paragraph 8.

Since the proof is rather lengthy, we begin with a sketch. Suppose the
set of critical values of I is bounded by a. Let M >g; a precise choice of
M will be made later. Recall that for seR, I*={yeA|I(g)<s}. Let T be
given by (4.11) and let Z be the pseudogradient vector field for T con-
structed in paragraph 4. Finally let €, be as defined in Proposition 2.9
and 2.9". It will be shown in paragraph 8 that any trajectory g (s) of
(4.23) with g(0)e™*'=IM*1 which does not enter I** and I’t or does
not converge to a critical point of T has a limit. The set of such limits,
#, will be called the set of critical points at oo of T and will be characterized
as

«%”={(‘7ia g, Q)eA;xR'|(g;, g;) is a critical
point for J;;, &, <J;;(g;, g)SM+ 1,
1
and 'Q - [ +q1]

21—1}.
B,

An “‘unstable manifold”, W (g;, ;) will be associated with each such
(i, 4;)- Namely W2 (g;, g;) is the set of solutions of (4.23) whose limit
set as s » — oo has a nonempty intersection with #. For a critical point
g of Tin ™M*! let W, (¢q) denote its unstable manifold for (4.23). Let
A" (J;;) denote the set of critical points for J;; and AN =T )OI
Let #™M*! be the analogous set for 1. Set

Dus1= U W9

q e.}{M+l

and
3
D+1= U U Wz (qia 67])
#i=1 (g qpexfT?

and let #'® < ¥, be a set with a piecewise smooth boundary which
contains I*1 | 2y, ; in its interior. Let ¥",=%",(%Py. ) be an & neighbor-
hood of Zy,,. By 6° Theorem 8.2, #* may be chosen so that
M*+1=M*! retracts by deformation onto

(5.1) we gy,

and # retracts by deformation onto I°1\J 2y, . The sets ¥, and
Y. N W™ are absolute neighborhood retracts, i.e. ANR’s—see e.g.
[10] —and their homologies vanish in dimension Zm+ 1 where m will be
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defined shortly. Roughly speaking, the Betti numbers (in rational homo-
logy) of (5.1) are uniformly bounded independent of M. (All references
below to Betti numbers are in rational homology.) Hence by 6° of Theo-
rem 8.2, the Betti numbers of A must be uniformly bounded. On the
other hand, we will show that A can be characterized as the loop space
of the set of pairwise distinct 3-tuples. By a theorem of Vigué-Poirier-
Sullivan [11], the Betti numbers of A are therefore unbounded. This contra-
diction establishes Theorem 1.

Carrying out the details of this skeich is a lengthy process. First we
need some estimates for the (generalized) Morse indices of the critical
points of Tin IM*!, The critical points of T lie in I* so by Proposition 2. 1,
there is a =20 (a) such that for any critical point g of I in 14, (2. 1) holds.
Moreover by Corollary 3.44, these critical points of I are uniformly
bounded in E (up to a translation) by C(g,, a). For any such ¢ and any
o€k,

1 3
I () (o, ®)=J (chlz- Y V{}(qi*q,-)(@i—mj)(cp,-—cpj))dt

0 i#Fj=1

v A I
= J ([‘P‘z* Z Z / (fla_qJ')((Pik‘@jk)(@in‘@jn))df-
0 i#j=1 k#n—1 05 08,

The generalized Morse index of ¢ is the dimension of the subspace of E
on which I" (g) is non-positive definite. The form of I and above remarks
on & and C(g,, a) show the Morse index of any critical point of T in I is
bounded above by some m=n(a)eN. By (4.13) and Proposition 4.2,
| T=T||c2 can be made as small as desired and critical points of T lic in a
small neighborhood of those of I. Hence m, being an integer, is also an
upper bound for the generalized Morse index of any critical point of T. it
can be shown that 2y, is a Euclidean neighborhood retract —ENR —of
dimension at most m. In any case, in the sequel . is the dimension of
Dy+1-

Next choose ke N such that
(5.2) k=zmax(m+1, 97/+3).

(A further restriction on & will be imposed later.) Let {z}eH, (A, Q).
Then {z} may be represented by a chain z having support in a compact
set K « A. Choose M >« such that K<IM*'. Then {z} can be interpreted
as a homology class in H, (IM**, Q). Let

C=1"U D, .

Observe that %y, =%, For notational convenience we will generally
drop the subscript M+ 1 from 2, 2* in what follows. #™* in (5.1)
retracts by deformation on %. Therefore

(5.3) H, (#*)=H, (C).
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Since 77, ¥, N\ #* and # * are ANR’s, the triad (¥ * Ve Vo W)
is excisive and the Mayer-Vietoris sequence holds:

G4 o oHL (WU )H U -
SHOM)OH.() H( U ) > L

[Here H,(A)=H, (A, Q). If r>um, H. (v )=0=H,(#*N%). Hence
H,(#* v )=H,#*)=H,(%) for r>m. Since k>m and {z}is a hom-
ology class of order k, {z} e H, (%). Ideally we would like to interpret {z}
as an element of H,(2), i.e. drop I°t from %. This is not quite possible
but something close to it is and will suffice for our purposes.

For i#je{1,2,3} and r#i, j, note that by (4.15), there is a C,>0
such that

(5.9) +

L®

1
qj_i[qi"”qj] =C,/4

1
q,— E[qi+qj]

L

whenever (¢;, ¢;, Q)€ 2* and Ji;(qi, 9) 2 8,/2. Let a(q;, q;) be chosen via
Corollary 3.41 and Remark 3.43 [with C(g;> q;) constrained by (5.5)]
and further satisfying

(5.6) o (g; qj)<min<82—1’ B(Q))-
Define
1
Wf}: i» 45> Q,) AinRl Jij » 4t =€
{((’ U QR R G ) e gl
d 1 SO‘(%, Qj)}.
1+ [Q-(UDlggif = 4

Note that since J;(g;, g) <&, on Wi, I,;=1J;; on this set and Corollary
3.41 and Remark 3.43 provide us with a diffeomorphism between

(45 g;, Q) and (g,, 454,) coordinates provided that

1
1 . g
(57) f "erzdt+ 1 Zéa(%’ QJ)
0 2 1+’Qr_(1/2)[Qi+qj]| 4
But (5.7) is satisfied here since Q, is a constant.
Let

a( i )
Q= {(Qis Qj)EAijISI - % < Ji(q, q;)<g, }
Note that Wi is a trivializable sphere bundle with fiber

1
lz =& _Jij(qL'» q]')}

F(@nq)={QeR|— -
(4 4) {Qe T+ 1Q - (129~ g
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over Q;;. By Proposition 2.2', J;,#0 in JENJ52. Recalling (5.6) and
further requiring

(5.8) o

o o
S5 inf 3500

weJij\J,'j

]

a simple retraction argument and Proposition 2.9" show Q,; has the
homotopy type of a subset of (R)2. Hence

(5.9 H, (Wi, Q=0
for r>37-1.
Next set
(5.10) f@pij: U {(%’ q; Qr)EAinRII(qiﬂ qj)ewu(qi’ qj) and
@i ae 1,?]431
1 _ 2 q{,-)}
]+‘Qr_(l/2)[qi+qjj”2_ 4
and
5.1 (61=181U<U5U>.
i%j

Since a (g;, q,)<B(C,), Z; =2 and ¥, = C. Furthermore the choice of
B(C,) implies the sets Z;\intI*t are pairwise disjoint. Working with the
coordinates given by Corollary 3.41, it is not difficult to see that the
injection of %, in % is a homotopy equivalence. Therefore {z} can be
considered to be a homology class in C,.

Set

Bij=Z ;) \int 1.
Note that
(5.12) %= U (B; U

i%j

and
(5.13) BN FL=Wi1
Moreover
(5.14) (L, U N (B 5 UL By,)=T%1,

Let %,=%,,UI""\U%,,. It is easy to check that the triad
(€., B,, UI*1, €,) is excisive. Thus the Mayer-Vietoris sequence applies
and yields:

(.15 H,1 (%) > H.I) > H (%, UI") @ H,(%,) > H,(¥,) - .
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By Proposition 2.9, I*t has the homotopy type of a subset of R*'. Hence

(5.16) H, [I*)=0
forr=3/+1,
(5.17) H,(%¥,=H,(%,, UI") ® H,(%,).
A similar computation with &, replacing %, shows for r=23/+1,
(5.18) H,(%,)=H, (@, UT") @ H,(#,, U ).

Now we will study the homology of #,, U I*l. We claim that the triad
(B, U I°1, 1, B,,) is excisive. This will be shown in Lemma 5.23 below.
Assuming it for now and recalling (5.13), by the Mayer-Vietoris sequence
again,

(5.19) H,.1(#,, UT1) - H,(Wiy)

-H,(#3,)®H,@#,Ul'")>H (%B,Ul") > ...
Now (5.9), (5.16), and (5.19) show

H,(#,,)=H,(#,,UI")
for r =31+ 1. Therefore (5.17) gives
H,(%,)=H,(%#,,) ® H,(%,3) ®H, (%3,)

for r=3/+1. Thus { z} can be expressed as a linear combination of closed
chains having support in 4,,, %,5, and %5;.

Using Corollary 3.41, let €,; be defined in the (g;, ¢;, Q,) coordinates

by

| 1

- j |Q, |7 dr+

2 Jo 1+ [1Q,~ (1/2) (g: +4;
Hence %,; = C;; so {z} can be written as a linear combination of closed

chains with support in the %;; and {z} lies in the subgroup of H,(A; Q)
generated by the images of the H, (%;; Q) in H, (A; Q). Next let

;= { (g5 q;» Qr)e(giler:[Qr] }

i Iz <al(gs 9))

The map
[0, ] xF; — E;
©, g1 45 Q) = (g1 g, [QI+ (1 =6)(Q,—[Q])

is a deformation retraction of ¢;; onto %;;. 9;; is a bundle (which can be

trivialized) over A;; with fiber equal to the exterior of a ball. Hence the

homology of &,; is obtained by taking the tensor product of the homology

of A;; with Ho (S'™ ") @ H,_, (S’ ). Consequently for k=2max (9/+3, m),
3

(5.20) rankH,(A)< Y [rankH,_ ,_(A;)+rank Hy (A)]

itj=1
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i.e. the k-th Betti number of A is bounded by a linear combination of the
k-th and (k—/+1)-th Betti numbers of A;;. Since A;; has the homotopy
type of the free loop space $'”', the Betti numbers, rank H,(A;), are
bounded independently of r [11]. Hence by (5.20), the Betti numbers of
A are uniformly bounded. Note that this bound is independent of M.

We will show next that (5.20) does not hold for appropriately chosen 4.
Let Y; = (R'Y be the set of pairwise distinct j-tuples, j=2.3. Then Y,
fibers over Y ,:

p: Y3 X,
P (a1 422 43)=(q1, 42)
where the fiber of p has the homotopy type of a wedge product of two
spheres S'"!. Since />3, Y, and hence Y; is simply connected. The
cohomology ring of Y5 needs at least two generators. Our space A is
simply the set of W' 2 loops in Y5 and this is contained in the set of
continuous loops in Y5, the inclusion being a homotopy equivalence.
Hence by a theorem of Vigué-Poirrier ans Sullivan [11], the Betti numbers
of A are unbounded. Now set
3

(5.21) o=max Y [rankH,_;,(A;)+rankH,(A;)]
r i#j=1
i<j

We further require that k satisfies
(5.22) rank H, (A)=2 1+ .

This contradicts (5.20).
The following lemma now completes the proof of Theorem 1.

‘LEMMA 5.23. — The triple (#,,\J I\, I*1, #,,) is excisive.

Proof. — Note first that I*1 has an open neighborhood in %, I
which retracts on I*t, namely int 12t M (#,, \J I*1). This can be seen using
the negative gradient flow for Z. (Indeed this fact can be used in the proof
that (C,, #,, U1, %,) is excisive.)

To complete the proof, we need only show #,, has an open neighbor-
hood in #,, U I°t which retracts on 4,,. It suffices to show that W3, has
an open neighborhood @ in A which retracts on W§;, for then

(OB )N (B, UIN)=(CNTYU B,
is an open neighborhood of #,, in %, U I*t which retracts on %,,. As
was noted after (5.7), W¢, is a sphere bundle over Q,, with fiber at each

point given by F(q,, ¢,). To define an open set in A which retracts on
We,, we take a “larger” bundle over

Qf,= {(‘113 q2)eA

a(q;» 45)
€y~ —%q‘z<112(‘ha ‘12)<81}
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with fiber at each point

e, —1,5(q1, 92) EJ‘I 3 12 dr+ 1
> ) S e i P

<21 = 112041, 92)) }

{Q:,ERI

This latter set retracts continuously by deformation on the bundle over
Q*, with fiber given by F(q,, ¢,). Namely we contract Q, to 0 and
appropriately adjust [Q,] in the process. Then using the gradient flow for
Ii,, Q%, can be retracted by deformation onto Q,,. Since W, is a sphere
bundle over Q,,, the retraction by deformation of the base space lifts to
a retraction by deformation of the total space and the Lemma is proved.

Remark 5.24. — In paragraph 6, the extension of Theorem 1 to the
case where (V) does not hold will be studied. For that purpose, a sharper
upper bound is needed for the smallest critical value of 1. The following
corollary to Theorem 1 provides us with such an estimate.

COROLLARY 5.25. — Let ® be defined by (5.21). For r=3 [+ 1 such that
(5.26) rankH,(A)zo+1,

let A < H,(A) have rank at least o+ 1. Let K < A be compact and such
that the support of one representative z = K for all {z}eA. Let MeR be
such that K c ™M*1 Then AM* 12 ie. 1 has a critical value in

IM+1\I€1.

Proof. — 1If not, the set N defined in paragraph 4 is empty and therefore
by Proposition 4.2, 2, ;= . The number k in (5.2) can now be chosen
independly of m and the argument involving (5.3)-(5.4) omitted. As
earlier (5.20) holds for k=r. But this contradicts (5.21) and (5.26). Hence
I has a critical value in IM*1,

Remark 5.27. — In the proof of Theorem 1, no explicit use was made
of the fact that V is independent of r. Thus we also get:

THEOREM 1" — Suppose V=V (1, ¢):RxF;(RY >R is T periodic in t
and otherwise satisfies (V) —(V¢). Then the functional

(5.28) J <;]q'|2—V(t, q))dt

has an unbounded sequence of critical values which provide T periodic
solutions of

(5.29) §+V,(t, ¢)=0.
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6. WEAKER POTENTIALS

Our goal in this section is to study the effect of dropping hypothesis
(Ve) in Theorem 1. To begin, recall that (V,) implies Proposition 2.1
which forces any ge W 2 for which I(g) < o0 to be in A. If (V) is dropped,
there are W' ? periodic functions which correspond to “collisions”, i.e.
g;(1)=gq;(t) for some i#; and t€[0, T). If this happens, (HS) is not
defined. Thus a notion of solution is required for this situation. Modify-
ing [2], we say ¢=(q,, ¢,, ¢5) € C(R, (R")?) is a generalized T-periodic sol-
ution of (HS) if (5) (i)-(iv) of paragraph 1 holds. Now we have:

THEOREM 6.1. — If' V satisfies (V,)—(Vs), then for each T>0, (HS)
possesses a generalized T periodic solution.

Proof. — Again we can take T=1. An approximation argument in the
spirit of [2], [13] will be used. Let yeC* (R, R) such that the y (s)=1 if

s§%, X' (5)=0, and x(s)=0if s=1. For each >0, let y; (s)=x(%>. For
i#je{1,2,3}, let Vi(x)=V;(x)~3]|x| 2%38(|x|). Then VP, satisfies
(V1) —(Vg), Vi (x)=V(x) if | x| 25 and

(6.2) — V()2 -V, ().

Set

3

Vi(g)= Z V?j (g:— qj')

and
1/
Is(Q):j (lé&z—Vs(q)>dt-
o \2
By (6.2),
(6.3) L; (@) =1(g)

for all ge A. Since ¥7; satisfies the hypothesis of Theorem I, for each
8>0, Iy possesses an unbounded sequence of critical values. Moreover,
by Corollary 5.25, Iy possesse a critical value in I§'* '\ I&! where a priori
M and ¢, depend on 8. Suppose I;(¢g) <g,. Then the properties of ¥~ and
choice of &, imply |l¢g;~[g]|l.~ is small and |[¢,—g,]| is large for
i#je{1,2, 3}. Hence for g, small I;(q)=1(q) for geI*, i.e. &, can be
chosen independently of §. Corollary 5.25 shows the choice of M depends
on the compact set K — A. Hence M can be chosen independently of & so
that K < T¥"! for all §e(0,1). Thus for each such &, there is a
g®e AN (1IN 1§ such that ¢° is a critical point of I,
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We will show that as § -0, a subsequence of (¢°) converges to a
generalized 1-periodic solution of (HS). To prove this, observe first that
Proposition 3.1 and Corollary 3.44 do not require (V4). An examination
of their proofs shows that they hold uniformly for e.g. 8€[0, 1] and the
constant C(g,, M) of Corollary 3.44 is independent of 5[0, 1]. Thus for
each 6€(0, 1], we have

3
6.4) Hq?—vsnw1,2§C(81, M)+1
=1

1 . . .- .
where v5=5[q§+q§]. Since ¢®—\ (v;) is also a critical point of I; corre-

sponding to the same critical value, by (6.4) a subsequence of these critical
points converge weakly in W2 and strongly in L® to ge W' 2. Moreover

1
(6.9 —J Vig)disM+1.
0
Indeed for all 5(0, 1],
1
(6.6) —‘[ V(@ (O))dtEM+1.
0
Consequently for £>0,
. 3
©n | ¥ 0-nd-ghVie-dasmet
0 i#j=1
Letting 6 — 0, it readily follows from (6.7) that
1 3
(6.8) - Y U=x%(a—g)Vilg—g)di=M+1.
0 i#j=1

Thus letting € — 0 in (6.8) yields (6. 5). Hence g satisfies (iii) of (5). Next
(6.8) and (V,) imply that 2, as defined in (5) (i), has measure 0 and (5)
(i) holds. If t€l0, 11\ 2, there is an &, p>0 such that if ]t—rl <p,
|q:()—q;()| & for each i#je {1, 2, 3}. The system of differential equa-
tions:

(6.9) ¢ +Vi(g*)=0

shows ¢°(r) - g (1) in C? for |1—1| <p and g satisfies (HS) on this set.
Thus (5) (ii) holds. Lastly (5) (iv) is valid for ¢* and V; with 2,= ¢ and
a corresponding constant y;. Hence on passing to a limit, we get (5) (iv).
The proof of Theorem 6.1 is complete.

CorOLLARY 6.10. — If v~ satisfies (V,)—(Vs) and
(V) V(@) #0 forall gqe(RY,
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then (HS) has infinitely many distinct generalized T-periodic solutions.

Proof. — We use a standard argument. By Theorem 6.1, (HS) has a
generalized T-periodic solution ¢y. By (V5), g; is not an equilibrium
solution and therefore its minimal period is T/k, for some k, e N. Invoking
Theorem 6.1 again with T replaced by T/2k,, we find a second nonequili-
brium generalized T-periodic solution with minimal period in (0, T/2k,].
Repeating this process gives the result.

As with Theorem 5.28, the proof of Theorem 6.1 yields

THEOREM 6.11. — If #'=17 (1, ¢) is T periodic in t and satisfies (V,)-
(Vs5), then (5.30) has at least one generalized T-periodic solution.

7. THE RETRACTION THEOREM AND RELATED RESULTS:
THE FINITE DIMENSIONAL CASE

A key fact used in the proof of Theorem 1 was that ™M*! retracts by
deformation onto the set given in (5.1). In this and the following section
we will establish this fact together with some related results. This will be
done in two stages. First in this section we will prove an analogue of
Theorem 8.2 for a Morse function on a compact manifold. Then in
paragraph 8, it will be indicated how to modify this simpler situation to
get Theorem §.2.

To begin, recall if fe%! (¢, R) where ¢ = R/, ¥ is a pseudogradient
vector field for fon ¢ if ¥ is defined and locally Lipschitz continuous on
{reC|f (30} and there are constants p <o such that for all p in this
set:

{ W ()| <alf ()]
(7.1) , e
I MYMzBLf ]

Let 4 (f) denote the set of critical of /. Our main result in this section is
the following:

THeoREM 7.2. — Let .#(<R™ be a compact manifold and
feC?(#, R) be a Morse function. Let ¥ be a C' pseudogradient vector
field for / such that ¥ extends to all of .# as a C' function and such that
the critical points of f are nondegenerate zeros of W. Then in any C'
neighborhood of W, there exists another pseudogradient vector field, @,
of f satisfying: ’

1° The critical points of f are nondegenerate zeros of @;

2°If x, ye A (f), the unstable manifold of x, W, (x) (for the flow
generated by @) and the stable manifold of y, W (y), intersect transver-
sally;
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3°If xe (f) and
Fo={yeX (NI} W, 0NW,(N#0¢},
then

W, (=W, () u( U W, (y));
yeFx
4 If zeF,, there is an r,>0 and a family of neighborhoods, U,,
0<r<ry, of W,(z2) satisfying
O U, < U, if r<i,
(i) U, is a trivial bundle over W, (z) with fiber homeomorphic to
W, ()NW, ) U{z},
(iii) The trace of W, (x) in U, is a trivial subbundle over W, (z) with
fiber diffeomorphic to W, (x) N W, (),
iv) N U,=W,(2),
(v) The diamcter of the fibers tends to 0 as r — 0.
5 Let f = xe.«|f(x)=c}. If a<b are noncritical values of / and
W (a, =" U{W, () |xed (), a<f(x)<b},
Then W, (a, b) is an ENR and f” retracts by deformation onto W, (a, b).

Remark 7.3. — Artually a stronger statement than 5° is proved
in {I5], namely that W (a, b) admits an isolating block in the sense of
Conley [14] which retracts by deformation on W (a, b).

We will now carry out the proof of Theorem 7.2. Statement 1° follows
from (7.1) and that @ is C* close to W. An induction argument will be
used to ptove 2°—4° and for this some preliminaries are required. Suppose
dim.Z =1 Let ye# (f). Then there are local coordinates near y, given
e.g. by the Morse Lemma, such that R’ splits into E- @ E* where E~ is
the unstable manifold of y for ® and E* is the corresponding stable
manifold. Moreover, if X is the coordinate along E~ and Y along E*,
near y
(7.4) S Y)=f(»)— | X]P+ Y~

Suppose xe #" (f)\{y} and W,(x) is transverse to E*. We want to
understand how W, (x) behaves along E~. Since both W, (x) and E* are
invariant under the flow generated by ®, transversality here means, of
course, transversality in sections to the flow lines; i.e. transversality of
the intersections of these two sets with

P={X. V) [[X]=p, |Y]=p}
for p small enough. Thus we are assuming that for 0<p<p, <1, the two
manifolds:

(7.5) W, ) NP={(X, Y)eW, () ||X]|=p,

Y|=p}
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and
(7.6) S,={0.V[Y]|=p}

intersect transversally in P,. The intersection is then a manifold which we
will denote by 7. In a neighborhood of a point of T W, (x) N P, may
be thought of as a vector bundle over 7, with fibers parallel to E™ since,
by a version of the Implicit Function Theorem, in such a neighborhood,
any point of W, (x) NP, may be represented by an associated point on
J , and an abcissa on E™. This representation has a local character in
general, i.e. it cannot be extended to all of W, (x) N P, even for a p’<p,
unless 7 is compact or some other special feature occurs.
We assume that there is a C' diffeomorphism  such that for a p' <p,

(7.7) \U(Wu(x)ﬂPp,);{XeE’|‘|X{§p’}><=7‘,
where =~ denotes the diffeomorphism . When (7.7) holds, we say
W, (x) YW, () intersect transversally in a uniform way.

In order to understand how W, (x) behaves along E~, let v be free for
the moment and let (X,, 0), | Xo| v be a point of E~. Let &R satisfy

(7.8) 0<B8<(p)?
and set
(7.9) Se(XO)={(XO,Y)||Y|=6}.

We will describe the set Sy;(Xq) M W, (x). Locally the flow corresponding
to @ is given by

(7.10) N, X, Y)=(>€'X, ¢Y).
This formula holds in a neighborhood of y, i.e. if
{]e'Ylgu;|X]§o¢<l for =0

.11) i
e X| e | Y| Sa<l for <0

holds with a suitable a. We take y=a and p such that
(7.12) p=min (pg, )< 1.
If z=(X,, Y)eS,(X,)e W, (x), then

(7.13) <9,XO,%Y>ewu(mep,.
p

Indeed since |X,|<y=a<l by (7.8)-(7.9), 6(p") '|X,|<p’ and
p' 0 1| Y| =p". Thus (8(p") ' X, p'07'Y)€P,. Furthermore setting

(P
7.14 elo= -
(7.14) o

Y
Y

1
-zl
p

Annales de IInstitur Henri Poincaré - Analyse non linéaire



HAMILTONIAN SYSTEMS OF 3-BODY TYPE 607

O(p) "1 Xy, p 071 Y)=(e0X,, ¢0Y) with 1,=0. Condition (7. 11) is sat-
isfied. Thus (OB(p) ' X, PO 'Y)=n(, z2) and since zeW,(x),
O(P) X4 P07 1Y)eW, (x). Hence (7.13) holds.

Conversely let p'2zA>0 and z'=(AX, Y)eW,(x) " P,. Then
z=(Xg, AY) €S, (Xo). Setting

1
(7.15) e*‘1=l;—;1,
AT p
we have 1, £0 and
(7.16) le 1A X, | = |Xo| oy Y| =p'<a.
Therefore (7. 10) holds on [¢,, 0] and
(7.17) z=n(ty, 2)eW, (x).

Choosing A=0(p')~ ! in (7.7), (7.10), and (7.17) establish a diffeomorph-
ism between Sy (Xo) W, (x) and {6(p")~ ' X, }*x 7 ,. This diffeomorph-
ism is given by n(z,, .)°¥ where ¢, satisfies (7.14). Alternatively with
1o=log(p'0" 1),

(7.18)  n(~10, -)"‘11_1({3Xo}xeg7p>zse(xo)ﬂwu(x}

Observe that the restriction |X,| <y plays no qualitative role in what
was done above. Once (7.18) is established for |X,| <y, it holds for any
Xo€E™ or more generally in W, (). Indeed for any such point,

lim n(z, X{)=y.

t—>

Thus we way choose 1(X;)>0 such that |X,| = |n(1(Xp), Xi)| <y and
(7.18) then holds at X,. The result then transports to X{ through
1N (1(xp), ). Moreover (7.18) extends in a natural way to
(7.19) B, (X)) N W,(0=( (Ko, Y) | [ Y] <p'} N W, () U { (Xo. 0)}
through the map

[0’ p’] X g‘p/{ 0} x ‘Q/—-p - Bp’ (XO) m Wu (x)
(7200 V(. Y) 5 (=16, U (X0, Y)), - to=—logt if t#£0

0, Y)—> (X, 0) if 1=0.

Clearly (7.20) extends to all X,eW,(y) using the same argument as
for extending (7.18). Observe also that [0, p'] % ﬂ'p/{ 0} x 7, is home-
omorphic to (W, (x) MW, (») U { x }. Indeed

(7.21) W, (x) "YW, (») is diffeomorphic to T ,%(0, ),
the diffeomorphism being given by the flow, i.e.
(7.22)  zeW,X)NW,(») > (M ((2), 2), 1(2)) €T, (0, 0)
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where 7(z) is the unique value of ¢ such that n(t(z), z)eS,. This diffeo-
morphism can easily be modified to be a diffeomorphism to 97, x (0, p’).
It maps a deleted neighborhood of x in (W, (x) YW (»)) U {x} into a
neighborhood of 77, x {0} in & x[0, p’) and then naturally extends to a
homeomorphism which is a diffeomorphism outside any given neighbor-

hood of { x}:
(7.23) (W, NW,0DU {x] =0, p)x T, /{0}x T .

The above observations combine to give the following result:

ProposiTiON 7.24. — Assume W, (x) and W (y) intersect transversally
in a uniform way, i.e. (7.7) holds for suitable constants p'<p=p,. Then
W, (») is contained in W, (x) and there is a decreasing sequence U,, r<r,,
of neighborhoods of W, () in W, (x)\U W, (y) which are trivial bundles over
W, () —see (7.20)-(7.23)— with fiber homeomorphic to

(W, )NW,(m U {y}.

Moreover, UNW, (y) is a subbundle over W, (y) with fiber diffeomorphic
to W, (x) "YW, (). The diameter of the fiber tends to 0 as ¥ — 0.

In order to continue the proof of Theorem 7.2, a stronger notion of
transversality than that given by (7.7) is needed. Let

U W, () NP, - {X'eE™ | [X'|£p'} X7,

so ¥~ H(X’, Y)=(X, Y). We assume hereafter that there is a uniform o >0
such that if P_ and P, denote the projectors on E~ and E*, we have

(7.25) sup su 1P+ (D\]j(}f‘ Yi ((6:’ 0))>ﬂ <o
KLY ¥ (Wa 9 1 Py o= cp—go) || P= (DW! vy ((e™, 0))]]

where || . |l is a norm on the tangent space to .#.

Condition (7.25) means a uniform transversality in a strong sense since
it relies on the fact that there is a transversality coefficient ¢ uniformily
along ¥~ (W, (x) N P,). For a simple transversality, c may depend on
(X, Y).

We will say W, (x) and E* intersect transversally strongly and uniformly
if (7.25) holds.

Now let K = W, (y) be compact. Let

(7.26) g U, ->W,.(»

be the fibration associated with Proposition 7.24. Since W, () is contracti-
ble, its tangent bundle is trivial as is the tangent bundle of .# along
W, (»). This yields an extension of the tangent bundle of W, () to a
neighborhood of K in U,, i.e. a total space F (K) which is a vector bundle
over U, (K), a neighborhood of K in U,:

(7.27) g: F(K)-U,(K)
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such that

(7.28) gl & (K)-K

is the tangent bundle to W, (y) restricted to K. Taking » small enough,
we may assume that

(7.29) U, (K)=g ' (K)

where g is defined in (7.26). The fibers of g, are of course diffeomorphic
to the tangent space to W, (y) at a given point. Heuristically, by continuity,
the direction of a g, fiber at zeg™ ! (K) approaches that of the tangent
space to W, () at g(z) as z — g(z). Let p be a metric on .# and let.

(7.30) g2 FEK)'-U,(K)=g '(K)
be the normal bundle to F(K).

ProvrosiTioN 7.31. — There exists a subbundle of the tangent bundle to
W, (x) along g~ ' (K)—K:

g3 G(K)-g '(K)-K

whose fiber is a subspace of the tangent space to W ,(x) at the same point,
of dimension equal to dim W, (y). Moreover G(K) has the following
property: For any zeg~ " (K)—XK and any vector v,e(G (K)),, the fiber at
z for g, splits naturally into h,+ k, where h,e(F (K)),, the fiber at z of g,,
and k.e (F(X)*),, the fiber at z of g,. Then

(7.32) lim MZ—H =0
z > 4g(2) l h:”
uniformly in z and v, or equivalently
(7.33) lim  sup sup I | =0

r0 26U ()—K v e(G(K)z40) ||A]]
in the norm associated with the metric p.

Remark 7.34. — Conditions (7.32)-(7.33) together with the fact that
g, extends the tangent bundle to W, (y) restricted to K ((7.27)-(7.28))
means that the tangent space to W, (x) contains a subbundle in a neighbor-
hood of K which extends the tangent bundie to W, () along K.

Proof of Proposition 7.31. — We use (7.25) and (7.20). The latter tells
us that for any ze U_(K)\ K, 1=, there exists 1, (2), t€(0, p’), r=¢ 0@,
and Y e such that

(7.35) z=n(—1,(2), ¥V (1(2)g(2), Y))

where lim 7(z)=0, lim t,(z)=co. Equation (7.35) is written in the (X, Y)
r—>0 r—>0

coordinates. Instead of (7.35), we will write:

(7.36) z=n(~1,(2), ¥y (X', Y"))
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where (X', Y)e{X'€eE™ | |X'|<p'}x7,, and (1(2)g(2),Y)=(X, Y.
Since lim #(z)=0, we can use \ if T is small enough.

r—+0
The flow 1 (s, .) expands coordinates in the direction of W, (y) by a
factor of ¢ and contracts in the direction of W,(y) by a factor of ¢' as
t — —oc. Therefore using (7.25) and setting

(7.37) G(K),= Dn(—zo .y, Y'))°D‘Jf(;<'l. Y’) (E”x {0 })

Proposition 7.3! follows.

Now we are ready to prove 2°—4° of Theorem 7.2. This statement will
be proved by induction on the critical values. Let ¢, < ... <¢, be the
critical values of f. For the sake of simplicity, each critical value will be
assumed to correspond to a singfe critical point. The set of critical points
is {xy, ..., x,, } and they are nondegenerate. Now W, (x;) and W_(x,) are
the stable and unstable manifolds of x; for ®. We are going to perturb ®
in the course of the proof. This of course causes perturbations of W, (x;)
and W, (x;). Nevertheless for convenience the same notation will be used
for the perturbed manifolds.

Statements 2°—4° hold for the minimum, x; since they are vacuous.
Using the Morse Lemma, they also hold for x,. In the induction below,
¢ is a noncritical value. Let

fo={xedl|f()zc)
and p(A, B) denote the distance between sets A and B. Let
(7.38) 2<p=m
be given. Recall that
Fo={x|W. () N W ()£ |

We assume inductively that

@) I W, () NW(x)=0, n(W,(x), Wi(x))zp;>0, i,jsp— 1 if
W, () "Wxp)#d, W,(x) and W,(x;) intersect transversally for
i, jJ<p—1 and the intersection is uniform and strong in the sense of (7.25).

(i) W, (x) N o= (W, (x) U { W, (x) N /.| x;€F,, and ¢;>c¢} for all non-
critical values ¢< ¢, iSp—1.

(iii) For 7 given, i<p—1,let ¢(( \U W,(x;)) be an open neighborhood

xje Fx,.
of U W,(x;). Then for any such ¢ and any noncritical value ¢<c;,
xje Fx‘.

(W, (x )\ ) N /. is compact.

Conditions (i)-(iii) are obviously satisfied for p—1=2. Later we are
going to prove that they are satisfied for any p after a suitable perturbation

of ®. Assuming for now that (i)-(iii) have been established, we will show
that (i)-(iii) imply 2°—4°, Indeed (i) implies 2° and (ii) implies 3°. Lastly
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4° follows from Proposition 7.24 and 7.31 and the strong and uniform
intersection property of (i).

Now we will prove (i)-(iii). Clearly (iii) follows from (ii). We will prove
(i) and (ii) by induction. We assume (i) and (ii) hold for i, j<p—1. As
was already observed, (i) and (ii) hold for i, j<2. Three steps arec nceded
to get the result for p.

Step 1. — (i) and (ii) hold, after possibly perturbing @, for i=p, j=p—1,
and ¢, <c<c,.

In order to vwverify (i), we perturb the compact manifolds
W, (x,) NS~ (c) and W (x, )\ f '(c), so that they intersect transver-
sally. This corresponds, e.g. to perturbing ® along the normal bundle to
W, (x,) NS~ (c) in f7'(c). The resulting transversal intersection in then
uniform and strong. Now (ii) is immediate since

W, (x,) Nfe=W,(x,) NS

Step 2. — If (1) is satisfied for i=p, r<j<p—1, and (i1) holds for i=p,
¢, <c<c,, with c a noncritical value, then (ii) holds for i=p and noncritical
¢, ¢y <c<c,

Here we consider two cases:

Case 1. — W (x) W, (x,)=.
Then n(W, (x,), W (x,))Zp,,>0 and the classical deformation theorems
tell us that if ¢, < ¢’ <¢,,, and ¢,_; <c<c,, then

Wu (xp) mf;:n (_ 15 Wu (xp) mf;’)a
for a suitable renormalization of the flow for —f (so that £, \0,, is
deformed into f, in “time” —1 where ¢,, is a uniform —; p,, neighborhood
of W, (x,)). Therefore

Wu (xp) mfc: n (_ 1’ Wu (xp) mf;")
since n(— 1, .) is invertible and since (ii) holds for ¢’,
(7.39) W, (x,) NL=W,(x,) U{W,(x)Nf]x;e F, and ¢;>c¢ 1.
Hence Step 2 follows for this case.

Case 2. — W,(x,) N\ W, (x)#.

Then by (i) these manifolds intersect transversally, strongly and
uniformly. From the proofs of Propositions 7.24 and 7.31,
W, (x,) UW,(x,) fibers locally over W, (x,) with a fiber homeomorphic
to

W, (x) "W, (x) U { x, }

and W, (x,) locally is a subbundle with a fiber homeomorphic to
W, (x,) "YW, (x,) (contained in W, (x,) U W (x,) U {x, }). These fibrations
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are transversal to the flow of @ [see (7.18)-(7.20)] which leaves W, (x,)
invariant.  Therefore for ¢,_;<c¢<c¢, (W, (x)UW,(x))Nf. and
W, (x,) N/, define local fibrations over W, (x,) M f, with the same fiber.
Consequently W, (x,) N f. = W, (x,) M/, and we have

(7.40) (W, (x,)U{W,(xp)|x;eF, and j>r—1}HNf c W, (x) N

Now consider a fixed neighborhood. Q, of x,. All trajectories of @ from
W, (x,) N/, which do not enter Q are images via an invertible diffeo-
morphism 1 (—s, .) of some trajectories of W, (x,) N f,. for ¢,<¢"<c¢
Since

Wu (Xp) mfc = Wu (xp) U { Wu (\‘]) ‘ '\‘j6 1:_:.\‘17 and Cj> ('/ }) m/c'?
these trajectories are contained in
(7.41) (W, (x,) U (W, (x)|xeF . j>r=1D N/

The other orbits enter Q. In Q we way assume that the local picture is
known as in (7.7). The only accumulation points in  which belong to
W, (x,) N/, are in W, (x,) N f.. These observations, together with (7.41).
yield the reverse inclusion to (7.40). Thus Step 2 is also valid for this
case.

Step 3. — If (ii) is satisfied for i=p, ¢, <c¢<c, with ¢ a noncritical
value, and (i) holds for i=p, r+1<j<p—1. then (i) holds for i=p and
rejsp— L

We consider again the two cases of Step 2:

Case 1. — W, (x,) N W (x,)=. Then W, (x) N W,(x,)= for any
X;€ Fxp,j>r for otherwise W, (.\‘j) and W, (x,) would intersect transversally
strongly and uniformly. Since W,(x,) intersects W (x)) transversally
strongly and uniformly, W,(x) is contained in W,(x,) and
W, (x,) U W,(x)) flbers locally over W, (x)) with fiber
(Wu(\ )Y W (x ))Ul ” This implies that W, (x, )ﬂW (x, )#@ con-
trary to our assumption. Indeed, let ye(W, (x,) M W (x ))U{ J, in a
given neighborhood of x; with y#.x;. Let S, be a section of the (trivializa-
ble) local bundle W, (x, )UWu(\ )—> Wu(\ ) associated to 1. i.e. modulo
a trivialization chart, S (x)=(x. 1) for YEW“(\) Then for y near x;

(W, (x;)) intersects W (x,) since the intersection of W, (x;) and W (x )
is xmm" and uniform and since S(W, (x)) is only a pulml(mon ol"
W, (v;). Any point in S, (W, (v, ))(\W (x,) lies in W, (x,) M W (x,). Hence
our clalm that W, (x;) ﬂW (\) @ for any x;eF, . j<r follows.

Since x,¢F, and W, (x) M\ W,( =g for j<r, applying (i) which
holds for j, rgp— I. we have

(7 42) }1< U Wu ('Yj)7 Ws (\-r)>§p>0

xjeFxp

Annales de U'Institur Henri Poincaré - Analyse non lin¢aire



HAMILTONIAN SYSTEMS OF 3-BODY TYPE 613

Consider an open neighborhood, ¢, of U W, (x;). ¢ may be chosen so

Xje Fx,,
that
1
(7.43) H(0, W(x,)= §p>0-
We claim that for noncritical values ce(c,, ¢,),
(7.44) (W, (e, \NO NN W (x)=0.
Indeed (W, (x,)\¢) N/, is a compact set. Clearly W, (x,) = U W (x)). If

jzr

(7.44) were false, we would have for some j=r+1
(7.45) (W, (e, \NO NN W(x) 2 {x}

where xe W (x,). Then x;¢ F.. € is a neighborhood of W, (x;), and by
(7.43), W, (x,) does not meet €. Observe that the decreasing orbit n(—¢, .)
starting at x enters ¢ since xeW,(x;) and x;eF, . Moreover
xe W (x,)\ W,(x,) so in any neighborhood of x we may find ye W_(x,),
y¢ W, (x)) with u(y, Wi(x;)) as small as desired. If this neighborhood is
small enough, then the decreasing orbit n (—¢, .) starting at y will enter
¢, ie.

(7.46) n(—1(»), e NW(x),
a contradiction. Hence (7.44) holds and
(7.47) H(W, Cep )N N S Wi(x,))> 0.

Now (7.47), (7.43), and (i) imply
(7.48) w(W,(x,) Nf., Wi(x,))=Zmin (g HIW, (x,)\O NS, W, (Xr)))

Fixing ce(c,, ¢, ), we get a lower bound for p(W, (x,) N /., W (x,)):
(7.49) R(W, (x,) Nfeo Wx)2p, (¢)>0.

Consider the reduction given by the Morse Lemma in a neighborhood
of x,. This provides us with a description of the local behavior of the level
sets of f for ¢ close to ¢,. We choose ¢ so that this description is available.
In local coordinates, the flow for @, n(—1, .). r>0 increases the distance
of initial points to W, (x,) (for a suitable choice for this distance). Therefore

(7.50) (M (=1 W, (x) Nf), We(x)Zp1 (0)>0

for all 120. In particular p(m (=1, W,(x,) N /), x)Zp1(c)>0 for all
120 and we may deform W, (x,) to any level ¢’ e(c,_,, ¢,) using the flow
of ®. We modify the parametrization so that this deformation takes place
within the fixed time />0. For simplicity we keep the notation n(—1, .).
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Therefore for any ¢'e(c,_,, ¢,),

(7.51) n(=6 W, (x,) Nf)=W,(x,) N fe
and

(7.52) w(W, (x,) N e Wolx,)Zpy (o).
Since ¢’ <¢,, we also have

(7.53) m(f< Wo(x)zpy>0.

Hence

(7.54) H(W,(x,), W (x,))2inf(py, py (¢))>0

and (i) is proved for this case.

Case 2. — W, (x,) "W, (x)# .
Since (i) holds for i=p and ce(c,, ¢, ), we have

(7.55) W,(x,) Ni=(W,(x,) U{W,(x)|x;eF, and j>r}) Nf.

Consider an open neighborhood ¢ of {W, (x))|x;e F., }. The intersections
W, (x;)) YW, (x,), j>r are transversal, strongly and uniformly. Therefore
O can be chosen so small that the same is true for the part of W, (x,) in
¢ with respect to W, (x,). Indeed since (i) holds for i=pand r+1<j<p—1,
Proposition 7.24 and 7.31 hold for W, (x,) "YW (x;) and we have the
usual bundle structure of W, (x,) over W, (x;) with the related tangent
bundle property. Therefore any strong and uniform transversality property
for W, (x;) translates to W,(x,). More precisely since the tangent bundle
to W, (x,), along neighborhoods of compact subsets of W,(x;), contains
a subbundle extending the tangent bundle to W, (x;), the strong and
uniform intersection of W, (x;) and W (x,) implies that of W,(x,) and
W_(x,) along neighborhoods of such compact subsets. If such neighbor-
hoods are removed, by (ii) we are left with neighborhoods of sets of the
type W, (x,) N W;x,), k<, xkeij. Indeed (i) implies that

\’V_u(xj) Nf.= W, (xj) U {Wu (i) l X € ij }) NS

Therefore we may choose a compact set in W, (x;) such that its complement
is a suitable neighborhood of {W,(x,)|x,€F, } N/, and our argument
above applies. This lowers the index j and uftimately shows, when all
possible indices are used, that W,(x,) intersects W,(x,) tranversally
strongly and uniformly in €.

Consider then (W, (x)\¢) N f~'(c). This is compact and so is
W, (x,) NS ! (c) where ce(e,, ¢, ). Along the boundary of W, (x, )\ ¢,
W, (x,) is transverse to W (x,) N f~'(c). By a standard perturbation
argument, we can make (W, (x)N\O)Nf '(c) transverse to
W, (x,) N f '(c) everywhere by modifying the flow along the normal
bundle of W (x,) Nf (¢} in £~ (¢) without affecting the boundary. The
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perturbed W, (x,) N /™' (c) is then transversal to W (x,) NS~ (c). This
transversality is strong and uniform since it was so in @ and since on the
sets W, (x,)\\ 0 we are dealing with intersections along compact sets. Thus
(1) is proved for Case 2 and the proof of Step 3 is complete.

The three steps together imply that (i)-(iii) are satisfied by (x,, x;) for
j<p and the proof of 2°—4° is complete. Now we turn to the proof of
5°. First we will establish that W, (a, b)=2 is an ENR. Since 9 < R*, by
a theorem of Borsuk [12], it suffices to show that & is locally compact
and locally contractible. By 4° of Theorem 7.2, at any point ze W, (x),
Z locally is a bundle over W, (x) with fiber %, homeomorphic
to (W,(x)N{W,(»|y>x})U{x}. Note that y>x means that
W, () MW, (x)#¢5. The fiber &, is contractible using the decreasing
flow. Since W, (x) is a finite dimensional manifold, z has a contractible
neighborhood N in W, (x). Therefore 2 is locally contractible at z, the
contractible neighborhood of z in @ being N x %, in a trivialization over
N about z. Furthermore by 3° of Theorem 7.2, 2 is locally compact since
% =9. Hence 2 is an ENR.

To show that f? retracts by deformation onto &, let b, < ... <b,, be
the critical values of f between ¢ and b and x, ..., x,, the corresponding
critical points. Each of these critical points admits a neighborhood of the

type
(.56 X[+ |YP<e,

for some g,>0 where (X,Y) are local coordinates corresponding to a
Morse Lemma reduction, i.e. X is the coordinate along the unstable
manifold E™ and Y is the coordinate along the stable manifold E*. We
will also use W, (x,) and W_(x,) to denote E~ and E*. Further smallness
conditions will be imposed on g, later.

Let n(—1, .) denote the flow for @, 120. Consider the balls B, ..., B

m

in the X, Y coordinates around x,, ..., x,, respectively. Let
(7.57) W,= Un(—1B)
t20
and
(7.58) U (g4, ...,em)EU£=<UWi>Uf“.
i=1

Each set W; is an / dimensional manifold with boundary where
I=dim .. This follows since the set

(7.59) Si={(X, V) || X+ |Y|*=¢, | X 22 |Y|*}
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is a section(®) for the flow for @ which sweeps out W, outside B, via
n(—1 .).

Set
(7.60) Wi=WB,.

Clearly W, defines a tubular neighborhood of W, (x;), and hence a fibra-
tion over W,(x;,), the fiber being diffeomorphic to the disk
D"={0,Y)||Y|?<g}. If K; = W,(x)) is compact, & may be chosen so
that the diameter of the fiber remains small along K,. It is then easy to
extend the tangent bundle to W, (x;) to W, along K,. In fact, as in (7.27)-
(7.28), we can assume that this extension has been carried out on a fixed
neighborhood U (K)):

(7.61) g¢ F(K)> UK.
The fiber of g, ; is diffeomorphic to the tangent space to W, (x;) and
(7.61) g1i|gf,'1(]('.>: g i (K)—K;

is the tangent bundle to W, (x,) restricted to K,  Now g,; defines an
orthogonal bundle

(7.63) g5 (FK)' > UK.

If we are given another vector bundle G=G(K;) which is a subbundle
of the tangent bundle of .# and which is defined in a set ¢ = U(K;), we
can split G over F(K,) @ F (K,)*. The following notation will be used for
this situation. If ve ¢, v.e{(G(K))), denotes a vector in the fiber of G at z
and v_ can be written as v, = h,+k_ where 4. (F (K))), and k_e (F (K))*)..

To complete the proof of 5°, the following result is required. Here R™
denotes the positive reals.

ProPOSITION 7.64. — There exist continuous functions ¢, ..., @, with
¢ (RN R such that if 0<g;<@;(gy. ..., &) foralli=1, ..., m,
;lhen Jor any p-tuple (x;;, ..., x;), bij+1>b,~jﬂ j=1, ....p, 1Epsm, we

ave

1° sup supinf{p(x, p)|ye/*U{W,(x)]a<f(x;<b}}=0.

g2 0 xelg
2 Ifx, ¢F, = [xed (N|W,(x, )N W (x)#0} for some index j,
p r+
then M oW, =
j=1

3°If X, ek, - 0<j+1<p, then the sets (8Wij), 1<j<p, intersect
it P

transversally. Hence the intersection M\ ¢W, is a manifold
i=1

(*) Sce the note added in proof p. 649
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M(e, iy, ..., I,)=4 (¢, p). Furthermore its tangent bundle contains a
subbundle Ge, p) with the following property:
h
(7.65) lim sup sup A | =0
tips o 08,20 ze i) nf T k.|

and dim G,=dim W, (x; ) =dim (F (K;,)).. In (7.65) ¢ denotes a noncritical
value with ce (b; _,, b;,).

We delay the proof of Proposition 7.64 for now and complete the
proof of 5°. By the definition of U, its boundary is made up of pieces of
f~(a) and pieces of OW,. With the aid of Lemma 7.64, the intersections
of any number of these sets are transversal. Therefore such intersections
are manifolds .# (g, p). The closure of these manifolds may have a bound-
ary, e.g. if xioeFZil, then 4 (g, iy, i;, ..., 1,) is a boundary portion of
some part of .# (g, p). On each manifold .# (g, p), we may define an
inward normal to U, as follows: on dW; (... (M dW, , the tangent planes
are independent. Therefore they intersect transversally and define indepen-
dent linear forms. We can pick one which points inwards for each of the
8Wij and thus for dU,. The same procedure applies if /' (a) is added.
Since the set of inward normals is convex for each linear form, we may
glue these normals continuously and thus, even though JU, is not a
manifold, being made up of pieces of manifolds, we can continuously
define a vector field » along dU, pointing inwards to U.:

(7.66) v, U, ->T.#

z—>v,
where v, points inwards to U,. Using e. g. a tubular neighborhood of dU,,
v may be extended to all of .# with »=0 outside of a given neighborhood
of dU..

To be precise, we require that v=0 in U_ where ¢’ = (g, . .., ¢,) is such
that U, < int U,. Since all of the critical point of f between levels a and b
lie in the interior of U,, there exists >0 such that
(7.67) @) zp>0

for all xef* N (#\ U,.). Hence for 0 small enough, ® — 8 v is a pseudogra-
dient vector field for fin /1 (a, b). We may choose 8>0 such that

1
(7.68) f'(X)(‘D(X)*ev(X))%EB2
for all xef* N (#\U,). Consider the decreasing flow ¢ (7, .) for ®—0v:

(7.69) %‘f(—n V=) -0v(0) (0, ¥)=x.
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Given any xef ~!(b), there exists a unique smallest 7(x) such that
(7.70) o (—1(x), x)eU,

Indeed ¢ (—¢, x) must enter U, since:

2
(7.71) flo(—1, X))':“f'((P)@((P)‘@v((P))é—%
it @(—¢, x)ef* N (A\U,). Furthermore since —® is either tangent to
or points inwards to dU, and since 6 v strictly points inwards to dU, the

trajectory cannot escape U, and t(x) is unique and continuous. The
deformation

(7.72) D:[0, 1]x f*— f*
D(t, x)=0(—1t(x), x)
retracts f? by deformation onto U,.

In order to conclude the proof, we must show that U, retracts by
deformation onto 2=W,(a, b). Since & is an ENR, the Cech homology
of 2 and the singular homology of 2 coincide [10]. We established that
f? can be retracted by deformation onto U,, which is a subset of a
neighborhood of Z. Since € can be made arbitrarily small, it follows that
the homology of f? is isomorphic to the Cech homology of & and hence
to its singular homology. The above argument in fact shows that the
injection of % to f? is a homotopy equivalence since the argument extends
to homotopy groups [10]. Thus /* and & have the same homotopy type.
This is enough for the purpose of this paper. Establishing that this
homotopy equivalence can be taken to be a retraction by deformation is
more technical and we refer to [15] for this point.

Remark 7.73. — Taking ce(a, b,), the invariant set in the sense of C.
Conley referred to in Remark 7.3 would then be

[OU{WL ()| xed (f), a<f(x)<b}.
We now conclude this section with the somewhat lengthy:

Proof of Proposition 7.64. — Since the sets W, are images by a decreas-
ing flow map of the B;’s, 2° follows on showing that

(7.74) W, ., NB,=.

Since W, (x;,,) N W (x; )=, (1) implies that

(7.75) p(W, (e, ) Wo(e ) Zppey, >0
Thus

(7.76) w(W, (x;,, ), W () Z pyes,,>0
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Choosing
1
(7.77) € <~ Pr+i1,r
T4
(7.74) follows from (7.76)-(7.77) if we can choose €., so that
_ 1
(7.78) nx, Wu(xi,+1))<;‘pr+1,r
forall xeW, , , orif
(7.79) lim  sup p(x, W,(x,, )=0.

Gipy >0 XeWi

Observe that (7.79) together with 3° of Theorem 7.2 implies 1° of
Proposition 7.64. Hence 1°—2° of the Proposition follow from (7.79).
Now (7.79) is a consequence of 3°—4° of Theorem 7.2 as will be shown
next. The set W; is obtained from B, by using the flow n(—¢, .) for t=0.
Consider a fixed ball B™ (x;, p), p>0 in E~ about x,. It is clear that for a
suitable p independent of ¢, and any xeW, x=(X,Y) such that
XeB™ (x;, p), we have

(7.80) p(x, ET)=p(x, W, (x)) <,

This is simply due to the local behavior of the flow m(—1¢, .) which
contracts the Y-directions and expands the X-directions, 7. e.
(7.81) lim sup  pn(x, W, (x))=0.
g2 0 x=(X,Y)eWw;
XeB (x4, p)

By (7.81), the same result holds on any compact set K; = W, (x,). Indeed
such a set is covered by n(—¢(K;), B™ (x;, p)) where 1(K;,) eR depends
only on K; and p. Hence for any xe W, having ze K, as base point in the
fibration W; —» W, (x;) with fiber diffeomorphic to S¥:

(7.82) u(x,z)§< sup HDn(—t,y)H>

rel0, 1 (Kl
yeH

xpn (K, x), n(t(K), 2))<Cg;
where
C= sup IDn (=1 »]

t, y) e [0. t (Kp] x4

Thus we are left with those points x for which the base point z belongs
to a neighborhood of W,(x)\ W, (x,), i.e. of {W,(x)|x;eF_}. We
may assume that we start with base point zedK,, the boundary of a
large ball in W, (x;) and thus, using (7.82) with ¢; small enough since z
belongs to a neighborhood of {W,(x))|x;eF, }, with points x near
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{W,(x;)|x;eF, |. Our goal is to prove that such points remain close to
{W,(x))|x;eF, j={W,(x)|x;eF_} when they are subjected to the flow
n(—1t, .). Therefore we return to the situation we started with but with a
lower index j<i. Using a decreasing induction, at the last step we arrive
at a situation where W, (x;)=W, (x)); hence the result.

Now we will prove 3°. We claim the condition on the subbundle G (g, p)

(7.83) lim sup sup M;—H:O

. |
o2, 20 e diepas L t=€G:z H/l:|’

may be replaced by a similar one with the constraint f(z)=¢ replaced by
the requirement that z= (X, Y), | X| =p. | Y| <p for a fixed p. To justify
this, observe that the coordinates (X, Y) are local Morse reduction coordi-
nates about x;. Since ce(b; _,, b;;) p may be chosen so that f(z)>c if
z=(X,Y),|X|<p, | Y| =<p. We know that as g, — 0,

sup (. W, ) —0.

er,"

Therefore we may also assume that any ze.# (g, p) which may be written
in the (X, Y) coordinates, we have !Y] <p. For g, small enough and
ze (g, p)(N\f ™' (c), the amount of time ¢, needed by 1 (7, =) to reach
(X IX]=p,|Y|<p} is bounded from above by a constant
C=C(p, o). Conversely if 2’ e.# (g, p), ' =(X", Y, | X" | =p, ]Y’ <p, the
amount of time, —¢, needed by n(—1¢ z') to reach f~!(c) is bounded
from below by a constant —C(p, ¢). The map Dn(z, .)‘Wu(xl_l, leaves
the tangent space to W, (x; ) invariant. Since any point .\'eW,-% Nf. is
close W, (x;) and the time ¢ needed to get from f~'(c) to
=X, Y, |X'|=p, | Y| <p is globally bounded from above, we may
replace (7.83) by

(7.84) lim sup sup HJEJ: 0.

€1, .. ..k o0 ze .M (e. p). v, e G H:H
? ::(X.Y)nearx,.l-lx:p.]YI§p

Now 3° will be proved by induction on p. For p=1, ¢W, is a manifold
and we seek a subbundle of the tangent bundle to ¢W, which satisfies
(7.84). Choosing g;, <p, let

(7.85) 88! ={(X", Y) near x;, | |X'| =|Y'], |X

Ivri12 —
Y P, )

The tangent space to 0W,, at a point (X', Y')e{Sj,, is the tangent space
to tnis sphere, i.e.

(7.86) (W, KD |X i +Y k=01,
Consider a point (X, Y)edW,, such that
(7.87) |X|=p. Y| <p.
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In fact | Y| < &, <p. Such a point belongs to oW, if and only if
l 1/2
(7.88) e’p=e”]X]=e'|Y|=<§eil> ,
1 2p? & . .
i.e. t=-log L Y| = %, or equivalently if
2 it 2 p

I 2p?
(7.89) n <2 log i, (X, Y)) £dS!.

i1

. . 1 2p2
The tangent space at (X, Y) is the image under Dn <- 2—log P 8 ) of

&

1 2p?
the tangent space at (X', Y')=n (E log —&, X, Y)) to the sphere, /.e.

€i;

2\ 112 g, \1/2
(7.90) (hl,k1>=(p() h;(—l) p‘k;)
&, 2

where
178, \12 2 \1/2
~<~‘) X.h’1+p<-> Y . k=0
p 2 gil

or equivalently

4p*
(7.92) (hy, kl)fX.h1+TY.k1=O .
i
Since
&,
(7.93) [X]=p; [Y[=ﬁ,
2p

for any s, e E™, the vector
(7.94) hi—p (X .h)Y

belongs to the tangent space to dW,,, at (X, Y). By taking the image of
these vectors by Dn(—y .), 20, (7.94) defines a subbundle of
G (&, iy). Furthermore if (X, Y)edW, and |X|=p, then IX|=p,

&
|Y|=-"and setting
2p
(7.95) Vxyy=v.=h —p 2(X.h)Y,
we get
el
1Al

£
(7.96) §Cp_2|XHY]<Cp_2§
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where C is an upper bound for the norm of the projection from
E*=W_(x;) onto (F(K; ). We do this in order to conform to the
precise definitions (7.61)-(7.63). Otherwise we could simply take
(F(Kil))L=E+ with a suitable scalar product,

K, ={XN[X]=p,|Y|=p}.

The inequality (7.96) implies (7.83) and (7.84) and hence the induction
for p=1.

Now we give the argument for arbitrary p. We start with
(CINR & ) x, eF,, - M (g, p) 1s a manifold, the intersection of the
sets 8Wl L Jj=1, p is transversal, and the tangent bundle to .# (g, p)
contains a sunbundle G (e, p) satisfying (7.83) or (7.84) near x;,- Now
we add another critical point x; 2 EFL o this family. It has a related W,
and g; . We want to study.

(7.97) (e, X;5 o, xip)E//’(e, p)=M (g, p) " OW,,.

We may always assure, without loss of generality, that there is no critical
point z such that zeF, and x, eF,. Indeed, should such a z exist, we
could take it to be our present x Proceedlng in this way, by induction
on all the possible intermediate elements Zy, -« o5 Zy = X;, between x; and

o (zi€F., , z; maximal in F_ ), we would establish 3°of Proposi-
t10n 7.64 for the whole chain of indices. The statement for the subchain
(igr - - -5 z’I,) follows immediately.

Therefore, in the sequel, x;  is maximal in F,, o le there is no z such
that zeF,, and x; eF_. Let (X Y) be local Morse reduction coordinates
near Xx;, and X', Y) be Morse coordinates near x;- Let p>0 be given
and let

(7.98) KOEWu(xil)ﬂ{(O, Y)HY|=p}.
Let

(7.99) ¢ (K°) be a small closed neighborhood of K°
which does not contain x; .

Let

(7.100) S ={X V)| |X| YL YP+|Y]P=¢,}
and let K' =« W, (x; ) be:

(7.101) Ki={X,0)||X|=p}

The set K! is a section to the flow restricted to W, (x, ) and thus, for any
ze KO, there exists ¢(z) >0 such that:

(7.102) n(t(z), z)eK!
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where £ (z) is bounded by a constant independly of z:
(7.103) 1(z) £C(p).

By continuity, we may assume that, if ¢ (K°) is compact and small enough,
then there exists a compact set containing K', ¢ (K!), such that, for any
ze O (K?), there exists a t(z)<1+C(p) such that n(s(z), 2) belongs to
O (K'). It is not difficult to see that we may take

OKHY={X,Y)]||X'|=p,|Y

<p}.
Since ¢ (K') is then transverse to the flow, ¢(z) is uniquely defined.
Our induction provides us with a subbundle

G(gp onns €, X

112

)

of the tangent space to .# (g, p), with a fiber having the dimension of
W, (x;)), such that (7.84) holds on ¢ (K*). The tangent space to .# (¢, p)
at ze . (g, p) N O(K®) is the image under Dn(—1(z), .) of the tangent
space at 1 (¢(2), z) to # (g, p). Setting

Gie p)=Dn(=9(), )G, p),

then G, (g, p) is a subbundle of the tangent bundle to .# (g, p) on
A (g, p) M 0 (KP°), the fiber of which has the dimension of W, (x;)- G(e, p)
satisfies (7.84) on @ (K'); Dn(s, ')Iw,,(xi) leaves the tangent space to
W, (x;,) invariant; and ¢ (z) is bounded by from above 1+ C (p). Therefore,
G, (s, p) satisfies condition (7.84) on .# (g, p) N\ O(K°) i.e. there exists
an extension F (0 (K®) to ¢ (K°) of the tangent bundle to W, (x;,) on K°
such any v,e(G,),, the fiber of G, at ze.# (g, p) N O(KP), splits:
v, =h,+k,, h,e(F(C(K®), k,e((F(OK)"Y), with h, and k, satisfying
(7.84) uniformly for z in . (g, p) N O (K°).

Since the intersection of W, (x; ) and W, (x;,) is transversal strongly and
uniformly, if @ (K°) is small enough, there exists a >0 such that for all
ze M (g, p) N O (K°), the tangent space to .# (g, p) at z contains a subspace
of the form

(7.104)  {(hy, B,hy)|h,eE ", B,e #(E~, E),

with & is independent of z. Here E- =W, (x;,) and ET =W, (x;,) so the
subspace given by (7.104) is a graph over W, (x;,)-

Observe that if g is small enough, any ze.#'(g, p) is such that
N, z)ed (e, p)(O(K®% for a suitable . Indeed points in
M (e, p) (YOW, —are images under m(—¢, .), =0 of points in
M (e, )M (Si)" and such points are clearly images of points in
M (e, p) YO(K®). The tangent plane to oW, at a point
2=(X, Y) e (s, p) (\(SE)* is

(7.105) T, ={(hy, k)X h+Y .k, =0).

X

PRI ip

B.[[ =0}
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Ifz=n(—1, (X, Y)) and z=(X, Y)e.# (e, p) N € (K°), then
(7.106) X, Y)=(X, e'Y), >0

and by (7.104), the tangent space at z to .# (g, p) contains a subspace of
the type:

(7.107) H={('h, e "B:h)|h eE||B;[| <o}

¢ (K°) is fixed, compact and such that X ¢ € (Ko); &, can then be chosen
so small that ¢, in (7.106), is large umformly for 7e (e, p) M (S )*
Observe that the flow preserves .# (¢, p) and is transverse to oW,

) \CS [see (7 105)] Therefore, the intersection of these two sets 18
transverse on (Sf) \OS“ On 08§, (7.107) defines a vector space
transverse to the tangent space to 0W, . Indeed (¢'X, ™' B;X) is in this
vector space, while, since |X|=|Y|,

(7.108) |X.eX+Y . e "B;X]|=|e'|XP+e7'Y . B;X
2| X[P—e " o|XP2 [ X]P(e—oe™)>0

for 1 large enough. Thus, the intersection of . (g, p) and OW, 1s transverse
along (Sj) )* and is therefore globally transverse since any point of
M (e, p) ﬂ CW, is obtained from .# (g, p) M (S{)™ using the flow.

We now deﬁne Gey - - -, €ip Nigs -+ o0 ) and prove the second part
of 3° in the form (7. 84) By deﬁmtlon the fiber (G.) at
zed' (g, p) N(S})" is

(7.109) G, —orthogonal projection on 7, of (#,® R(X, —Y)).

Observe that #, @ R(X, —Y) is a direct sum: (X, —Y) cannot belong
to #, because |Y| = |X| on (S{)* and because ¢ in (7.106)(1.107) is
very large. Furthermore, as we have seen above, #_ @R (X, —Y) is
transverse to 7. which is the tangent space to ¢W, atze (S‘,.’O)+. Extending
G to .4’ (g, p) via Dn(—r1, .), 120, we obtain a subbundle of the tangent
bundle to .#’ (¢, p) of dimension

(7.110)  dim(G (g, - . .
=dimE™ +1-1=dimW,(x, ).
G, may be expressed in another way if ze.# (e, p) (M 0OS{. Setting
z=(X, Y)=n(—t 2, =X, Y) in .# (g, p) N € (K®), we introduce:
(7.111) H={('"(hy—vX), e 'B;(h;—vX))|heE"}
where
X hte ' Bih Y
CEXPEY e BIX
Observe that &7 is tangent to .#' (g, p) since it satisfies (7.105)-(7.107)
G, may then be described as:

(7.112) G.=#.®R(X, —Y)
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since (X, —Y) is tangent to 4’ (g, p) along 9S; . In order to prove (7.84),
we observe again that

M (e, p) MV {(X, Y) near x,, | X| =p, | Y| <p}
is the image under n of .#’ (g, p) M S

large, T — oo as g;; —> 0. We set

=X, e "Y), X, Y)e#’ (8 p) M OISy,

i» the time 1 needed being very

(7.113) z,e M (g, p), elX| =
Ix['= XPHY oty
The fiber of G (g, ..., &, X, - - -, X)) at z; I8

T7.114) (' (h;—vX), e "B (h—vX) DR(EX, —e77Y)
where
p 2
(7.115) Ttizt=log-———=log [ —p—>o00 as g — 0.
IXI &g
Equation (7.114) can be written as
(7.1106) (€ hy, e B (h, —vX)—e' TTVvY)

since (7.116) defines a space of dimension equal to dim W, (x;,) contained

in Ggy, -5 & Xigy - - > X;,). Since IX|=1]Y], (7.108) and (7.111)
imply:
(7.117) VX[ +v]Y|] <3]4|

for g, small enough. Therefore if
v,=( " h, e  CTIB:(h,—vX)—e TVY),

and if we take, for the sake of simplicity, E- @ E* for the decomposition
of v,=h,+k,, we have
[l _ e Bzt —vX)—e VY |
U Y
<@ Al
Y

(7.118)

<Ce™ " 50

uniformly as g, — 0. As can easily be seen, (7.84) can be written with
such a splitting so (7.84) holds for G (g, .. ., € Xigy « o o5 X ) Thus the

induction is established and the proofs of Proposmon 7.64 and
Theorem 7.2 are complete.
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8. THE RETRACTION THEOREM AND RELATED RESULTS:
THE INFINITE DIMENSIONAL CASE

In this section, the results of paragraph 7 will be extended so as to
apply to the functional T introduced in paragraph 4. In the process a set
of critical points at infinity for T will be introduced and its stable and
unstable manifolds relative to the pseudogradient flow generated by Z will
be characterized.

The notation of paragraph 4 will be used freely here. Again % (T)
denotes the set of critical points of T, etc. We henceforth take €, as in
Proposition 2.9 and assume

8.1) Bl<min{)b—crrb¢ceT(f(T))u< U JiJ-(%(Ji,-))>

i#j=1

and b, CéM'f‘l}.

Also let W,(q,, 9,), W,(q,, g,) denote the stable ans unstable manifolds
corresponding to (g,, ¢,) €A (J,,), etc.

THEOREM 8.2. — Let 1 be as defined in paragraph 4. Then
1° Any trajectory of (4.23) with q(0)e ™™ which does not enter To1 =121
or does not converge to a critical point of 1 has a limit. The set of limits,
H, can be written as
3

H= U #,
itj=1
where
%ij: ) _U ‘”ij((;,—s q])
(qlqu')e%’?'}ﬂ

2° In the (q,, 95, Q) coordinates,

1
Qs_ *[q_l'*'q_z]

H12(q1s qz)={((j1,q_2)}><{Q3eRl' 5

1/2
2<L -1 .
S\ B,
where gy, §,)e AN,

3° H#1,(q,, q,) possesses a Fredholm stable manifold, W (q,, G,) and a
finite dimensional unstable manifold, W (q,, q,). These manifolds can be
characterized in (q,, q,, Q3) coordinates as:

a. W& (Gy, g)\int It is a bundle over W, (g, q,)\int J5, Pt with fiber

F 1. an 0ver (4, q,) given by
1 1\
— i _ _
F(q1,qz)_{Q3€R Qi—zlg: gl = ——1 .
2 By
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1
b. Let c=1,,(4,, 4,) and0<8<§[3(c1). Then

W (‘L"jz)mfﬁaz U G2, 42)

O<asxce

where GE, (41, ,) fibers over W (qy, q,) N I3* with fiber at (q,, q,) given
by

G, (4:, CI2)={Q3€W1'2

1t . 1
- S|P de+ <eg—a b
2L'Q' Q=D @+ e a}

4° 2° and 3° hold for any A ;. N

5° In any C' neighborhood of T, there exists a perturbation L of T
possessing the following properties:

a.L=Zin v, (i, J), i#j.

b. L is a pseudogradient vector field for 1.

c. For any qeA™*' and (G, G)eAY'', the stable manifold
W& (g, g;; L) for L through (g, g;) is transverse to W,(q; L).

d. For any e A™M*1, W, (q; L) is transverse to W (g; L).

e. For any (4, 4peAi""\{3»4)}, W2(g, s L) is tranverse to
W2 (G, 5 L).

6° The set TM*! retracts by deformations onto

WUV (D)

where
3
Dv1= U W9, Dy = U U W2 (g ‘ij):
qexM*1 iFj=1 (g, g e AMT Lij

Pty cint#®cH®cv,,

OW'® is piecewise smooth, and V" . (D 4 1) is a small neighborhood of Dy, ;.
Moreover

a. W= retracts by deformation onto I°1\ U 23, |,

b. V. (Dys) and VvV (Dye ) W, are ANR’s.

c. D+, is an ENR of dimension m and the homologies of V" .(Dy+1)
and V' (Dy+1 NW ) vanish in dimension larger than m.

Remark 8.3. — (i) On the basis of 5°, we can assume Z=L and our
original stable ans unstable manifolds W, (gq), W,(q), W (g), etc. have
transversal intersections. (ii) A stronger result tan 6° is valid: TM*! retracts
by deformation onto I°t U 25, ; U @Dy, ;- See Bahri [15].

Proof of Theorem 8.3. — Let us recall the construction of Z given in
paragraph 4, in particular (4.15)-(4.23). First Z,, was chosen to be a
pseudogradient vector field for J,, such that the stable and unstable
manifolds for Z;, in the region &, <J,,(¢g)<M+1 have a transversal
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intersection. Points on the unstable manifold between levels g, and M +1
satisfy (4.15). Then Z was defined in (4. 20)-(4.22) as follows:

(8.4 (7_[((11,(]2, 43):*®12Y12‘(1‘®12)T’E‘z

where Y, expressed in the (¢,, ¢,, Q,) coordinates in ¥~ , (1, 2) is given
in component form by

8.5)

(1) i(%s C]z): _Z12(41a QZ)
drt
(i) i’ (@, 1Q,)=-(Q,-[Qi)

Gii) ([Q3 S0t )=0-6,) 2o CR e,
11Q3 = (1/2) (¢, + ¢,)]|
Now we will prove 1°-2° of Theorem 8.2. We first want to describe
the critical points at infinity of T, i.e. by Corollary 4.42, the limits of
decreasing trajectorles for (4.23) which remain in 77, (1, 2) for large ©
On ¥, Z=Y,,. Therefore we are dealing with (4.21). Let
q(1)=(q, (1), ¢, (1), Q3(1)) be a solution of (8.5) for 1>0 such that
e, <T(g(1) <M. We claim (4, (1), g, (7)) converges to a critical point

(g1, 42) of J;, as 1— oo provided that J,, (g, (1), g, (1)) + 0. Since on
1.

l
—(1/2) (g, + g0 |*

T 1 Yoz
8.6) I(g) J12(‘]1s‘12)+2J0’Q3* dt+l+|[Q3

we have

8.7) a0 0. g @)2Tg (- £ 2, - PE
Choosing §(C,) <, (8.7) implies

8.8) RCNCPHLIESS

for all 1>0 such that ¢(r)e#",. Hence as t — oo, (g, (1), ¢, (1)) converges
to a critical point (g, g,) of J,, with

£ _ _
(8.9) 31§J12(Q1aCI2)§M+1~

By (8.9) (i),
(8.10) Qs 2 () =0
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as T - co. Since (g, (r) q,(1) — (ql, d,), for large t we have

<

-1
e 4

(8.11)

(11(7)_ (g, +4.] (D)

Now consider (8.5) (111). It shows

l I:Qs - %(% + Q2):| ()

2

1s nondecreasing as T — co. Combining this observation with (8. 10) implies
: L
I+ [[Qs = (1/2)(g: + )1 (D |
as T - o0. We claim pu>0, for if u=0, then for large r,
1
2 <B:
1+ 11Q3—(1/2) (g, + 41 (¥ |

Now (8.11)-(8.12) imply that (g,, g5, Q3)(r)e ¥, for large 1. Therefore
(1—®,,)(g()))=0 for large T and (8.5) (i1i) implies

d 1 _
(8.13) E([Q3"5(91+Q2)}>"0

for large 1, contrary to u=0. Since >0, (8. 12) shows we have

(8.14) lim [w (1) §<1—1>1/2
il

%Ll 10, | (@2di+

(8.12) 1J1]Q3!2(r)dt+
2Jo

T 0

where w(1)= ][Q3~ L@ m)} |, By 8.5 (i),

(8.15) % d%|w(t)|2=(l—(I)u)lw(r),
Since g (t)e ¥, we have

1 B(CY
8.16
( ) 1+|le(r)< 2
for large 1. Thus if §(C,)<?2,

2 1/2
8.17) ();( —l) =0,>0.

O 5y a

Using (8.15), we get
(8.18) |w[2(r);®f+®1f(l—d)12)dc
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630 A. BAHRI AND P. H. RABINOWITZ
for 121, and 7, large. Combining (8.14) and (8. 18) yields
(8.19) J (1=8&,,)do <.

0

Hence by (8.5) (ii1),

(8.20) jw

1 .
Therefore w (r)=[Q3 — 5 (g, + qz):l (1) converges to a limit w_ as T — 0.

—wldt<oo.

dr

Clearly 1 —®,, (g (t)) then converges to 0. Therefore

1
8.21 = — <
( ) H 1_*_}“‘30.2_‘31
via (4.16). Lastly observe that by Proposition 2.9’, any critical point of
I, satisfying (8.9) will satisfy
(8.22) 8;=11,(9, ¢;)=M~+ 1

if &, is small enough. Now (8.9)-(8.11), (8.20)-(8.22) imply that the
limits as T - oo of the trajectories we are studying lie in 3, where 5,
was defined in 1°—2° of Theorem 8.2. Conversely, any ge s, is the
limit as 7 — oo of an orbit of (8.5), namely the one with initial data gq.
This proves 1°—2° of Theorem 8.2.

Now we study the “stable” and “‘unstable” manifolds W (g,, ¢,) and
W (4., §,) corresponding to points in #,,. We begin with
W2 (g, o) \int 1.

(8.23) W2 (q,, g,)\intI*1={g(1)|g(t) is a solution of (8.4) whose
limit set as T — — oo has a nonempty intersection
with #,, and I(g(1))=¢, for all t<0}.

Arguing as in the proof of Corollary 4.42, there is a 1, so that if T1<1,,
g(t)e? ;. For such 1, g(t) may be expressed in (g;, g,, Q3) coordinates
and (8.5) holds for 1<t,. When te(— 00, 1,) decreases to —oo, (8.5)
shows that ||Qs||p2(r) is nondecreasing while Q;—[Q,] tends to 0 as
T— —oco. Hence

(8.24) | Qs L2 (=0

1
for 1<1,. Similarly H:Q3— 2(q1+q2)]

in (— o0, 1,) while
1 1 12
[Q3* 2(‘]1+112)] (‘oo)g(Bl_ 1)
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SO
1
<
1+ [[Q3—(1/2) (g, + g1 |* ()

(8.25) B1

for t<t,. Thus
1 =
1+ HQ3—(1/2) (9,1 q5) (T)”Z

for 1<1,. On the other hand, (g, (1), ¢, (v)e W,(q,, 7,)\int J5, P1, the
unstable manifold of Z,, at (g,, 4,). Consequently

By

(8.26) 1J1|Q3l2(r)dt+
2Jo

<G

Lo 4

for 1<1t, by (4.15) and the choice of Z,,, C,. [See (4.17) and the
following paragraph.] Inequalities (8.26)-(8.27) imply that g(t)e¥”, for
t<1, where t,>1,. Therefore 1,=c0, i.e. if g(1)eWP(§,, §,)\int T,
then (8.25) holds for ce(— o0, o0) and

3
1
8.27) Z qz'_i[%“L%](r)
i=1

(8.28) . (91> 92)e W, (g4, q_z)\imj?z_ﬂlv
(8.29) [ QsllLe (1)=0, i.e. Q4 (1)=[Q;] (1) R,
(8.30) : B1

<
1+ [Qs = (1/2) (g, + g)1* (v) —

for oy
3 241 q; = B, -

Therefore W (g,, g,)\int I*! fibers over W, (g;, g,)\int J5;*1 with fiber
F4,. 4, @s stated in 3° a of Theorem 8.2. Furthermore since W,,=0 in
7o, the flow restricted to W (g,, ¢,)\int I** has a nice representation:

d
d—r(ql, 92) (0= —~7,,(41, 92) (V)
(8.31) Q; (1)=[Q;] (1) eR’
[QB - %(q1 +q2):| (t)=constant independent of 7.

These equations show each orbit in W (G, §,)\int It converges to a
point in J#,, as T > — 0.

Now we will describe (locally) the stable manifold W (4,, g,) which
we define via

(8.32) W& (q,, 4,)={q(v) satisfying (8.4) | ¢ (1) converges to
an element of #, as T —> o }.
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632 A. BAHRI AND P. H. RABINOWITZ

As was the case for W (4,, §,), we could have started out with solutions
of (8.4) whose limit set, as T — oo, has a nonempty intersection with # .
However the analysis of critical points at infinity carried out in (8.6)-
(8.21) shows that such trajectories converge to an element of 5 ,,. Thus
(8.32) is an acceptable definition for WX(g,, §,). For any
q(0)eWZ (q,, 4,), there exists 1, such that

(8.33) q(t)e?’, for t=1,.
For such 1, ¢ (1) satisfies (8.5) which implies
(8.34) (41, 1) (VeW (G, §))  for 121,

Let us consider a neighborhood X of (g,, 4,) in W,(4,, §,) having the
following properties:

(i) Z is invariant under the flow

d
—(q1, 42)= —Z,,(q1- 92)
dr

for 120.

(ii) For any (¢;, ¢,)€Z,
2

Since by (4.15),

such a set T can be found. Clearly for any ¢ (1) e WZ (¢,, G,), there exists
a t, 20 such that

(8.395) (g1, g)(1)EX for tz1,=1,.

Moreover since T, =1,, wWe have

1. 1 C
(8.36) AJ‘ Qs P (1) dr + 5 <B( )

2Jo 1+ [Qs = (1/2) (g, T g1 * (D) 2
for t>1,. Using (8.35)~(8.36), the analusis carried out in (8.6)-(8.21)
holds and any orbit of (8.4) satisfying (8.35)-(8.36) lies in W (g,, §,)-
Observe that if

(8.37) (g1, 9,)(0)eX
and
1! 1 B(C))
J38) - 2(0) dr + ,
(839 2Jo QPO 1+ I[Qs—(1/2)(q1+qz)]|2(0)< 2
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then by properties (i)-(ii) of X if ¢ (t)=(q, (), ¢, (1), Q5 (7)) is the solution
of (8.4) with initial data ¢(0), g () satisfies (8.37)-(8.38) for any t>0.
Indeed (8.37)-(8.38) show (8.4) has the form (8.5) for small T>0. Hence
properties (i)-(ii) of £ and the fact that the left hand side of (8.36) is
nonincreasing with 7 via (8.5) imply that (8.4) has the form (8.5) for all
t>0 and that (8.37)-(8.38) holds for any 1=0 with such initial data.
Now (8.33)-(8.34), (8.37)-(8.38) and our above remarks show that
W2 (g,, 4,) can be described locally as a bundle over X with fiber H

where for (¢, ¢,)€Z,
1t .
ot
1 3 B(cl)}

+ <
I+ [[Qs=(1/2) (g, + g1 * — 2

(a1, 92)

(8.39) H(ql,,,z):{Qsewl’ 2

Let

(8.40) c=J12(4y, 42).
We will make a particular choice of . Let

(8.41) 2:2(8)2{(41, 92)e W (G, 572)“12(‘71’ Q2)<C+8}

Certainly (i) hold for small €. Moreover since (¢,, ¢,) satisfies (4.15) and
X(e) > (4, §,) in W2 as € - 0, a fortiori £ () - (§,, G,) in L® and (ii)
follows for e e, where €, depends on C, (and M). We can further assume
that

(8.42) P(Cy) <&, (Cy)

for all (g, g)e A" . Let

iy

(8.43) 0<l(—)—@i<s< BCY
9 2
and set
(8.44) W2 (e) (G15 3.)={9e W2 (G, §,)|T(g) <c+el.

Dropping the (§,, §,) for convenience, WX (g) is clearly a connected
neighborhood of 4, in WZ(q,, 4,). We will describe W2 (e) "\ ¥,.
On v,

1
1+ [[Qs = (1/2) (g, + g1

1
(8.45) T(q)=J12(q1, q2)+ %f IQslde_
0

and the flow has the simple form (8.5).
Consider the following set:

%,={q(0)e W2 (¢)] the solution ¢(t) of (8.5) remains in 7", for all
120 and (¢, (v), ¢, (V) €Z(e) }.
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The argument used above in (8.34)-(8.39) shows that if g(0)e W (),
there is a 1,>0 such that g(t)e¥, for 1=1,. We claim that in fact
g(t)e¥, for all 120, i.e.

(8.46) W (e)=%,.

Indeed assume that q(t,)€ 0%, and g(t)e¥%, for t=1,, T, >0. Since (8.5)
holds on [t;, ), (g; (1), (92 (1)) € W (q1, 42)- Since (8 45) holds and
since g (t,) eintT ., (t;>0), (¢, (1), ¢2(1,)) e W, (qy, Q2)mlntJ12 c+e and
hence (g, (ty), g, (t,))eint Z(g). Therefore g(t,)ed?", [since g (1,)€ 0%,

and (g, (%)), ¢, (1,))€int £ () and hence (g, (5,), ¢, (r,)) ¢ 0% (2). This
implies that either

‘h+512]

2|

¢
2

Lil

which is impossible by (ii) of the definition of X (¢) or that

w(@Qy= )
2
which is also impossible since then
(8.47) T(qx 1))>C+B( 1)>c+g,

a contradiction. Hence (8.46) holds.

Using (8.45) and the definition of ¥,, WX (¢) is a bundle over Z (g)
with a fiber as described in 3° b of Theorem 8.2. Morecover W (¢) is a
Fredholm manifold. Indeed X(¢) is a Fredholm manifold since Ji, is
Fredholm and proper near (G, §,). Thus Z,;, may be chosen to be
Fredholm and proper near (¢,, 4,). The set G, ,,, is also a Fredholm
manifold and W (g) inherits this from the product structure. This comple-
tes the proof of 3° (and 4°) of Theorem 8.2.

To obtain 5° and 6°, a few preliminaries are needed. Note first that if

(8.48) 19Ps .« E(fl)

then W (¢) is a uniform neighborhood of #,, in W (g,, §,). Indeed if
qgeH,,

. I
+ Qs —(1/2) (g, + g1

Observe also that (8.5) holds on WX (g) and provides us with following
information about the behavior of the (decreasing) flow restricted to

(8.49) T(¢)=1,,(q;. ‘jz)+l SctBi<cte.
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W2 (e):

g L @)=~y @0 0 (@0 4)EE )
dt )
Q3 (T)z e’ Q3 (0)

(8.50)
( W(r)=[Q3—%(q1+qz)J(r)=7»(r)W(0)

where A (t) converges to a limit v as T — oo such that | v|=((1/B, )— D2
Lastly observe that a Morse Lemma is available around #,, for Z in the
following sense: Let A", c A cintA#,c.#, be neighborhoods of
(91> 42) in A, such that

(8.51) 2, X, Y)=(-X,Y)
in A", where (X, Y) are coordinates along W, (q;, ¢,) respectively and

C,
(8.52) Z ”q] 511+512 HL°°<7

for all (¢, g,)e AN, i=1,2.
For i=1,2, let

‘ - 1
(8.53) W/i:{(ql’ qs, Q3)|(CI1, Q2)E./Viand0)12(5h, g, Q3)2 2—1}

- ~ . ~ i
Then by the definition of ®,,, #,=%,. Moreover since colz(q)<E on

W\ ¥ 1, by the argument of Lemma 4.14, there are constants v and K,
such that

(8.54) {T’fq)z(q)zwo
1Z(q)|lw:.2<K

for all ge#",\#",. Furthermore, (8.5) holds in # , and shows that
if g(t) is a solution of (8.5) such that q()eW, for 1€[0, 14], then
q(M=(X, Y, Q3)(r) with

X (1)=¢"X (0)
Y(®)=e"Y(0)
(8.55) Q3(r) e Q5 (0)

w(t)= ':Q3 - 5((]1 + qz)] (D=A(g(x) w(0)
where

ik(q(t))go and -0
dt
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if and only if dist (g(1), #",) 0. Now (8.54)-(8.55) show that #,
has similar properties to neighborhoods of critical points for functionals
satisfying the Palais-Smale condition. Indeed the explicit formulas of
(8.55) show (PS) is satified in #7, along any given trajectory. Moreover
W, is a neighborhood of #,, on which Z has the reduction provided in
(8.55) which splits along the (g,, g,, Q) coordinates yielding a product
structure for the flow corresponding to —Z.

As a last preliminary observe that .47, is small enough, .4/, = 47 (p) as
defined following Proposition 4.2 and any solution (¢4, ¢,) (1) of (8.5) (i)

starting in /7, satisfies (8.52) for any 7 such that J, (g, (v), ¢, (r))ggzi.
This implies that (8.5) holds for any decreasing flow trajectory ¢(1)

starting in ¥, as long as I(g(t)=¢, [and therefore

T2 (g1 (7). 42 (0)2 ) since B(C) < see (8.5)-(8.7)}

Now we are ready for the proofs of 5°-6°. These proofs are essentially
the same as those of 2° and 5° of Theorem 7.2. However there are a few
differences which will be indicated next. The proof of 2° of Theorem 7.2
relied on a two step induction. In particular, recalling the idea of the
proof, given two consecutive critical values ¢, <¢, with corresponding
critical points x,, x,, W (x;) and W, (x,) intersect transversally, strongly
and uniformly. This insures that if ¢y<c¢; and W (x,) intersects W, (x,)
transversally, then W, (x,) intersects W, (x,) transversally in a neighbor-
hood of W, (x,). Therefore if we want to guarantee that W, (x,) intersects
W, (x,) transversally, we need only take care of a part of W,(x,) which
does not lie in a neighborhood of W, (x,;). Since we are interested in
W, (x,) YW, (x,), we may consider W, (x,) N f " (¢) for ce(cy, ¢;). Then
the part of W, (x,) N.f ™! (c) which does not lie in the given neighborhood
of W,(x,) is compact and making it transversal to W,(x,) follows from
the standard transversality theorem [16].

As in the proof og 2° of Theorem 7.2, in order to insure the tranversal
intersection in the strong and uniform sense of W (x,) and W,(x,), or
W, (xo) and W, (x,), (PS) is needed outside of suitable neighborhoods ¢; of
the critical set including the critical points at infinity. These neighborhoods
should be small enough so that they do not intersect a level set ! (¢)
for a fixed ¢ between two critical levels. In order to guarantee that the
strong and uniform transversal intersection of W (x,) and W, (x) implies
that of W_(x,) and W, (x,) in a suitable neighborhood of W, (x,), a Morse
Lemma is needed for the flow in the ¢}’s. Since (PS) is satisfied outside
the ¢;s, the part of W,(x,) which is then left intersects f~'(c), for
ce(cg, ¢4), in a compact sct. Thus our induction can continue. Neighbor-
hoods ¢, are available for our present framework, i.e. for T between the
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levels &, and M+ 1, at least to the extent that (PS) is satisfied outside of
these sets. The sets #7, defined in (8.51)-(8.55) can be used as the ¢;s
for critical points at infinity. The fact that the flow m (1, .) is Fredholm
and locally proper near the remaining critical points in 17! (g,, M+1)
provides @;’s for such points.

Now we will more precise. Let ¢, ¢’e[g,, M+1] be noncritical values
of T. The critical points at infinity, i.e. sets of type H |, provide us with
a continuum of critical values for Z. Namely corresponding to (:» 9)), we
have J;;(g;, g)+¢ for any £€[0, §,]. This is, of course, an artiface of the
method we are using which introduces a vector field, Z, with a hyperbolic
manifold of rest point at each level where (PS) fails. Nevertheless we will
argue as if this manifold were a single point. The hyperbolic structure
displayed in 1°—2° of Theorem 8.2, in (8.31) and (8.55) allows us to do
so. For the sake of precision note that a noncritical level ¢ will either
satisfy ¢>1J;:(g,, g)+ B, or ¢<J; (g, g;). Since B, satisfies (8.1), these
critical interval levels do not overlap.

For any classical critical, g, of T and in particular for those in
T le, M+1), W.g) is finite dimensional. Therefore if ¢’ <1(g) and is
larger than the next critical level of T, W,(g) N1~ (¢') is compact. Since
(PS) holds outside {Cﬂ'i}, the first step of the induction argument of 2° of
Theorem 7.2 is possible for §. This ensures a transversal intersection of
W, (¢) with W (§") or W (§) at the next critical level since in both cases
(W, or W), we will have to ensure the uniform and strong transversal
intersection of a compact manifold with a Fredholm (possibly unbounded)
manifold. Given another critical level ¢”” <T(§) which corresponds to a
classical critical point or to a critical point at infinity, the same argument
guarantees the strong and uniform transversal intersection of W (") or
W (g") with the trajectories originating in W, () N1~ ! (¢') which do not
enter the ¢/;’s between the levels ¢ and ¢’. Here ¢’ <c¢ and c¢ is less than
the next larger critical level. Thus the first step of the induction argument
of 2° of Theorem 7.2 is available for classical points. The second step is
also, since it relies on a Morse reduction about a classical critical point.
This is available here by the local properness and Fredholm character of
Tand Z.

Thus we are left with critical points at infinity. For such points the
following direct argument shows that both steps of the induction procedure
are available. First observe that for any (g;, 4;) and ¢’ such that

5 §T(‘7’) <J;; (4, gH=M+1,
Wr (@ )N W,(@G)=0.

Indeed (8.31) shows that the decreasing flow, restricted to WG )
splits in the product structure between W, (g, g;) and the fiber with

(8.56) {
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[Qr_ %(% ‘Ij):l (1)=Const.=vy. Moreover ‘Yl > ((1/31)71_ Y, If B, is

small e_nough, this fact implies (8.356) for then if 4 has the form
(4 G5 Q.

1 12 ~ 1

(8.57) (——1) >\[Qr'(é§+ﬂi})}
B, 2

while if ¢ cannot be so represented, no constraint is needed for B;.

The remaining case to consider is W (g;, ) N"W (g, g;) where
the indices i, j are the same for these sets since the sets ¥7, (i, j) which
contain W2 (g, ;) are pairwise disjoint. Using (8.31) again shows
W@, @)W (@i, q) 1s a bundle over W, (g, ¢) N W(4i. 9)
described via

(8.58) W, (g, ¢) "W (g1 §)
= { (45 qj Q) l (4 qj) eW, (g, qj) N W (G, ‘Z)

I 1 12
[Qr_ 5(‘1i+qj'):| = <B1 - 1) }

Since W, (g;, ¢;) and W((gi, ¢}) are assumed inductively to intersect
transversally, strongly and uniformly, W (g;, ¢;) and W (gi, g)) also do
so. Observe that the transversality occurs in the base of the bundles W;°
and W, not in the [Q,] fibers. Now recall that we chose A", = A7 (p) so
that any decreasing flow trajectory starting in a set #7, satisfies (8.5) as
long as T(g(x))=¢,. This fact, together with (8.55) and the transversality
in the base of the bundles which was just pointed out implies that the
second inductive step is also available for critical points at infinity: if
W, (g) or WZ(g) intersects W (§') transversally, strongly and uniformly,
between the levels £, and M+ 1, then W, (§) or W (g) will intersect any
other W*(g'") transversally, strongly and uniformly in a neighborhood
of W2 (§') provided that W (§") intersects W (¢"") transversally, strongly
and uniformly. Thus we have 5° of Theorem 8.2.

Now we turn to 6° of Theorem 8.2. It is almost simpler to prove it
here than in Theorem 7.2 due to the representation we have for the flow
at infinity, in particular (8.31). However a complication is created due to
that fact that 3° of Theorem 7.2 does not hold here. Property 3° was
used in both the ENR and retraction parts of 5° of Theorem 7.2 so we
must study this situation carefully.

To see what happens to 3°, we consider a simple case where ge ()
and the largest critical value ¢ smaller than T(g) occurs at o, i.e. Z has a
set of rest points, say #,(§,, §,) with stable manifold W (g, 4,) and

and
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J12(q,, G2)=c. Let

B(CY
2

and consider W, (¢) "WZ (q,, §,) NI ' c+g). Our assumptions on g, T
(9), ¢ imply that #,,(q,, §,) < I**®19= Moreover W,(gq) being finite
dimensional, W_(g) V17! (¢+¢) is homeomorphic to a finite dimensional
sphere and therefore is compact. Consequently

W@y, @) W (@ NI (e+e)

is compact. It is also useful to observe at this point that the intersection
W= (G, §,) W, (@) T ' (c+g) can be made transversal in a standard
way since it represents the intersection of a compact manifold with a
Fredholm, and closed manifold.

P
2
theorem, shows W (7, ;) "W, (@ NI (c+e) = ¥, (1, 2). With C,
sufficiently lage and B(C,) small, it may be assumed that if
(1> 92» Q) EWE (G4, G,) N TP, then (g4, g,)€X as defined after (8.34)
and Q,; satisfies (8.36). Then as noted earlier, the flow for —Z on
W (G, o) NI takes the form (8.5), i.e. splits nicely. In particular
this form holds on W& (G, ) "W, (@) T '(c+e). Therefore
W (G, §2) VYW, () NT*¢ is the image under this flow of the compact

set W (G, G) NW, (@) NT 7 (c+e).
It was shown earlier in (8.12)-(8.13) that for a trajectory in

1 2 -1 ~
[Q3_5(Q1+92)} (T)> as T— o 1S

1
[Qa_g(% +Q2)J

trajectory. The same is true uniformly for all trajectories originating in
the compact set W2 (g, §,) "W, (@) NT ' (c+¢). Hence 3° of Theo-
rem 7.2 does not hold here. Only part of #,, lies in W, (g) due to the
fact that the single critical point occuring in Theorem 7.2 is relaced by
the entire set, #;,, here. However as the above remarks show, we do
have transversal intersections at least for the critical points at infinity and
also for the intersection of the unstable manifold of a classical point with
the stable manifold of a critical point at infinity if there is no other critical
value between the two critical values considered.

In the classical framework, as in the proof of 3° of Theorem 7.2 and
5° of Theorem 8.2, these facts together with the Morse Lemma allowed
us to conclude that all intersections, without restriction, were transversal.
The retraction result then followed. In the present situation, the Morse
Lemma available for the critical points at infinity is special since we have

10
— B <e<
5 P

Since e< , the description of WX (3,, 4,) given in 3° of this

W2 (., 4,), the limit, pu, of (1 +

nonzero. Thus (t) does not tend to oo along this
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manifolds of critical points at infinity. We could break up these manifolds
into a finite number of points by modifying the functional, and use then
the finite dimensional result. However, this leads to new technical problems
so we prefer to argue directly. The problem is the following: since we
have a whole set # |, of critical points at infinity, the sum of the tangent
space to W, (4, §,) and the tangent space to W (,, ¢,) at any of these
critical points is not direct. There is a direct sum: the sum of the tangent
space to W (g, 4,) at §=(q;, 4,, Q3) and the subspace of the tangent

space at g defined in the coordinates (ql, 42> Q3 —[Qsl, l:Q3__(11;'412 :D
by
(8.59) Taran Wal@ss @)% {0}

In (8.59), Ty, 7,y Wu(g:, ;) refers to the tangent space at (G, §,) to
W, (Gy, §,); {0} refers to the zero in the tangent space to

Wi 2(10, T], RY) with coordinates <Q3—[Q3], [Q3—é(q1 +q2)}>.
Comparing (8.59) with (7.25), we should take E~ here at

(qlﬁ q2) € Wu (qla q_Z)a

to be Ty, 0y Wa(@is G2) {0} (using the same coordinates). With the
above definition of E™, E~ is invariant under the linearized flow [see
(8.31)]. With this modification, the statement of Proposition 7.31 holds.
After (7.38), we established (i), (i) and (iii) inductively. Here, due to the
presence of the critical points at infinity, (ii) cannot hold and is replaced
by the inclusion:

(i) W, (@ Nfe =W (@ U{W,(@)Nf]q eF,}

U{ W@, @) NLIW(NWE G, §)# D |

(iii) remains the same (when generalized in order to take into account
the critical point at infinity). With this modification, (i), (ii)" and (iii) hold
and their proof is nearly the same as in the classical case. The modifications
are related to the fact that (7.24) does not hold here; i. e. there 1s no local
fibration of W, (q) over W? (g, 4, if W, (@) "WL(G,, §,)# T, due to
the fact that W,(g) does not necessarily contain all of W*(g,, §,) in its
closure. However, the arguments using the fibration may be replaced, for
the proof of (i), (ii))’ and (iii), by the transversality, property, i.e. by
Proposition 7.31.

Again using the above definition of E™, Proposition 7.64 holds in this
extended framework, the proof being essentially the same. This proposition
provides us with a neighborhood of 11 \U 237, ; U %y + 1, Invariant under
the decreasing flow, of the type # U ¥~, where ¥~ is a neighborhood of
Du+, With a piecewise smooth boundary, intersecting #  transversally.
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W also has a piecewise smooth boundary. #°°, ¥~ and ¥ N\ # = are
therefore ANR’s.

For later purposes, we point out that we may suppose that —Z points
inwards on % * {J ¥". This is obtained by modifying slightly the deforma-
tion argument of (7.66)-(7.72). We have shown there, up to a change in
notation, that we can find a vector field v, which vanishes on
't U2y%1U %Py, and such that v points inwards on #°°{J)¥". We
were using v in order to show that —Z(g)+ev points inwards on
W=\ J¥ . We can argue differently and assume that % ® ¥ is con-
structed by using the flow of —Z(g)+&v in (7.58) [instead of the flow of
—Z.(9)], with ¢ sufficiently small. If Z (¢) is tangent at any point g to such
a #*{7, then v has to point outwards to # *\J¥ at such a q.
However, when &€ — 0 the boundary of ¥ ) ¥ approaches the boundary
of the similar set for —Z(g) and v points inwards on this set. Therefore,
we have a contradiction, and —Z(q) is transverse to # ® \J ¥  along its
boundary.

Using the same kind of argument as in paragraph 7, to establish that
W, (a, b) is an ENR, we can prove that 2y, , is an ENR. Namely, 9, ,
is locally contractible for the same reason W, (a, b) is locally contractible.
Dy+1 is locally compact since &y, is a union of finite dimensional
manifolds and since 9y,, is locally closed. (Indeed
D1 S Dy U D55, UTR). Since —Z is tangent to @y, , and on d# >,
it points inwards to # *, # ® (\ Py, is retract of an open subset in
D+, (mamely U n(s, Dy N # ) and therefore is also an ENR of

seR
dimension at most m. Thus we have established that ¥",, W=, W= N ¥,
are ANR’s and that @y, and @y, N\ # = are ENR’s of dimension at
most m.

The sets ¥", #°°, depend on small positive parameters g, ..., g,
(respectively €7, ..., &7). These parameters allow us to define the balls
B(x;, €;) in the proof of Proposition 7.64, from which the set ¥, (and
W ) is constructed. These g; and £° obey constraints of the type:

O0<g;<@i(ey, ..., 6, €Y, -, €20
[eo}
O<el<V;(ey, ..., & g, €°, ..., 87

Since Wi (g,, ) "W (@)=, V; does not depend on ¢, ..., g_,, ie.
the constraints on g are of the type

O<e”<V{;(e?, ..., g2 ).
We may therefore fix €7, . . ., &, thus obtaining the set # ® and consider
V=7 (g, ..., &) with small gs. The intersection ¥ (g) N\ W ® is
transverse and is a piecewise smooth manifold. If ¥ () N\ ¥ = were a
manifold, then when g, -0, j=1, ..., r, the pair (¥ (g), ¥ () N ¥ ™)
would deform through an isotopy and we would then very easily obtain a
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retraction by deformation onto (Pys+1s Dyt NVH®). The statement
about the homologies of ¥~ (e) and 77 () N\ # * of Theorem 8.2 would
follow.

Unfortunately, " (e) N\ %~ is only a piecewise manifold and therefore
the retraction by deformation argument is trickier (see Bahri [15]). Observe
however that if 0<ei<e;, (¢; small enough), then ¥ (¢') is a retract by
deformation of ¥ (e) and, using the fact that the intersection is transversal,
Y (EYNH ™ is a retract by deformation of Y (e) N\ # ™. Therefore, the
homology of ¥ (¢) and the homology of ¥ (¢) N #°* do not depend on ¢,
for & small. Since 2,,, and Pyv1 W are ENR’s and since
MY (€)=Dyy, and N (¥ () N WE)=Dy oy N W, ¥ (¢) has the hom-

ology of Zy,; and ¥ (¢) N\ # = has the homology of 2y, N #w™=. (If
we want to avoid the construction of the retractions by deformation of
7 (e)on ¥ (¢) and ¥ () N\ #* on ¥ (€)M #°>, we can consider Cech
homology. The argument in (5.4) of section 5 then holds in Cech homo-
logy. Since #°* is an ANR, Cech homology coincides with the usual
homology for % *; the same result holds for the other sets. Therefore,
the argument may be continued as stated.)

The proof of Theorem 8.2 concludes now by showing that # * has
the homotopy type of " U2y, ,. We observe that (8.5) holds in a
neighborhood of &%, and we have the nice splitting situation already
described. Therefore, in such a neighborhood (¥, for example), we may
construct %"* out of a similar kind of neighborhood for the associated
two-body problem and a neighborhood in W' 2 of the set

{WGRI b <B1}

I+ w2~

+
<Here w will be Q, — [%J)

Since the associated two-body problems satisfy the Palais-Smale condi-
tion and since the gradient of I;; is Fredholm, the results of paragraph 7,
in particular Theorem 7.2, generalize immediately to this framework.
The neighborhoods considered provided by Proposition 7.64, have the
homotopy type of the union of the unstable manifolds for the critical
points of the two-body problems. This yields the result about %, except
for some minor details which we omit for simplicity.

9. A REFINED VERSION OF THEOREM 1

In this section we will prove a refined version of Theorem 1 under
further assumptions that the critical points of T are “nondegenerate”.
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More precisely, let ¢ be a critical point of I and let m(g) denote its Morse
index, i.e. m(q) is the number of negative eigenvalues of 1" (g). Let m(g)
denote the generalized Morse index of ¢, i.e. m(g)=m{(q)+ the number
of 0 eigenvalues of 1”(gq). By (2.24), m(q)—m(g)=1 Observe also that
the degeneracy directions, at a critical point, satisfy a second order ODE
in (R")3. Therefore m(g)<m(q)+61.

Let B, (A) be the k-th Betti number of A and let N, denote the number
of critical points, ¢, of I such that m(g)==k. Then we have

TrEOREM 3. — Let V satisfy (V{)— (V). Assume that if I'(q)=0 and
m(q) <k or m(q)=k, then m(q)—m(q)=1, i.e. q is a nondegenerate critical
point of 1 modulo translations. Then

9.1) Ne2B (A)—12  if k23/+1.

Proof. — The inequalities (9.1) can be interpreted as a version of the
Morse inequalities. However, due to the fact that critical points of the
two-body functionals I;;, provide us with critical points at infinity and
since we have no control on the number of these critical points, the
standard proof of the Morse inequalities cannot be used here. The proof
given here bypasses these difficulties (and also provides a proof of the
Morse inequalities in the standard setting).

There exists M >0 such that any homology class [¢] in H,(A) may be
represented by a chain ¢ having support in I, This is the case since H, (A)
is finitely generated (A is the loop space of the fibration p: Y; —Y,, see
section 5, with fiber equal to the wedge of two spheres S' 1. That H, (A)
is finitely generated follows from [17]. Let

9.2) AM={qeA|T'(¢)=0, 1(9)<M, and m(q)=k}.

As was pointed out in paragraph 4, after a perturbation argument, it may
be assumed that all critical points of I in I are nondegenerate (modulo
translations). Set

9.3) Jif"_l’M={quH’(q)=0, I(9)=M, and m(g)<k—1 }
Let

.4 A= U W9
qe A}

and

9.5) B1= U W, (9.
qe)(fk_l’M

Using 6° of Theorem 8.2, the chain ¢ with support in I representing
[c]e H, (A) may be represented as a chain in

H (7 U7 (Dy+1)
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with

Iya= U W.(9.

qe)‘/MJrl

Each such chain ¢ is spanned by simplices of dimension k. Therefore the
support of ¢ is provided by continuous maps ¢ from the standard k-
simplex into IM. Using a transversality argument (after suitably approxi-
mating ¢ by differentiable maps) we may assume that the image of o,
Im o, transversal to W _(g) for all ge #™*! where

AMTI=lgeA|T(g)=0and I'(9) <M +1].

Therefore
(9.6) Imo W, (g)=

for any geA#™M*! such that m(q)>k. Since the support of ¢ does not
meet the stable manifolds of the critical points with m(g)>k, 7" (Zy+1)
may be reduced and thus each chain of H,(A) may be represented as a
chain in H (#™\U 7 . (A, UB,_)). Letting ¢ >0 and arguing as for
1", (Zy4,) In paragraph §, the chains may be represented in
H,(#™ UAUB,_ ).
The next step in the proof of Theorem 3 is to establish:
9.7 N2 B, (A)—dim H, (7> UB,_,)

where # = will be defined shorthly. Set
Zi= U {(C/i, 4; Q)eA; xR'|(q,, 9)e W, Gy, q;) and

;. 1;1)6—?7.']
1 Sa(qi’ ‘]j)}
1+’Qr‘(l/z)[f]i""qj])2~ 4

[compare with (5.10)]. Using Corollary 3.41 and arguments close to those
of paragraph 3, it is not difficult to extend #™> to # *, a neighborhood

of € =1 U( U Zf;) which retracts by deformation on 7. This can
iFj
be done since a(q;, ;) <B(C;) with o defined in Corollary 3.41. Since
#* IM*1=v%"* each chain of H, (A) may be represented as a chain of
H,(# = UA,UB,_)).
Next we show that

9.8) Hk(ﬁ/oc UA UB_, ' UBk—1):QN"'~

To prove (9.8), we employ a variation of an argument of paragraph 38
which allowed us to deform IM*! onto ¥ = U ¥".. This argument was
based on the transversality of the pseudogradient flow to #°* along its
boundary and on the local fibering given by Proposition 7.24 of W, (g)
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onto W, (¢") if W,(¢") N W,(g)#¢. Observe that
ANAHUF > UB,_,

is invariant under the flow (4.23). Moreover by Proposition 7.24,
A, UB,_; fibers locally over B, _;. Therefore (AN U™ UB,_
has the homotopy type of # * U B,_,. Hence

9.9) H,(F= UAUB,,, 7= UB,_)) i
=H, (¥ UA, UB,_,, (Ak\%}l:l) U#™ UB,_)).

By excision,
(9.10) Hk(WOO UAUB_, #7 U B, )=H, (A, Ak\%y):QN"

as claimed above.
Since any generator of H, (A) can be represented in

H, (7~ UA, UB,_,)
via the above remarks and this representation is injective,
(9.11) dim H, (77 U A, U B, _ ) Z B, (A).
Using (9.11) together with the exact sequence for the pairs
F*UAUB, |, # UB,_))

yields (9.7).
Next we will prove

(9.12) N, =B, (A)—dim H, (#°%).
To do so, we first show

(9.13) H,(B,_,)=0

and

(9.14) H,_,(B,_,Né#=)=0

where B;_,=B,_ \(B,_; N # ™). To obtain (9.13)-(9. 14), observe that
B,_, is the union of manifolds of dimension at most k—1 and that by
the transversality of the intersection of B,_, with # " —see the proof of
6° of Theorem 8.2—B,_, M % * is the union of manifolds of dimersion
at most k—2. We will prove (9.13)-(9.14) by induction on the number
of these manifolds. Proposition 7.24 holds for the critical points of
B,_, and provides a local fibering of W, (x)\UW_(y) over W, (y) if
W, () "W (p)#¢. It follows that W,(y) has a neighborhood 77} in
W, (») U W, (x) which (i) retracts by deformation on W () and such that
(i) W, (x) N 775 is open in W, (x) and distinct from W, (x). Since W, (x)
is a disk of dimension at most k—1 and (ii) holds,

9.15) H,_, (W, ()N 7¥7)=0.

Vol. 8, n° 6-1991.



646 A. BAHRI AND P. H. RABINOWITZ

Again using the fact that W, (x) is a disk of dimension at most k—1
and (1)

(9.16) H, (+)=0.

Therefore using the Mayer-Vietoris sequence applied to the excisive triad
(W, ) UW,(»), 775, W,(x)), we see that

©.17) H (W, (x) U W, (»)=0.

This result extends by induction (based on Proposition 7.24 or more
properly a variant of it involving more than two critical points) and leads
to (9.13).

Now we turn to the proof of (9.14). The idea behind its proof is the
same as the one just employed, but with a shift of one dimensions. It was
pointed out in the proof of 6° of Theorem 8.2 that #°® may be chosen
so that the flow (4.23) is transverse to # « along its boundary. Since this
flow is tangent to any W . (), the fibrations of Proposmon 7.24 are
transverse to % along its boundary, i.e.if W, (y) intersects 8% =, W, (»)
being contained in B,_,, and if W,(x) "\ W, (y);é@ W, (x) also bemg
contained in B,_,, then (W, (30U W,(x))N\a# * fibers locally over
W, (») M é#  in the sense of Proposition 7.24 with a fiber homeomorphic
to (W, (x)NW, () U {r}

Each set W, (x) W™ is a union of manifolds of dimension at most
k—?2 since this intersection is transversal. Using the fibrations as earlier
we may construct excisive triads

(W, UW,NOGT=, 75 NT* W, () N aT™)

with

(9.18) H, (7 NW, ()N aF=)=0
and

(9.19) H, (¥ 2NoF™)=0.
Therefore arguing as for (9.13),

(9.20) H,_; (B,_ N&#™)=0.

Using the fact that the flow (4.23) is transverse to 0%#"*, B, ., may be
retracted by deformation onto B;_,. Hence (#* UB,_{, # "%, B,_;) is
excisive,

©9.21) H, (B,_,)=0,
and (9. 14) holds. Therefore the Mayer-Vietoris sequence implies
(9.22) dimH, (# =\ B,_ )< dim H, (47).

Combining (9.22) and (9.7) yields (9. 12).
For the final step of the proof of Theorem 3, note that by the arguments
of paragraph 8 for # ', # ® has the same homotopy type as ¢{. Then
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by similar arguments to those used for €, in paragraph 5, for k=3 /+1,
9.23) H, (7 *)=H, (¢7)= @ H, (B}

i<j
where By =(Z3 \intI1) U Wi} was defined following (5.6). The set B}
has the homotopy type of S'~ Ty &£ ;; where

(g1, 4>)
%4—2_<Jlj(ql’ q])}

“("; 9 <3, (g0 q,><sl}

(9.29) -fij: U(q_i,qj')efij{(qb qj)ewu(qb qj)

U{(qia qj)EAij

Using (5.6)-(5.8), £;; is a retract by deformation of

(9.25) f;j=( U W34, é,))uintJ?}-

(qi, qj) € Aij
Therefore using the pseudogradient flow (4.23) again, #;; has the homo-
topy type of

(9.26) fﬁFﬁ}“U( U W34 67,)).

(ai> qj) € Xij
Applying Theorem 7.2 [or actually a generalization to the analogous
infinite dimensional compact and Fredholm framework —see e.g. (15)] we
obtain that &} has the homotopy type of A Therefore B{; has the
homotopy type of A;;xS'"" and

9.27) dimH, (B)=dimH,,,_; (A;) +dimH, (A;).

As was shown in paragraph S, A;; has the homotopy type of the loop
space of S'~'. Therefore

(9.28) dimH, (Bj})<4
and by (9.23)
9.29) dimH, (#*)<12
for k=3/+ 1. Combining (9.12) and (9.29) yields Theor.em 3.
Remark 9.30. — As mentioned in the Introduction, Theorem 3 has

consequences for e.g. homogencous potential like those yielding central
configuration solutions [under (V¢)]. Modulo scaling, these special solu-
tions are generated by a compact family of solutions. Therefore the
contribution of the whole family (after scaling) to the homology groups
of A is bounded. Hence there must exist periodic solutions other than
these special solutions. The same argument may be applied to treat the
multiplicity of hyperbolic of elliptic solutions of fixed energy as mentioned
in the Introduction. These results will be pursued elsewhere.
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Remark 9.31. — If V is autonomous, the requirement in Theorem 3
that #1(q)—m (q) =1 cannot be satisfied. Indeed the resulting S! invariance
of 1 implies that critical points occur in circles. Thus 1 (g)—m(g)=[+1
for any critical point g of I. In this setting we can define N,, the number
of critical circles of Morse index k. Now we have:

CoOROLLARY 9.32. — Assume V satisfies (V) —(V¢) and V is autonomous.
Suppose that any critical point q of | with m(q) <k or m(q) =k satisfies m
(q)—m(q)=I[+1. Then

9.33) N+ N, 2B, (A)— 12
for k=31+1.

Proof. — By perturbing [ slightly, any circle of critical points of I can
be broken up into two critical points, one of Morse index k and the other
of Morse index k + 1. Doing this for each circle of critical points of 1 and
applying the argument of Theorem 3 yields (9.33).
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Note added in proof (see p. 616): As pointed out by Mrs. Riahi, (J is tangent to S¥ along
its boundary. Therefore, S is not a section for ¢J in the strict sense. However, W, is still an
I-dimensional manifold and the proof of this fact is quite similar to the strict case; in fact,
S} is the exit-set of ¢ from B, and behaves as a section to (.
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