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ABSTRACT. - The existence of spatially periodic solutions for a singular
perturbation of elliptic type is established. A rapid convergence method
is used to obtain the result.

RESUME. - On demontre l’existence de solutions periodiques par rap-
port aux variables d’espace pour un problème de perturbation singulière
de type elliptique. La demonstration repose sur une méthode de conver-
gence rapide.
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INTRODUCTION

Consider the equation

In (0.1), x = (x 1, ..., xn) ERn, L is uniformly elliptic with coefficients ai~
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which are periodic in ... , xn, and 8 E R. The function f depends on u
and its derivatives up to order three and is also periodic in ..., xn
with the same periods as the coefficients Our goal is to establish the
existence of periodic solutions of (0.1) for small values of 181. This is a
singular perturbation problem since the f term is of third order while L
is merely of order two. We will show (0.1) possesses a one parameter
family of periodic solutions depending continuously on 8 for small ~ s ~ (
provided that the coefficients and f are sufficiently smooth. Surprisingly
other than this differentiability requirement, no hypotheses are needed
concerning the dependence of f on u and its derivatives.
We assume the functions f and the have the same period, say .

in each of xl, ..., Xn- The analysis is unchanged if they have different
periods Ti, ... , Tn with respect to ... , xn. For notational convenience
we further set

Note that when s == 0, (0.1) has a unique solution u = 0. A natural way
in which to attempt to solve (0.1) for small s ~ is via the iteration scheme :
Mo == 0 and for j  0,

For various choices of function spaces, L can be inverted with a gain of
two derivatives. However since F depends on u and its derivatives up to
order three, in passing from u~ to u~ + 1, we have a net loss of one derivative."
Thus if f ~ Cm, we can only iterate for a finite number of steps and even

convergence of this scheme is unlikely due to the above loss of
derivatives phenomenon.
Methods have been developed by several authors to treat « loss of deri-

vatives » and « small divisor » problems. See e. g. Nash [1 ], Moser [2 ],
Schwartz [3 ], Sergeraert [4], Zehnder [5], Hormander [6], and Hamil-
ton [7 ]. We shall show how the approach of Moser can be applied to (0.1).
The main difficulty in doing so is in finding approximate solutions of the
corresponding linearized equation

In {o . 3), the usual multiindex notation is being employed, A6 - for

| 03C3|  3, and the dependence of A03C3 on x has been suppressed. Approximate
solutions of (0 . 3) will be obtained as exact solutions of an elliptic regula-
rization of (0 . 3) :

where A denotes the usual Laplacian.
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In § 1, we will state Moser’s result from [2 ] and show how it can be used
to solve (0.1). With the exception of the technicalities associated with
(0.3)-(0.4), this is not a difficult process. The technicalities of treating
(0 . 3)-(0 . 4) are carried out in § 2. In § 3, a local uniqueness result will be
obtained. Our approach to (0.1) relies in part on ideas from [8 ]. See also [9 ].

In [1 D ], the written version of a talk delivered at the University of Ala-
bama in Birmingham International Conference on Differential Equations,
a one dimensional version of (0 .1 ), was discussed. As an outgrowth of that
lecture, Tosio Kato has found another approach to the problem using the
stationary version of his theory of quasilinear evolution equations.

§ 1 MOSER’S THEOREM
AND ITS APPLICATION TO (0.1)

Some functional analytic preliminaries are required before Moser’s
result can be stated. Let Hm denote the closure of the set of Coo functions
on Rn which are 2n periodic in xi , ..., xn with respect to

In (1.1) and elsewhere in this paper, integration is over the set

Let 0  p  rand uo e HY. Set

and Ur = U n Hr. Suppose 3’ : HS where s  r. The equation
~ (u) _ ~ is said to have an approximate solution of order ~.( > 0) in UY if
for all large K, there exists u --_ uK E U,. such that

For let ff’(u) denote the Frechet derivative of iF at u. The equa-
tion = g is said to have an approximate solution of order ,u{> 0)
if there exists a constant c > 0 and a function such that whenever

and

then for all large Q, there is a v = vQ E HS satisfying
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and

For u ~ Ur and let

THEOREM 1. 7 (Moser [2]). Let ff: Hr  HS and suppose there are
constants c, p, ~~, ,u, ~3, and M and a function such that

2° If U E Ur, then 03C60 ~0  M and ~F(u) - 03C60 ~s  oo.

3° For all large K, s ~ MK whenever u E Ur and ((  K.
4° The equation ff’(u)v = g admits approximate solutions of order p.
5° for all vEHr

Then there exists a constant Ko (depending on M, c, ~, ,u, ~~) > 0 such
that if

and

hold, the equation ~ (u) _ ~ possesses a sequence of approximate solu-
tions of order ~~ in Dr. Moreover the sequence is a Cauchy sequence in HP
with u ~ « U == (~.

REMARK 1. 9. - Moser states the result somewhat less formally in [2 ].
The proof of Theorem 1.7 shows that if ~ depends continuously on a
parameter g, then so does U Cf) .
We will demonstrate how Theorem 1.7 yields a solution of(0.1). Before

doing so it is convenient to make a technical modification off When 8=0,
u = 0 is the unique solution of (0 .1). Therefore we expect a small solution

1
in ( ( . for small s so the behavior off only when e. g. !! u ~  2 should
be of importance. Therefore we can multiply f (x, ~) (where ~ E R 1 + n + n2 + n~)
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1
by a smooth function with = 1 if I  2 for all i and = 0

if 1. Thus we can and will assume f (x, ~) has compact support
1

with respect to ç. Of course it must be shown later that !!  - forthe solution we find. ~

To apply Theorem 1. 7 to (0.1), set r = k + 3 and s = k where k is
free for the moment. We will determine lower bounds on k later when 5°

n

is verified. Choose p to be the smallest integer that exeeds 4 + -. The Sobo-
lev inequality then implies u ~ C4 whenever u E U. Define

Further set uo = 0, ~o = ~ (o) _ - eF(x, 0), and § = 0. Our choice of p
shows there is a constant R > 0 such that

for all u E U. Moreover F~C1(C3~H0,C0) and a fortiori 
so 1 ° of Theorem 1. 7 holds.

The following « composition of functions » inequality from [2 ] is useful
in verifying 2° and 3° of Theorem 1. 7 for (0.1).

PROPOSITION 1.12. - Suppose G(x, ç) E x R I + n + n2 + ~3~ R) and G
is 2~c periodic in ... , xn . If u E Hm+3 n C3 with II R, then
G(x, u, Du, D2u, D3u) E Hm. Moreover there is a constant c = c(m, R)
such that

~ ~ G(x, u, Du~ D3U) ~m ~ R) u + 1) .

With the aid of Proposition 1.12 and our choice of p, 2° of Theorem 1. 7
follows trivially. For 3°, by (1.10), (1.11), and Proposition 1.12, we have

provided that ~ ~ ~  1 ~ K and ai 1 + 2c(k, R)  M. In ( 1.13), ai depends
"~

To verify 4°, some notational preliminaries are needed. Let

where ~~ corresponds to the DTu argument of F. Define

Vol. 1, n° 1-1984.
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Set

In § 2, we will prove

PROPOSITION 1.14. - If y > 0, f E Ck+ 1, and g E Hk, then
there is an s~ > 0 such that for  ek, the equation

possesses a unique solution Moreover there is a K(M) such
that if u, g satisfy ( 1. 2), K > K, and y  1, then

where bk depends on k, the ellipticity constant of L, and j~.
Proposition 1.14 implies (1.3)-(1.4). Indeed by (1.16), (1.2) and Pro-

position 1.2,

for 1 ~ K and 2c(k, R)  M. Also by (1.16) and (1.16),

A standard interpolation inequality-see e. g. [2 ] asserts if 0  p  q,

for all w E Hq where c is a constant depending only on p and q. Let w = Dzu
where i ~ ( == ~ + 2. By ( 1.19),

Hence combining (1.17), (1.18), and (1.20) yields

_ 

1

Set Q - y 2m - 3 
so (1.21) becomes

where

and the constant a4 is defined in (1.24). Thus (1.4) holds.
Next note that from (1.15) we get

Choose m so that 2m = k + 2 if k is even and 2m = k + 3 if k is odd.
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In the first case, (1.17) and (1.24) show

In the second case, (1.22) and (1.24) imply

Hence in either case we have

where ,u = k - 1. Thus (1.3) is satisfied.
At this point 4° of Theorem 1. 7 has been verified except for (1. 5). In § 2

we shall show that (1 . 5) holds with c depending on the ellipticity constant
of L provided that ~ ~ ~ ( is sufficiently small.
Next let u E U~ and v E Hk + 3. Then u, v E C3 and by Taylor’s Theorem

we have

where 03BE03C4 again corresponds to the DTu argument of F. In (1.27), F is eva-
luated at (x, u(x) + 0(x)v(x)) where 0(x) E (0, 1) via Taylor’s Theorem.
By earlier remarks about truncating f, there is a constant such that

Consequently

Applying ( 1.19) gives

The Gagliardo-Nirenberg inequality [11 ] further implies

Thus  1 and M 5° of Theorem 1. 7 obtains with

03B2 = (6 + n 2)/(k+3).
We turn now to the verification of 5 °, determining k in the process.

n k
If k > 3 + 2 , (i ) holds and (iii) is satisfied via setting 03BB = - - 1. (Recall

,cc = k - 1.) To get (it), we need
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Since p ~ s + n , it is easy to check that (1. 32) holds for e. g. k > 12 + n.
2 -

Lastly (iv) requires that

and k > 28+ 2n is sufficient for (1. 33). Thus if k > 28+ 2n 828 + 2n,
all of the hypothesis of Theorem 1. 7 are satisfied and there is a Ko(M, c, ~3,
~,, ,u) > 1 such that if (i)-(iii ) of (1. 8) holds, (0.1) has a solution. But by
our choices of ~o. ~, and uo, (ii ) and (iii ) are trivially true and (i ) also
obtains if 8 is so small that

With this further restriction by Theorem 1. 7 and Remark 1. 9, (0.1)
with the modified f possesses a curve of solutions u(x ; e) E C3 with u(x; 0) = 0

and u continuous in s. Therefore for small u(x ; e)  - and (0 .1 )
is satisfied with the original f Thus we have shown : 2

THEOREM 1. 35. - If f and the coefficients of L are sufficiently smooth
there is an e* > 0 such that for all |~|  ~*, (0.1) has a solution u(x; e)
which is C3 in x and continuous in s with u(x; 0) = O.

REMARK 1.36. - Our above estimates show the conclusions of theo-
rem 1. 35 hold if f and the coefficients of L lie in C28 + 2~. However, this
is a rather crude lower bound for k.

. § 2. THE MODIFIED PROBLEM

The goal of this section is to find approximate solutions of ~’(u)v = g
in the sense of ( 1. 2)-( 1. 5). This will be accomplished via Propositions 2 .1,
2.18, and 2.36 below. The inequality (1.5) happens to be valid for all
v E Hk + 3. To make this precise a few notational preliminaries are needed. Set

so
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Set

and

The H° inner product will be denoted by ( . , . ). Finally note that

PROPOSITION 2.1. - There are constants 81 and c depending on the
n

ellipticity constant of L and such that if E ~  ~ 1, u E Un
and v E H 3, i,j = 1

Proof - To establish (2. 2), we will estimate (a) v) and 
2014Ai;). The first quantity is easy to treat:

Since L is uniformly elliptic, there is an ~ > 0 such that

for all x, ~ Therefore

where co = min (1, ~). Expanding the last term in (2 . 3) gives

Writing = a typical term in (2 . 4) can be integrated by parts :

Thus (2.4)-(2.5) and crude estimates yield
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Combining (2.3) and (2.6) then gives

The estimate for (b) requires more care. As in (2. 3) we have

The terms on the right hand side of (2. 8) will be estimated separately. First

A typical term in (A3(u)v, Ov) is

This must be handled carefully. Integrating by parts,

Interchanging the roles of i and j and adding the resulting expression to
(2.12) yields

Thus one final integration by parts shows

Consequently
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and combining (2.15) with (2.8)-(2.10) shows

Adding 03B22 times (2 .16) to (2 . 7) yields

Choosing

and ~ ~ 81 gives (2 . 2).
It remains to prove Proposition 1.14. Its existence and uniqueness

assertions follow from the next result and the estimates follow from Pro-

position 2.36 below.

PROPOSITION 2.18. - Suppose f E Ck+ 1, > 1, and

~ ~ ~  ~ 1. Then there exists a unique v E H2m+k satisfying (1.15) .

Proo, f : - First we will establish the existence and uniqueness of a weak
solution of (1.15). Regularity will then follow easily from elliptic theory.

For 03B6 ~ H2m, let 03B6 ~ - 03B22039403B6. The estimates of (2. 3)-{2.17) show
for |~|  ~1,

Let H-S denote the negative norm dual of HS with respect to H°. (Recall

see e. g. Lax [11 ].) Let 03C6~C~ n H°. Using e. g. Fourier series, it is easy
to see that there is a unique w E COO n H° such that Aw = ~. ~*~

Vol. 1, n° 1-1984.
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where denotes the formal adjoint of Then by (2.19) and (2.20),

where y 1 depends on y and c. Moreover

Consequently by (2.21)-(2.22),

for all 03C6 E C~ n H°.
Now for fixed g E H2, define a linear functional on C~ n H° via

Setting 03C8 = (2.24) can be used to define a new linear functional:

n H°). By (2 . 23)-(2 . 25),

Thus l* is continuous on n H°) c H - cm + 1 ~. Therefore by the
Hahn-Banach Theorem it can be continuously extended to all >

with preservation of norm. It then follows from a lemma of Lax [11 ] that
there exists satisfying

for and

In particular for 03C8 = with § E Cx n H°, by (2 . 24)-(2. 25), (2. 27),

Hence v is a weak solution of (1.15). The uniqueness ofr follows from (2 . 28).
It remains to establish the regularity of v. The following lemma is helpful

for that purpose as well as in the sequel.

LEMMA 2. 30. - If E Hr n C and - r, then E Hr and

If further 03C6 ~ C1, then

where cY depends only on r.
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Proof - We argue in a similar fashion to related results in [2 ] or [8 ].
By the Holder inequality

By the Gagliardo-Nirenberg inequality [11 ], if a E H~ n L~° and 0 ~ r,

Employing (2 . 34) in (2 . 33) and using Young’s inequality then gives (2 . 31 ).
Inequality (2.32) is proved in a similar fashion.

Completion of proof of Proposition 2.18. - Set

Standard elliptic results [72] ] [13] imply if h ~ Hs there is a unique w e 
such that Lw = h. Suppose f ~ Ck+1, u ~ Ur, and By Proposi-
tion 1.12, the coefficients of A(u) belong to H~. Hence Lemma 2.30 shows

where (For our application to Theorem 1.35,

~e -+!,-+- in which case t == m + 1.) Then by our above remarks
_2 ~ 2 2_

about L, there is a unique such that

A fortiori w is a weak solution of (2.35). But we already have obtained v
as a unique weak solution. Hence v = w E In particular if g E Hk,

standard bootstrap argument shows v E H2m+k. The proof
of Proposition 2.18 is complete.
The estimate (1.16) requires a more delicate analysis.

PROPOSITION 2.36. - Under the hypotheses of Proposition 2.18, there
are constants ek, bk depending on k, co, and A such that for |~|  ek, the
solution v of (1.15) satisfies

~
If satisfy (1.2) = -~ 

2014 1 and y ~ 1, then there exists

a K == K(M) and 8 such that for K ~ K and g ~ e,

Vol. 1, n° 1-1984.
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Proof : By {2 .19) we have

Suppose we have shown

By (2. 39), (2 . 40) holds for q = 2. We will then establish (2 . 40) for q + 1.
Consider

On the one hand,

On the other hand,

Integration by parts and crude estimates show

where aq depends only on q. (A more careful estimate could be made using
Lemma 2. 30.)
To estimate 12 and we will make use of Lemma 2. 30. A typical term

in 12 has the form

where ( = q - 1. Therefore (2. 31) implies

A typical term in 13 has the form

where w = Comparing 14 to (2 .11 ), we have
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Next

and by (2. 32),

Now combining (2.41)-(2.50) yields

n
. 

V I
Multiplying (2.51) by 03B1q where !! 03B1ij~Cq  2, adding 

it to (2.40),

and choosing where 1) yields

(2.40) with q replaced by q + 1. In particular we have (2.40) for q = k + 2
if ~. By (1.15) and (2.31),

Using e. g. Fourier series, it is easily seen that

Hence combining (2.40), (2.52), and (2.53) gives (2.37).
k

Lastly suppose u and g satisfy (1.2) with 03BB = 4 - 
1. Set q = p - 1

in (2.40). Recalling (1.11), by Proposition 1.12 and the Sobolev inequality
we have

with 3 = 1 + 4 ~(jp 2014 3 - k). The restrictions imposed on p and

show 3  0. By choosing 8 == (4cp _ 1 c( p - 3, R)) -1 and E (  8, we find

Vol. 1, n° 1-1984.



16 H. RABINOWITZ

2014 p-3
and further choosing K > K where 2y -1 cM k K  1 gives (2. 38). The
proof is complete.
Now finally Proposition 2.18 and 2.37 imply Proposition 1.14 and

complete the proof of Theorem 1. 35.

_ § 3. UNIQUENESS

In this section we will prove that u(x ; 8), the solution of (0,1) obtained
in § 1-2, is the only small solution of (0,1).

THEOREM 3.1. - Suppose Ul, U2 E C4 n HO and satisfy (0.1) for the
same value of 8. If!! R, = 1, 2, and y E ~ ~ then u 1 == u2 .

Proof. - Let v = u1 - u2. Then

Forming

with 03B22 as in the proof of Proposition 2 .1 and arguing as in that proof shows

for Hence v = 0 and u 1 == U2’

[1] J. NASH, The embedding of Riemannian manifolds, Amer. Math., t. 63, 1956, p. 20-63.
[2] J. MOSER, A rapidly converging iteration method and nonlinear partial differential

equations I et II, Ann. Scuola Norm. Sup. Pisa, t. 20, 1966, p. 265-315 et p. 499-535.
[3] J. T. SCHWARTZ, On Nash’s implicit function theorem, Comm. Pure Appl. Math.,

t. 13, 1960, p. 509-530.
[4] F. SERGERAERT, Un théorème de fonctions implicites sur certains espaces de Frechet

et quelques applications, Ann. Sci. École Norm. Sup. (4e série), t. 5, 1972, p. 599-660.
[5] E. ZEHNDER, Generalized implicit function theorems with applications to some

small divisor problems I et II, Comm. Pure Appl. Math., t. 28, 1975, p. 91-141 ;
t. 29, 1976, p. 49-113.

[6] L. HORMANDER, Implicit function theorems, Stanford Univ., Lecture notes, 1977.
[7] R. S. HAMILTON, The inverse function theorem of Nash and Moser, Bull. A. M. S.

(new series), t. 7, 1982, p. 65-222.

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire

REFERENCES



17A RAPID CONVERGENCE METHOD FOR A SINGULAR PERTURBATION PROBLEM

[8] P. H. RABINOWITZ, Periodic solutions of nonlinear hyperbolic partial differential

equations, II, Comm. Pure Appl. Math., t. 22, 1969, p. 15-39.
[9] W. CRAIG, A bifurcation theory for periodic dissipative wave equations. New York

Univ. thesis, 1981, to appear Ann. Scuola Norm. Sup. Pisa.
[10] P. H. RABINOWITZ, A curious singular perturbation problem, to appear Proc. Int.

Conf. on Diff. Eq., Univ. of Alabama, Birmingham.
[11] L. NIRENBERG, On elliptic partial differential equations, Ann. Scuola Norm. Sup.

Pisa, Série 3, t. 13, 1959, p. 116-162.

[12] P. D. LAX, On Cauchy’s problem for hyperbolic equations and the differentiability
of solutions of elliptic equations, Comm. Pure Appl. Math., t. 8, 1955, p. 615-633.

[13] L. NIRENBERG, Remarks on strongly elliptic partial differential equations, Comm.
Pure Appl. Math., t. 8, 1955, p. 648-674.

(Manuscript received july 15, 1983)

Vol. l, n° 1-1984.


	A rapid convergence methodfor a singular perturbation problem



