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ABSTRACT. - We present here a new method for solving minimization
problems in unbounded domains. We first derive a general principle
showing the equivalence between the compactness of all minimizing
sequences and some strict sub-additivity conditions. The proof is based
upon a compactness lemma obtained with the help of the notion of concen-
tration function of a measure. We give various applications to problems
arising in Mathematical Physics.

RESUME. - Nous presentons ici une methode nouvelle de resolution
des problemes de minimisation dans des domaines non bornes. Nous
commençons par etablir un principe general montrant l’équivalence
entre la compacite de toutes les suites minimisantes et certaines conditions
de sous-additivite stricte. La demonstration s’appuie sur un lemme de
compacite obtenu a l’aide de la notion de fonction de concentration d’une
mesure. Nous donnons diverses applications a des problemes de physique
mathematique.
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110 P. L. LIONS

INTRODUCTION

In the Calculus of Variations or in Mathematical Physics, many mini-
mization problems are given on unbounded domains like (~N for example.
In general, the invariance of by the non-compact groups of translations
and dilations creates possible loss of compactness: as an illustration of
these difficulties, recall that Rellich-Kondrakov theorem is no more valid
in The consequence of this fact is that, except for the special case of
convex functionals, the standard convexity-compactness methods used
in problems set in bounded domains fail to treat problems in unbounded
domains.

In this series of papers, we present a general method- called concentra-
tion, compactness method-, which enables us to solve such problems.
Roughly speaking in this paper and in the following one (Part 2), we show
how this method enables us to solve problems with some form of « local
compactness » or in other words problems which, if they were set in a
bounded domain, would be solved by classical convexity-compactness
methods. Subsequently we will study limiting cases when even in « local
versions of the problem » loss of compactness may occur be the action of
the group of dilations.

We first explain below that for general minimization problems, some
sub-additivity inequalities hold. In the setting we take in this part (more
general ones are given in Part 2), we consider minimization problems
with constraints and the sub-additivity inequalities we obtain are for
the infimum of the problem considered as a function of the value of the
constraint. For a more precise statement we refer the reader to section 1.

These inequalities are obtained by looking at special trial functions essen-
tially consisting of two functions, one of which being sent to infinity by
the use of translations.
We then show a general principle (concentration-compactness principle)

which states that all minimizing sequences are relatively compact if and
only if the sub-additivity inequalities are strict. The proof is based upon
a lemma which, intuitively, indicates that the only possible loss of com-
pactness for minimizing sequences occurs from the splitting of the functions
at least in two parts which are going infinitely away from each other.
And since this phenomenon is easily ruled out by the strict sub-additivity
inequalities, we obtain some form of compactness. This crucial lemma is
proved with the help of the notion of the concentration function of a measure
-introduced by P. Levy [14 ]. At this point, we want to emphasize that
the arguments given in section I are only heuristic and that in all the

examples we treat a rigorous proof has to be worked out, but always
following the same general lines we give in section I.
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111THE CONCENTRATION-COMPACTNESS PRINCIPLE. - I

We next apply this principle and its method of proof to various problems
and examples. In this paper we consider the so-called rotating stars problem
(see A. G. Auchmuty and R. Beals [1 ], [2], P. L. Lions [16 ], A. Fried-
man [13 ]) :

where K, f are given and j is a given convex function and where ), is a
prescribed positive constant-representating the mass of the star-like
fluid which density is given by p-. We will give below (section II) a com-
plete solution of this problem by a direct application of our method.
We next treat the so-called Choquard-Pekar problem (see for example

E. H. Lieb [15 ]) :

We give below a necessary and sufficient condition (on V) for the solva-
bility of this problem.

In part 2, we apply our methods to various variational problems asso-
ciated with nonlinear fields equations such as for example :

where f(x, t) is a given nonlinearity satisfying (for example) : f(x, 0) = 0.
These equations also arise in the study of solitary waves in nonlinear

Schrodinger equations (study of laser beams, see Suydam [26 ]) or in non-
linear Klein-Gordon equations (see W. Strauss [25], H. Berestycki and
P. L. Lions [3 ] [4 ]).
We give in Part 2 sharp conditions ensuring the solvability of (3) : the

results we obtain contain the particular case when f is independent of x ;
this special case was studied by various authors (Z. Nehari [22 ] ;
G. H. Ryder [24 ] ; M. Berger [6 ] ; C. V. Coffmann [8 ], W. A. Strauss [25 ] ;
Coleman, Glazer and Martin [9 ]) and was settled in H. Berestycki and
P. L. Lions [3 ] [4 ] - but all the results and methods in these references
used heavily the spherical symmetry of this special case and thus could
not be extended to the general case (3).

In Part 2, we also explain how our general method may apply to
unconstrained problems, (ex. : Hartree-Fock problems), problems with
several constraints (systems), problems in unbounded domains other
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112 P. L. LIONS

than [RN (half-space, exterior domains...), problems invariant by trans-
lations only in some particular direction(s) (ex. : the vortex rings problem,
see Fraenkel and Berger [12 ], H. Berestycki and P. L. Lions [5 ])...

Let us also mention that the method presented here also enables us
to show the orbital stability of some standing waves in nonlinear Schrö-
dinger equations (see T. Cazenave and P. L. Lions [7 ]). As a very particular
consequence of our method, we present conditions for the solvability of
problems in [RN which, if they were set in bounded domains, would always
be solvable. The fact that conditions are needed was first noticed
in M. J. Esteban and P. L. Lions [11 ].
The author would like to acknowledge the determinant contribution

of S. R. S. Varadhan without whom this work would not have been possible.
The results and methods given in this paper and in the following one

(Part 2) were announced in [19] [20].

I. THE HEURISTIC PRINCIPLE

I.1. General framework.

Let us first indicate the typical problem we want to look at: let H be
a function space on [RN and let J, 6 be functionals defined on H (or on a
subdomain of H) of the type:

where e(x, p), j(x, q) are real-valued functions defined on f~N x (~N x f~~

and j is nonnegative (for example) ; A, B are operators (possibly nonlinear)
from H into E, F (functions spaces defined on [RN with values in !R")
which commute with translations of [RN. To simplify, we assume : J(0) = 0.
We consider the following minimization problem

We first imbed the problem (M) into a one parameter family of

problems (M ~)

where ~, > 0.
Our main assumption lies in the fact that we assume that it is possible

to define « a problem at infinity » : for example we assume

for all p, q E The precise meaning of (2) has to be worked out in
each problem. We then consider the problems at infinity

Annales de ll’Institut Henri Poincaré - Analyse non linéaire



113THE CONCENTRATION-COMPACTNESS PRINCIPLE. - I

where

We will finally assume that we have some type of « a priori estimates »
for problems (M~,), (Mf) insuring in particular that

for all À > 0 or for all ~. E (0, 1 ], and that minimizing sequences for

{M~) - (M~ ) are bounded in H. Again, these a priori estimates are adapted
to each particular problem.

REMARK I .1. - In what follows, we will also treat problems where:

- j is not nonnegative
the constraint: J{u) = 1 is replaced by: J{u) = 0
- functions u in H take values in (~p instead of fl~ (or C)
- one has several constraints
- functions u in H are defined on unbounded domains different from [RN.

For all those variants, the idea that we describe in the next section is
adapted by straightforward arguments..

12. The sub-additivity conditions.

We first remark that we always have:

where we agree : Io = 0. Let us explain heuristically why (3) holds : indeed
let 8 > 0 and uE, vE be satisfy :

by a density argument we may assume that UE and vE have compact sup-
port and we denote by v£ - + nx) where x is some given unit vector
in [RN. Since for n large enough, the distance between the supports of UE
and v£ is strictly positive and goes to + oo as n goes to + oo, we deduce :

and since ~°°, Joo are translation-invariant, we finally obtain :

Vol. 1, n° 2-1984.
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and by definition of I; we conclude :

Let us now explain the typical results we may obtain using what we
call the concentration-compactness principle : we first consider the case
when e and j do depend on x, in this case we show that, for each fixed ~, > 0,
all minimizing sequences of the problem are relatively compact if and
only if the following strict subadditivity condition is satisfied :

In the case when e and j do not depend on x, and thus is equivalent
to and is invariant by translations, then, for each fixed ~, > 0, all

minimizing sequences of the problem are relatively compact up to a
translation if and only f the following strict subadditivity condition is

satisfied :

recall that Ia = Va E ]0, ~, ].
The fact that (S .1) (resp. (S. 2)) are necessary conditions for the compact-

ness of all minimizing sequences is a consequence of the argument we
gave to prove (3) : indeed if for example

with a E ]o, ~, [ and if denote minimizing sequences with compact
supports of problems (Ma), Obviously:

where vn = + çn) and Choosing ~ ~ ~ J large enough, we may
assume that : dist (Supp Um Supp vn) n 00.

Therefore if we consider : w~ = un + Vm w~ cannot be relatively compact
since we can always find xn E with given norms in H such that :

RN wnxndx = 0. On the other hand, we find:

and we conclude.
In conclusion, we see that conditions (S. 1)-(S.2) insure the compactness

of all minimizing sequences and we will see in the following section where
we prove that (S .1)-(S . 2) are sufficient conditions for the compactness
of minimizing sequences-that (S .1)-(S . 2) « prevent the possible splitting
of minimizing sequences un by keeping un concentrated ».

Annales de l’Irastitut Henri Poincaré - Analyse non linéaire



115THE CONCENTRATION-COMPACTNESS PRINCIPLE. - I

I.3. The concentration-compactness lemma.

In this section, we show heuristically the fact that (S .1)-(S . 2) insure
the compactness of minimizing sequences. As we just said the argument
we give below is heuristic but nevertheless, conveniently adapted and
justified in all examples in sections below, will be the key argument that
we will always use in the following sections.
The argument is based upon the following lemma, which admits many

variants all obtained via similar proofs:

LEMMA 1.1. - Let sequence in satisfying:

where i. > 0 is fixed. Then there exists a subsequence satisfying
one the three following possibilities :

i) (compactness) there exists yk E ~N such that + yk) is tight i. e.:

ii) (vanishing) lim sup = 0, for all R  
k- oo 

iii) (dichotomy) there exists a E ]0, ~, [ such that for all E > 0, there exist
k0  1 and pk, 03C12k ~ L1+(RN) satisfying for k > ko:

Let us first explain how we use Lemma I.1 and we will then prove
Lemma 1.1. We consider first the case when e, j depend on x and we assume
that (S .1 ) holds, and we take a minimizing sequences (un)" ,1 of 

We apply Lemma 1.1 with pn == j(x, Bun(x)): we find a subsequence (nk)k ~ ~ .

such that (i), (ii) or (iii) holds for all k  1. It is easy to see that (ii) cannot
occur since we have in view of ( S .1 ) :  I ~ and J(un) = ~,. Next, if ( i i i )
occurs we split un exactly as we split pnk (see the proof of Lemma 1.1)
and find, for all E > 0, uk, uk in H satisfying for k large enough:
u"~ + ufl + Vk

Vol. 1, n° 2-1984.
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Replacing possibly a by ~, - a, we may assume without loss of generality
that we have :

- see also the construction of pk, Finally we obtain:

and sending 8 to 0 we find:

and this contradicts (S .1). The contradiction shows that (ii) cannot occur:
therefore (i) occurs and we conclude easily if e, j do not depend on x. If e, j
depend on x, we still need to show that yk given in (i) is bounded. If it were
not the case, we would deduce (taking a subsequence if necessary)

and thus: which again contradicts (S .1). /
In conclusion, let us insist on the fact that the above argument is not

rigorous but will be justified on all examples below. Let us also point
out that, as we indicated, assumptions on H, e, j are needed insuring a priori
estimates : more precisely we will assume that H, e, j are such that if (M~)
was posed in a bounded domain instead of IRN, then the solvability of (M~,)
would be insured by « usual » arguments using convexity-compactness
methods. The role of (S. 1) (or (S. 2)) is to prevent (ii), (iii) from occuring
and thus because of (i) to essentially reduce the problem to the case of
a bounded domain.

We now prove Lemma I .1 using the notion of the concentration function
of a measure (notion introduced by Levy [14 ]) i. e. we consider the function :

Qn( t ) = sup 1. + is a sequence of nondecreasing, nonnegative,

uniformly bounded functions on R+ and: lim 03BB. By a classical

lemma, there exist a subsequence (nk)k ,1 and a nondecreasing nonnegative
function Q such that k Q(t) for all t  0-observe for example
that Qn is bounded in BV(0, T) for all T  oo 2014. . Obviously

If a = 0, then (ii) occurs. If a = ~,, then (i) occurs : this is a classical conse-
quence of the notion of concentration functions, see for example K. R. Par- ,
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117THE CONCENTRATION-COMPACTNESS PRINCIPLE. - I

thasarathy [23 ]. We recall briefly the proof of this claim : indeed take >
2

and observe that there exists R = such that for all k > 1 we have

and thus there exists y~ = satisfying:

We then set .yk - yk and we remark that we have necessarily :

Therefore setting we find that there exists a

sequence yk in [RN such that for all k  1 and for we have:

and (ii) is proved.
Finally if a E (0, ~,), we have to show that (iii) holds. Let 8 > 0, choose R
such that : Q(R) > a - 8. Then for k large enough (k > ko) we have :

a - 8  Qnk(R)  a + 8. Furthermore we can find Rk It + 00 such that :
a + 8. Finally there exists y~ E [RN such that :

We then set : = It is now clear that (8)
holds since :

REMARK 1.2. In the case when the elements in H have necessarily
some smoothness, one replaces of course the characteristic functions 
by smooth cut-off functions : this argument will be detailed later on..
Vol. 1, n° 2-1984.
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II. MINIMIZATION PROBLEMS IN L 1

II. 1 Setting of the problem and main result.

We consider the following problem: find u minimizing:

Such problems arise in Astrophysics and in Quantum Mechanics (Tho-
mas Fermi theory) : we refer the reader for more details to J. F. G. Auchmuty
and R. Beals [1 ] [2 ], P. L. Lions [16 ], A. Friedman [13 ], a typical function f
is :

’ ~ 

4
of course in this case we have: t f E M3((~3) and q = - .

3
Let us immediately give our main result concerning this problem-we

will see in sections II.3.4 various extensions of this result.

THEOREM II.1. - Under assumptions (10) and (11), every minimizing
- sequence of (9) is relatively compact in L1(~8N) up to a translation

if and only if the folloyving condition holds:

In addition if (S . 2) holds, for every minimizing sequence there

exists (yn)n 1 in such that + yn) is relatively compact in L1 n 
and + Yn)) is relatively compact in L1((1~N). In particular if (S. 2) holds,
there exists a minimum of problem (9). 

’

We give below examples where (S. 2) holds and conditions insuring
that (S. 2) holds. The very formulation of the result above suggests that
this result is a direct application of the concentration-compactness principle

(*) MP denotes the Marcinkiewicz space or weak Lp space.
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stated in the preceding section and indeed the proof given in section II.2
will follow the general lines we indicated.

REMARK II .1. - We will see extensions of assumption ( 10) in section II. 3
below. Let us also mention that if j is a strictly convex function on 
satisfying : j(0) = 0, lim = + oo, lim j(t)t -1 > - oo we may con-

sider) = j - j’(0+)t and this modification changes the value of I03BB by
( - j’(0 + )~,). We may then apply Theorem II .1. We will also discuss the
cases when j is not strictly convex and when we only have : lim j(t)t - q > C,

where C = C(p, N) is a suitably choosen constant.

1
REMARK II.2. In [7 ] was treated the case N=3, f= by a method

Ixl
using the symmetry of f (and additional assumptions on j) while in [16] ]
general results were obtained but still using symmetry assumptions on f.
In particular the infimum had to be restricted to the subset of K; consisting
of functions with certain symmetries: the symmetry giving the necessary
compactness as it is explained in P. L. Lions [17] [18 ]. Let us mention
by the way the very interesting open problem: if (S. 2) holds, does any
minimum of (9) has (up to a translation) spherical symmetry ? We know
the answer of this question (and it is then positive) only if f is radial non-
increasing.

REMARK II. 3. - Let us recall the following well-known convolution
inequalities: 

.

where r = (2p)/(2p - 1), and thus using Holder inequality we find :

Therefore if j satisfies :

we immediately obtain that It! > - oo for all ,u E (o, ~, ], 1, is continuous
with respect to J1 on (0, /L] ] and that any minimizing sequence of (9)
satisfies :

( 14) un is bounded in L 1 n Lqj(un) is bounded in L 1 .
Vol. 1, n" 2-1984.
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On the other hand if f (x) _ ~ (thus f E and if j satisfies :

where Co is the best constant in inequality (13) (we will show in section VII
that Co is achieved), then it is possible to show that I~, _ - oo. Indeed,

take u +(RN) such that : i u(x)dx = 03BB and

We then consider ~-NU ~ , clearly uE still lies in K~ and we have:E

We next observe that if j is convex, lim j(t)t-1 - 0 and if (10) holds

then : I 03BB  0. Indeed take u ~ D + with = 03BB. We then consider

~NU(~x), clearly uE still lies in K~, and we find easily :

and this shows : 0. )tt
Let us now give a few examples of situations where (S . 2) holds : all

examples are obtained using the following elementary Lemma :

LEMMA II. 1. 2014 Let h be a real-valued function on [0, ~, ] with ~, > 0

satisfying :  8h(oc) , for all a E ]0, ~, [, 8 E ] 1, ~,/a ]. T hen we have :

h(~.)  h(a) + h(~, - a) for all a e ]0, ~, [.
Indeed if for example a > ~, - a, we have :

Using this observation we deduce from Theorem 11.1:

Annales de l’Institut Henri Poincaré - Analyse non linéaire



121THE CONCENTRATION-COMPACTNESS PRINCIPLE. - I

COROLLARY 11.1. - We assume (10), ( 11 ) and either :

Then (S . 2) holds if and only if I~,  0. If this is the case the conclusions

of Theorem II.1 hold.

REMARK II. 4. Of course if f = 0, (10), (15) hold but I~, = 0 and (S. 2)
does not hold. Let us also mention that if (15) holds, 0 and f
lim J(t)t-(N+m)/N = 0, then I03BB  0 for all 2 > 0 : indeed take u ~ D+(RN)

with = 03BB and consider = This is the case for example

if/(x) = with m = N/p one finds again the exponent q = .

In addition if either (15) holds and 0 or if ( 16) holds with e2 replaced
by ov for any v  2, then I~  0 for A large enough : more precisely there
exists ~,o > 0 such that I~ = 0 for ~, E (o, ~,o ] and I~,  0 for A > ~,o. This

1
is proved by considering either or - u(x). /

B

Proof of Corollary II .1. Let a E (0, ~,), we are going to prove that
if ] then we have: provided I~  0. By a straight-
forward modification of Lemma II .1, we will conclude that (S. 2) holds
provided I~,  0. Now if (S. 2) holds, necessarily I~,  0 since (cf Remark II.3)
I   0 for all   0. Therefore we may assume that Ia  0. If (15) holds,

we take any u in Ka and we set : v = clearly v E Kea and thus

On the other hand if (16) holds, we take any u in Ka and we set : v 
clearly v E Koa and thus

Vol. 1, n° 2-1984.
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REMARK II. 5. - Looking closely at the above proof, one sees it is possible
to replace (15) by :

II.2. Proof of Theorem II. 1.

We first recall that the argument indicated in section 1.2 is easily justified
here and thus we see that we always have:

and if there exists a E (0, ~,) such that the equality holds, then we can build
some minimizing sequence which will not be relatively compact. There-
fore (S. 2) is a necessary condition for the compactness of minimizing
sequences. We now have to show the converse and we thus assume that

(S . 2) holds. Then take a minimizing sequence (un) for (9) and recall that,
in view of Remark 11.3, we have: 

’ 

-

un is bounded 
in L 1 (IRN) n 

j( un) is bounded in 
We may apply Lemma 1.1 (with pn = un) and we find a sequence that we
still denote by (un) satisfying (i) or (ii) or {iii) for all n > 1. Exactly as in
section 1.3, we will rule out the possibility that (un) satisfies (ii) or (iii)
by the use of (S. 2) and we will conclude using the compactness obtained
in (i).

Step 1 Dichotomy does not occur.

If (iii) (in Lemma 1.1) occurs, there exists a > 0 such that for any fixed
8 > 0, we may find u; satisfying for large n the condition (8) and further-
more recall from the proof of Lemma 1.1 that we may assume:

Finally we denote by : dn = dist (Supp un, Supp u2n), an = ~RNu1ndx,
f3n = We may assume without loss of generality that : dn n oo,

~ u a, ~ u j8 with aE(o, /~)s ~E(~~ ~ - a)~ I a-a I I N - O - a) I  F.
We first notice that we have :
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In addition, v~e have :

And we remark that we have :

We next claim that we have :

indeed remarking that for all 03B4 > 0, f b = f1(|f|03B4) lies in Lq(IRN) for all
1  q  p, we deduce:

since dn = dist (Supp un, un ~. And the last integral may be bounded by:

and we conclude since 
2q 

e [I, (p + I)/p] if q is choosen in [I, p [
2q - 1

near p and since ( j 0.

Vol. I, n° 2-1984.
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Combining these inequalities we find :

where ~(E) -~ 0 as 8 -~ 0+.
Sending 8 to 0, we obtain a contradiction with (S . 2) and the contradiction

shows that (iii) cannot occur.

Step 2 : Vanishing does not occur.

If (ii) occurs then arguing in a way similar to the preceding, we obtain :

where q is choosen in [1, ~ [ such that 
2q 

E 1 , p + 1 and where 
2q - 1 ~

ga are given by: .fa A R, (f03B4 - R)+ 1(|x| R) + f03B41(|x| >R>. To
conclude we observe :

Therefore sending n to + Go, then R to + oo and finally 6 to 0, we find :

This would imply : 0, and this again contradicts (S. 2).

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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Step 3 : Conclusion.

We have proved the existence of 1 in such that (7) holds. We
then denote by un = + y~). Taking a subsequence if necessary we may

assume that Un converges weakly in to some u for 1 ~ a  p +1 - q
p

and u E n In addition the convex functional j(u)dx

being strongly lower semicontinuous on Lq by Fatou’s lemma is weakly
lower semicontinuous and we have: .

In addition, using (7), it is easy to deduce : udx = ~,.
~N

We next show that u is a minimum i. e. that we have :

Indeed we have :

and

We now introduce :

since ga (x - ~ ) E L 1 n L °°, we have for all 

Vol. 1, n° 2-1984.
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In addition :

and this yields easily :

or n 0 in Therefore : vn n 0 in for 1 x a  oo,

and thus we find : 
_

This proves that u is a minimum of (9) and thus:

Since j is strictly convex, we deduce now that actually un n u in measure.

Indeed observe that by similar arguments satisfies also :2

therefore we have : j(un) + j(u) - n 0 in L 1 .
Let K  (X), and denote by :

for all £ > 0. Remarking that

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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we deduce for all y > 0:

therefore un n u in measure. Using (7) and the consequence of 
~N

this implies easily: ~n ~ u in L~ n Lq and n j(u) in L 1. /

REMARK II. 6. - Let us point out that the strict convexity of} is assumed
only to insure LP convergences and that if we no longer assume that j is
strictly convex but merely convex then (S. 2) is equivalent to the fact that
every minimizing sequence is weakly relatively compact in and

if (S . 2) holds then this compactness insures that all converging subsequences
are, up to a translation, converging to a minimum..

II.3. Extensions.

We now consider the case of problem (9) where f is taken to be more
general than in (10) : we will assume that f satisfies:

where we agree: We then denote b y q - 2014201420142014
As in remark 11.3, we then have for all u ~ L1 n Lq: 

PI

where f + = fl + f2 and fi E Mpl, f2 E MP2 and where Co is the smallest

positive constant such that the above inequality holds for all u.
We will then assume :

Then with a similar proof, we extend Theorem II .1 as follows :

THEOREM II . 2. Under assumptions (10’), (11’), every minimizing sequence

Vol. l, n° 2-1984.
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1 of (9) is relatively compact in up to a translation and only
if (S. 2) holds. If (S. 2) holds, for every minimizing sequence {un)n,1, there
exists ( y~)n,1 in such that + yn) is relatively compact in 

+ Yn)) and un(x + + y) is relatively compact in 
and in x respectively. In particular there exists a minimum of (9)
if (S. 2) holds.

Similar remarks to those made above can be formulated but we will

skip them. Instead let us discuss one example arising in Thomas-Fermi
theory (cf [16 ]) :

where A, B, /1, v are given positive constants satisfying:

(remark that if this is not the case then f  0 and (9) has no solution).
Clearly (10’) holds with p 1 = p 2 = p 2 = 3 if A > B or A = B (and
,u  v) or with p 1 = p2 arbitrary in ] 1, oo [ and p 1 = p2 = 3 if A  B

(and thus ,u  v).

CASE 1. 2014 A > B, ,u, v arbitrary or A = B and p  v :

then (11’) holds if a > 4 (or 4 3 if 03BB is small enough). Using the proof
of Corollary II. 1, we see that (S. 2) holds if 03B1  2 and if I03BB  0. Therefore

in this case and if a e -, 2 , ~ ( S . 2 holds if and only if 1~  0.

CASE 2. 2014 A  B, ,u  v :

then (11’) holds for all a > 1. And if a  2, then (S . 2) holds if and only

II.4. Translation-dependent problems.

With the same motivations from Physics as before (cf [1 ] [2] ] [13 ]))
we consider now the problem :

where K03BB is given as before and ~ is defined by:

Annales de Henri Poincaré - Analyse non linéaire



129THE CONCENTRATION-COMPACTNESS PRINCIPLE. - I

and f j still satisfy (10)-(11) (we could as well assume ( 10’)-( 11’)). Finally
we assume that the potential V satisfies:

(we will see below extensions of this condition).
We then consider :

and we set I o = 0. Then we have :

THEOREM I I . 3. - We assume ( 10)-( 11) and ( 17). Then every minimizing
sequence i of (9) is relatively compact in if and only f the
following condition holds :

(S .1) I03BB  Ia + ~03B1 E [0, 03BB [ .

If this condition holds, then any minimizing sequence is relatively
compact in L1 n Lq and j(un) is relatively compact in in particular there
exists a minimum in (9’). -

Proof. - We follow the proof of Theorem II.1. Concerning step 1,
we just remark that in view of the construction of un, un, two cases are
possible : we have un - and if yn is bounded,
then :

and:

On the other hand if yn is unbounded, then taking a subsequence if necessary
we may assume I 2014~ oo and thus :

Therefore, arguing as in Step 1 above, we find:

either

or

and sending 8 to 0, this contradicts the case ae ]0, ~, [ in (S .1).
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Concerning Step 2, we observe that if 0 for all t  oo, then :

and we find I~ sending n to + 00 and then R to + oo. This contradicts
the case a = À in (S.I).

Therefore (i) in Lemma 1.1 holds and if Yn is unbounded, we may assume,
taking a subsequence if necessary, that I n +00. This implies in

particular that for all R  oo : 
. 

0 and by the same argument

as above we deduce :

and again this contradicts the case a = ~, in (S .1 ).
This shows that yn is bounded or in other words that Un is weakly rela-

tively compact in L1(f~N). And we conclude as in the proof of Theorem II .1.

REMARK II.7. - Looking carefully at the above proof, we see that we
may replace (17) by:

and q~ - q/(q -1) (it is even possible to consider the case when V2 e 
but it would involve technicalities below). We then set V °° = lim inf V2(x)

00

and define 6 °°, If as before. Then in this situation (S .1 ) holds is a sufficient
condition for the compactness of minimizing sequences and is a necessary
condition if V2 V.

Let us give one simple example where it is easy to check (S .1 ) :

COROLLARY 11.2. - We assume (10), (11), (16) and (17). Then if V ~ 0
and f I~,  0, (S. .1) holds f and only if : I~,  If this is the case, the con-
clusions of Theorem II.3 hold.

REMARK 11.8. If V > 0 is given then in many cases it is possible to
see that, for £ large enough, I~,  0. In addition if V ~ 0 and if IÀ  0,
the result above implies that theorem 11.3 may be applied if we know:

~ IÀ  We now claim that this is the case if V(x)  V°° Vxe indeed
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if we had I~, = by Corollary II. 1, there would exist a minimum of the
problem at infinity let us denote by uo such a minimum, then

and thus 8(uo)  The contradiction shows that indeed we have:

I~,  It.
Let us also point out that if V(x) > V °°, Vx E then we have I~, = 

and (S .1 ) does not hold.
Finally let us notice that, since we may add constants to V without

changing the minimization problem, we may always « normalize » V in
such a way that V  0 and more precisely: 

Proof of Corollary II.2. - We follow the proof of Corollary II.l,
take a > 0 such that Ia  0 and consider Iae for some 8 > 1, then:

and using the fact that V is nonnegative we find :

This implies :  I« + I ~, _ «, since we assume I ~  0. Remarking finally
that I~  I~ , we conclude easily..
We conclude this section by a fundamental counter-example : the con-

. centration-compactness principle states that the subadditivity conditions
(S. 1), (S . 2) are necessary and sufficient conditions for the relative compact-
ness of all minimizing sequences. But it may happen that (S .1), (S. 2)
do not hold but still there exists a minimum in the original minimization
problem : in this case our principle only indicates that the problem is not
well-posed in the sense that there exists some minimizing sequence which
is not relatively compact (even up to a translation in the translation-
invariant case). We give now one example of such a phenomenon:

Example. - Take N = 3, x - 1 ’ t - 1 tq where q is taken in

3 ,2 . In view of Theorem II .1 and Corollary II .1, there exists a solution Uo
of the minimization problem :
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where

and £ is an arbitrary positive constant. Looking at the Euler equation,
it is an easy exercise to check that uo has compact support (see [1 ] [2 ] [13 ])
say : Supp uo c BRo. Then if we consider : V E V = 0 if Ro,
V(x) > 0 for I x > Ro, V(x) - 0 oo ; and if we denote by I~,
the infinum corresponding to (9’) then we have:

Therefore (S .1) does not hold, but still there exists a minimum of (9’)

namely u0 since Vu0dx = 0 !

III. CHOQUARD-PEKAR PROBLEMS

III.I. Main results.

Motivated by quantum mechanics (see E. H. Lieb [15 ]) and statistical
physics (see Donsker and S. R. S. Varadhan [10 ]) we consider the following
problem : find u minimizing

where

We need the term V(x)u2(x)dx to be meaningful on H1(R3), therefore
~e3

we assume (more general cases will be discussed later on):

A typical example (relevant for Physics) is the Coulomb potential:
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Since (19) implies that V, in some weak sense, vanishes at infinity ; the
« problem at infinity » is given by:

Obviously, the considerations of section I are easily justified and we
obtain in a straightforward way :

Notice also that we have ; choosing some u in K~ and denoting by 
for 03C3 > 0. W

for a- > 0 large enough.
Our main result is the following :

THEOREM III .1. - 1) I f’V = 0, every minimizing sequence (un)n is relati-
vely compact up to a translation in H1(~3). In particular if V = 0, I;~ - If
has a minimum.

2) If 0, every minimizing sequence (un)n is relatively compact in H1((~$3)
f and only if the following condition holds:

3) This condition holds for all ~, > 0 if V  0, V ~ 0 or for ~, large
enough f V is negative somewhere. Finally if V > 0, 0, there is no

minimum in the problem (18).

REMARK III .1. This result illustrates the striking differences between
problems in unbounded domains and those in bounded regions. Indeed
if we replace f1~3 by any bounded region, (18) has a minimum for all poten-
tials V.

REMARK III .2. In the case V --_ 0, the existence of a minimum was
proved by E. H. Lieb [I S ] by the use of symmetrization arguments (which
cannot be used in the case of general potentials V) ; in addition it is proved
in [I S ] that the minimum is unique up to a translation (and a change of
sign). Later we proved (in P. L. Lions [21 ]) that for all potentials V with
spherical symmetry, there exists a minimum of (18) when we restrict the
infimum to functions with spherical symmetry.
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In the case when V ~ 0, 0, we prove here that there is no minimum
and that for any minimizing sequence (un)n there exists in (F~3 such
that un(. + yn) converges in H 1 to be the minimum of the problem with
v --_ 0 and that I -~ oo . If we assume in addition that V has spherical
symmetry, these considerations only show that

where K~ == { u E = u( x ~ ) ~ .
In the next section we prove Theorem III. 1; the following sections

being devoted to various variants and extensions of this problem and
of Theorem III. 1.

III.2. Proof of Theorem III. 1.

We first make a few preliminary observations : let (un)n be a minimizing
sequence of (18), then we have:

(convolution
inequalities)

(Holder
inequalities)

(Sobolev
inequalities)

while if V = Vi + V2 with Vie Lp, V2 E Lq  oo, we have :

and similarly for we argue as follows :

where 5(M) == Min -~ 0 as M oo.
These inequalities show that un is bounded in and thus I~, > - ~o.
We next claim that we have always:

Recalling Lemma 11.1, this yields:
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In particular we see that condition (S. 2) holds ; while {S .1) holds i~’ and
only if (21) holds and this immediately explains Theorem 111.1 in view
of the heuristic principle and method given in section I. To prove (22),
we observe that :

and (22) is proved as soon as we know that in (18), we may restrict the
infimum to elements u of K~ such that : .

for some a > 0. If this were not the case, there would exist a minimizing
sequence (un)n-thus bounded in H1([R3)-satisfying:

This would imply in particular that un converges weakly in H 1 to 0, there-
fore u; converges weakly in La to 0 for 1 3 and thus -

This would then imply that 0, contradicting the scaling argument
made before Theorem III .1.
We are going to prove that every minimizing sequence is relatively

compact in H 1 up to a translation. Of course we are going to involve the
concentration-compactness lemma (I .1) with /)~ = u;. We first rule out
the possibility of vanishing: indeed if we had

for a subsequence nk ; then by the same argument as in Step 2 of section II. 2,
we prove that this would yield:

and we already saw that this is not possible.
To prove dichotomy does not occur, we have to modify the construction

of pk, pk in the proof of Lemma I .1 according to the :

LEMMA III.1. - Under the assumptions and notations of Lemma I.1,
if we assume in addition that pn = un with un bounded in there
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exists a subsequence nk such that either compactness ((i)) occurs, either vanish-
ing ((ii)) occurs, or dichotomy occurs as follows : there exists a E ]0, ~. [ such
that for all E > 0, there exist ko > 1, uk, uk bounded in satisfying
for k > ko :

It is now easy to rule out dichotomy : indeed if it would occur, we would
easily deduce as we did before:

contradicting the strict subadditivity inequalities we already obtained.
Let us now prove Lemma III .1: we therefore assume that Qnk(t) converges
for all t > 0 to some nondecreasing function Q satisfying:

Let ~ > 0, choose Ro such that a - E if R > Ro. Next let 03BE, 03C6 be
cut-off functions : 1, 0  ~  l, ~ - 1 if x ~  --_ 0 if x ~ > 2,
~p = 0 if x ~  1, ~p --- 1 if x ( > 2, ~, cp E and let ~~,, denote

, ~p - . We have for R > 1 and for v in H1((I~3) with ~~ v  M,

where 1VI > sup ( 
n

C
for some constant C = C(M) > 0. We choose Ri large enough: R 1 s.
Of course we may assume Ro and thus a - 8. Then for k

large enough : E [a - 2E, a + E ]. Let yk E (1~3 be such that :

Annales de l’Institut Henri Poincaré - Analyse non linéaire



137THE CONCENTRATION-COMPACTNESS PRINCIPLE. - I

We then set : ~ck == ~R1( - - Then for k large enough we find :
i n i

We finally consider ({Jk = - y~) and where Rk k + o0
is such that : a + 28.
To conclude, we first observe that :

therefore by Holder and Sobolev inequalities we also have:

And the proof of Lemma III. 1 is completed.

REMARK III . 3. Of course in Lemma III. 1, we may replace H~ by wm.p
for all m > 0, p > 1 and the relation pn = un by p~ == ~ for all

At this point, we have proved that any minimizing sequence satisfies
the following compactness criterion: E (l~3 such that :

We then denote by un = + yn). The above property implies obviously
that if Un (or a subsequence) converges weakly in a. e. on 1R3 and in
Lfoc (for 2  p  6) to some u, we have :

and thus I u2dx = 03BB, i. e. un converges strongly in L2 to u.

By Holder inequalities, un converges strongly to ù in LP for 2  p  6.

Next, two cases are possible: either IÀ  If or I~, = If IÀ  we
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claim that ( yn) remains bounded, if it were not the case we would deduce
easily from the above informations that:

hence Now if ( y~) remains bounded, we see that un converges
strongly to some u in LP for 2 x p  6 ; in that case it is easy to show that u
is then a minimum and thus a posteriori :

showing the compactness in In the second case, that is if IÀ = 
we argue as before if is bounded while if ( k oo, then we check in

a straightforward way that converges in H1 to u which is a minimum
of the problem 
There just remains to prove part 3) of Theorem III. 1. To do so, we first

remark that we just proved that in the case V = 0, there exists a minimum u~,
which by the uniqueness results of E. H. Lieb [15 satisfies: 
In addition we may assume that u~, is spherically symmetric, positive in f~3
and exponentially decreasing at infinity. Therefore if V ~ 0, 0, we
have : 

_/%

and thus I~,  Now if V is only negative somewhere i. e. if V- =1= 0
on a set of positive measure and denoting by yo a Lebesgue point of V
and of this set we see that:

therefore for £ large enough, we deduce:  

Finally if V ~ 0, 0, it is clear that we have : And since the
reversed inequality always hold, we have = If a minimum u of (18)
would exist, this would imply :

and thus u --- 0 on a set of positive measure. But since u is a minimum of (13),
u is an eigenfunction corresponding to the first eigenvalue of the Schro-

din er operator - 0 + W with W = V - 1 u2 * 1 and by well-knowng p 
2 Ixl 

Y

results u cannot vanish on a set of positive measure.
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III.3. Variants and extensions.

It is possible to treat by analogous methods similar problems where
I Du p is replaced by arbitrary Sobolev norms and 1R3 by where the

potential V and the kernel replaced by more general ones,

where we add in the functional local terms like : i u)dx. Two relevant

examples of this sort are: 
(~ 3

EXAMPLE III. 1. - f (x, u) = where f(0) = f’(0) = 0.
In that case we only need to assume:

and then the concentration-compactness principle holds.

EXAMPLE 111.2. - f (x, M) == f(x)u, where, to simplify, f E L2 + 
Again the concentration-compactness principle holds.
We only mention one possible extension : we replace (18) by

where K~ _ ~ u E u [LZ = ~, ~ .
And where we assume (to simplify) :

Of course, we have now to replace the problem at infinity (20) by
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We then have the :

THEOREM I I I . 2. - We assume (19’), (23), (24). Then (21) is a necessar y~
and sufficient condition for the relative compactness in of all mini-
mizing sequences. If V --_ 0, = aiJ then I~,  0 is a necessary and suffi-
cient condition for the relative compactness up to a translation in 
of all minimizing sequences.
The proof of Theorem III.2 is very much the same than the proof of

Theorem III. I, we only describe two technical points which are necessary
in order to complete the proof. First if un n 0 weakly in then

we have for all 03B4 > 0 :

and this yields :

Next, if un{ ~ ) = un (- + yn) converges weakly in H 1 ( (~N) to some u with
I Yn I ~ 00, then we have :

and we deduce :

REMARK III . 4. It is possible to show as in the proof of Theorem III .1
that if I~,  0 then all minimizing sequences are relatively compact up
to a translation. In addition if (ai~~x)) > for all x E and if V ~ 0,
then I03BB = I~03BB and there is no minimum of (18’).

REMARK 111.5. - In the case when does not converge as x ~ ~ cx~,
it is possible to argue as follows: assume there exist satisfying :
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and let the infinum given by (20’) corresponding to aij respec-
tively. We always have :

while if I03BB  Ia + ~03B1 E [0, 03BB[, then all minimizing sequences are
relatively compact in 

REMARK 111.6. - Of course, if we assume that: (aL~(x))  on f~N
and if V ~ 0, V ~ 0 then (21) holds if and only if  0. Indeed either

If == 0 and then (21) holds, or  0 and by Theorem III.2 there exists u
minimum for the problem we then conclude remarking that we have :

III.4. On the Euler equation.

Clearly enough, if u is a minimum of (18’), then u solves the fo flowing
Euler equation : .

where 8 e R is a Lagrange multiplier. It is often of interest for Mathematical
Physics to investigate directly the solutions of the equation (25) where
e is now a fixed parameter. To find one solution, one may take advantage
of the homogeneity of the nonlinearity by looking at the following minimi-
zation problem :

with:

Indeed if u is a minimum of (26), then there exists a > 0 such that TM is
a solution of (25) - by the way, let us mention that here and in all the mini-
mization problems considered in section III, the solutions we find are
positive on f~N.

Next, if we want to solve (26) we have to consider the problem at infinity :
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with:

and where we assume (23) and 03B8 > 0 (for example).
Before stating our main result, let us point out that one clearly has :

THEOREM 111.3. 2014 Assume (19’), (23) and

Then (21) is a necessary and sufficient condition for the relative compactness
in of all minimizing sequences of (26). In the particular case when

= ai J, V = 0, every minimizing sequence of (27) is relatively compact
in up to a translation if and only if : I~,  0.

REMARK III.7. - The analogues of Remark III.4-6 hold in the above
situation. In addition it is possible to treat cases with more general W if
N  4.

REMARK 111.8. - The condition (30) is essentially necessary in order
to obtain a positive solution of (25) as we do in the preceding result.
Indeed if 0, 0 solves (25) then 0 is the first eigenvalue of the

operator(-~(aij~) + V + 8 - ( u2 o * W)) in H l(IRN) and this implies :B /
~RN {u20 * W } 0, ~u E as soon as W  0. If W admits

both signs, it is possible to relax a little bit (30) but we will skip such
extensions.
We present now a rough sketch of the proof of Theorem III. 3 : let un

be a minimizing sequence of (2). Because of (30), un is clearly bounded
in H1(IRN). We then set:

and we consider the concentration function Qn of pn. Let n = lim 

Without loss of generality we may assume that ,un > 0. We will

apply the concentration-com p actness lemma on Pn == 2014 Pn~ ~ This will
J~n

yield Theorem III. 3 since, in view of (23), the strict subadditivity condition
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(S .1) is equivalent to (21), while the condition (S. 2) is equivalent to I~,  0.

Indeed, if we apply Lemma I.1, we first observe that vanishing ((it))
cannot occur : indeed if it occurs, then by an argument similar to the one
used in Step 2 of the proof of Theorem II .1, we obtain:

and this contradicts the fact that I;~  0 since I;  0.

If dichotomy occurs, arguing as in the proof of Lemma III.1, we see
that we can find un, u; satisfying: ~yn ~ RN. ~R’0  00

for some a E (0, 1). This immediately yields:

and without loss of generality we may assume that there exists a E ]o, ~, [
such that for some constant C:

Two cases are then possible: either ( (or a subsequence) j Go, then

because of (23) : lim J(un ) - = 0 ; or yn remains bounded and then :

Combining these equalities-inequalities, we deduce letting E -~ 0:

and this is not possible since (21) holds and since (21) is equivalent to (S. 1)
as we remarked before.

Therefore we are always in the situation of « compactness » ((i)) : there
exist such that:

If (21) holds, it is easy to show as we did before that must remain

bounded. Therefore we may take as well: yn = 0. Next, if un converges

weakly and a. e. to some u in by Rellich Theorem un converges
strongly to u in L2(BR) and the above property shows that u~ converges
Vol. 1, n" 2-1984. 6
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strongly to u in L2(f~N). Using then Sobolev embeddings and Holder
inequalities, we see that un converges strongly to u in for

2N
2 S p  N - 2 

And this yields :

We then claim that J(u) = ~.. Indeed if this were not the case, we would

have: I« for some 03B1 ~ ]0, 03BB[, and this would contradict (Sl) since

0. Therefore u is a minimum and the convergence of un to u is strong
in H1..

REMARK III.9. - The above proof shows that in the concentration-
compactness method, Lemma I.1 needs not to be used with quantities pn
directly related to the constraint but that there exists a certain flexibility
in the choice of pn which only has to be a nonnegative quantity giving
some control on the constraint functional.
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