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ABSTRACT. - We consider the Cauchy problem for ut = Au + uP with
1 + 2 /N  p and (N - 2)p  N + 2. We give a complete description of
the asymptotic behavior of the positive solution.

Nous considerons le probleme de Cauchy pour Au + uP
avec 1+2/N  p et (N-2)p  A~+2. On donne une description complete
de comportement asymptotique de la solution positive.

1. INTRODUCTION AND MAIN RESULT

We study the asymptotic behavior of nonnegative solutions of the

following Cauchy problem:

We assume p > 1 and Uo  0, t 0 in RN. When uo E L1 n L°°, Problem
(H) has a unique local classical solution (see [Kawa, Proposition 2.3]),
which we denote by u(x, t ; uo). We set
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If  then we say that u(t ; uo ) blows up in finite time. When
p E (1,1 + 2 /N] , it is well known (see e.g. [Kavi]) that all solutions of (H)
blows up in finite time, In this paper we consider the next subcritical case:

In spite of the simple form of Problem (H), we need to transform the
equation in order to obtain some important informations on the asymptotic
behavior of solutions. Following [Kavi], we set

Then v(y, s; uo) satisfies

By studying Problem (TH) Kavian [Kavi] showed

provided uo E HP and For the definition of see

Notations just after this section. In this paper we will extend [Kavi] and
clarify the structure of space of positive solutions of (H). Let uo E ~P n L°° .
Then our main result below shows that u(t ; uo) is classified into one of
the next three types:

Type (I):  oo, i. e. u(t ; uo ) blows up in finite time,
Type (II): and t N~2 as t - oo,

Type (III): and uo) t-l~O-1) as t -~ o0

and that the solution of Type (I) and the solution of Type (II) are stable
and the solution of Type (III) is instable.

It is known (see e.g. [Kawa]) that if E(uo)  0 then u(t ; uo) is of

Type (I), where E ( uo ) is the ’energy’ of uo defined by

Fuj ita [F] showed that if uo is bounded then u(t ; uo)
is of Type (II), where a > 0 is a constant and E = c(a) > 0 is some
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small constant. In [Kawa] we gave a necessary and sufficient condition for
the solution of (H) to be of Type (II) (see Proposition 3 in Section 2),
which is one of crucial results to establish our main Theorem. Haraux and
Weissler [HW] observed that (H) has a self-similar solution w(x, t) of Type
(III) constructed by

where f E Sand

Such a solution w (x, t) is invariant by the similarity transformation:

namely, we have t) = w(x, t) for 03BB > 0.
Now we will state our main result. Let X :_ ~ f E LP n L°° ; f >

0 in be a closed cone of the Banach space Lp n L°° with the norm
!!-!!:= N2 ~ We set

We denote by Int (K) the interior of K in X and by ~K the boundary
of K in X.

THEOREM 1. - We assume ( 1.1 ) Then we obtain the following:
(i) The set K is an unbounded, closed convex set in X and 0 E Int (K) .

(ii) For any uo E X - ~0~ there exists a unique To E R+ such that

Moreover, G : _ ~ uo = 1 ~ and c~K are homeomorphic by 
where P : X - {0} ~ ~K is the well-defin.ed projection: Puo = 03C40u0 E ~K
in view of (1.9).
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More precisely, for q E 

where

More precisely, we obtain w(v(s ; uo)) c S, where w(v) is w-limit set of
v in Lp n L°°, i.e.

(v) If uo E B then we have

For the Dirichlet problem in bounded domains corresponding to (H) some
similar results were established in [Li], [NST], [CL] and [G]. In this case,
the solution blows up in finite time or the solution exists time-globally
and converges whether to 0 or to nontrivial equilibria in (thus in Lq
for any q e 1, oo] ) as t - oo . We remark that some methods used in
their works play improtant roles in this paper by appropriate modifications.
Recently, Lee and Ni [LN] and Wang [W] obtained some interesting
necessary conditions and sufficient conditions for the solution of (H) to
exist time-globally. In particular, they treat solutions with initial values

uo ( x ) decaying slowly like x ~ - 2 ~ (p -1 ) as x ~ -~ oo .

In Section 2 we give some preliminary results in order to establish
Theorem 1. In Section 3 we prove Theorem 1 and give some remarks.

Notations. - 1. R+ := (0, oo), Q := RN x R+, Q(a, b) := RN x (a, b)
and Q [a, b) := RN x [a, b).

l~p
2. Lp : - with the usual ( . We

denote ~.~~,Q(a,b) :== I I ° 
_ 
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is a weighted Lp-space with the

norm

denotes the norm of L n LCXJ, :_ ~ ’ ~2 + ~~ ’ 

6. HP := f f E H1(RN); V f E LP} is a Hilbert space with the inner
product ( f, g)p := /RN Vg)p for f, g E HP.

7. f (t) = O(g(t)) means that lim supt~~ |f(t)/g(t) ] and f (t) N
g(t) that 0  I  lim supt~~ |f(t)/g(t) 1  ~.

2. PRELIMINARIES

In this section we give some preliminary results to prove Theorem 1.
We defined by (1.5) the energy E(u) for Problem (H). We also define

the energy for Problem (TH) by

PROPOSITION 1. - (i) Let uo E X n If E ( uo )  0 then uo E B.

(ii) Let uo E X n If E(uo )  0 then uo E B.

Proof. - (i) This is well-known. See e.g. the proof of [Kawa, Propo-
sition 3 .1 ] .

(ii) See the proof of [Kavi, Theorem (1.10)]..
PROPOSITION 2. - We assume ( 1.1 ). Then the following hold.
(i) Let b E R+. Then there exists some constant m E R+ such that for

any uo E K with  b we  m.

(ii) The set K is closed in X.

(iii) Let uo E B. Then we have ( 1.14).

Proof. - Using Lemma 1 below, we can prove Proposition 2 essentially
by the same argument as in [G]. Therefore, we leave it to the reader..
LEMMA 1. - We assume ( 1.1 ). Let to E R+ and u be a classical solution

of (H) on ~0, T), T > to. Assume that
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Then there is some constant a E R+ independant of u, ~co and T
(dependant of l and to) such that

Proof - Although the proof is similar to that of [G, Lemma], we will
describe it for the sake of completeness. We proceed by a contradiction.
Suppose that Lemma 1 does not hold. Then there is a sequence of solutions

of (H) on ~’n > to such that

and

Let Q(to, Tn) be a sequence such that

We choose a sequence An > 0 such that

We remark that A~ satisfies that An - 0 as n - oc. We define the
function vn by

We can easily verify that vn is a solution of (H) in Qn : - Q(-tn/03BB2n, (Tn -
tn)/03BB2n). In view of (2.7) and (2.8) we have

Since are uniformly bounded, ~vn ~ are equi-continuous on every
compact subset of Q(-oo, 0] (see [D] or [S]). Thus, there is a subsequence
(still denoted vn ) and a function v (x, t) such that
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where D is any compact subset of Q(-oo,0]. The function v is a solution
of (H) in the sense of distribution and is bounded in Q(2014oo,0]. Therefore,
v is a classical solution of (H). It follows from (H) that

By (2.9), (2.10) and (2.11), we obtain

Thus, v is a nontrivial equlibrium solution of (H). This contradicts a

Liouville theorem in [GS]. The proof is complete..

PROPOSITION 3. - Let p > 1 + 2 /N and po := N (~ - 1)/2. Assume that
uo E L1 n L°°, Uo  0, t 0 in RN and Then the following
(2.13) and (2.14) are equivalent:

where bo > 0 is a constant depending only on N and p. If (2.1~~ holds
then u (t ; uo ) satisfies

for any q E ~ where

Proof - The equivalence of (2.13) and (2.14) follows from [Kawa,
Corollary 1.1 ], and (2.15) with q = oc from [Kawa, Theorem 4.1]. Using
[EZ, Lemma 3], we can prove (2.15) with q = 1 in the same way as in the
proof of (2.15) with q = oo . By linear interpolation we obtain (2.15) for
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PROPOSITION 4. - Assume p > 1 + 2/N. We set

Then W is open in X.

Proof. - We fix W. Let po = N(p - 1) /2 (> 1). It suffices to prove

(2.16) 36 = 6(N, p) > 0; ul E X and  b y E W.

In view of the comparison principle we may assume without loss of

generality that Ul > i6o in RN. We set w(x, t) = u(x, t; ~cl) - u(x, t; uo)
(> 0 in RN). Then, w satisfies

We set f(t) = and

Then, f (t) E L1(0, oo). The function W satisfies

Here, Ci = 2p-1p exp [(p - 1) ~0 f (s)dsJ E R+. By Proposition 3, there
exist 6 == b(N,p) > 0 such that if = u0~p0  b then

we have

Therefore, we t-~~2 . Hence, (2.16) holds..

LEMMA 2. - Let f, 9 E S. If f  9 in RN then f = g in RN .
Proof. - Our proof is very close to that of [Li, Lemma 2.2]. By integration

by parts we find

which leads to

This yields f == g in RN .
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PROPOSITION 5. - We assume ( 1.1 ). Let ~co E X and _ ~. Then

u(t ; uo) satisfies whether

or

Moreover, if (2.18) holds then we have

and if (2.19) holds then we have

Proof. - We can verify that

Kavian [Kavi, Theorem (1.13)] showed

and

He proved (2.24) by using (2.23) and the method in [CL]. Once
we obtain (2.24), we can derive (2.25) from the smoothing effect:

v ( s ; uo) E L°° ( [T, oo ) ; HP n C1 ( RN ) ) for T > 0 and the compactness of
the embedding: Hp n C1(RN) C LP n LCXJ. We remark that the method in
[G] is also applicable to deduce (2.24). Indeed, using Lemma 3 below, we
can prove (2.24) by the same argument in the proof of Proposition 2, (i).
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Next, we will show that if (2.18) does not hold then (2.19) holds. Let
u(t ; uo) do not satisfy (2.18). Then we have

Or equivalently,

Therefore, we deduce that

which leads to

By Proposition 3 we obtain (2.19). Now, we see that (2.19), (2.21) and
(2.26) are equivalent. Thus, (2.18) and (2.20) are also equivalent..
LEMMA 3. - We assume ( 1.1 ). Let so E R+ and v be a classical solution

of (TH) on [0, T ), T > so. Assume that

Then there is some constant a E R+ independant of v, uo and T (dependant
of l and so) such that

Proof - Since the proof is essentially the same as that of Lemma 1,
we leave it to the reader.

3. PROOF OF THEOREM 1 AND REMARKS

Proof of Theorem l. - Let W be the open set in X defined in the
statement of Proposition 4.

(i) We already proved the closedness of K (see Proposition 2). By
the same argument as in [Li], we can verify that K is convex. The
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unboundedness of K follows from Proposition 3. Indeed, we can easily
find uo E X such that ~un0~p0  80 and > n for n E N. By Propo-
sition 3, is an unbounded sequence in K. We can see 0 E Int (K)
also in view of Proposition 3.

(ii) We fix any We set L = {03C4 E R+ ; 03C4u0 ~ W}
and M = {03C4 E R+ ; 03C4u0 ~ B}. The sets L and M are open connected
sets with L ~ ~ and M ~ ~. Therefore, R+ - (L U M) ~ ~. Set

To = min ~R+ - (L U M)} and Ti = max ~R+ - (L U M)}. By the
definition we have 03C41 u0 E 8K, 03C4u0 E W if T  To and Tuo E B if T > Tl .
We will show that To = 71. Since 03C40u0) is a subsolution of (TH)
with the initial value Tiuo, we obtain

Therefore, there exist f E and 9 E such that

By Proposition 5,

It follows from (3.2), (3.3) and Lemma 2 that f = g and To = Tl. Thus
we have proved (1.9).
Now we know that the map G -~ 8K is one to one and onto.

Cleary, ( P ~ G ) -1 is continuous. Thus, it suffices to show that is
continuous. Let C G be a sequence in X such that xo in
X as ?~ 2014~ oo for some Xo E G. We will prove

We fix a number A > 1. We can easily check

Since 03BBPx0 ~ B and B is open, B for sufficiently large
n. Thus we obtain

By (3.6) there exist a subsequence (still denoted and a number
a > 0 such that
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It follows that

Therefore, we deduce that axo E 9K and a Since a is a unique
constant independant of the way to choose a subsequence, we obtain (3.4).

(iii) By the proof of (ii) we can derive that Int (K) = W. Thus we have
(1.11) by Proposition 3. The estimate (1.10) follows from (1.11).

(iv) Let By the proof of Proposition 5 we have

for q = po and q = oo. Since v(s ; uo) is bounded in X for s > 0, we have

Therefore, (3.9) actually holds for any q E [1,00]. Combining (2.22) and
(3.9), we deduce (1.12). We obtain from (3.9) and Proposition 5 that

w ( v (s ; uo)) C S.
(v) We have already obtained (1.14) (see Proposition 2)..
Finally we give two remarks concerning Theorem 1.

Remark 1 . - We observe that the Haraux-Weissler self-similar solution

w(t) given in (1.6) satisfies - oc as t - oo for q E

[1, N(p - 1)/2). This fact also leads to the unboundedness of K in X.
Remark 2. - With respect to (iv) of Theorem 1 we have the following

result:

PROPOSITION. - Assume ( 1.1 ) and pEN. Then for any uo E c~K the set
w(v(s ; uo)) c S consists of only one element, i.e. w(v) _ ~ cp ~, where p
is an element of S.

Outline of the proof of Proposition. - We will apply the method by Simon
[Si]. Let p E w(v(s uo)) for uo E ~K. We will derive w(v) _ 
We set .= + p) (see (2.1) for the definition of E) and

w(s) := v(s ; uo) - p. Then w(s) satisfies

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire



13ASYMPTOTIC BEHAVIOR OF SOLUTIONS

where we set

Let HP : _ ~ f E HP ; ~ f E Hp ~ . The space Hp is a Hilbert space with
N 1/2

the norm := ( |~2f/~yi~yj|22) for f E H;. Since p E N and

LPP (cf [Kavi, Lemma 2.1]), the map M : : L203C1 is analytic.
We set L := We have

We define A : 

with D(A) = H;. We know (see [Kavi, Lemma 2.1]) that -A is a positive
self-adjoint operator with compact inverse. Since p E L°°, there exists a
complete ortho-normal system for Lp which consists of eigen-
functions of the operator L. We denote by n the orthogonal projection of

LP onto the (finite-dimensional) subspace {03C8 E Hp ; L’lj; = 0}. It follows
that the map £ : H; -+ LP defined by

is a one to one and onto map. We define N : L~ by

Then, is analytic with L. Therefore, we obtain from the same

argumentation as in [Si, Section 2] that there are constants 8 E (0,1/2) and
a E R+ such that if u E Hp with  a then

Let Iw(s)lp  a for s E ~sl, s2]. Then, by (3.11) and (3.17),
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It follows that

Since M(0) = 0, we can verify that there exist constants Cj E R+
(1  3) such that for s, T > 0

By (3.19), (3.20), (3.21) and the assumption: 0 E w(w(s)), we obtain that
w ( s ) -~ 0 in LP (and also in as s - oo . Hence, w( v( s)) = {(/?}. N
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