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ABSTRACT. - It is proved that arbitrary quadratic perturbations of

quadratic Hamiltonian systems in the plane possessing central symmetry
can produce at most two limit cycles.
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RESUME. - Nous prouvons que les perturbations quadratiques arbitraires
des systemes hamiltoniens quadratiques et symetrie sur la plane peut
produire au plus deux cycles limites.

0. INTRODUCTION

In this paper we prove the following result:
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18 E. I. HOROZOV AND I. D. ILIEV

THEOREM 1. - Let H be a generic cubic Hamiltonian with a central
symmetry : H(-x, -~) _ -H(x, y). Then any quadratic perturbation of
the corresponding Hamiltonian system

has at most two limit cycles for E small enough.
Our interest in systems (0.1) was motivated by the project to obtain an

explicit and sharp bound c(2) for the number of limit cycles in quadratic
vector fields which are close to Hamiltonian ones or at least to obtain an

explicit sharp bound for the so called Hilbert-Arnold problem [2] for n = 2
(see [9], [12], [15], [16], [27] for results in this direction). The Hilbert-
Arnold problem is formulated as follows: find an upper bound Z(n) for
the number of isolated zeros of the integral

where b ( h) is the oval (compact connected component) of the algebraic
curve H(x, y) = hand deg H = n + 1, deg f , g = n (or more generally,
find an upper bound Z(n, m) provided max (deg f , deg g) = m).

Integrals of this type in studies of limit cycles were introduced by
Pontrjagin [23]. The first nontrivial case was considered by Bogdanov [6].
The existence of an upper bound Z(n) was established by A. Varchenko [25]
and Khovanskii [20]. But making this bound explicit seems to be a difficult
problem. Quite recently, Yu. Il’ yashenko and S. Yakovenko [19] proved a
double exponential estimate for Z(n, m) provided H is a fixed Hamiltonian
from some dense set of generic Hamiltonians: Z(n, m)  22~~m~ . Although
this bound is far from the expected (polynomial) one, up to now this is

the best known result.

More generally, one can consider perturbations of integrable systems
instead of Hamiltonian ones. In the quadratic case, an essential part of the
problem also consists (see [28]) in counting the isolated zeros of certain (not
necessarily Abelian) integrals. Zol~dek has proved [28] that in quadratic
perturbations of Lotka-Volterra systems with a center the corresponding
integrals will have at most two zeros. Among the remaining three classes
of quadratic systems with a center, most of results have been obtained for
the Hamiltonian case (see e.g. [17]). Almost nothing is known about the
other two classes, where at least three limit cycles can appear.
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In a recent paper [ 16] we found that for generic cubic Hamiltonians with
three saddles and one centre the exact value for both c(2) and Z(2) is two.
For the two remaining basic classes of cubic Hamiltonians (namely those
with one saddle and one centre and respectively with both two saddles and
centres) the problem is still open. Our conjecture is that the exact bound
for all generic cases is two (the same bound was conjectured in [28]). The
symmetric Hamiltonians form a co-dimension one subset within the class
of Hamiltonians having two saddles and two centres. For many reasons
it seems to us that the symmetric case is the one allowing to be treated
comparatively easier at least as far as the computations are concerned.

In the statement of Theorem 1 as well as in the above comments we
use the notion of "generic" Hamiltonian. There are several definitions of
this notion even for quadratic Hamiltonian vector fields. Throughout this
paper we say the cubic H is generic if the corresponding Hamiltonian
vector field dH = 0 has a centre and does not belong simultaneously
to any of the other integrable classes of quadratic vector fields (as listed
in [28]). The latter condition has a simple geometrical interpretation: non-
generic are exactly those Hamiltonians for which the level curves in suitable
coordinates have an axis of symmetry. On its hand evidently the central
symmetry of H geometrically causes dH = 0 to be centrosymmetric
with respect to a suitable point (xo, which we without loss of

generality have chosen to coincide with the origin. The general case
H(xo - x, y) = -.H(~ - is dealt with a mere translation.
One can easily check that after eventual linear change of the variables

each cubic Hamiltonian with a central symmetry and having a centre can
be written in the form

Then "generic" in this case means  ~ 0. Selected level curves of H for
/1 = 0, _~c E (0,1) and /1 = 1 are drawn in Fig. 1.

System (0.1 ) has attracted the interest of several other authors [4], [9],
[21]. In particular Bamon [4] found a value of /1 (~c = (4 3 -1) / (4 3 + 1) =
0,227....) and a suitable perturbation for which around one of the foci a
saddle loop and at least one limit cycle can coexist. Drachman et al. [9]
proved that for  close to 1 and for a specific perturbation ( f , g) the

system (0.1) has two limit cycles around one of the foci and has no limit
cycle around the other one. (In [4], [9] a different coordinate system was
used). Our paper covers all generic symmetric Hamiltonians and all small
quadratic perturbations showing that the sharp estimate of the total number
of limit cycles in (0.1) is two. Moreover from our analysis it follows that
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20 E. I. HOROZOV AND I. D. ILIEV

all numbers  2 and positions of the limit cycles permitted by the general
theory of quadratic systems [7] can be realized. It is also easy to describe all
bifurcations when the parameters of ( f , g) vary. Some of these results (for
special perturbations) were announced in [21] ] but apparently without proofs.

In this paper we do not consider the degenerate case = 0 which
requires an analysis up to a fourth order in c. This case as well as the

other (nonsymmetric) degenerate cases are an object of another research
(in progress).

Perhaps it is worth noticing that system (0.1) falls into class IIIa~o of the
Chinese classification [26]. More precisely this class consists of the systems

When b = l = m = b = 0, n ~ 0 the system (0.4) is Hamiltonian

and centrosymmetric with respect to the point ( - 2a , 2n ) . Then a simple
corollary from Theorem 1 is the following one:

COROLLARY 1. - In I ~ 0 and small b, l, m; b, system (0.4)
has no more than two limit cycles.
The techniques we use to get the results of the present paper is a

combination of the techniques from [16] with some ideas from [11]. In

particular we extensively use the notion and the properties of the centroid
curve. (A centroid curve is formed by the mass centres of a continuous

family of ovals within the level curves of H.) There are two centroid
curves in the considered case, corresponding to two periodic annuli. In our
study the elementary fact applies that each intersection point of the zero

divergence line in (0.1) with a centroid curve corresponds to a zero of I ( h)
and hence to a limit cycle. Using the mutual position of the two centroid
curves, Theorem 1 is easily seen to be a consequence of the fact that

in the generic case each of the centroid curves has a non-zero curvature.
A convexity argument is quite natural in situations where the expected
number of cycles is two. Incidentally, a convexity idea has been used by
Il’ yashenko [18] in his paper about Abelian integrals arising in symmetric
perturbations of Hamiltonian systems with symmetry of order two.
A more detailed sketch of our construction which we believe will help

. the reader to overcome easier the rather technical proof is given in the
next section.
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1. PRELIMINARIES AND OUTLINE OF THE PROOF

We start with the definition of the centroid curve for any cubic
Hamiltonian H having a centre. It is easy to see that the integral I(h,)
from (0.2) can be written in the form

where Int (h) is the region inside the oval 6(h) and = - fx-gy.
Define the integrals

Then the centroid point [10] of region Int (h) has coordinates (~(h,), ~(ja))
where ~ = = Y/M.

DEFINITION 1.1. - Let (hl, h2~ be the maximal interval of existence of
the oval ~i(h) (including the separatrix cycle and the centre inside). Then
the curve

is called [16] the centroid curve of the family of ovals.
The importance of the concept of the centroid curve lies in the fact that

its geometry contains the complete information about the possible zeros of
each integral = aX(h) + + (i.e. for all values c~, ,~, ~y
and all perturbations f, g), although the definition of L depends only on
H. We mention also the following obvious facts: a) L is affine invariant; b)
the endpoints of L are the centroid Z of the area bounded by the separatrix
cycle and the centre C lying inside; c) for non-generic Hamiltonians, L
is a line segment; d) M ( h ) gives the area of and T = M’ is
the period function. It has been recently proved [8] that T is monotone
and hence M~~ ~ 0.

Specifying Definition 1.1 to the case of symmetric Hamiltonians (0.3) we
see that there are two continuous families of ovals 8 (h) defined respectively
in the intervals ~-h~, and where 0  hs  h~ are given by
the formulas

Vol. 13, n° 1-1996.



22 E. I. HOROZOV AND I. D. ILIEV

We shall denote by Li and by L2 the corresponding centroid curves. We
point out that in view of the symmetry of H the curve L2 is just Li rotated
on an angle In the sequel we use L to denote any of Ll, L2. Further
denote by Ci, C2 the centres and by Sl , 82 the saddles of the Hamilto-
nian (0.3). For later use we compute their coordinates, obtaining

and respectively = (xs, ~S) _ (-~c, -~~), C2 = -G’~, ~‘2 = 
The following theorem sums up several properties of the centroid curve

of generic Hamiltonians obtained in [16] and which we need in the present
paper.

THEOREM 1.1. - Suppose that H is generic. Then

(i) Near its endpoints the curve L is regular, i.e. (h) + r~’2 (h) ~ 0.
(ii) Near the endpoints of L the curvature » is not zero and has the same

sign.
It is not hard to see [ 16] that for a given perturbation f, g in (0.1) with
( -I- ~,~ j ~ 0, the number of limit cycles in (0.1) for small c is equal to the

number of the intersection points (counting the multiplicities) of L with the
line £ : ax + -~- ~y = 0, provided L is regular. Moreover as c --~ 0 these
limit cycles tend to the ovals 8(h) whose centroid points lie on £. Hence
our goal would be achieved if we show that Li, L2 are regular and that any
line intersects their union L = L1 U L2 in at most two points. In section 5
we prove the regularity of the centroid curves in the case of an arbitrary
generic Hamiltonian with two centres, using Picard-Lefschetz theory [3].
The proof is similar to that in [16] and exploits ideas from [12] and [22].
Note that the regularity of L as well as the nonvanishing of the curvature
are affine invariant conditions. Most of our efforts will be concentrated to

show that an arbitrary line £ intersects Li in no more than two points.
Therefore the following theorem is the bulk of our construction:

THEOREM 1.2. - The curvature of the centroid curve Ll at each point
is non-zero.

Our plan to show the nonvanishing of the curvature is to start with a
Hamiltonian H for which we already know that. Such one can be obtained
for example from the standard elliptic Hamiltonian Ho == y2 -~- x3 - ~ via
small perturbation in the direction of the symmetric Hamiltonians. This is
done in section 6. From Theorem 1.1 we know that in the generic case
the curvature near the endpoints of the centroid curve is always non-zero.
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This implies that varying the parameters in H if the curvature acquires a
zero this would be at least a double zero. It will correspond to a zero of
multiplicity at least four of I ( h) provided f, g are properly chosen ([16],
Corollary 2.1). A simple but important fact is that the second derivative
of I and the first derivative of the period function T satisfy Picard-Fuchs
system of order two, and hence the ratio w = I" /T’ satisfies a Riccati

equation. This observation, used for the first time in [ 11 ], is based on the
fact that the residua of the form w = - ,~ dy + 9 dx are linear in hand
therefore the second covariant derivative of the Gauss-Manin connection
of w has no residua. In section 2 of the paper we use these ideas to derive
Riccati equation for w. Most of the present paper is devoted to a precise
qualitative study of the Riccati equation satisfied by w. In particular we
explore the properties of the zero isocline of the equation. On its hand to
study the zero isocline we include it in a family of curves forming the level
curves of a suitable Hamiltonian. We repeat the same procedure this time
considering the horizontal and also the vertical isocline of the Hamiltonian
system to obtain its phase portrait. From the properties of the zero isocline
of the Riccati equation we find the possible behaviour of w. The upshot
is that w = I" /T’ (and hence I ~~ ) has no double zeros. All this analysis
is contained in section 4.

We have to emphasize that in section 4 we do not study w for all values
of the parameters a, j3, ~y. We are interested only in values a, 
corresponding to lines f tangent to Li. In this case w is subject to

quite restrictive inequalities, which we obtain in section 3. The proof
of Theorem 1 is completed in section 7 by examining the mutual position
of the two centroid curves.

In theory the same plan could be applied to all another cases (including
the one studied in [16]). Unfortunately the computations in general become
much more complicated. In spite of that we believe that the plan can be
performed, eventually with some modifications. In this respect the present
paper, apart of its own importance, can serve as a model for the general case.

2. PICARD-FUCHS SYSTEM AND RICCATI EQUATION

In this section we derive several differential equations satisfied by Abelian
integrals. Our final goal will be the Riccati equation satisfied by I" For
this we need to derive Picard-Fuchs system for the integrals Io, I_ 1, 1-2 ,
defined below.

Vol. 13, n° 1-1996.
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Given h E (-he, -hs), we consider the level curve H = xy2 +

3 x3 - x = h, whose equation can be written also in the form

Put z = xy + M/2 and define the integrals

We have

and similarly Y(h) = M(h) _ - I-1.
LEMMA 2.1. - The integrals Io, I-1, ~-2 satisfy the following system

of equations

Proof. - Express the left and the right hand-side of the identity

in terms of the functions Ik, k = 0, ~ 1, ... This gives a connection
between these functions:

Similarly using

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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we obtain

Using (2.3) with k = -1 and (2.4) with k = 0 we get the third equation
of (2.1). In the same manner applying (2.2) and (2.3) with k = 0 and
(2.4) with k == -1 we obtain the second equation of (2.1). At the end, if
we eliminate Ii and 1-3 from (2.2), (2.3), (2.4) with k = -2, we obtain
the first equation.
COROLLARY 2.2. - The integrals X, Y, M satisfy the system

Now we are in a position to derive the Riccati equation satisfied by
w(h) = Put v = w - ~. Then we can consider that
v = I~~/M~~ where in I(h) we have ~ = 0. Differentiate once the first
two equations in (2.5) and twice the third one to get

From these equations and from I = aX eliminate first Y and then X.
After solving with respect to 7 and M we obtain

Vol. 13, n° 1-1996.
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Here for shortness we have denoted
A i /

where

From (2.6) we derive the Riccati equation

Here B = B1 + B2. Returning to the variable w = v -~ -y and writing (2.8)
as a system we finally get
LEMMA 2.3. - The following Picard-Fuchs system is satisfied:

this is our basic system which we will study in the next two sections. In
particular of a great importance for our analysis will be the properties of the
zero isocline Fo of (2.9), given by the points (h, w ) on the algebraic curve

(2.10) 
We will often consider Fo as the graph of the two-valued function wo (h)
determined by P ( h, wo ( h) ) - 0 ("+" is always assigned to the upper
branch).

For later use denote by Do the discriminant of the quadratic
equation (2.10):

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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3. BASIC INEQUALITIES

In this section we derive several inequalities concerning the parameters
in (2.9) and the values of wo at the critical values of H, provided the line
P : ax + {3y + "y = 0 and the centroid curve Li satisfy some conditions
listed below. These inequalities are crucial in our analysis of (2.9).
Through this and the next section we suppose the following:
(U) (i) ~ is a tangent to the centroid curve Li at an internal point

~~~jL~, rl(h,~~~
(ii) the curvature of Li does not change the sign (but may vanish);

Vol. 13, n° 1-1996.
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(iii) running L1, £ rotates on an angle less than ~r.

We start with certain restrictions for the coefficients of the line £ imposed
by (U).

LEMMA 3.1. - The coefficients a, ,~, ~y (multiplied if needed by -1) satisfy
the inequalities

Proof. - We are going to prove that the angular coefficient of £ satisfies
the inequalities

If this was done and assuming that j3 > 0 we immediately get the last
two inequalities in (3.1). Moreover the loop through Si is placed in the
half-plane x > 0 and it is easily verified that if (~, and (.x, y2) are points
on 8 (h), h E (-h~. -ja5), then ~/i + y2  0. Therefore Li is situated in the
fourth quadrant and since 03B1  0  j3 the equality + + -y = 0
is possible only if 03B3 > 0.

In order to prove (3.2) we need another normal form

of the Hamiltonian. In these coordinates Li corresponds to values h E [0, ~].
Having in mind (U), the proof consists of finding the equations of the
tangents at the endpoints of Li. According to Corollary 3.4 from [16]
the equation of the tangent .~~ of Li at the centre Cl(O,O) -Ax

(see Fig. 2). The tangent .~s at the other endpoint goes through the saddle
S 1 = (1, 0) and through the centroid of the loop area Zi [16], but the
coordinates of Zi are given by extremely long formulas. Because of this
we use another line instead of .~s . The saddle-loop is determined by the
equation H = ~. The line x = 2 divides the region inside the saddle-
loop into two parts Ac and s containing respectively the centre and the
saddle. Obviously the reflection of As through the line x = 2 is contained
in Ac. This means that ~ ( 6 )  ~. Then using (U) and results from [16]
yields that Zi = (~ ( 6 ) , ~ ( 6 ) ) is located inside the triangle with vertices
( 0, 0 ) , ( 2 , 0 ) , ( 2 , - 2 ) . Let m be the line symmetric to .~~ with respect to
the line x = 2 , m has an equation y = ~ ( x - 1). Then the angular
coefficient k of an arbitrary tangent £ at an interior point of Li satisfies
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Fig. 2. _

the inequalities -A  1~  A. In order to return to the coordinate system in
which the normal form is (0.3) we change the variables (x, y) - (xl, 

where

In this coordinate system the equations of .~~ and m become respectively
(we omit the subscript 1)

Hence the angular coefficient k of any tangent line satisfies
~  ~  1/~c.

Vol. 13, n° 1-1996.
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As a direct consequence of (2.7) and (3.1 ) we obtain

COROLLARY 3.2. - The constants A; B, C, D, E in (2.9) are positive.
LEMMA 3.3. - (i) The values ofw/ ( h) at the ends of the interval 

have the following signs:

(ii) The derivatives satisfy

Proof. - (i) Using the explicit formulas for A, A, B etc. we express the
discriminant Do from (2.11) in the form

Also we have

This gives after obvious calculations
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Further, with the help of (2.7) and the formulas for ~~ from section 1
we obtain via straightforward computations that wo ( - ~~ ~ = ~x~ -f-,~3~~ -~-~y.
In the same way we compute At the end

where

From (3.4) it is clear that the point ~~) is lying on the tangent .~~.
We will show further that ~~  xs. Really xs = -~~ and ~~ + 

5~ 1 - I~2. But x~ + ~/c  5h~ is equivalent to

The last inequality easily follows from h~  9 (2 + 3~)  ~~ ( ~ + ~c) .
The inequality ~~ shows that ~e) is. above any tangent .~ to

Li which gives that = + + ~ > 0. The other two

inequalities in (i) follow from the fact that both the centre ~~) and the
saddle (xs, are below any tangent .~.

(ii) Evaluating the derivatives of wo at A = 0 we get

Write Do in the form

Vol. 13, nO t-~9~b_
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This gives

Calculation the values of A’ at - hs and -he yields:

Finally we substitute h = - h~ in the above formulas and via direct
computations find

Repeating the above computation for h = - hs we obtain

thus proving the lemma.

4. THE ZERO ISOCLINE OF THE RICCATI EQUATION

In this section we list a number of properties of the zero isocline Fo of
(2.9) supposing (U) hold. In particular decisive for our purposes will be
the number and the mutual positions of the minima and maxima of wo ( h) .
We start with the following lemma.

LEMMA 4.1. - (i) The curve Fo is centrosymmetric with respect to the
point (0,~). ..

(ii) Fo has no compact components.

Proof - Assertion (i) is obvious. To prove (ii) we observe that the
discriminant Do given by (2.11) can have no more than two zeros for
h  0. Together with the behaviour near h = 0 (see the next lemma), this
eliminates the existence of compact components.
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Next we study certain asymptotic properties of h  0.

LEMMA 4.2. - (i) The function wo (h) has the following asymptotic
expansions

(ii) The function wo (h) has the following asymptotic expansions :

Proof. - Direct computations.
Our further plan is to consider the entire family of level curves

which is tantamount to the phase portrait of the Hamiltonian system

This is because the discriminant Do is either positive or can change the sign
depending on the parameter values in (2.11 ). Consequently Fo can bifurcate
and all possible situations should be occurred in the family (Fp : p E I~~.
Again for simplicity of the notation we can consider the portrait for 7 = 0,
the general case being a mere translation w -~ w + ~y.
LEMMA 4.3. - System (4.1) has exactly one singular point So in the

half-plane h  0. The point So is a saddle.

Proof - From the equations Pw = Ph = 0 eliminate w and put h2 = z
to obtain the equation

Obviously this equation has at least one positive root zo. The analysis of
the coefficient alternations and Descartes’ criterion rules out the existence

Vol. 13, n° 1-1996.
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of other positive roots. As the Poincare index of the field in (4.1) cannot
exceed 0, using the symmetry yields that So is a saddle point.

Denote by .ho == -~o the abscissa of the saddle So . Our further analysis
will concentrate mainly on study of two of the isoclines of (4.1), namely
the horizontal © ~ and the vertical one V = ~ Pw = 0 ~ .
The properties we need are easy to obtain and are summed up in
the following lemma:

LEMMA 4.4. - (i) The curve V is concave in the half-plane h  0.

(iii) The asymptotics hold

Proof - Direct computation.
’The horizontal isocline ?-~ is more complicated for studying. Moreover it

bifurcates as parameters vary. To describe its properties we denote by
~~~~~h), two roots of the equation Ph (h, w) = 0, h  0.

LEMMA 4.5. - (i) Let ~~ - 3AE > 0. Then consists of two separate
curves given by the graphs of wH.(h), h  0. Their asymptotics
are the following

Each of the functions w~. ( h) has exactly one maximum and no minima.
Let .~2 - 3AE  0. Then the two graphs of w~ meet at a finite point

thus fornfng geometrically one smooth curve H. For the two

branches have the same asymptotics as in (4.2). The function has

always one maximum. The function w~ (h~ has either one minimum and one
maximum or no extrema, the latter case including also the possibility of a
collision of the maximum and minimum.

Proof. - The asymptotics are computed straightforward from the formulas
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When B2 - 3AE ~ 0 both exist for all h  0. When B2 - 3AE  0

the discriminant D has a simple zero at a negative value h = h, i.e.

= wH(h) and both are defined for h E (-oo, h]. At the end
computing the derivative of we obtain:

Putting h2 = z this yields a cubic equation for all extrema:

In the case B2 - 3AE > 0 the asymptotics (4.2) say that each of 
has at least one maximum. As (4.3) has at most two positive solutions,
this proves (i).

In the case B2 - 3AE  0 the equation (4.3) has either one or three
positive solutions. Using the asymptotics (4.2) and the behaviour near h
show that has at least one maximum while either has no

extrema or has one maximum and one minimum. To obtain more precise
information, we observe that the derivative of w~ is negative for z  jB/2
and the derivative of ~7~ is positive for z > B / 2. If F ( z ) denotes the
polynomial in (4.3), we have F ( B ) _ - 3AE 2  0, F’ ( B ) _ - 8B E  0.

Hence (4.3) has exactly one zero greater than B/2. This yields that wjj has
always exactly one extremum (maximum). Lemma 4.5 is proved.
We will denote the two branches of H by H+ and ?-~- .
Our next objective is to locate the saddle So with respect to the extrema

of Before that we need more refine study of H, which we do again by
considering the whole family of curves Ph = const and their horizontal and
vertical isoclines HH = ~ Ph h = 4 ~ and Hv = 0 ~ . Denote also by
?-~C~~..r the two branches of HH (see Fig. 3). As above we consider these curves
as graphs of the corresponding functions wH(h) and wHv(h), h  0.

LEMMA 4.6. - (i) The curves and Hv are concave. Each of H±H has
a maximum at = 6 and has a maximum at hHV = B .

(ii) The curves HH and Hv have no common point and Hv is situated
between the two branches of HH.

Proof - Direct computation.

LEMMA 4.7. - (i) The curves V and Hv intersect at the unique point of
maximum of V .
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Fig. 3.

(ii) The curves V and have no common point, V and H-H intersect at
a unique point S* with an abscissa h* satisfying

(iii) The saddle So is on the lower branch of H. Its abscissa ho satisfies

Proof - (i) is obvious. (ii) To prove the existence and uniqueness of S*
we argue as above in establishing the existence of the saddle So. For the
proof of the inequality hHH  h* we first take the asymptotic values of
the functions wHH(h) and wir (h) when ~ --~ -0, namely
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This shows that wHH(h) > wv(h) near h = -0. On the other hand we
can see that which in details reads

or (3B2 + 36C)2  4B2(4B2 + 6ABD). Using the expressions for

A, B, C, D we easily verify that 12C  B2, B  AD. Then

(3Bz + 36C)2  3684  4B2(4B2 + SABD)  4B2(4B2 + 6ABD).

This proves (4.4).

(iii) We follow essentially the same argument, showing that

This condition is equivalent to (B2 -~-12C)2  8B2(8B2 + 9ABD - 6AE)
which follows from 12C  B2 and the easily verified inequality AE  B2.
The inequality (4.6) we proved implies that V and the lower branch H-
intersect at a point So with an abscissa ho satisfying (4.5). Really if

B2 - 3AE > 0 then (4.2) and Lemma 4.4 (iii) give that > wv (h)
near h = -0. If B2 - 3AE  0 then (4.6) implies that hHv  h, where h
is the zero of D from Lemma 4.5 (ii). Hence = wHv(h) > wv(h)
because h > hHv > hv and wHv(h) > wv(h) for h > hv, the latter a
consequence of (i), Lemma 4.4 (ii) and Lemma 4.6 (i). Thus hHv  ho  h
and (iii) is proved.

Another property of H and V we need is the following

LEMMA 4.8. - Suppose that the function wH (h) has a maximum at hH.
Then hH  ho (The saddle So is to the right of the maximum of w~(h)).

Proof. - The extrema of H- lie on ~CH and ~C~ itself is a concave

curve with a maximum at a point with an abscissa hHH. Since 
this yields that the maximum of ~C- (if it

exists) has an abscissa hH  hHH and moreover  wH (h) for
h  Suppose that ho  hH. Then  = and

= > because > wv(h) for h > ho.
Therefore the intersection point S* of V and H h has an abscissa h* with
ho  h*  hH  hHH - a contradiction with (4.4). This proves the lemma.

In order to make the facts proved in Lemmas 4.3-4.8 more applicable,
below we list all needed points of H and V with their coordinates and
characteristics:

Vol. 13, n° 1-1996. 
’



38 E. I. HOROZOV AND I. D. ILIEV

- the saddle point, So = H n V,
the point of maximum of ~+,

Sv(hv , wv (hv)) - the point of maximum of V,
the point of maximum of ~-,
the point of minimum of ~-C-,

~’(h, wH (h) ) - the point where H+ meets ~-~C’ .

(The last three points do not exist necessarily.)
Now we are able to describe in details the picture of the minima and

maxima of wo ( h ) .

LEMMA 4.9. - (i) Let Do > 0 for any h. Then the function h  0

has exactly one maximum and one minimum.

(ii) Let Do  0 for h E (h-, h+), h-  h+  0. Then a) for
h E ( - oc , h - ~ the function wo ( h ) has exactly one maximum and the
function wo {h) has exactly one maximum and one minimum; b) for
h E ~h+, 0) the function wo (h) has exactly one maximum and one minimum.

Proof - The separatrices H and V divide the half plane h  0 into four

open domains if B2 - 3AE  0 and into five open domains otherwise. Let

us denote by ~l~ and Vi the parts of ?~C- and V respectively which are to
the left of the saddle So and by H2 and V2 - the rest part of H and V.
Analytically (for example) we have = ~ ( h, wH ( h) ) : h  ho} and
similarly for the other arcs. In the case where B2 - 3AE > 0, ~-C2 itself

consists of two separate curves, one of them is H+ and the other is the part
of to the right of the saddle. We will write sometimes and ~-C2 in
order to signify them, thus H2 = H+2 n ?nC2 in this case. Denote by Oij the
domain in h  0 which boundary is Hi U Vj, i, j = 1, 2. (More precisely
in the case B2 - 3AE > 0 03A922 consists of two separate subdomains: 5222
with boundary H-2 U V2 and 03A9+22 with boundary U {h = 0}; in the case
B2 - 3AE  0 the boundary of f222 is ~C2 U V2 U {h = 0~ .)

Therefore depending on the sign of B2 - the position of the saddle

point and the availability of extrema on ~-C ~ there are four cases I - IV

(see Fig. 4, a,b,c,d):

I B2 - 3AE  0, ~C- has no extrema,

II B2 - 3AE  0, So is between S~ and S,

III B2 - 3AE  0, So is between SH and ,~~,

IV B2 - 3.4E > 0.
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The zero isocline Fo can be divided into two branches FJ’ and Fg , where
ro is given by the graph of wo ( h) , h  0 respectively. In the case where
Do changes the sign each of ro is subdivided into the left (h  h-) and

right (h+  h  0) parts, thus forming again two connected components,
the left one Fb given by the union of graphs of wo ( h ) , h  h - and the

right one Fo given by the graphs of wo ( h ) , h+  h  0.

The following facts are obvious:

2) wt (h) is increasing in 5222 and decreasing in Q21 ;
3) wo (h) is increasing in Qn and decreasing in 03A912.

Finally we denote by the part of 1i2 determined as follows:

Denote also Hmax = H2/Hmin. In the cases III, IV Hmax consists of
two separated parts C ~C~ .

Proof of (i). - Using the asymptotics in Lemma 4.2 (i) we see that I‘o
joins the points of 03A922 (-~,03B3) and (-0, q). From Lemma 3.3 (ii) it

follows that To passes also through SZ21. But rt can enter 03A921 only at a
point of in cases III, IV) and can leave Q21 only at a point
of entering again SZ22. After that ho being in Q22 increases up to
the point ( - o, ~y ) as rt cannot meet again Thus wo ( h ) , h  0

has exactly one maximum and one minimum, which proves (i). (The very
special case when rt does form two of the saddle separatrices can be
treated similarly.)

First we note that (3.5) gives that [h-, h+] c (-h~, -hs)
so we can use the inequalities from Lemma 3.3. The asymptotics in Lemma
4.2 show that the left component rb joins the points (-oo, ~y) in 5~22
and ( - oo, - oo ) in 03A911 while the right component of Fo joins the point
( - 0, - oo ) in 03A912 with the point ( - 0, 03B3) in SZ22 . Consider first the right
component ho, beginning from ( - o, - oo ) . It can leave S212 only at a point
of V2 entering SZ22. Using Lemma 3.3 (ii) yields that once in SZ22, ro must
pass also through which is possible only in cases III, IV. Thus after
Fo enters 03A922 (at a point ( h+, Wo (h +)) E V2) it increases up to a point of

Then ho decreases in 03A921 up to a point of After that ho enters
again SZ 22 and increases up to the point ( 0, ~y ) . Thus h+  h  0

has exactly one maximum and one minimum, which proves the case b).
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Similarly we consider the left component To, starting at the point ( - oo, ~y)
in SZ22. Lemma 3.3 (ii) forces ro to pass successively through the domains
~22 ~ ~21 ~ ~12 and again 011. In such a way wo (h), h  h- has a

unique maximum at a point of and  h - has a unique
maximum at a point on the part of to the left of SH and a unique
minimum at a point of between SH and So. Lemma 4.9 is proved.

COROLLARY 4.10. - In the case Vo  0 the function wo (h) is a monotone
decreasing in ~-h~, -hs~. In the case when Do changes the sign the function
wt(h) is decreasing in ~-h~, h-~ and negative in ~h+, 

Proof. - The monotony of we claim follows immediately from
Lemmas 3.3 and 4.9 using also the behaviour of wo near -00 and - 0.
Further, the same argument shows that the minimum of is negative.
On the other hand the maximum of To is situated and hence below

the saddle. The minimum of fb is situated on the arc between SH and
So above the saddle. Therefore the maximum of is also negative
which proves the corollary.

5. REGULARITY OF THE CENTROID CURVE

We intend to prove the regularity of the curve L in the general (not
necessarily symmetric) case of generic Hamiltonian systems with two

saddles and two centres. In this case the Hamiltonian in an appropriate
coordinate system has a normal form

The critical values of Hare 0 = hl  h2  h3  h4, where h1 and h4
correspond to the centres and h2, h3 to the saddles. As in [16] we shall

prove a stronger result than regularity:

THEOREM 5.1. - There exists a linear combination of the integrals X, Y

for which the corresponding ratio (rX + sY) /M is a monotone function,
i.e. + sr~’(h) ~ 0 for h E [hl, h2).
Theorem 5.1 easily follows from the next one:

THEOREM 5.1 ‘. - There exist real numbers r, s such that for any real k the

function rX’ + sY’ - has no more than one zero in Ihl, h2).
Assuming that Theorem 5.1’ is proved we get that the function

rX + sY - kM has no more than two zeros, one of them being hl,
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which shows that (rX + sY)/M - k has for any k at most one zero, i.e.

(rX + .sY)/M is a monotone function.
For the proof of Theorem 5.1’, we intend to use an adaptation of Petrov’s

method [22]. For this reason we need to introduce some notation and recall
some notions and results from Picard-Lefschetz theory (see [3] for details).
The equation of the level-curves Th : {H = h} can be rewritten in the form

[(1 + 2Cx)y + Bx2~2 = (BZ - 4AC)x4 - 2(A+ C).r,3 - xz + 4Chx + 2h,
which motivates the definition of the following forms [12]:

Obviously

For later use put also cv = + 03B203C9Y + In this section we are going
to work with the complexification of the family of curves rh, i. e. we define

Thus fK has a topological type of a torus, punctured at three points
Pl , P2 , P3 . For j = 1, ... 4 we define elements a~ in the fundamental

group ~rl ( ~ ~ ~ h 1, h2 , h3 , h4 ~ ), so that c~~ is represented by a small
circle around hj oriented counter-clockwise. Also we define a vanishing
cycle b~ (h) corresponding to The cycles b~ (h) generate the first

homology group For further use we denote by Mk the monodromy
operators corresponding to ak E Given a function depending on
b2 , b~ E H1 (rh ) we define by the function 
Denote by r h the smooth compactification of We define 81 (h) for

h E (hi , h2 ) to be represented by the compact real component (the oval) of
fK oriented counter-clockwise. Similarly we define 84 (h) for h E (h3, h4) to
be the compact real component of We also choose 83 to be homological
to b2 on the compactification of The orientation on b2 will be such
that (81 o b2 ) = 1 where (o 8) denotes the intersection number of the
cycles 6 E 
As we are going to use the Picard-Lefschetz theory we need the

intersection numbers between the cycles 8j. We formulate the result in
the following lemma:
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LEMMA 5.2. - The intersection numbers of the cycles b~ are given by
the matrix

where _ ( b2 o 

Fig. 4.
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Fig. 4 continued.

Proof - The choice of the cycles shows that we have to compute (~i 0~4)
and (~20~4) = (~30~4) as (~io~) = (~10~3) = 1, (~20~3) = 0. Obviously
03B41 and 03B42 are generators of hence we have 03B44 = n103B41 + n203B42. Then

(~4 0 ~i) = ~2(~2 0 ~i) = 2014TT’2? (~4 0 ~2) = 0 ~2) = 

Define the functions
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Our idea to compute the numbers n1 and n2 is to use Picard-Lefschetz
formula and the reality of JM,1 on h2 ) and of JM,4 on ( h3 , h4 ) . Define
a path S on the punctured plane C B ~hl, h2, h3, h4~ in the following way.
Take a point h’ E ( h 1, h2 ) and a point h" E ( h3, h4 ) and connect them
with a smooth path

Put S = ,S’+ U ,S‘+, oriented counter-clockwise (see Fig. 5). Then Picard-
Lefschetz formula yields

Denote by J+M,1 the continuation of along S+ and put =

A + with A, ~c real. Then for h E S+ we have:

Then starting from h" E (h3, h4) and making one turn along S the function
JM,i(h) will change by

according to (5.1). This means that

Thus we obtain

Fig. 5.
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Hence

Now notice that / cjM is real on ( h3, h4 ) . This shows that n2 - nl = 0,

i. e. 03B44 ~ n1(03B41 + b2 ) . On the other hand b3 , 84 can be chosen as generators
of which gives ni = ~ l. We choose the orientation of 84 so

that n 1 = 1.

Remark. - There is a general method proposed by S. M. Gusein-Zade
[13], [14] and N. A’Campo [1] ] for computing the intersection matrix for
the level lines of functions of two variables (see also [3], §4). In order to
apply this method we need to compute the intersection matrix only for the
Hamiltonian (0.3) with ~c = 0. We prefer however the independent proof
stated above for the following reasons. First, our proof is in the spirit of
rest of this section. Second, we introduce explicitly the vanishing cycles
b~ which we will use later.

Although 84 and 81 + b2 represent the same class in Hl (r~) ^_~ 7~2, they
represent different elements in Hl (1,~) ^_, 7~4. The same is true for b2, b3.
Denote by pi the element [84 - b2] E Hl and by p2 - the element
[b2 - S3] E Hl (0393c). Obviously 03C11, p2 can be represented by unions of small
circles around Pi, P2 , P3. Following [22], [12] we define the function

where I’(h) = aX’ + /3Y’ + The function F(h) can be continued
analytically for any h E C B {h2, h3, h4} but the continuation depends on
the path. We can consider the domain D = ~ ~ ~ h > h,2 ~ where F can
be defined as univalent function.

For any function f(h) and h E D we denote by
f+(ho) (f-(ho)), Imho = 0 the result of the analytic continuation
of f (h) along a path with Im h > 0 (Im h  0).

In the rest of this section we will need the Wronskians
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LEMMA 5.3. - On the intervals ( h2 , h3 ) , ( h3 , h4 ) , ( h4 , ~) the imaginary
part of F has the representation

The proof essentially repeats [12] using Lemma 5.2. Denote

Define also the complex domains Dl = ~ B ~ [h3, D2 = C )
1 l~2 ~ h3] U [~4 ~ D3 - ~ B l ~h2 ~ ~4] ~ (see Fig. 6).

LEMMA 5.4. - The functions G1; G2, G3 are holomorphic and single-
valued respectively in D1, D2, D3.
The proof repeats the proof of Lemma 4.4 from [12].

Fig. 6.
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LEMMA 5.5. - The following formulas are true:

Proof. - We will write Gj without the superscripts 
(i). Take a point ho E ( h3, h4 ) . Then Picard-Lefschetz formula yields

Using that W03B3,03B4 is bilinear and antisymmetric in 03B3 and 8 and that

= 61 - 63, M;(82) = 62 (Lemma 5.2), we get M*3(W03B41,03B42)(h0) -
W03B41,03B42(h0) = - W03B43,03B42(h0). In the same manner for ho E ( h4 , oo ) we have

ImG1(ho) = W03B41,03B42 using that

Hence = -Ws3 ~s2 + ~s~ -s3+2~2,s4 ~
(ii). Consider Im G2 on the interval ( h4 , 00 ). The above argument gives

To compute Im G2 on the interval ( h2 , h3 ) we need to act on Wb~ , s2 +~3 by
(M3 1 ) * which gives Im G2 = W83,82.

(iii). Repeating the above argument we obtain for h E ( h3, h4 )

When h E (h2, h3) we have
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Lemma 5.5 is proved.

COROLLARY 5.6. - Denote ri = r2 = Then

COROLLARY 5.7. - The constant r2 is purely imaginary. The constant
r2 + 2r1 is real.

Proof. - The integral is purely imaginary on (h2, h4). The

integral 03B44 WM is real on 
Now we choose the constants 03B1 and j3 in (5.2) so that r2 ~ 0,

r2 + 2ri = 0. To specify the above construction for this special case we
need the domains

Dol = Do2 = Do3 h3] ~ .
Denote by Fo, Goi the corresponding functions F, Gi in this case.
LEMMA 5.8. - (i) The functions Goi, z = 1, 2, 3 are holomorphic and

single-valued respectively in the domains Doi .
(ii) The imaginary parts satis, fy:
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LEMMA 5.9. - The functions i = 1, 2, 3 have no zeros in the

corresponding domains D~i.

Proof. - Consider the function Goi. Let R be a big enough constant and
~ is a sufficiently small number. Denote by Dol the domain obtained from
Doi n  R} by removing circles of radius {! around h3 and h4 (see
Fig. 7). Lemma 4.6 from [12] gives that along the circle {|h| = R} the
argument of Goi increases by no more than -2~r/3 (i.e. decreases by at
least 27T/3). Near the point h4 the function has an expansion of
the type h4~.g1(h) + g2(h), with some holomorphic g.L(h). Hence
the increase of the argument of Goi along the circle |h - h4] =  can be
made arbitrarily small. On the intervals (h3 + ~, h4 - p) and (h4 + ~, oo)
the function Im Goi has no zeros as it is represented by a nonzero multiple
of the real period of Along the circle I h - ta3 ~ = O the function Im Gol
has exactly one zero. This shows that running the boundary of D~1 the
argument of Goi increases by no more than 27r - 2~r/3, hence it does not
increase. The argument principle yields that Goi has no zeros in Doi.
The functions and G03 are treated along the same lines, introducing

the corresponding domains D°2 = D~3 (see Fig. 7). Now the proof of
Theorem 5.1’ repeats literally that of Theorem 4. F of [16].

This proves the regularity of L for the case of generic Hamiltonians with
both two centres and saddles.

Fig. 7.
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6. THE CENTROID CURVE
OF THE PERTURBED STANDARD HAMILTONIAN

As we intend to apply the deformation argument described in section 1,
we start with the standard elliptic Hamiltonian (given in (3.3) by A = 0)
for which the centroid curve is a line segment. For small A > 0 we can use
results from [9] to show that L is strictly convex.

In [16] we have derived Picard-Fuchs system of equations for the

functions X, Y, M and the auxiliary function K xydxdy

(see [ 16], formula (3.5)). We recall these equations for the special case we
need, putting a = 0 and b = A:

The Hamiltonian (3.3) is invariant under the change of the variables

(~, ~, ~~ 2014~ (x, -y, -~). This implies that M and X as functions of ~
are even functions and Y and K are odd ones. Hence we can write

Dividing (6.1) by A and putting 03BB = 0, we get a system for the first

terms in (6.2)

Eliminating ~o and Yo from (6.3) we obtain Picard-Fuchs system for

Mo, Xo:
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which implies Riccati equation for ço(h) = Xo(h)/Mo(h):

Now paraphrasing Lemma 3.4 from [9] we get

LEMMA 6.1. - (i) For h E [0, 6 ) we have ~o > 2 and ~o > 0.
(ii) When h ~ 6 , we have ~o -~ and ~o 
The direct proof is based on (6.4), but in fact the statement follows

immediately from [9] noticing that our ço (h) equals 1 + R( i - h) in the
notation there. Now multiply the second equation in (6.3) by -10 and add
it to the first one. We get Xh - ( 6 hMo )’ = 0. Integrating the last
equation and using that Xo(0) = Yo(0) = Mo (0) = 0, we obtain

Hence using (6.2) for small enough A we get the asymptotics

which implies for the curvature r~ of L at (~(ja), y(h,)); h E (0, 6):

as

Returning to the initial normal form (0.3) we obtain the following theorem

THEOREM 6.2. - For p close enough to 1 the centroid curves are strictly
convex.

7. GLOBAL PHASE PORTRAITS

In this section we prove our main Theorem 1. Before that we recall £

is the line on which the divergence in (0.1) vanishes. The corresponding
equation reads -(fx + gy) = = 0. We begin with the following
simple consequence of Theorem 5.1.
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PROPOSITION 7.1. - When running Li, the tangential vector rotates within
an angle less than ~r.

Proof. - Given h, denote by f the tangential vector at the corresponding
point of L1: f = (~’ ( h), r~’ ( h) ) . From Theorem 5.1 it follows the existence

of a vector p = (r, s ) with the property that the inner product of p and .~
is non-zero for all h. Therefore f deviates with respect to p on angle less
than which proves the proposition.
Now we can use the results from sections 3 and 4 to prove

PROPOSITION 7.2. - Assume the curvature of Ll does not change its sign
and the line f is a tangent to L1 at an internal point. Then the function
I~~ (h) has exactly one simple zero in (-h~, 

Proof. - First we recall that M~~ (h), being the derivative of the period
function, is nonvanishing [8]. Denote for shortness C(/~) = I" (h)/M (h).
The phase curve (h, ~(h)) of system (2.9) is the separatrix connecting the
saddle and the node which is verified

by direct computations. Lemma 3.3 (i) yields that ((h) has in ]
either exactly one simple zero or at least 3 zeros. The latter possibility is
eliminated by Corollary 4.10 as the curve (h, ((h)) cannot have in the strip
- h~  h  - hs , w > 0 a common point with the zero isocline Fo.

COROLLARY 7.3. - Under the assumptions ofProposition 7. 2, the integral
I(h) has no zeros of multiplicity four in 
Now we are able to give the proof of Theorem 1.2 : the curvature of the

centroid curve L1 at each point is non-zero. First we recall that in view of
Theorem 1.1 the curvature of Li near its endpoints is always non-zero and
of the same sign. Choose the coordinate system in which the Hamiltonian
H has a normal form (0.3). Then Theorem 6.2 yields that for  close to 1

the centroid curve has a non-zero curvature at each point. Let us suppose
that there exists a value E (0, 1) such that:

a) the curvature of Li is nowhere zero if ~c E 1);
b) for p = the curvature of L1 at some point Po =

ho E is zero:  ( ho) = 0.
Then for ~c = the curvature (h) does not change the sign and

moreover x has at least a double zero at ho . Now we choose a perturbation
f, g in (0.1) so that the line £, on which the divergence vanishes, will be

tangential to L 1 at the point Po. Using the regularity of Li and Corollary
2.1 from [16], we conclude that the integral I(h) has at least a quadruple
zero at h = ho, which contradicts Corollary 7.3. Hence assertion a) above
holds with 0 = 0, thus proving the theorem.
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Proposition 7.1 and Theorem 1.2 immediately yield

COROLLARY 7.4. - Each line can intersect L1 in at most two points
(counting the multiplicity).

Indeed, the same is true for L2.
Now we wish to prove that each line can intersect £ = L1 U L2 in at

most two points. We let .~S and £§ denote the tangent lines to L1 at its

endpoints Zi and Ci respectively. Recall, that Ci is the centre inside the

loop, Zi is the centroid point of the loop area and that the tangent £§ passes
also through the saddle S 1. Using Proposition 7.1 and Theorem 1.2 we
see that f; and £§ do intersect at a point Oi placed from the convex side
of Li. Denote by Ri the sector formed by f; and £§ where Li lies and

by the opposite sector. The same construction applies to the second
centroid curve L2. Our goal will be achieved if we prove that L1 c R2p
and L2 C (see Fig. 8). For this we need the equations of the tangents
at the endpoints of L1, L2. Unfortunately it is extremely difficult to obtain
the equations of f; and f;. For this reason we use in the above construction
instead of the tangent £§ the line m 1 = m from the proof of Lemma 3.1.
When H is given by (0.3), the lines .~~ and m1 have equations (3.4) and
intersect at a point Oi placed in the fourth quadrant. Moreover, and
.~~ are symmetric with respect to the o.rigin; the same is true for m 1 and
m2. Then the desired result follows from the fact that the slope of each
of these four lines is positive.
As the result just proved is in fact the most essential result of the present

paper, we formulate it explicitly:

THEOREM 7.5. - Each line can intersect ,C = L1 U L2 in at most two

points (counting the multiplicity).
With the result of Theorem 7.5 in hands, we prove our main Theorem 1,

repeating the proof from [16]. In fact in order to determine the number of
the limit cycles which tend to the centres or to the saddle-loops as E ~ 0
we apply results respectively from [5] and [24], [ 15], while the number of
the cycles which tend to periodic orbits is given by the number of internal
zeros of the Abelian integral I ( h) . More precisely, we can summarize the
content of Theorems 2.1, 2.2 and 2.3 from [16] as follows:

THEOREM 7.6. - Suppose that H is a generic cubic Hamiltonian and the
centroid curve L is regular. Then the following statements hold:

(i) The number of zeros of the integral I(h) in (hs, he) is equal to
the number of internal intersection points between Land .~ (counting the
multiplicities) ;
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Fig. 8.

(ii) The number of zero coefficients in the expansion

of I(h) near the critical level h = h~ corresponding to the center C is equal
to the multiplicity of the intersection between Land .~ at C;

(iii) The number of zero coefficients in the expansion

of I (h) near the critical level h = hs corresponding to the saddle loop is
equal to the multiplicity of the intersection between Land .~ at the centroid
point Z of the loop area.
On the other hand, it is well known that
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(i) The number ni of the zeros of I(h) in (hs, he) equals to the number
of the limit cycles in (0.1) produced from the periodic annulus and tending
to the corresponding ovals H = h as e 2014~ 0.

(ii) The number ne of the zero coefficients f i , i  n~ in the expansion
of I(h) near h = he is equal to the number of the limit cycles in (0.1)
which for ~ ~ 0 tend to the centre C.

(iii) The number ns of the zero coefficients ci, i in the expansion
of I ( h) near h = hs is equal to the number of the limit cycles in (1.1)
which tend to the saddle-loop as ~ ~ 0 (see Roussarie [24]).

Since both of the centroid curves are strictly convex and by Theo-
rem 7.5 the number n of intersection points between f and L satisfies
n = ni + n~ + ns  2, Theorem 7.6 yields a bound 2 for the number of
the limit cycles in (0.1). Theorem 1 is proved.
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