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ABSTRACT. - We describe a homotopy algorithm for solving the equa-
tion - Au = F(u). To this end, we define a pseudo-inverse and a pseudo-
determinant with sufficient regularity properties, for operators of Lapla-
cian type.

RESUME. - On decrit une methode d’homotopie pour resoudre l’équa-
tion - Du = F(u). Dans ce but, on definit pour les operateurs du type
Laplacien un pseudo-inverse et un pseudo-determinant munis des pro-
prietes de regularite necessaires.

In this paper, a homotopy algorithm is given to solve the following
problem:

(*) The authors are indebted to Jean-Michel Lasry and Michele Schatzman for

many valuable suggestions.
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206 C. DEVYS, J.-M. MOREL AND P. WITOMSKI

where Q is some bounded regular domain in Rn and F E C2 (R, R) a given
function with compact support (*). More precisely, we define a homotopy
continuation method as given recently in Alexander-Yorke [3 ], Chow
and Mallet-Paret and Yorke [4 ], Eaves-Saigal [5 ], Kellog-Li-Yorke [7],
Smale [10 ] and others.

All these methods have been elaborated in order to numerically solve
finite dimensional problems of the type g(x) = x or g(x) = y. In fact,
any problem which can be shown to have a solution using topological
degree, or a certain generalization thereof, fits into the general framework
of homotopy continuation. Our aim is to generalize these methods to
infinite dimensional problems whose resolution involves Leray-Schauder
degree. Before expounding our results, let us briefly explain the finite
dimensional method worked out in the preceding papers.

Let g : RN  RN be a C2-map. Suppose we are searching for a u* such
that g(u*) = 0. For this, define a C2-homotopy G : RN x R -~ RN, such
that G(u, 1) = g(u), and assume we know some uo such that G(uo, 0) = 0.
The main idea of the method is that for « almost every » homotopy G,
the set ~ (u, ~.), G(u, À) = 0 ~ defines a curve in RN, (u(s), passing
through (uo, 0). This curve can be numerically computed until a point of
interest (~, = 1) is encountered. One moves along the curve by solving a
Cauchy problem as following:

(If A is a regular N x N-matrix, we set A* == (det A)A B and we extend
by continuity the mapping A ~ A~ to all N x N-matrix).
Then the problem of numerical computation is driven back to a usual

’ 

differential equation solver. Moreover, one usually obtains constructive
proofs for existence theorems of the Brouwer type.

Let us now return to our problem. We have to solve g(u) = 0, with
g(u) _ - ~u - F(u) and u E H~(Q) n Ho(~). Consider the following homo-
topy : 

_

(*) The compact support assumption is not so restrictive. Indeed, let F be a more

general function. In many cases (for instance under monotonicity assumptions on F),
one can find by some maximum principle a L°° - bound b for the solutions of (1].
Therefore, instead of F, we can consider a troncature of F with compact support
[- b, + b].
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207A HOMOTOPY METHOD

with G(u, À) = Du + ÀF(u) + (1 - where h E L~(Q) is arbitrary. The
associated problem is .

In order to extend the finite dimensional method expounded above,
the main difficulties are:

1) To obtain that the solution set ~ (u, ~,) ~ of (2) is a regular curve.
2) To extend in a constructive way definitions of A~ and det A to infinite

dimensional operators of the Laplacian type.
3) To show that the method provides a solution of (1).
We now summarize our results in this way, and give the plan of this paper.
First section. Using Smale’s density theorem, we prove that for most h

in L2(03A9), the set E of solutions (u, À) of (2) is a one-dimensional C1-sub-
manifold n x R (see Theorem 1).

Second section. Let h be as above, and (u(s), be a smooth arc
of solutions of (2). Then G(u(s), ~.(s)) = 0, and therefore:

Here

is a perturbation of A.
We define maps J : A ~ A# and 03B4: A ~ 03B4(A) on a set of operators

of the Laplacian type, verifying AA~ = b(A) Id, and A#A = Id. These
definitions are explicit, and they ensure that 3 and J are regular enough
to obtain classical solutions for (C).

This is the object of Theorem 2, and will be treated in a general functional
framework.

’Third Section. - Using the result of Section 1, and some compacity
property of the solution set of (2), we prove that the algorithm (C) obtained
in Section 2 accomplishes its task: it provides a t * such that ~,(t *) = 1,
and then u(t~) is a solution of (1). We show this in Theorems 3 and 4. Thus
we obtain a constructive existence proof of a solution for Problem (1).

SECTION 1

THEOREM 1. - Assume the following property :
0 is a regular value of A. + F( . ), i. e. for every solution
uEH2 n of 0394u+F(u)=0, the linear operator

(P) v -. 0394v + F’(u). u (1’) 

H2 ~ H10 ~ L2 v 
onto . °

Vol. 1, n° 4-1984.
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Then there exists a residual subset R of such that, for h in R, the set

is a one-dimensional C1-submanifold of H2 n x R.
In order to prove Theorem 1, assume first the next proposition :

PROPOSITION 1. - Suppose that, for every (u, À) in E,

is an onto linear map. Then E is a one-dimensional C1-submanifold of
H2 n x R.

Proof of Theorem 1. Let Gu and G~, be the partial derivatives of G :

Thus we have : G’(u, À) = ~.), G(u, h)) and

LEMMA 1. - ~,), as an operator from to is self adjoint
with compact resolvent, and therefore :

i ) Im A) is closed in 

dim Ker Im À)  + c~o

ii ) Ker À) == (Im ~,))1
Remark. ~,) is a Fredholm operator with index 0. _

Lemma 1 is an immediate consequence of a perturbation theorem of
Kato [5] (th. 3.17, p. 214).

In order to prove Theorem 1, it is sufficient, by Proposition 1, to show
that for almost every h in L~(Q), the map G’(u, À) is surjective for (u, ~,)
in E = ~ (u. /).), G(u, A) = 0 }.

Define the auxiliar map :

and apply to 03A8 Smale’s density theorem (Abraham-Robbin [1 ]j.

Density theorem.

Let X and Y be C~-manifolds, with X Lindeloff (every open cover of X
has a countable subcover), and T : X --~ Y a Cr-Fredholm map.

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire



209A HOMOTOPY METHOD

Suppose that r > max (0, index ~F’(x)) for every x in X. Then the set
of regular values of T, R~ _ ~ Y E Y, ( y = ~(x) ~ ~’(x) is surjec-
tive) } is a residual subset of Y.

Recall that a map ~C 1 : X -~ Y is said to be Fredholm if, for every
x E X, ~I’’(x) is a linear Fredholm operator, i. e. :

i ) Ker ~P’(~) is finite-dimensional

ii ) Im ~I’’(x) is closed and finite codimensional.
We define the index of ~F’(~) to be:

Ind ~I’’(x) = dim Ker ~’(x) - codim Im ~’(x) .

Let us first admit that Smale’s theorem applies to 03A8 with r = 2. Then,
if h E ~I’’(u, ~,) is surjective for every (u, ~,) such that

But, for such a (u, ~.), we have :

Therefore, (u, À) E E and if À =1= 1, G’(u, À) is surjective. According
to Property (P) this result still holds for ~, = 1. Then applying Proposition 1
concludes the proof of theorem 1.
We have now to verify the hypothesis of Smale’s theorem:

a) The map ~I’ is Fredholm, and index  1 for every x in X.

Indeed,

with

and

Now, by Lemma 1, 6 + ~F‘(u) = Gu(u, ~.) is a Fredholm operator with null
index and :

Thus T = (A + ~.F’(u), 0) is a Fredholm operator with index 1.

Moreover, it is well known (Lang [6 ], p. 202) that, if T is Fredholm and A
a compact linear map, then T + A is Fredholm and index (T + A) = index T.

Vol. 1, n° 4-1984.
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( Now A = 0, F(u) + if of finite rank and then compact.
I - h ,

We conclude that W’(u, h) is a Fredholm operator with index 1 .

Using Sobolev embedding, it is easy to see that

‘ 
.. -..- ..

Proof of Proposition l. We are going to use two lemmas.

LEMMA 2. - The following relations are equivalent:
i ) dim Ker À) = 1 and G(u, ~.) ~ Im ~,)

ii ) dim Ker À) = 1 and dim Ker G’(u, ~.) =1.

(A point (u, ~,) which verifies one of these assertions is said to be a turning
point).
The proof is obvious.

LEMMA 3. - G’(u, À) is surjective if and only if: 

dim Ker G’(u, ~,) = 1.

Proof. - Assume G’(u, À) is surjective. Let us consider two cases :

a) ~,) is ’surjective :
Since A) is Fredholm with index 0, we have :

dim Ker ~,) = 0 .
This implies :

and therefore is a one dimen-
sional subspace of H2 n x R.

b) À) is not surjective :
Then G(u, ~,) ~ Im À) and since dim Ker ~.) = codim Im À)

(Lemma 1), we have dim Ker ~,) =1. From Lemma 2, we obtain :

dim Ker G’(u, À) = 1.

The converse is easy to check in the same way.
Now we can achieve the proof of Proposition 1:

By Lemma 3, dim Ker G’(u, ~.) =1 for every (u, ~,) in E. We claim that
for every (u, À) in E there exists a C1-chart from a neighbourhood of (u, /).) to R
We examine two cases :

a) dim Ker Ào) = 0.

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Thus we have codim Im Ào) = 0. So Ào) is an isomorphism
from H2 n to L~(Q).

It follows from the Implicit Function Theorem that there exist a neigh-
bourhood I of ho in R, a neighbourhood V of (uo, Ào) in H2 n x R
and a C1-function qJ : I -~ H2 n Ha(~) such that:

This defines. a local chart of E at (uo, ~,o).
b) dim Ker Ào) = 1. (Then (uo, Ào) is a turning point).
Write now for u in L2(S~) : u = ui + u2 with ui e Ker Ao) and

u2 E Im Ao). In particular : uo = u1,0 + 

By Lemma 2, ~.o) ~ Im Ao) : so the restriction of G’(uo, ~,o)
to Im G’(uo, Ào) x R is an isomorphism onto L~(Q). By using the Inverse
Mapping Theorem, we easily deduce that the mapping x defined by :

is a diffeomorphism from a neighbourhood V of (uo, Ào) on a neighbourhood
W of (ul,o, G(uo, ~o)). Thus we have:

This provides a local chart of E at (uo, 

SECTION 2

A. DEFINITION OF A PSEUDO-INVERSE
AND A PSEUDO-DETERMINANT

Let H be a Hilbert space and V a closed subspace of H. Consider the
set j~ of self adjoint operators A : D(A) c H -~ H with compact resolvent,
bounded from below spectrum, and D(A) = V. For every A in s~, V is
a Hilbert space under the graph norm: ~x IIH + ~ Ax Note that if A
and B are two elements of ~, the associated graph norms are equivalent.

THEOREM 2. - There exist (and we construct explicitly) a map J:

D(J) = j~ c 2(V, H) -~ 2(H, V), that we note J(A) = A~, and a map:

such that :

1)

Vol. 1, n° 4-1984.
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ii ) If Ker A = ~ 0 ~, sgn 5(A) == ( - where p is the total multi-

plicity of the negative eigenvalues.
4) i ) 5 is locally Lipschitz from ~ to R.

ii ) J is locally Lipschitz on the subset of the elements of j~ such that
dim Ker A  1.

Remarks. - 1) The preceding properties allow us to call A~ pseudo-
inverse of A, and 5(A) pseudo-determinant. Note that if V = H = RN,
5(A) = det A and A~ is the matrix defined in Introduction.

2) It is possible to generalize the property 4 (ii ) in the following way:
4 (ii) bis: J is locally Lipschitz from A to 
The proof of this result is somewhat tedious and we shall omit it here.

Proof of theorem 2. Since A is self-adjoint with compact resolvent, it
admits an orthonormal basis of eigenvectors e2, ... , en, ... ) associated
with the eigenvalues: ~,2  ...  Àn  ..., multiple eigenvalues
being counted repeatedly.

Relatively to this basis, we write A as an infinite matrix :

Now, set N =  1 ~,
and :

where

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Clearly this definition does not depend on the chosen basis of eigen-
vectors. Note that if A is an isomorphism, we have simply : A# _ ~(A)A -1.
A trivial computation provides immediately properties 1), 2), 3). Let us
show now property 4) (i ). We first list some technical tools:

LEMMA 4. - Let A E sf, and (en)nEN defined as above, then:

Proof Let Fn be the subspace generated by (e 1, ..., en) ; clearly we have :

Let now F be an arbitrary n-dimensional subspace of V. Since

one can choose verifying ~x~H = 1.

LEMMA 5. - Let A0~A. Define on V the norm ~x~V=~x~H+~A0x~H,
and on J~(V, H) the corresponding norm ]) . Then for every pair of
elements of d, A and B, which verify:

one has :

Here Àn and /In are the nth eigenvalues of A and B respectively, multiple
eigenvalues being counted repeatedly.

Proof For every x in V, we have :

then

and therefore :

On the same way :

Vol. l, n° 4-1984.
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Let En (resp. Fn) be the subspace of V generated by the n first eigenvectors
of an orthonormal eigenvectors basis for A (resp. B).

. 

Then, for every x ~ V with !) = 1, (Ax - Bx, A-B )) x 
Hence (Ax,  (Bx, A - B Therefore :

Recall that by Lemma 4:

and

Moreover, according to (7) :

This provides relation (4). In order to check (5), we exchange A and B.

LEMMA 6. - Note 03BBn the map A ~ Àn(A) which associates to A its nth
eigenvalue, multiple eigenvalues being counted repeatedly.
Then c H) ~ R is locally Lipschitz.

Proof - 1) Fix an element Ao with eigenvalues ~.°, ..., ~,o ....
We first prove that the eigenvalues pi and Jin of an operator B in j~ are

bounded if ) ) B - A0 )v H 
1

bounded if ~ B - Ao w, H ~ 1 4.
Indeed, applying (4) to Ao and B provides :

and then :

and

Similarly we obtain by (7) :

, 2) Let us consider now two operators A and B in j~ such that :

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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From lemma 5 we deduce the following inequality:

Using the result of paragraph 1) achieves the proof.
We are now able to prove property 4 (i ) of Theorem 2:
Notice that 5(A) may be written:

Set ~,~ + ~ - ~.rr + 1 (Ao) = inf ~ ~,°(A), n E At > 1 ~.
By Lemma 6, if )) A - Ao is small enough, we have > 1,

and then :

The function ~, being locally the product of N Lipschitz functions, is still
locally Lipschitz.

Proof of property 4 (ii) of Theorem 2. Let Ao be an element of ~’ such
that dim Ker Ao  1. Two eventualities are to consider :

Since Isom (V, H) is open, there exists an open neighbourhood W of Ao
in A such that :

Thus, from the definition of A~, we have :

Upon applying property 4 (i ) and reducing W if necessary, it follows that 3 :
A --~ 5(A), A --~ A -1, and so J : A ~ A~ are Lipschitz on W.

- Note : ~, o _ 1 the greatest strictly negative eigenvalue of Ao,
A) its null eigenvalue,

and ~, o + 1 its smallest strictly positive eigenvalue.
Let y be the circle with centre 0 and radius

Vol. 1, n° 4-1984.
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By Lemma 6 and inequalities (4) and (5), there readily exists a real ~ such
that every A in W~ verifies :

i ) is the unique eigenvalue of A enclosed by y ;

ii ) dist (y, spectrum of A) >_ P . .
2

Consider, for A in W,~, the orthogonal projection Q(A) on the eigenspace
associated to Thus we have :

We wish to prove the mapping A --~ Q(A) is Lipschitz from

For this, let A and B be two elements of W,~ . We have :

then:

Now, setting ~.i = ~i(A), A# may be written in the following way :

Indeed, writing this formula relatively to the basis of eigenvectors yields
the relation:

which is obvious.

Reducing W~ if necessary, the mappings

A -~ ~~~o{A), A -~ Q(A) and A ~ {A -I- Q{A)) -1 are clearly Lipschitz on W~.
So is the mapping A -~ A~. This achieves the proof of Theorem 2.

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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B. PARAMETRIZING BY DIFFERENTIAL EQUATION (4)
THE COMPONENT

OF MANIFOLD E WHICH CONTAINS (uo, 0)

For every (u, ~,) in V x R = H2 n x ~.) _ - d. - ~,F’(u).
is a self adjoint with compact resolvent operator. Its spectrum is bounded
from below, its domain is n Ho(SZ) and it ranges in 

Upon applying Theorem 2 to this operator, we can define differential equa-
tion (8) in V : .

Readily for every solution (u(s), of (8) :

and then : (u(s), E.
We claim that differential equation (8) is locally Lipschitz on an open U

containing E.
Indeed, for every (u, À) in E: dim Ker h))  1.

Referring to Lemma 6, there exists a neighbourhood W of À)
in H) such that for every A in W dim Ker A  1.

But the mapping (u, ~,) -~ À) is continuous from V x R to H).
Then by Lemma 6 there exists a ball in V x R with centre (u, À) such
that for every (v, ,u) in Bu,À we still have:

Thus, the following mappings are locally Lipschitz:

Vol. l, n° 4-1984.
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Equation (8) is therefore locally Lipschitz on U. Then the branch of E
containing (uo, 0) can be partially parametrized by the maximal solu-
tion (u(s), of (8).

SECTION 3

THE CONTINUATION METHOD.
DEFINED ABOVE PROVIDES A POINT (u(t*), ~,(t*))

SUCH THAT ~.(t*) = 1 (so u(t*) IS A SOLUTION OF (1))

THEOREM 3. - Under the assumptions of Theorem 1, there exists a
residual set R of L2(S~) such that for every h in R the maximal solution
(u(s), of the differential equation (8) associated with h verifies :

Proof Let R be the residual set whose existence is ensured by Theo-
rem 1. Fix h in R. Thus E, defined as in the Introduction is a one-dimen-
sional C1-submanifold of H2 n x f~.

Following a classical way of the homotopy method, we wish to prove
successively that :

A. For s > 0 small enough, À(s) > 0.
B. Solution (u(s), À(s)) for s > 0 does not « recross » the hyperplane

H2 x Ho(S~) x ~ 0 ~.
C. Trajectory (u(s), cannot be entirely enclosed in

Theorem 3 follows immediately from A., B., C.

Proof of A. Since all the eigenvalues of Laplacian are strictly positive,
we obtain by Theorem 2 (3 (ii )) :

Proof of B. Set t = inf ~ s E ]0, T [, = 0 ~. Thus by A., t > 0, and
> 0 for s  t. Therefore, if t  + oo, ~,’(t )  0.

But ~,‘(t ) = 5( - G; (u(t ), o)) _ ~( - A) > 0.
This is a contradiction.

Proof of C. First of all, prove the following assertions :

ASSERTION 1. - The set D = E n (H2 n x [o, 1 ]) is compact in
H2 n x [R.

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Indeed, for every (u, A) in D,

Therefore, since Q is bounded,

for some constant C. Using Friedrichs-Poincare’s inequality (Adams [2]),
it follows that :

Thus D is bounded in x IH, and then relatively compact in L2(S~) x !?.
Let now (un; Àn)nEN be a sequence in D. Then there exists a subsequence
which we still note (un, that converges in L~(Q) x R to some (u, ~,)
in L~(Q) x M. Thus we have:

in un ~ u in 

Since ( - A) is a closed operator: L2(SZ -~ U E H2 n and
- Du = ~,F(u) + ( 1- ~)h. (Then, (u, À) e D).
Now we have :

and therefore :

ASSERTION 2. - Set, for (u, À) E E,

K (u, À) is the second member of (8). Then K(u, À) never vanishes for (u, À) in E.
Indeed, dim Ker ~,)  1. Consider two cases :

a) Dim Ker ~,) _ ~ 0 ~. Then, by Theorem 2 (3 (i )), ~,)) ~ 0.
b) Dim Ker À) = 1. Let ~,~ be the single null eigenvalue of ~,). ‘

(See the definition of J : A ~ A~).
Assume, by contradiction, the trajectory (u(s), is contained in D.

Then D being compact, there exists a sequence such that : .

Vol. l, n° 4-1984.
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Thus, by assertion 2 K(u*, ~,~‘) ~ 0, and Theorem 4 below provides an
immediate contradiction and achieves the proof of Theorem 3.

THEOREM 4. - Let H be a Hilbert space, and E a one-dimensional closed
C°-submanifold of H. Let K be a locally Lipschitz mapping from some
open set U =3 E to H. Assume the maximal solution ( y(t of the diffe-
rential system

remains in E and is not periodic.

Then every adherent point y* of y(t ) as t -~ T is a stationary point of (9)
(i. e. K( y*) = 0).

Proof - Assume, by contradiction, that for some sequence 
converging to T one has:

Clearly, we can suppose that is an increasing sequence. Note that,
since E is closed, y* E E.

STEP 1. - Define an open ball B in H such that B c U, with centre y*
and radius r small enough to ensure that the following conditions are rea-
lized :

b) There exists t E [0, T [ such that (Indeed, the trajectory is
not stationary).

c) There is an homeomorphism h : B n E -~ ]o,1 [. (h is a local chart
of E).

STEP 2. - Since B, we can choose sn such that y(sn) E B and sn > ~
Now consider the maximal interval containing sn, I = ]to, tl[, such that
y(t) E B for every t in I. I is open since, at every point of H, there exists
a local solution of (9).

Moreover: ........ t  to  -Sn  t 1.

STEP 3. - We claim that t 1  T, i. e. yet) « leaves » B for some t > t 1.
If not, the whole trajectory would be enclosed in B. Apply

now a classical property of the locally Lipschitz differential equations:
since y(t ) does not explode as t ~ T, we would have : T = + ~. But, by c) :

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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and then

Thus !! --~ +00, therefore y(t ) would leave B, which contradicts
. 

our assumption.

STEP 4. - We now prove that y : ]to, ti [ -~ E n B is onto, i. e. ho y :

]t 0, ti [ ~ ]0, 1 [ is onto. First remark that since the solution y(t) of (9)
is not periodic, the mapping t -~ y(t) is one to one. Thus the map hoy:

ti [ ~ ]0, 1 [ is one to one, continuous and therefore monotone. Then
it has a limit Ào as t ~ and a limit ~,1 as t --~ 

Necessarily Ao = 0. If not, as t -~ to, h( y(t )) would remain in a compact
interval ~,o + E ].
Then yet) would remain in the compact h -1( [~.o, ~o + E ]) and would

admit some adherent point in this compact as t -~ to.
We would obtain: ~o + E ]) c B. This contradicts the

definition of to. In the same way, we can prove ~.1 == 1.

STEP 5. - Let us show now that yet) « returns » in B for some t > t 1.
Thus it will « pass again » by some point of the trajectory, and this contra-
dicts the nonperiodicity assumption.

Let sp be some element of the sequence (Sn)nEN such that sp > tl and
y(sp) E B n E. Such a sp exists by Step 3.
From Step 1 c), there exists i in ]0, 1 [ such that : y(sp) = h -1(z) and then :

h ° y(sp) = i E ]0, 1 [. But, by Step 4, we can find t2 in ]to, ti [ such that
h ° y(t2) = T.
Thus y(sp) = y(t2) with s p > t2. This achieves the proof.

’ 
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