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ABSTRACT. — We describe a homotopy algorithm for solving the equa-
tion — Au = F(u). To this end, we define a pseudo-inverse and a pseudo-
determinant with sufficient regularity properties, for operators of Lapla-
cian type.

REsuME. — On décrit une méthode d’homotopie pour résoudre I’équa-
tion — Au = F(u). Dans ce but, on définit pour les opérateurs du type
Laplacien un pseudo-inverse et un pseudo-déterminant munis des pro-
priétés de régularité nécessaires.

In this paper, a homotopy algorithm is given to solve the following

problem:
) —Au=Fu in Q
u=0 on 0Q,

(*) The authors are indebted to Jean-Michel Lasry and Micheéle Schatzman for
many valuable suggestions.
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206 C. DEVYS, J.-M. MOREL AND P. WITOMSKI

where Q is some bounded regular domain in R" and F e C? (R, R) a given
function with compact support (¥). More precisely, we define a homotopy
continuation method as given recently in Alexander-Yorke [3], Chow
and Mallet-Paret and Yorke [4], Eaves-Saigal [5], Kellog-Li-Yorke [7],
Smale [/0] and others.

All these methods have been elaborated in order to numerically solve
finite dimensional problems of the type g(x) = x or g(x) = y. In fact,
any problem which can be shown to have a solution using topological
degree, or a certain generalization thereof, fits into the general framework
of homotopy continuation. Qur aim is to generalize these methods to
infinite dimensional problems whose resolution involves Leray-Schauder
degree. Before expounding our results, let us briefly explain the finite
dimensional method worked out in the preceding papers.

Let g: RN — RN be a C2-map. Suppose we are searching for a u* such
that g(u*) = 0. For this, define a C2-homotopy G:RN x R — RY, such
that G(u, 1) = g(u), and assume we know some ug such that G(ug, 0) = 0.
The main idea of the method is that for « almost every » homotopy G,
the set {(u, ), G(u, A) = 0} defines a curve in RN, (u(s), A(s))sr, passing
through (uy, 0). This curve can be numerically computed until a point of

interest (A = 1) is encountered. One moves along the curve by solving a
Cauchy problem as following:

du
= (G})*Giu, 4)

ds
(@) da

“2 = — det [Glu, 2]
ds .

(©), A0)) = (u0,0) .

(If A is a regular N x N-matrix, we set A* = (det A)A™?, and we extend
by continuity the mapping A — A* to all N x N-matrix).

Then the problem of numerical computation is driven back to a usual
differential equation solver. Moreover, one usually obtains constructive
proofs for existence theorems of the Brouwer type.

Let us now return to our problem. We have to solve g(u) = 0, with
g(u) = — Au — F(u) and u e H%(Q) n H(Q). Consider the following homo-
topy: :

G:H}(Q) nHYQ) x R - LYQ),

(*) The compact support assumption is not so restrictive. Indeed, let F be a more
general function. In many cases (for instance under monotonicity assumptions on F),
one can find by some maximum principle a L® — bound 4 for the solutions of (1].

Therefore, instead of F, we can consider & troncature of F with compact support
[— b, + bl
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A HOMOTOPY METHOD 207

with G(u, 1) = Au + AF(u) + (1 — A)h, where he L¥Q) is arbitrary. The
associated problem is
2 —Au=AFw + (1 — Ak in Q,
( u=0 on Q.
In order to extend the finite dimensional method expounded above,
the main difficulties are:
1) To obtain that the solution set {(u, 4)} of (2) is a regular curve.
2) To extend in a constructive way definitions of A* and det A to infinite
dimensional operators of the Laplacian type.
3) To show that the method provides a solution of (1).
‘We now summarize our results in this way, and give the plan of this paper.
First section. — Using Smale’s density theorem, we prove that for most s
in L%(Q), the set E of solutions (u, A) of (2) is a one-dimensional C*-sub-
manifold of H*(Q) n H{() x R (see Theorem 1).

Second section. — Let h be as above, and (u(s), A(s))sr be a smooth arc
of solutions of (2). Then G(u(s), A(s)) = 0, and therefore:
G) Giu(s)), A$)'(s) + Giu(s), ANA'(s) = 0.
Here Gi(u, 1): H* nH} — L¥Q)

v - Av + AF'(uv
is a perturbation of A.

We define maps J: A — A* and 6: A - 5(A) on a set of operators
of the Laplacian type, verifying AA* = §(A) Id, and A*A = §(A) Id. These
definitions are explicit, and they ensure that é and J are regular enough
to obtain classical solutions for (C). -

This is the object of Theorem 2, and will be treated in a general functional
framework.

-Third Section. — Using the result of Section 1, and some compacity
property of the solution set of (2), we prove that the algorithm (C) obtained
in Section 2 accomplishes its task: it provides a t* such that A(t*) =1,
and then u(t*) is a solution of (1). We show this in Theorems 3 and 4. Thus
we obtain a constructive existence proof of a solution for Problem (1).

SECTION 1

THEOREM 1. — Assume the following property:
0 isaregular value of A. +F(.), i. e. for every solution
ue H? A HY(Q) of Au+F(u)=0, the linear operator
(®) v - Av+Fuov
{ H2AHY > 12 1s onto.

Vol. 1, n° 4-1984.



208 C. DEVYS, J.-M. MOREL AND P. WITOMSKI

Then there exists a residual subset R of L%(Q), such that, for hin R, the set
E={ (u, )eH? n H{(Q) xR, G(u, )=Au+AFu)+(1—AHh=0}

is a one-dimensional C'-submanifold of H2 ~ H{(Q) x R.
In order to prove Theorem 1, assume first the next proposition:

PROPOSITION 1. -—— Suppose that, for every (u, ) in E,
G'u, A): HEAnHHQ) x R - LQ)
is an onto linear map. Then E is a one-dimensional C'-submanifold of
H? nH}(Q) x R.
Proof of Theorem 1. — Let G}, and G/, be the partial derivatives of G:
Giu, 1): H2 n HY{(Q) — L*(Q)
v = Giu, A)v = Av + AF'(up .
G(u, 4): R L%Q)
# = Giu, Hu = pF(u) — h).
Thus we have: G'(u, 1) = (Gi(u, A), G’(u, 1)) and
G'(u, v, W=Av+ AF' (wp+ u(Fw)—h) for veH?nHQ) x R.

LemMa 1. — Gi(u, A), as an operator from L*(Q) to 1.3(Q), is self adjoint
with compact resolvent, and therefore:

—
—

i) Im Gl(u, A) isclosedin L%Q)
dim Ker G/(u, A)=codim Im Gl(u, }) < + oo
ii) Ker G, 1) = (Im G(u, 2)*

Remark. — Gi(u, A) is a Fredholm operator with index 0.

Lemma 1 is an immediate consequence of a perturbation theorem of
Kato [5] (th. 3.17, p. 214).

In order to prove Theorem 1, it is sufficient, by Proposition 1, to show
that for almost every h in L2(Q), the map G'(u, A) is surjective for (u, A)
in E={(A),Gu i =0}

Define the auxiliar map:

Y HAH Q) x R\{1}=X > LAY =Y
Au + AF(u)

A—=1

and apply to ¥ Smale’s density theorem (Abraham-Robbin [7]).

(u, ) - Y 4) =

Density theorem.

Let X and Y be C™-manifolds, with X Lindel6ff (every open cover of X
has a countable subcover), and ¥ : X — Y a C"-Fredholm map.

Annales de I’ Institut Henri Poincaré - Analyse non linéaire



A HOMOTOPY METHOD 209

Suppose that r > max (0, index ¥’(x)) for every x in X. Then the set
of regular values of ¥, Ry = { yeY, Vxe X, (y=Y(x) = ¥(x) is surjec-
tive) } is a residual subset of Y.

Recall that a map WC':X — Y is said to be Fredholm if, for every
xeX, W(x) is a linear Fredholm operator, i. ¢.:

i) Ker W(x) is finite-dimensional
i) Im ¥(x) is closed and finite codimensional .
We define the index of ¥'(x) to be:

Ind ¥'(x) = dim Ker ¥/(x) — codim Im ¥'(x).

Let us first admit that Smale’s theorem applies to W with » = 2. Then,
if heRy, W(u, A) is surjective for every (u, A) such that

Y(u, A)=h (= Gu,A)=0,1#1).

But, for such a (u, 1), we have:

W, A= (¥, 4, ¥ilu, 4)= (

A+ AF' (1) FluYA— )—(Au+/1F(u))>
i—1 (A —1)?
= Ti—I(A+F (), Fu)—h) = %G’(u, A).

Therefore, if h e Ry, (u, ) e Eand if 1 # 1, G'(u, A) is surjective. According
to Property (P) this resuit still holds for 4 = 1. Then applying Proposition 1
concludes the proof of theorem 1.

We have now to verify the hypothesis of Smale’s theorem:

a) The map ¥ is Fredholm, and index ¥'(x) < 1 for every x in X.
Indeed,

Y, 4) = (Yiw, 4), 0) + (0, ¥, 1)

Au + AF(u)
1_1(A+/1F( )_1<0,F(u)+—1_/1 >
with  (A+AF'(u), O)v, W=Av+AF'(up for (v, WeHINH3Q) x R
and (o, Flu)+ %)( )= [F(u)+ Ti—z (Au+/1F(u))] u

Now, by Lemma 1, A+ AF'(1)=G/(4, 4) is a Fredholm operator with null
index and:
Ker (A + AF’(u), 0) = Ker (A + AF'(u)) x R
Im (A + AF'(1),0) = Im (A + AF'(w).
Thus T = (A + AF’(u),0) is a Fredholm operator with index 1.
Moreover, it is well known (Lang [6 ], p. 202) that, if T is Fredholm and A
acompact linear map, then T + Ais Fredholm and index (T + A)=index T.

Vol. 1, n° 4-1984.



210 C. DEVYS, J.-M. MOREL AND P. WITOMSKI

Au+ AF(u)\ . .
Now A =1{0,F(u) + R if of finite rank and then compact.
We conclude that W'(u, 4) is a Ffedholm operator with index 1.
b) ¥ is C:X - Y.

Using Sobolev embedding, it is easy to see that
F- HY(Q) - L¥Q)
' u —» Fou

is C? Then¥ is C*:X - Y.

Proof of Proposition 1. — We are going to use two lemmas.

Lemma 2. — The following relations are equivalent:
i) dim Ker Gj(u, A) =1 and G%(u, 1) ¢ Im Gi(u, 1)
ii) dim Ker G[(u,4) =1 and dim Ker G'(u, A)=1.

(A point (u, 4) which verifies one of these assertions is said to be a turning
point).
The proof is obvious.

LemMa 3. — G'(u, A) is surjective if and only if:
dim Ker G'(u, 1) = 1.
Proof. — Assume G’(u, 4) is surjective. Let us consider two cases:
a) G,(u, A)is surjective:
Since Gi(u, 4) is Fredholm with index 0, we have:

dim Ker Gl(u, ) =0.
This implies :
G'(u, v, W) =0 = v=— (Giu, 1)) (4G, 4)),

and therefore Ker G'(u, ))=R((G(u, A)) " *G%(u, A), —1) is a one dimen-
sional subspace of H> n H}(Q) x R.
b) Gi(u, 2) is not surjective:

Then G(u, A) ¢ Im G/(u, A) and since dim Ker G(u, ) =codim Im Gj(u, 1)
(Lemma 1), we have dim Ker G)(u, A)=1. From Lemma 2, we obtain:
dim Ker G'(y, 1) = 1.

The converse is easy to check in the same way.
Now we can achieve the proof of Proposition 1:

By Lemma 3, dim Ker G’(y, )=1 for every (u, 4) in E. We claim that

for every (4, A) in E there exists a C!-chart from a neighbourhood of (4, A)toR.
We examine two cases:

a) dim Ker Gi(ug, Ag) = 0.

Annales de I'Institut Henri Poincaré - Analyse non linéaire



A HOMOTOPY METHOD 211

Thus we have codim Im Gi(uo, 49) = 0. So Gi(uy, o) is an isomorphism
from HZ n H}(Q) to LA(Q).

It follows from the Implicit Function Theorem that there exist a neigh-
bourhood I of 4, in R, a neighbourhood V of (4, 4¢) in H2 n H§(Q) x R
and a Cl!-function ¢ :1 — H? n HYQ) such that:

{ G, ) =0 _ { (u, 4) = (@(4), 4)
(u, eV Ael
This defines -a local chart of E at (ug, 4o).

b) dim Ker G)(ug, 4¢) = 1. (Then (uo, 4o) is a turning point).

Write now for u in L%(€Q): u = u; + u, with u; € Ker Gj(ug, A¢) and
u, € Im Gl(ug, 4o). In particular: ug = uy o + s 0.

By Lemma 2, G’(ug, A¢) & Im Gi(ug, Ao): so the restriction of G'(ug, 4¢)
to Im G’(uo, A0) X R is an isomorphism onto L*(Q). By using the Inverse
Mapping Theorem, we easily deduce that the mapping y defined by:

(u’ /1) = (ul + Us, /1) - (uh G(u, /1)) = X(ua /1)

is a diffeomorphism from a neighbourhood V of (44, 40) on a neighbourhood
W of (13,9, G(ug, 4o)). Thus we have:

{ G, 4) =0 { (u, A) = " '(uy, 0)
wheV | (@,0)eW

This provides a local chart of E at (ug, 4o).

SECTION 2

A. DEFINITION OF A PSEUDO-INVERSE
AND A PSEUDO-DETERMINANT

Let H be a Hilbert space and V a closed subspace of H. Consider the
set o/ of self adjoint operators A : D(A) « H — H with compact resolvent,
bounded from below spectrum, and D(A) = V. For every A in &, V is
a Hilbert space under the graph norm: || x {lg + || Ax |jz. Note that if A
and B are two elements of o7, the associated graph norms are equivalent.

THEOREM 2. — There exist (and we construct explicitly) a map J:
DJ) = o/ =« #(V,H) - Z(H,V), that we note J(A) = A%, and a map:
0: D) = « Z(V,H) - R, 0:A = 6(A),

such that:
1) AA? = 5(A)Idy

Vol. 1, n® 4-1984.



212 C. DEVYS, J.-M. MOREL AND P. WITOMSKI

2) AFA = §(A) Idy
3) 1) KerA # {0} < 5(A) =0
ii) If Ker A = {0}, sgnd(A) = (— 1)?, where p is the total multi-
plicity of the negative eigenvalues.
4) i) 6 1s locally Lipschitz from &/ to R.

it) J is locally Lipschitz on the subset of the elements of .« such that
dim Ker A < L.

Remarks. — 1) The preceding properties allow us to call A* pseudo-
inverse of A, and 8(A) pseudo-determinant. Note that if V=H = RN,
8(A) = det A and A* is the matrix defined in Introduction.

2) It is possible to generalize the property 4 (ii) in the following way:

4 (ii) bis: § is locally Lipschitz from «/ to Z(H, V).

The proof of this result is somewhat tedious and we shall omit it here.

Proof of theorem 2. — Since A is self-adjoint with compact resolvent, it
admits an orthonormal basis of eigenvectors (e, e,, . . ., &,, . . .) associated
with the eigenvalues: 1; < A, < ... < 4, < ..., multiple eigenvalues
being counted repeatedly.

Relatively to this basis, we write A as an infinite matrix:

and:
N
Ai
i=1 N
i1
A;
i=1 N 0
i£2
i=1
0 i#N 8(A)
AN+ 1 o(A)
AN+ 2
N

where 8(A) = H A

i=1

Annales de I’Institut Henri Poincaré - Analyse non linéaire



A HOMOTOPY METHOD 213

Clearly this definition does not depend on the chosen basis of eigen-
vectors. Note that if A is an isomorphism, we have simply: A*=5(A)A " L.
A trivial computation provides immediately properties 1), 2), 3). Let us
show now property 4) (i). We first list some technical tools:

LemMMa 4. — Let Ae o, and (A )nens (enlnen defined as above, then:
in=inf ( sup (Ax, x)u).

dimF=n xeF
Fev  lx||x=1

Proof.— Let F, be the subspace generated by (e, . . ., e,); clearly we have:
sup  (Ax, X)u = Ay.
T
Let now F be an arbitrary n-dimensional subspace of V. Since
dmFnF,>1,
one can choose x e F n FL; verifying | x |ly = 1.
Thus: x = 'inei and then (Ax, X)g = z}ﬁx? > A,

izn izn

LEMMA 5. — Let Ay e .o7. Define on V thenorm || x fly =l x [lu + I} Aox ||u,
and on Z(V, H) the corresponding norm || . |lv,u. Then for every pair of
elements of &/, A and B, which verify:

1
HA—Aonv,Hs% and 1B Aol < 5.
one has:
@ <t lA—Blvu @+ 2sup (Il D)
) e < Ao+ 1A = Bllyw @+ 25up (Al /nl).

Here A, and p, are the n'* eigenvalues of A and B respectively, multiple
eigenvalues being counted repeatedly.

Proof. — For every x in V, we have:
| Aox|la < | Ax llu + 1A — Ao llvalix v,
then I Agxlln = Il Ax s + 5 (1 xlls + [ Aax
and therefore:
6) lAox [la < 2| Ax flu + I Xl
On the same way:
(7) | Aox lu < 21| Bx {lu + [1 X |l

Vol. I, n® 4-1984,



214 C. DEVYS, J.-M. MOREL AND P. WITOMSKI

Let E, (resp. F,) be the subspace of V generated by the n first eigenvectors
of an orthonormal eigenvectors basis for A (resp. B).
~ Then, for every xe V with || x[ly = 1, (Ax—Bx, x)u<||A-B |y u |l x |lv.
Hence (Ax, x)u<Bx, x)u+l|A — B lly.u(l + | Aox|ln). Therefore:
sup  (Ax, x)y < sup - (Bx, x)u + HA=Blvu sup (1+{[Aox|ln).
el 1= 1 el = 1 llxlls=1

Recall that by Lemma 4:
A = sup (Ax, x)g

xeF,,
fx[[m=1
and
Ba = sup (Bx,x)u

xeF,
Hxlls=1
Moreover, according to (7):

sup [ Aox|ln < 2sup [|Bx{lp+1<2sup(lpl[ml) +1.

xeFn xeFn
Ixla=1 xllg=1

This provides relation (4). In order to check (5), we exchange A and B. »;

LeMMa 6. — Note A, the map A — A,(A) which associates to A its n't
eigenvalue, multiple eigenvalues being counted repeatedly.
Then 4,: o < Z(V,H) — R is locally Lipschitz.

Proof. — 1) Fix an element A, e/, with eigenvalues A9, ..., A0 .. ..
We first prove that the eigenvalues u; and u, of an operator B in & are

1
bounded if || B — Ag llyu < S

Indeed, applying (4) to A, and B provides:
o 1
A7 <y +5(1 +fuil)
and then: Uy =223 -1 af p, <0,

1
and Hy = 5(2/1? -1 G p>0).
Similarly we obtain by (7):
' o, L 0 0
tn < Ay +5(1 +sup (A7), [ 4n ]).
2) Let us consider now two operators A and B in & such that:

1 1
HA — Apglive < 2 and IB~Apllvu< e

Annales de I’Institut Henri Poincaré - Analyse non linéaire



A HOMOTOPY METHOD 215

From lemma 5 we deduce the following inequality:

[n—tn| < IA=Bilvu@+sup (1 4 1 Al i | pa])).

Using the result of paragraph 1) achieves the proof.
We are now able to prove property 4 (i) of Theorem 2:
Notice that §(A) may be written:

o0

N & P ) {e(z):z if 1<1
()—H(i( ) where 6 =1 if A1>1

i=1

Set /1]91+1 - '{N+1(A0) = lnf{ AS(A), neN*, /1,? > 1 }
By Lemma 6, if || A — Ag |lv,u is small enough, we have Ay, (A) > 1,

and then:
N

o(A) = ﬂ B(2(A)) -

The function d, being locally the product of N Lipschitz functions, is still
locally Lipschitz.

Proof of property 4 (ii) of Theorem 2. — Let A, be an element of .o such
that dim Ker A, < 1. Two eventualities are to consider:

1) KerA():{O}.

Since Isom (V, H) is open, there exists an open neighbourhood W of A,
in &/ such that:
AeW = KerA={0}.

Thus, from the definition of A*, we have:
AeW = AP =§A)A L.

Upon applying property 4 (i) and reducing W if necessary, it follows that o:
A - 8(A), A - A' andsoJ: A — A*are Lipschitz on W.

2) Dim Ker A, = 1.

- Note: A2 -, the greatest strictly negative eigenvalue of A,
A% its null eigenvalue,
and 29 +1 its smallest strictly positive eigenvalue.
Let y be the circle with centre 0 and radius

. b1
p = inf (—OT—I AL 1) oriented in the direct sense .

Let W, = {Aeo, ||A—Aglvu<nl

Vol. 1, n° 4-1984.



216 C. DEVYS, J.-M. MOREL AND P. WITOMSKI

By Lemma 6 and inequalities (4) and (5), there readily exists a real  such
that every A in W, verifies:

i) A;(A)is the unique eigenvalue of A enclosed by 7;

ii) dist (y, spectrum of A) > -g

Consider, for A in W,, the orthogonal projection Q(A) on the eigenspace
associated to A;(A). Thus we have:

2il1
We wish to prove the mapping A — Q(A) is Lipschitz from
W,c ZV,H) - ZH,V).
For this, let A and B be two elements of W,,. We have:

Q(A) = Lj (z — A)y"'dz  (see Kato [5]).

I Q(A)—-Q(B) lny < ;—HLH (z—=A)"'—(z=B)" ! luyldz],

then:

I QA)—QB) llny < 2HJ =2 Nuy Il A=Blvullz=B)"" lluy -

C
Therefore || Q(A) — QB) |lgy < —ll A—-Bllvu-

Now, setting 1;=A/A), A* may be written in the following way:

= (] Jow-

Indeed, writing this formula relatively to the basis of eigenvectors yields
the relation:

) + ANA + QA)~"

0 0 |
0. AA . 1
. /"1 "
Af= oy — OB (A Fomr
= (l-)—lHi0 +3(A) 1+4, 1
i#io Aig+ 1
0 0 0

which is obvious.

Reducing W, if necessary, the mappings A — n 84), A - d(A),

i#ip
A > A (A), A - QA)and A - (A+Q(A))~! are clearly Lipschitz on W,
So is the mapping A — A*. This achieves the proof of Theorem 2.

Annales de I Institut Henri Poincaré - Analyse non linéaire



A HOMOTOPY METHOD 217

B. PARAMETRIZING BY DIFFERENTIAL EQUATION (4)
THE COMPONENT
OF MANIFOLD E WHICH CONTAINS (g, 0)

For every (u, ) in V x R = H> n H{(Q) x R, —Gju, )= —A. —IF'(u).
is a self adjoint with compact resolvent operator. Its spectrum is bounded
from below, its domain is V=H? n H}(Q) and it ranges in H=L%).
Upon applying Theorem 2 to this operator, we can define differential equa-
tion (8) in V:

du

7 &) = [Gulus), M) FGuls), Als))

di '
T (8) = (= Gilu(s), As))
s
((0), A0)) = (uo, 0).
Readily for every solution (u(s), A(s))sefo. 1y Of (8):
Glu(s), As)) = Gluo, 0) = 0,

and then: (u(s), A(8))sero, 1 = E.

We claim that differential equation (8) is locally Lipschitz on an open U
containing E.

Indeed, for every (u, A) in E: dim Ker (Gj{u, 4)) < 1.

Referring to Lemma 6, there exists a neighbourhood W of Gi(u, A)
in #(V, H) such that for every A in W n &/ : dim Ker A < 1.

But the mapping (u, ) —» Gi(u, A)is continuous from V x R to Z(V, H).
Then by Lemma 6 there exists a ball B, ; in V x R with centre (u, 4) such
that for every (v, #) in B, ; we still have:

dim Ker (Gi(v, w)) < 1.

Set now: U = U B,;-

(4, A)eE

Thus, the following mappings are locally Lipschitz:

(, A) = Guw, 4) (@, 4) = Gi(u, 4)
{UCVX[RR—»,%(V,H) {UchR—»E(H,V)
{ A - AF A - 5(A)

G U) = Z(V,H) > Z(H,V) { GU)c Z(V,H) - R.

Vol. 1, n° 4-1984.



218 C. DEVYS, J.-M. MOREL AND P. WITOMSKI

Equation (8) is therefore locally Lipschitz on U. Then the branch of E
containing (1o, 0) can be partially parametrized by the maximal solu-
tion (u(s), A(S))seo,1; Of (8).

SECTION 3

THE CONTINUATION METHOD |
DEFINED ABOVE PROVIDES A POINT (u(*), A(t*))
SUCH THAT i(r*) = 1 (so u(t*) IS A SOLUTION OF (1))

TuEOREM 3. — Under the assumptions of Theorem 1, there exists a
residual set R of L*Q) such that for every h in R the maximal solution
((8), A())sero,ip of the differential equation (8) associated with h verifies:

— Au(t*)) = Fu(t*))
u(t*) = H? n HY(Q)
Proof. — Let R be the residual set whose existence is ensured by Theo-

rem 1. Fix & in R. Thus E, defined as in the Introduction is a one-dimen-
sional C!-submanifold of H? n H}(Q) x R.

Following a classical way of the homotopy method, we wish to prove
successively that:

I*<T, Mt*) =1 and {

A. For s > 0 small enough, i(s) > 0.
B. Solution (u(s), A(s)) for s > 0 does not « recross » the hyperplane
H? x H{Q) x {0}
C. Trajectory (u(s), A(s))seo,;f cannot be entirely enclosed in
H?2 n HYQ) x [0,1].
Theorem 3 follows immediately from A., B., C.

Proof of A. — Since all the eigenvalues of Laplacian are strictly positive,
we obtain by Theorem 2 (3 (ii)):

dAi
E(O) = 0(— Gi(ue,0)) = 6(— A) > 0.

Proof of B. — Set t = inf { s€ 10, T{, A(s) = 0 }. Thus by A., ¢ > 0, and
Ms) > 0 for s < t. Therefore, if t < + o0, A'(t) < 0.

But A(t) = 8(— Giu(t),0)) = 8(— A) > 0.

This is a contradiction.

Proof of C. — First of all, prove the following assertions:

ASSERTION 1. — The set D = E n (H? n HE(Q) x [0, 1]) is compact in
H? n H{(Q) x R.
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Indeed, for every (u, 4) in D,
— Au = AF(u) + (1 — Ah.

Thus || Vull: < 2j Fuyudx + || Az f wllez.
Therefore, since Q is bounded,
| Vullza < ClIFllew Nl + [Hh Il ulice

for some constant C. Using Friedrichs-Poincaré’s inequality (Adams [2])
it follows that:

>

I Vullee < C.

Thus D is bounded in H)(Q) x R, and then relatively compact in L2(Q) x R.
Let now (u,; Ay be a sequence in D. Then there exists a subsequence
which we still note (t,, Anen, that converges in L*(Q) x R to some (u, A)
in L2(Q) x R. Thus we have:

—Auy=AFu)+(1—=A)h = AF@)+(1—Ah in L*Q) u, - u in LYQ).

Since (— A) is a closed operator: Lz\(Q - L*Q), ue H> n HY(Q), and
— Au=AFu)+(1—A)h. (Then, (u, ) e D).

Now we have: )
u, - u in L3*Q)),

Au, = Au in L2Q),
and therefore: :
u, —» u in H?~HQ).

ASSERTION 2. — Set, for (u, A)eE,

K(u, 2) = [(Giu, 1)*Gi(u, 4), 8(— Gifu, 1)].

K (4, A) is the second member of (8). Then K(u, A) never vanishes for (4, A)in E.
Indeed, dim Ker G(u, 1) < 1. Consider two cases:
a) Dim Ker Gj(u, A) = {0 }. Then, by Theorem 2 (3 (i)), 8(G/(u, 1)) # 0.
b) Dim Ker Gj(u, 2) = 1. Let A, be the single null eigenvalue of G(u, A).
N
Then Hii(G,’,(u, A) # 0, and therefore (Gi(u, ))* £ 0
i#ip
i=1

(See the definition of J: A — A¥.

Assume, by contradiction, the trajectory (u(s), A(s))seo,17 1s contained in D.
Then D being compact, there exists a sequence (s,),.n Such that:

s, > T as n -
(u(sy), As,) — (u*, A*) forsome (u* A*) in D.
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Thus, by assertion 2 K(u*, A*) # 0, and Theorem 4 below provides an
immediate contradiction and achieves the proof of Theorem 3.

THeOREM 4. — Let H be a Hilbert space, and E a one-dimensional closed
CPsubmanifold of H. Let K be a locally Lipschitz mapping from some
open set U o E to H. Assume the maximal solution ( y()).o,1; Of the diffe-
rential system

{ y(2) = K(y(t))
W0) = yoeE

Then every adherent point y* of y(t)ast — T is a stationary point of (9)
(i e. K(y*) = 0).

©)

remains in E and is not periodic.

Proof. — Assume, by contradiction, that for some sequence (Snnen
converging to T one has:

y(s,) — y* and K(y*) # 0.

Clearly, we can suppose that (s,).n 1S an increasing sequence. Note that,
since E is closed, y* € E.

STEP 1. — Define an open ball B in H such that B < U, with centre y*

and radius r small enough to ensure that the following conditions are rea-
lized:

1 —
a) (K(y), K(y*)) = S [1K(y*) I>,  VyeB.

b) There exists te [0, T[ such that y(f)¢ B. (Indeed, the trajectory is
not stationary).

¢) There is an homeomorphism h: BN E — 10,1[. (k is a local chart
of E).

STEP 2. — Since y(f) ¢ B, we can choose s, such that y(s,) € B and s, > 7.
Now consider the maximal interval containing s,, I = ]to, t1[, such that
y(t)e B for every ¢t in L. I is open since, at every point of H, there exists
a local solution of (9).

Moreover: f < t, < s, < t;.

STEP 3. — We claim that t; < T, 1. e. y(¢t) « leaves » B for some t > t;.
If not, the whole trajectory (y(t))r, 11 Would be enclosed in B. Apply
now a classical property of the locally Lipschitz differential equations:
since y(t ) does not explodeast — T, we would have: T = + co. But, by ¢):

d 1
2 V0, KO = (K(y), K(y™) > S 11K (y*) 112
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and then L
(), K(y*) = (y(to), K(y*) + —23 K12

Thus || t)|| » + oo, therefore y(t) would leave B, which contradicts
our assumption.

Ster4. — We now prove that y: Jto, t;[ - E~ B is onto, i. €. hoy:
Jte> t; [ — 10, 1] is onto. First remark that since the solution y(t) of (9)
is not periodic, the mapping ¢t — ¥(t) is one to one. Thus the map ho y:
Tto,t:[ — 10, 1[ is one to one, continuous and therefore monotone. Then
ithasalimit A;ast — t5,andalimitl, ast — ¢;.

Necessarily 1, = 0. If not, ast — ¢, h(y(¢)) would remain in a compact
interval [Ag, Ao + £].

Then y(t) would remain in the compact h™*([Ao, Ao + £]) and would
admit some adherent point in this compact as t — .

We would obtain: y(tg)eh™ *([Ag, Ao + £]) = B. This contradicts the
definition of t4. In the same way, we can prove A; = 1.

STEP 5. — Let us show now that y(t) « returns » in B for some t > ;.
Thus it will « pass again » by some point of the trajectory, and this contra-
dicts the nonperiodicity assumption.

Let 5, be some element of the sequence (s,),y such that s, > t; and
y(sp)eB N E. Such a s, exists by Step 3.

From Step 1 ¢), there exists t in ]0, 1] such that: y(s,) = A~ (1) and then:
hoy(s,) = 1€ 10,1[. But, by Step 4, we can find ¢, in ¢, ;[ such that
hoy(t,) = t.

Thus y(s,) = y(t,) with s, > t,. This achieves the proof.
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