UNIVERSITÉ DE GRENOBLE I

Ann. Inst. Henri Poincaré,

Vol. 1, nº 4, 1984, p. 205-222.

D MATT Analyse non linéaire PURES

HERE I FOURIES.

Echanges Annales

A homotopy method for solving an equation of the type $-\Delta u = F(u)$

by (*)

Christophe DEVYS

Centre de Mathématiques Appliquées, École Polytechnique, 91128 Palaiseau Cedex, France

Jean-Michel MOREL

Département de Mathématique-Informatique, Faculté des Sciences de Luminy, 70, route Léon-Lachamp, 13288 Marseille Cedex 9, France

P. WITOMSKI

Université de Grenoble, IRMA, Saint-Martin-d'Hères, 38041 Grenoble Cedex, France

ABSTRACT. — We describe a homotopy algorithm for solving the equation $-\Delta u = F(u)$. To this end, we define a pseudo-inverse and a pseudo-determinant with sufficient regularity properties, for operators of Laplacian type.

Résumé. — On décrit une méthode d'homotopie pour résoudre l'équation $-\Delta u = F(u)$. Dans ce but, on définit pour les opérateurs du type Laplacien un pseudo-inverse et un pseudo-déterminant munis des propriétés de régularité nécessaires.

In this paper, a homotopy algorithm is given to solve the following problem:

(1) $\begin{cases} -\Delta u = F(u) \text{ in } \Omega \\ u = 0 \text{ on } \partial \Omega, \end{cases}$

Annales de l'Institut Henri Poincaré - Analyse non linéaire - Vol. 1, 0294-1449 84/04/205/18/\$ 3,80/

^(*) The authors are indebted to Jean-Michel Lasry and Michèle Schatzman for many valuable suggestions.

^{© 1984} L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

where Ω is some bounded regular domain in \mathbb{R}^n and $\mathbf{F} \in \mathbb{C}^2(\mathbb{R}, \mathbb{R})$ a given function with compact support (*). More precisely, we define a homotopy continuation method as given recently in Alexander-Yorke [3], Chow and Mallet-Paret and Yorke [4], Eaves-Saigal [5], Kellog-Li-Yorke [7], Smale [10] and others.

All these methods have been elaborated in order to numerically solve finite dimensional problems of the type g(x) = x or g(x) = y. In fact, any problem which can be shown to have a solution using topological degree, or a certain generalization thereof, fits into the general framework of homotopy continuation. Our aim is to generalize these methods to infinite dimensional problems whose resolution involves Leray-Schauder degree. Before expounding our results, let us briefly explain the finite dimensional method worked out in the preceding papers.

Let $g: \mathbb{R}^N \to \mathbb{R}^N$ be a \mathbb{C}^2 -map. Suppose we are searching for a u^* such that $g(u^*) = 0$. For this, define a \mathbb{C}^2 -homotopy $G: \mathbb{R}^N \times \mathbb{R} \to \mathbb{R}^N$, such that G(u, 1) = g(u), and assume we know some u_0 such that $G(u_0, 0) = 0$. The main idea of the method is that for « almost every » homotopy G, the set $\{(u, \lambda), G(u, \lambda) = 0\}$ defines a curve in \mathbb{R}^N , $(u(s), \lambda(s))_{s \in \mathbb{R}}$, passing through $(u_0, 0)$. This curve can be numerically computed until a point of interest $(\lambda = 1)$ is encountered. One moves along the curve by solving a Cauchy problem as following:

(C)
$$\begin{cases} \frac{du}{ds} = (\mathbf{G}'_{u})^{\sharp} \mathbf{G}'_{\lambda}(u, \lambda) \\ \frac{d\lambda}{ds} = -\det \left[\mathbf{G}'_{u}(u, \lambda)\right] \\ (u(0), \lambda(0)) = (u_{0}, 0) \end{cases}$$

(If A is a regular N × N-matrix, we set $A^* = (\det A)A^{-1}$, and we extend by continuity the mapping $A \rightarrow A^*$ to all N × N-matrix).

Then the problem of numerical computation is driven back to a usual differential equation solver. Moreover, one usually obtains constructive proofs for existence theorems of the Brouwer type.

Let us now return to our problem. We have to solve g(u) = 0, with $g(u) = -\Delta u - F(u)$ and $u \in H^2(\Omega) \cap H^1_0(\Omega)$. Consider the following homotopy:

$$G: H^2(\Omega) \cap H^1_0(\Omega) \times \mathbb{R} \to L^2(\Omega),$$

^(*) The compact support assumption is not so restrictive. Indeed, let F be a more general function. In many cases (for instance under monotonicity assumptions on F), one can find by some maximum principle a L^{∞} - bound b for the solutions of (1]. Therefore, instead of F, we can consider à troncature of F with compact support [-b, +b].

with $G(u, \lambda) = \Delta u + \lambda F(u) + (1 - \lambda)h$, where $h \in L^2(\Omega)$ is arbitrary. The associated problem is

(2)
$$\begin{cases} -\Delta u = \lambda F(u) + (1 - \lambda)h & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega. \end{cases}$$

In order to extend the finite dimensional method expounded above, the main difficulties are:

1) To obtain that the solution set $\{(u, \lambda)\}$ of (2) is a regular curve. 2) To extend in a constructive way definitions of A^{\sharp} and det A to infinite dimensional operators of the Laplacian type.

3) To show that the method provides a solution of (1).

We now summarize our results in this way, and give the plan of this paper.

First section. — Using Smale's density theorem, we prove that for most h in $L^2(\Omega)$, the set E of solutions (u, λ) of (2) is a one-dimensional C¹-submanifold of $H^2(\Omega) \cap H_0^1(\Omega) \times \mathbb{R}$ (see Theorem 1).

Second section. — Let h be as above, and $(u(s), \lambda(s))_{s\in\mathbb{R}}$ be a smooth arc of solutions of (2). Then $G(u(s), \lambda(s)) = 0$, and therefore:

(3) $\mathbf{G}'_{u}(u(s)), \, \lambda(s))u'(s) + \mathbf{G}'_{\lambda}(u(s), \, \lambda(s))\lambda'(s) = 0.$

Here
$$G'_{u}(u, \lambda): H^{2} \cap H^{1}_{0} \to L^{2}(\Omega)$$

$$v \rightarrow \Delta v + \lambda F'(u)v$$

is a perturbation of Δ .

We define maps $J: A \to A^{\sharp}$ and $\delta: A \to \delta(A)$ on a set of operators of the Laplacian type, verifying $AA^{\sharp} = \delta(A)$ Id, and $A^{\sharp}A = \delta(A)$ Id. These definitions are explicit, and they ensure that δ and J are regular enough to obtain classical solutions for (C).

This is the object of Theorem 2, and will be treated in a general functional framework.

Third Section. — Using the result of Section 1, and some compacity property of the solution set of (2), we prove that the algorithm (C) obtained in Section 2 accomplishes its task: it provides a t^* such that $\lambda(t^*) = 1$, and then $u(t^*)$ is a solution of (1). We show this in Theorems 3 and 4. Thus we obtain a constructive existence proof of a solution for Problem (1).

SECTION 1

THEOREM 1. — Assume the following property:

(P) $\begin{cases} 0 \text{ is a regular value of } \Delta . + F(.), \text{ i. e. for every solution} \\ u \in H^2 \cap H^1_0(\Omega) \text{ of } \Delta u + F(u) = 0, \text{ the linear operator} \\ \begin{cases} v \to \Delta v + F'(u) \cdot v \\ H^2 \cap H^1_0 \to L^2 \end{cases} \text{ is onto }. \end{cases}$

Then there exists a residual subset R of $L^2(\Omega)$, such that, for h in R, the set

$$\mathbf{E} = \{ (u, \lambda) \in \mathbf{H}^2 \cap \mathbf{H}_0^1(\Omega) \times \mathbf{R}, \mathbf{G}(u, \lambda) = \Delta u + \lambda \mathbf{F}(u) + (1 - \lambda)h = 0 \}$$

is a one-dimensional C1-submanifold of $H^2 \cap H^1_0(\Omega) \times R$.

In order to prove Theorem 1, assume first the next proposition:

PROPOSITION 1. — Suppose that, for every (u, λ) in E,

 $G'(u, \lambda) : H^2 \cap H^1_0(\Omega) \times \mathbb{R} \to L^2(\Omega)$

is an onto linear map. Then E is a one-dimensional C¹-submanifold of $H^2 \cap H^1_0(\Omega) \times R$.

Proof of Theorem 1. — Let G'_{μ} and G'_{λ} be the partial derivatives of G:

$$\begin{aligned} \mathbf{G}'_{u}(u,\,\lambda) &: \mathbf{H}^{2} \cap \mathbf{H}^{1}_{0}(\Omega) \to \mathbf{L}^{2}(\Omega) \\ v \to \mathbf{G}'_{u}(u,\,\lambda)v &= \Delta v + \lambda \mathbf{F}'(u)v \,. \\ \mathbf{G}'_{\lambda}(u,\,\lambda) &: \mathbf{R} \to \mathbf{L}^{2}(\Omega) \\ \mu \to \mathbf{G}'_{\lambda}(u,\,\lambda)\mu &= \mu(\mathbf{F}(u) - h). \end{aligned}$$

Thus we have: $G'(u, \lambda) = (G'_u(u, \lambda), G'_{\lambda}(u, \lambda))$ and

$$G'(u, \lambda)(v, \mu) = \Delta v + \lambda F'(u)v + \mu(F(u) - h) \quad \text{for} \quad v \in H^2 \cap H^1_0(\Omega) \times \mathbb{R}$$

LEMMA 1. — $G'_{\mu}(u, \lambda)$, as an operator from $L^2(\Omega)$ to $L^2(\Omega)$, is self adjoint with compact resolvent, and therefore:

i) Im $G'_u(u, \lambda)$ is closed in $L^2(\Omega)$ dim Ker $G'_u(u, \lambda) = \text{codim Im } G'_u(u, \lambda) < +\infty$ ii) Ker $G'_u(u, \lambda) = (\text{Im } G'_u(u, \lambda))^{\perp}$

Remark. — $G'_{u}(u, \lambda)$ is a Fredholm operator with index 0.

Lemma 1 is an immediate consequence of a perturbation theorem of Kato [5] (th. 3.17, p. 214).

In order to prove Theorem 1, it is sufficient, by Proposition 1, to show that for almost every h in $L^2(\Omega)$, the map $G'(u, \lambda)$ is surjective for (u, λ) in $E = \{ (u, \lambda), G(u, \lambda) = 0 \}$.

Define the auxiliar map:

$$\Psi: \mathrm{H}^{2} \cap \mathrm{H}^{1}_{0}(\Omega) \times (\mathbb{R} \setminus \{1\}) = \mathrm{X} \to \mathrm{L}^{2}(\Omega) = \mathrm{Y}$$
$$(u, \lambda) \to \Psi(u, \lambda) = \frac{\Delta u + \lambda \mathrm{F}(u)}{\lambda - 1}$$

and apply to Ψ Smale's density theorem (Abraham-Robbin [1]).

Density theorem.

Let X and Y be C^r-manifolds, with X Lindelöff (every open cover of X has a countable subcover), and $\Psi : X \rightarrow Y$ a C^r-Fredholm map.

Suppose that $r > \max(0, \text{ index } \Psi'(x))$ for every x in X. Then the set of regular values of Ψ , $R_{\Psi} = \{ y \in Y, \forall x \in X, (y = \Psi(x) \Rightarrow \Psi'(x) \text{ is surjective}) \}$ is a residual subset of Y.

Recall that a map $\Psi C^1 : X \to Y$ is said to be Fredholm if, for every $x \in X$, $\Psi'(x)$ is a linear Fredholm operator, i. e.:

- *i*) Ker $\Psi'(x)$ is finite-dimensional
- ii) Im $\Psi'(x)$ is closed and finite codimensional.

We define the index of $\Psi'(x)$ to be:

Ind
$$\Psi'(x) = \dim \operatorname{Ker} \Psi'(x) - \operatorname{codim} \operatorname{Im} \Psi'(x)$$
.

Let us first admit that Smale's theorem applies to Ψ with r = 2. Then, if $h \in \mathbb{R}_{\Psi}$, $\Psi'(u, \lambda)$ is surjective for every (u, λ) such that

$$\Psi(u, \lambda) = h \iff \mathbf{G}(u, \lambda) = 0, \, \lambda \neq 1).$$

But, for such a (u, λ) , we have:

$$\Psi'(u,\lambda) = (\Psi'_{u}(u,\lambda), \Psi'_{\lambda}(u,\lambda)) = \left(\frac{\Delta + \lambda F'(u)}{\lambda - 1}, \frac{F(u)(\lambda - 1) - (\Delta u + \lambda F(u))}{(\lambda - 1)^{2}}\right)$$
$$= \frac{1}{\lambda - 1} (\Delta + F'(u), F(u) - h) = \frac{1}{\lambda - 1} G'(u,\lambda).$$

Therefore, if $h \in \mathbb{R}_{\Psi}$, $(u, \lambda) \in \mathbb{E}$ and if $\lambda \neq 1$, $G'(u, \lambda)$ is surjective. According to Property (P) this result still holds for $\lambda = 1$. Then applying Proposition 1 concludes the proof of theorem 1.

We have now to verify the hypothesis of Smale's theorem:

a) The map Ψ is Fredholm, and index $\Psi'(x) \leq 1$ for every x in X. Indeed,

$$\Psi'(u,\lambda) = (\Psi'_{u}(u,\lambda), 0) + (0, \Psi'_{\lambda}(u,\lambda))$$
$$= \frac{1}{\lambda - 1} (\Delta + \lambda F'(u), 0) + \frac{1}{\lambda - 1} \left(0, F(u) + \frac{\Delta u + \lambda F(u)}{1 - \lambda} \right)$$

with $(\Delta + \lambda F'(u), 0)(v, \mu) = \Delta v + \lambda F'(u)v$ for $(v, \mu) \in H_0^1 \cap H^2(\Omega) \times \mathbb{R}$

and
$$\left(0, F(u) + \frac{\Delta u + \lambda F(u)}{1 - \lambda}\right)(v, \mu) = \left[F(u) + \frac{1}{1 - \lambda}(\Delta u + \lambda F(u))\right]\mu$$

Now, by Lemma 1, $\Delta + \lambda F'(u) = G'_u(u, \lambda)$ is a Fredholm operator with null index and:

Ker
$$(\Delta + \lambda F'(u), 0) = \text{Ker} (\Delta + \lambda F'(u)) \times \mathbb{R}$$

Im $(\Delta + \lambda F'(u), 0) = \text{Im} (\Delta + \lambda F'(u)).$

Thus $T = (\Delta + \lambda F'(u), 0)$ is a Fredholm operator with index 1.

Moreover, it is well known (Lang [6], p. 202) that, if T is Fredholm and A a compact linear map, then T + A is Fredholm and index (T + A) = index T.

Now $A = \left(0, F(u) + \frac{\Delta u + \lambda F(u)}{1 - \lambda}\right)$ if of finite rank and then compact. We conclude that $\Psi'(u, \lambda)$ is a Fredholm operator with index 1.

b)
$$\Psi$$
 is $C^2: X \to Y$.

Using Sobolev embedding, it is easy to see that

F:
$$\begin{cases} H^2(\Omega) \to L^2(\Omega) \\ u \to F \circ u \end{cases} \text{ is } C^2. \text{ Then } \Psi \text{ is } C^2: X \to Y. \end{cases}$$

Proof of Proposition 1. — We are going to use two lemmas.

LEMMA 2. — The following relations are equivalent:

- i) dim Ker $G'_{u}(u, \lambda) = 1$ and $G'_{\lambda}(u, \lambda) \notin \text{Im } G'_{\mu}(u, \lambda)$
- *ii*) dim Ker $G'_{\mu}(u, \lambda) = 1$ and dim Ker $G'(u, \lambda) = 1$.

(A point (u, λ) which verifies one of these assertions is said to be a turning point).

The proof is obvious.

LEMMA 3. — $G'(u, \lambda)$ is surjective if and only if:

dim Ker G'(u, λ) = 1.

Proof. — Assume G'(u, λ) is surjective. Let us consider two cases:

a) $G'_{\mu}(u, \lambda)$ is surjective:

Since $G'_u(u, \lambda)$ is Fredholm with index 0, we have:

dim Ker
$$G'_u(u, \lambda) = 0$$
.

This implies :

$$\mathbf{G}'(u,\,\lambda)(v,\,\mu) = 0 \Rightarrow v = -\left(\mathbf{G}'_{\mu}(u,\,\lambda)\right)^{-1}\left(\mu\mathbf{G}'_{\lambda}(u,\,\lambda)\right),$$

and therefore Ker $G'(u, \lambda) = R((G'_u(u, \lambda))^{-1}G'_\lambda(u, \lambda), -1)$ is a one dimensional subspace of $H^2 \cap H_0^1(\Omega) \times R$.

b) $G'_u(u, \lambda)$ is not surjective:

Then $G'_{\lambda}(u, \lambda) \notin \text{Im } G'_{u}(u, \lambda)$ and since dim Ker $G'_{u}(u, \lambda) = \text{codim Im } G'_{u}(u, \lambda)$ (Lemma 1), we have dim Ker $G'_{u}(u, \lambda) = 1$. From Lemma 2, we obtain:

dim Ker G'(u, λ) = 1.

The converse is easy to check in the same way.

Now we can achieve the proof of Proposition 1:

By Lemma 3, dim Ker G' $(u, \lambda) = 1$ for every (u, λ) in E. We claim that for every (u, λ) in E there exists a C¹-chart from a neighbourhood of (u, λ) to R. We examine two cases:

a) dim Ker $G'_{u}(u_0, \lambda_0) = 0.$

Thus we have codim Im $G'_{\mu}(u_0, \lambda_0) = 0$. So $G'_{\mu}(u_0, \lambda_0)$ is an isomorphism from $H^2 \cap H^1_0(\Omega)$ to $L^2(\Omega)$.

It follows from the Implicit Function Theorem that there exist a neighbourhood I of λ_0 in R, a neighbourhood V of (u_0, λ_0) in $H^2 \cap H^1_0(\Omega) \times R$ and a C¹-function $\varphi : I \to H^2 \cap H^1_0(\Omega)$ such that:

$$\begin{cases} G(u, \lambda) = 0\\ (u, \lambda) \in V \end{cases} \Leftrightarrow \begin{cases} (u, \lambda) = (\varphi(\lambda), \lambda)\\ \lambda \in I \end{cases}$$

This defines a local chart of E at (u_0, λ_0) .

b) dim Ker $G'_u(u_0, \lambda_0) = 1$. (Then (u_0, λ_0) is a turning point).

Write now for u in $L^2(\Omega)$: $u = u_1 + u_2$ with $u_1 \in \text{Ker } G'_u(u_0, \lambda_0)$ and $u_2 \in \text{Im } G'_u(u_0, \lambda_0)$. In particular: $u_0 = u_{1,0} + u_{2,0}$.

By Lemma 2, $G'_{\lambda}(u_0, \lambda_0) \notin \text{Im } G'_{\mu}(u_0, \lambda_0)$: so the restriction of $G'(u_0, \lambda_0)$ to Im $G'(u_0, \lambda_0) \times \mathbb{R}$ is an isomorphism onto $L^2(\Omega)$. By using the Inverse Mapping Theorem, we easily deduce that the mapping χ defined by:

$$(u, \lambda) = (u_1 + u_2, \lambda) \rightarrow (u_1, \mathbf{G}(u, \lambda)) = \chi(u, \lambda)$$

is a diffeomorphism from a neighbourhood V of (u_0, λ_0) on a neighbourhood W of $(u_{1,0}, G(u_0, \lambda_0))$. Thus we have:

$$\begin{cases} G(u, \lambda) = 0\\ (u, \lambda) \in V \end{cases} \Leftrightarrow \begin{cases} (u, \lambda) = \chi^{-1}(u_1, 0)\\ (u_1, 0) \in W \end{cases}$$

This provides a local chart of E at (u_0, λ_0) .

SECTION 2

A. DEFINITION OF A PSEUDO-INVERSE AND A PSEUDO-DETERMINANT

Let H be a Hilbert space and V a closed subspace of H. Consider the set \mathscr{A} of self adjoint operators $A : D(A) \subset H \to H$ with compact resolvent, bounded from below spectrum, and D(A) = V. For every A in \mathscr{A} , V is a Hilbert space under the graph norm: $||x||_{H} + ||Ax||_{H}$. Note that if A and B are two elements of \mathscr{A} , the associated graph norms are equivalent.

THEOREM 2. — There exist (and we construct explicitly) a map J: $D(J) = \mathscr{A} \subset \mathscr{L}(V, H) \rightarrow \mathscr{L}(H, V)$, that we note $J(A) = A^{\sharp}$, and a map:

$$\delta \colon \mathrm{D}(\delta) = \mathscr{A} \subset \mathscr{L}(\mathrm{V},\mathrm{H}) \to \mathrm{R}, \qquad \delta \colon \mathrm{A} \to \delta(\mathrm{A}),$$

such that:

1)
$$AA^* = \delta(A) Id_H$$

2) $A^*A = \delta(A) \operatorname{Id}_{V}$

3) i) Ker $A \neq \{0\} \Leftrightarrow \delta(A) = 0$

ii) If Ker A = {0}, sgn $\delta(A) = (-1)^p$, where p is the total multiplicity of the negative eigenvalues.

4) i) δ is locally Lipschitz from \mathscr{A} to R.

ii) J is locally Lipschitz on the subset of the elements of \mathscr{A} such that dim Ker $A \leq 1$.

Remarks. — 1) The preceding properties allow us to call A^* pseudo-inverse of A, and $\delta(A)$ pseudo-determinant. Note that if $V = H = R^N$, $\delta(A) = \det A$ and A^* is the matrix defined in Introduction.

2) It is possible to generalize the property 4(ii) in the following way:

4 (ii) bis: J is locally Lipschitz from \mathscr{A} to $\mathscr{L}(H, V)$.

The proof of this result is somewhat tedious and we shall omit it here.

Proof of theorem 2. — Since A is self-adjoint with compact resolvent, it admits an orthonormal basis of eigenvectors $(e_1, e_2, \ldots, e_n, \ldots)$ associated with the eigenvalues: $\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n \leq \ldots$, multiple eigenvalues being counted repeatedly.

Relatively to this basis, we write A as an infinite matrix:

Now, set N = sup $\{i/\lambda_i \leq 1\}$, and:

Clearly this definition does not depend on the chosen basis of eigenvectors. Note that if A is an isomorphism, we have simply: $A^{\sharp} = \delta(A)A^{-1}$. A trivial computation provides immediately properties 1), 2), 3). Let us show now property 4) (*i*). We first list some technical tools:

LEMMA 4. — Let
$$A \in \mathscr{A}$$
, and $(\lambda_n)_{n \in \mathbb{N}}$, $(e_n)_{n \in \mathbb{N}}$ defined as above, then:

$$\lambda_n = \inf_{\substack{\dim F = n \\ F \subset V}} (\sup_{\substack{x \in F \\ ||x||_H = 1}} (Ax, x)_H).$$

Proof.—Let F_n be the subspace generated by (e_1, \ldots, e_n) ; clearly we have:

$$\sup_{\substack{x \in F_n \\ ||x||_{\mathbf{H}}=1}} (\mathbf{A}x, x)_{\mathbf{H}} = \lambda_n.$$

Let now F be an arbitrary n-dimensional subspace of V. Since

dim
$$F \cap F_{n-1}^{\perp} \geq 1$$
,

one can choose $x \in F \cap F_{n-1}^{\perp}$ verifying $||x||_{H} = 1$.

Thus:
$$x = \sum_{i \ge n} x_i e_i$$
 and then $(Ax, x)_H = \sum_{i \ge n} \lambda_i x_i^2 \ge \lambda_n$.

LEMMA 5. — Let $A_0 \in \mathscr{A}$. Define on V the norm $||x||_V = ||x||_H + ||A_0x||_H$, and on $\mathscr{L}(V, H)$ the corresponding norm $|| \cdot ||_{V,H}$. Then for every pair of elements of \mathscr{A} , A and B, which verify:

$$||A - A_0||_{V,H} \le \frac{1}{2}$$
 and $||B - A_0||_{V,H} \le \frac{1}{2}$,

one has:

(4)
$$\lambda_n \le \mu_n + || \mathbf{A} - \mathbf{B} ||_{\mathbf{V},\mathbf{H}}$$
 $(2 + 2 \sup(|\mu_1|, |\mu_n|))$

(5)
$$\mu_n \leq \lambda_n + ||\mathbf{A} - \mathbf{B}||_{\mathbf{V},\mathbf{H}} \quad (2 + 2 \sup (|\lambda_1|, |\lambda_n|)).$$

Here λ_n and μ_n are the nth eigenvalues of A and B respectively, multiple eigenvalues being counted repeatedly.

Proof. — For every x in V, we have:

$$||A_0x||_{\mathbf{H}} \le ||Ax||_{\mathbf{H}} + ||A - A_0||_{\mathbf{V},\mathbf{H}} ||x||_{\mathbf{V}},$$

then
$$||A_0x||_{\mathbf{H}} \le ||Ax||_{\mathbf{H}} + \frac{1}{2}(||x||_{\mathbf{H}} + ||A_0x||_{\mathbf{H}})$$

and therefore:

(6)
$$||A_0x||_{\mathbf{H}} \le 2 ||Ax||_{\mathbf{H}} + ||x||_{\mathbf{H}}.$$

On the same way:

(7)
$$\|\mathbf{A}_0 x\|_{\mathbf{H}} \le 2 \|\mathbf{B} x\|_{\mathbf{H}} + \|x\|_{\mathbf{H}}.$$

Let E_n (resp. F_n) be the subspace of V generated by the *n* first eigenvectors of an orthonormal eigenvectors basis for A (resp. B).

Then, for every $x \in V$ with $||x||_{H} = 1$, $(Ax - Bx, x)_{H} \le ||A - B||_{V,H} ||x||_{V}$. Hence $(Ax, x)_{H} \le (Bx, x)_{H} + ||A - B||_{V,H} (1 + ||A_{0}x||_{H})$. Therefore:

$$\sup_{\substack{x \in F_n \\ ||x||_{H} = 1}} (Ax, x)_{H} \le \sup_{\substack{x \in F_n \\ ||x||_{H} = 1}} (Bx, x)_{H} + ||A - B||_{V,H} \sup_{\substack{x \in F_n \\ ||x||_{H} = 1}} (1 + ||A_0x||_{H}).$$

Recall that by Lemma 4:

$$\lambda_n = \sup_{\substack{x \in F_n \\ ||x||_{\mathbf{H}} = 1}} (\mathbf{A}x, x)_{\mathbf{H}}$$

and

$$\mu_n = \sup_{\substack{x \in \mathbf{F}_n \\ ||x||_{\mathbf{H}} = 1}} (\mathbf{B}x, x)_{\mathbf{H}}$$

Moreover, according to (7):

$$\sup_{\substack{x \in F_n \\ \|x\|_{H}=1}} \|A_0 x\|_{H} \le 2 \sup_{\substack{x \in F_n \\ \|x\|_{H}=1}} \|B x\|_{H} + 1 \le 2 \sup(|\mu_1|, |\mu_n|) + 1.$$

This provides relation (4). In order to check (5), we exchange A and B.

LEMMA 6. — Note λ_n the map $A \rightarrow \lambda_n(A)$ which associates to A its n^{th} eigenvalue, multiple eigenvalues being counted repeatedly.

Then $\lambda_n : \mathscr{A} \subset \mathscr{L}(V, H) \to R$ is locally Lipschitz.

Proof. — 1) Fix an element $A_0 \in \mathscr{A}$, with eigenvalues $\lambda_1^0, \ldots, \lambda_n^0 \ldots$. We first prove that the eigenvalues μ_1 and μ_n of an operator B in \mathscr{A} are bounded if $|| \mathbf{B} - A_0 ||_{\mathbf{V},\mathbf{H}} \le \frac{1}{4}$.

Indeed, applying (4) to A_0 and B provides:

$$\lambda_1^0 \le \mu_1 + \frac{1}{2}(1 + |\mu_1|)$$

and then:

$$\mu_1 \ge 2\lambda_1^0 - 1$$
 (if $\mu_1 \le 0$),

and

$$\mu_1 \ge \frac{1}{3}(2\lambda_1^0 - 1)$$
 (if $\mu_1 \ge 0$).

Similarly we obtain by (7):

$$\mu_{n} \leq \lambda_{n}^{0} + \frac{1}{2} (1 + \sup(|\lambda_{1}^{0}|, |\lambda_{n}^{0}|))$$

2) Let us consider now two operators A and B in \mathcal{A} such that:

$$\|A - A_0\|_{V,H} \le \frac{1}{4}$$
 and $\|B - A_0\|_{V,H} \le \frac{1}{4}$.

From lemma 5 we deduce the following inequality:

$$|\lambda_n - \mu_n| \le ||\mathbf{A} - \mathbf{B}||_{\mathbf{V},\mathbf{H}}(2 + \sup(|\lambda_1|, |\lambda_n|, |\mu_1|, |\mu_n|)).$$

Using the result of paragraph 1) achieves the proof.

We are now able to prove property 4(i) of Theorem 2:

Notice that $\delta(A)$ may be written:

$$\delta(\mathbf{A}) = \prod_{i=1}^{\infty} \theta(\lambda_i(\mathbf{A})) \quad \text{where} \quad \begin{cases} \theta(\lambda) = \lambda & \text{if } \lambda \leq 1\\ \theta(\lambda) = 1 & \text{if } \lambda \geq 1 \end{cases}$$

Set $\lambda_{N+1}^0 = \lambda_{N+1}(A_0) = \inf \{ \lambda_n^0(A), n \in \mathbb{N}^*, \lambda_n^0 > 1 \}.$

By Lemma 6, if $||A - A_0||_{V,H}$ is small enough, we have $\lambda_{N+1}(A) > 1$, and then:

$$\delta(\mathbf{A}) = \prod_{i=1}^{N} \theta(\lambda_i(\mathbf{A})).$$

The function δ , being locally the product of N Lipschitz functions, is still locally Lipschitz.

Proof of property 4 (ii) of Theorem 2. — Let A_0 be an element of \mathscr{A} such that dim Ker $A_0 \leq 1$. Two eventualities are to consider:

1) Ker
$$A_0 = \{0\}$$
.

Since Isom (V, H) is open, there exists an open neighbourhood W of A_0 in \mathcal{A} such that:

$$A \in W \Rightarrow Ker A = \{0\}.$$

Thus, from the definition of A^* , we have:

$$A \in W \implies A^* = \delta(A)A^{-1}$$
.

Upon applying property 4 (i) and reducing W if necessary, it follows that δ : $A \rightarrow \delta(A), A \rightarrow A^{-1}$, and so J: $A \rightarrow A^{\sharp}$ are Lipschitz on W.

2) Dim Ker
$$A_0 = 1$$
.

Note: $\lambda_{i_0-1}^0$ the greatest strictly negative eigenvalue of A_0 , $\lambda_{i_0}^0$ its null eigenvalue, and $\lambda_{i_0+1}^0$ its smallest strictly positive eigenvalue.

and

Let γ be the circle with centre 0 and radius

$$\rho = \inf\left(\frac{|\lambda_{i_0}^0 - 1|}{2}, \lambda_{i_0+1}^0\right) \quad \text{oriented in the direct sense}.$$

Let $\mathbf{W}_n = \{ \mathbf{A} \in \mathscr{A}, \| \mathbf{A} - \mathbf{A}_0 \|_{\mathbf{V} \mathbf{H}} \le \eta \}.$

By Lemma 6 and inequalities (4) and (5), there readily exists a real η such that every A in W_n verifies:

- *i*) $\lambda_{i_0}(A)$ is the unique eigenvalue of A enclosed by γ ;
- *ii*) dist (γ , spectrum of A) $\geq \frac{\rho}{2}$.

Consider, for A in W_{η} , the orthogonal projection Q(A) on the eigenspace associated to $\lambda_{i_0}(A)$. Thus we have:

$$Q(A) = \frac{1}{2i\Pi} \int_{\gamma} (z - A)^{-1} dz \qquad (\text{see Kato } [5]).$$

We wish to prove the mapping $A \rightarrow Q(A)$ is Lipschitz from

$$W_{\eta} \subset \mathscr{L}(V, H) \rightarrow \mathscr{L}(H, V).$$

For this, let A and B be two elements of W_{η} . We have:

$$\|Q(A) - Q(B)\|_{H,V} \le \frac{1}{2\Pi} \int_{\gamma} \|(z - A)^{-1} - (z - B)^{-1}\|_{H,V} |dz|,$$

then:

$$\|Q(\mathbf{A}) - Q(\mathbf{B})\|_{\mathbf{H},\mathbf{V}} \le \frac{1}{2\Pi} \int_{\gamma} \|(z - \mathbf{A})^{-1}\|_{\mathbf{H},\mathbf{V}} \|\mathbf{A} - \mathbf{B}\|_{\mathbf{V},\mathbf{H}} \|(z - \mathbf{B})^{-1}\|_{\mathbf{H},\mathbf{V}}.$$

Therefore $||Q(A) - Q(B)||_{H,V} \le \frac{C}{\rho^2} ||A - B||_{V,H}$.

Now, setting $\lambda_i = \lambda_i(A)$, A^* may be written in the following way:

$$\mathbf{A}^{*} = \left(\prod_{i \neq i_{0}} \theta(\lambda_{i}) - \frac{\delta(\mathbf{A})}{1 + \lambda_{i_{0}}} \mathbf{Q}(\mathbf{A}) + \delta(\mathbf{A})(\mathbf{A} + \mathbf{Q}(\mathbf{A}))^{-1}\right).$$

Indeed, writing this formula relatively to the basis of eigenvectors yields the relation:

$$\mathbf{A}^{*} = \begin{pmatrix} 0 & & & & 0 \\ & & & \\ & & \prod_{i \neq i_{0}} \theta(\lambda_{i}) - \frac{\delta(\mathbf{A})}{1 + \lambda_{i_{0}}} & & \\ 0 & & & \ddots & 0 \end{pmatrix} + \delta(\mathbf{A}) \begin{pmatrix} \frac{1}{\lambda_{1}} \cdot \cdot \frac{1}{\lambda_{i_{0}-1}} & & & \\ & & \frac{1}{1 + \lambda_{i_{0}}} & \frac{1}{\lambda_{i_{0}+1}} \cdot \cdot \\ 0 & & & & \lambda_{i_{0}+1} \end{pmatrix}$$

which is obvious.

Reducing W_{η} if necessary, the mappings $A \to \prod_{i \neq i_0} \theta(\lambda_i)$, $A \to \delta(A)$, $A \to \lambda_{i_0}(A)$, $A \to Q(A)$ and $A \to (A + Q(A))^{-1}$ are clearly Lipschitz on W_{η} . So is the mapping $A \to A^{\sharp}$. This achieves the proof of Theorem 2.

Annales de l'Institut Henri Poincaré - Analyse non linéaire

216

B. PARAMETRIZING BY DIFFERENTIAL EQUATION (4) THE COMPONENT OF MANIFOLD E WHICH CONTAINS $(u_0, 0)$

For every (u, λ) in $V \times R = H^2 \cap H_0^1(\Omega) \times R$, $-G'_u(u, \lambda) = -\Delta$. $-\lambda F'(u)$. is a self adjoint with compact resolvent operator. Its spectrum is bounded from below, its domain is $V = H^2 \cap H_0^1(\Omega)$ and it ranges in $H = L^2(\Omega)$. Upon applying Theorem 2 to this operator, we can define differential equation (8) in V:

$$\frac{du}{ds}(s) = [G'_{u}(u(s), \lambda(s))]^{*}G'_{\lambda}(u(s), \lambda(s))$$
$$\frac{d\lambda}{ds}(s) = \delta(-G'_{u}(u(s), \lambda(s)))$$
$$(u(0), \lambda(0)) = (u_{0}, 0).$$

Readily for every solution $(u(s), \lambda(s))_{s \in [0,T]}$ of (8):

$$G(u(s), \lambda(s)) = G(u_0, 0) = 0$$
,

and then: $(u(s), \lambda(s))_{s \in [0,T]} \subset E$.

We claim that differential equation (8) is locally Lipschitz on an open U containing E.

Indeed, for every (u, λ) in E: dim Ker $(G'_u(u, \lambda)) \leq 1$.

Referring to Lemma 6, there exists a neighbourhood W of $G'_u(u, \lambda)$ in $\mathscr{L}(V, H)$ such that for every A in $W \cap \mathscr{A}$: dim Ker A ≤ 1 .

But the mapping $(u, \lambda) \to G'_u(u, \lambda)$ is continuous from $V \times R$ to $\mathscr{L}(V, H)$. Then by Lemma 6 there exists a ball $B_{u,\lambda}$ in $V \times R$ with centre (u, λ) such that for every (v, μ) in $B_{u,\lambda}$ we still have:

dim Ker
$$(G'_u(v, \mu)) \le 1$$
.
Set now: $U = \bigcup_{(u, \lambda) \in E} B_{u, \lambda}$.

Thus, the following mappings are locally Lipschitz:

$$\begin{cases} (u, \lambda) \to \mathbf{G}'_{u}(u, \lambda) \\ U \subset \mathbf{V} \times \mathbb{R} \to \mathscr{L}(\mathbf{V}, \mathbf{H}) \\ \begin{cases} A \to A^{\sharp} \\ \mathbf{G}'_{u}(\mathbf{U}) \subset \mathscr{L}(\mathbf{V}, \mathbf{H}) \to \mathscr{L}(\mathbf{H}, \mathbf{V}) \end{cases} \begin{cases} (u, \lambda) \to \mathbf{G}'_{\lambda}(u, \lambda) \\ U \subset \mathbf{V} \times \mathbb{R} \to \mathscr{L}(\mathbf{H}, \mathbf{V}) \\ \begin{cases} A \to \delta(\mathbf{A}) \\ \mathbf{G}'_{u}(\mathbf{U}) \subset \mathscr{L}(\mathbf{V}, \mathbf{H}) \to \mathscr{L}(\mathbf{H}, \mathbf{V}) \end{cases} \end{cases}$$

Equation (8) is therefore locally Lipschitz on U. Then the branch of E containing $(u_0, 0)$ can be partially parametrized by the maximal solution $(u(s), \lambda(s))_{s \in [0,T]}$ of (8).

SECTION 3

THE CONTINUATION METHOD DEFINED ABOVE PROVIDES A POINT $(u(t^*), \lambda(t^*))$ SUCH THAT $\lambda(t^*) = 1$ (so $u(t^*)$ IS A SOLUTION OF (1))

THEOREM 3. — Under the assumptions of Theorem 1, there exists a residual set R of $L^2(\Omega)$ such that for every h in R the maximal solution $(u(s), \lambda(s))_{s \in [0,T]}$ of the differential equation (8) associated with h verifies:

$$\exists t^* < \mathsf{T}, \qquad \lambda(t^*) = 1 \qquad \text{and} \qquad \begin{cases} -\Delta(u(t^*)) = \mathsf{F}(u(t^*)) \\ u(t^*) = \mathsf{H}^2 \cap \mathsf{H}^1_0(\Omega) \end{cases}$$

Proof. — Let R be the residual set whose existence is ensured by Theorem 1. Fix h in R. Thus E, defined as in the Introduction is a one-dimensional C¹-submanifold of $H^2 \cap H^1_0(\Omega) \times \mathbb{R}$.

Following a classical way of the homotopy method, we wish to prove successively that:

A. For s > 0 small enough, $\lambda(s) > 0$.

B. Solution $(u(s), \lambda(s))$ for s > 0 does not « recross » the hyperplane $H^2 \times H_0^1(\Omega) \times \{0\}$.

C. Trajectory $(u(s), \lambda(s))_{s \in [0,T[}$ cannot be entirely enclosed in

 ${
m H}^2 \cap {
m H}^1_0(\Omega) \, imes \, [0,1]$.

Theorem 3 follows immediately from A., B., C.

Proof of A. — Since all the eigenvalues of Laplacian are strictly positive, we obtain by Theorem 2 (3(ii)):

$$\frac{d\lambda}{ds}(0) = \delta(-\mathbf{G}'_{u}(u_0,0)) = \delta(-\Delta) > 0.$$

Proof of B. — Set $t = \inf \{ s \in [0, T[, \lambda(s) = 0] \}$. Thus by A., t > 0, and $\lambda(s) \ge 0$ for $s \le t$. Therefore, if $t < +\infty$, $\lambda'(t) \le 0$.

But $\lambda'(t) = \delta(-G'_{\mu}(u(t), 0)) = \delta(-\Delta) > 0$. This is a contradiction.

Proof of C. — First of all, prove the following assertions:

Assertion 1. — The set $D = E \cap (H^2 \cap H^1_0(\Omega) \times [0, 1])$ is compact in $H^2 \cap H^1_0(\Omega) \times \mathbb{R}$.

Indeed, for every (u, λ) in D,

$$-\Delta u = \lambda F(u) + (1 - \lambda)h.$$

Thus $||\nabla u||_{L^2}^2 \le 2 \int F(u)u dx + ||h||_{L^2} ||u||_{L^2}.$

Therefore, since Ω is bounded,

$$\|\nabla u\|_{L^{2}}^{2} \leq C \|F\|_{L^{\infty}} \|u\|_{L^{2}} + \|h\|_{L^{2}} \|u\|_{L^{2}}$$

for some constant C. Using Friedrichs-Poincaré's inequality (Adams [2]), it follows that:

$$\|\nabla u\|_{L^2} \leq C.$$

Thus D is bounded in $H_0^1(\Omega) \times \mathbb{R}$, and then relatively compact in $L^2(\Omega) \times \mathbb{R}$. Let now $(u_n, \lambda_n)_{n \in \mathbb{N}}$ be a sequence in D. Then there exists a subsequence which we still note $(u_n, \lambda_n)_{n \in \mathbb{N}}$, that converges in $L^2(\Omega) \times \mathbb{R}$ to some (u, λ) in $L^2(\Omega) \times \mathbb{R}$. Thus we have:

$$-\Delta u_n = \lambda_n F(u_n) + (1 - \lambda_n)h \rightarrow \lambda F(u) + (1 - \lambda)h \text{ in } L^2(\Omega) \quad u_n \rightarrow u \text{ in } L^2(\Omega).$$

Since $(-\Delta)$ is a closed operator: $L^2(\Omega \rightarrow L^2(\Omega), u \in H^2 \cap H^1_0(\Omega))$, and $-\Delta u = \lambda F(u) + (1 - \lambda)h$. (Then, $(u, \lambda) \in D$).

Now we have:

$$u_n \to u \quad \text{in} \quad L^2(\Omega),$$

 $\Delta u_n \to \Delta u \quad \text{in} \quad L^2(\Omega),$

and therefore:

$$u_n \rightarrow u$$
 in $\mathrm{H}^2 \cap \mathrm{H}^1_0(\Omega)$.

Assertion 2. — Set, for $(u, \lambda) \in E$,

$$\mathbf{K}(u,\,\lambda) = \left[(\mathbf{G}'_u(u,\,\lambda))^* \mathbf{G}'_\lambda(u,\,\lambda),\,\delta(-\,\mathbf{G}'_u(u,\,\lambda)) \right]$$

K (u, λ) is the second member of (8). Then K (u, λ) never vanishes for (u, λ) in E. Indeed, dim Ker G'_u $(u, \lambda) \leq 1$. Consider two cases:

a) Dim Ker $G'_{u}(u, \lambda) = \{0\}$. Then, by Theorem 2 (3 (i)), $\delta(G'_{u}(u, \lambda)) \neq 0$.

b) Dim Ker $G'_{u}(u, \lambda) = 1$. Let λ_{i_0} be the single null eigenvalue of $G'_{u}(u, \lambda)$. Then $\prod_{i=1}^{N} \lambda_i (G'_i(u, \lambda)) \neq 0$, and therefore $(G'_i(u, \lambda))^* \neq 0$

Then
$$\prod_{\substack{i \neq i_0 \\ i=1}} \lambda_i (G'_u(u, \lambda)) \neq 0$$
, and therefore $(G'_u(u, \lambda))^{\sharp} \neq 0$

(See the definition of $J: A \rightarrow A^*$).

Assume, by contradiction, the trajectory $(u(s), \lambda(s))_{s \in [0,T]}$ is contained in D. Then D being compact, there exists a sequence $(s_n)_{n \in \mathbb{N}}$ such that:

$$s_n \to T$$
 as $n \to \infty$
 $(u(s_n), \lambda(s_n)) \to (u^*, \lambda^*)$ for some (u^*, λ^*) in D.

Thus, by assertion 2 K $(u^*, \lambda^*) \neq 0$, and Theorem 4 below provides an immediate contradiction and achieves the proof of Theorem 3.

THEOREM 4. — Let H be a Hilbert space, and E a one-dimensional closed C⁰-submanifold of H. Let K be a locally Lipschitz mapping from some open set U \supset E to H. Assume the maximal solution $(y(t))_{t \in [0,T]}$ of the differential system

(9)
$$\begin{cases} y'(t) = \mathbf{K}(y(t)) \\ y(0) = y_0 \in \mathbf{E} \end{cases}$$
 remains in E and is not periodic.

Then every adherent point y^* of y(t) as $t \to T$ is a stationary point of (9) (i. e. $K(y^*) = 0$).

Proof. — Assume, by contradiction, that for some sequence $(s_n)_{n \in \mathbb{N}}$ converging to T one has:

$$y(s_n) \rightarrow y^*$$
 and $K(y^*) \neq 0$.

Clearly, we can suppose that $(s_n)_{n \in \mathbb{N}}$ is an increasing sequence. Note that, since E is closed, $y^* \in E$.

STEP 1. — Define an open ball B in H such that $\overline{B} \subset U$, with centre y^* and radius r small enough to ensure that the following conditions are realized:

a)
$$(\mathbf{K}(y), \mathbf{K}(y^*)) \ge \frac{1}{2} || \mathbf{K}(y^*) ||^2, \quad \forall y \in \overline{\mathbf{B}}.$$

b) There exists $\hat{t} \in [0, T[$ such that $y(\hat{t}) \notin \overline{B}$. (Indeed, the trajectory is not stationary).

c) There is an homeomorphism $h: B \cap E \rightarrow [0, 1[$. (*h* is a local chart of E).

STEP 2. — Since $y(t) \notin \overline{B}$, we can choose s_n such that $y(s_n) \in \overline{B}$ and $s_n > \hat{t}$. Now consider the maximal interval containing s_n , $\overline{I} =]t_0, t_1$, such that $y(t) \in \overline{B}$ for every t in I. I is open since, at every point of H, there exists a local solution of (9).

Moreover: $\hat{t} < t_0 < s_n < t_1$.

STEP 3. — We claim that $t_1 < T$, i. e. y(t) « leaves » B for some $t > t_1$.

If not, the whole trajectory $(y(t))_{t \in [t_0,T[}$ would be enclosed in B. Apply now a classical property of the locally Lipschitz differential equations: since y(t) does not explode as $t \to T$, we would have: $T = +\infty$. But, by c):

$$\frac{d}{dt}(y(t), \mathbf{K}(y^*)) = (\mathbf{K}(y), \mathbf{K}(y^*)) \ge \frac{1}{2} || \mathbf{K}(y^*) ||^2$$

and then

$$(y(t), \mathbf{K}(y^*)) \ge (y(t_0), \mathbf{K}(y^*)) + \frac{t - t_0}{2} || \mathbf{K}(y^*) ||^2.$$

Thus $||y(t)|| \rightarrow +\infty$, therefore y(t) would leave B, which contradicts our assumption.

STEP 4. — We now prove that y: $]t_0, t_1[\rightarrow E \cap B$ is onto, i. e. $h \circ y$: $]t_0, t_1[\rightarrow]0, 1[$ is onto. First remark that since the solution y(t) of (9) is not periodic, the mapping $t \rightarrow y(t)$ is one to one. Thus the map $h \circ y$: $]t_0, t_1[\rightarrow]0, 1[$ is one to one, continuous and therefore monotone. Then it has a limit λ_0 as $t \rightarrow t_0^+$, and a limit λ_1 as $t \rightarrow t_1^-$.

Necessarily $\lambda_0 = 0$. If not, as $t \to t_0$, h(y(t)) would remain in a compact interval $[\lambda_0, \lambda_0 + \varepsilon]$.

Then y(t) would remain in the compact $h^{-1}([\lambda_0, \lambda_0 + \varepsilon])$ and would admit some adherent point in this compact as $t \to t_0$.

We would obtain: $y(t_0) \in h^{-1}([\lambda_0, \lambda_0 + \varepsilon]) \subset B$. This contradicts the definition of t_0 . In the same way, we can prove $\lambda_1 = 1$.

STEP 5. — Let us show now that y(t) « returns » in B for some $t > t_1$. Thus it will « pass again » by some point of the trajectory, and this contradicts the nonperiodicity assumption.

Let s_p be some element of the sequence $(s_n)_{n \in \mathbb{N}}$ such that $s_p > t_1$ and $y(s_p) \in \mathbb{B} \cap \mathbb{E}$. Such a s_p exists by Step 3.

From Step 1 c), there exists τ in]0, 1 [such that: $y(s_p) = h^{-1}(\tau)$ and then: $h \circ y(s_p) = \tau \in [0, 1[$. But, by Step 4, we can find t_2 in $]t_0, t_1[$ such that $h \circ y(t_2) = \tau$.

Thus $y(s_p) = y(t_2)$ with $s_p > t_2$. This achieves the proof.

BIBLIOGRAPHY

- [1] ABRAHAM-ROBBIN, Transversal Mappings and Flows. W. A. Benjamin, Inc., 1967.
- [2] R. A. ADAMS, Sobolev Spaces. Academic Press, New York, 1975.
- [3] J. C. ALEXANDER and J. A. YORKE, A numerical continuation method that works generically. University of Maryland, Dept. of Math., MD 77-9, JA, TR 77-9, 1977.
- [4] S. N. CHOW, J. MALLET-PARET and J. A. YORKE, Finding zeros of maps: Homotopy methods that are constructive with probability one. *Math. Comp.*, t. 32, 1978, p. 887-899.
- [5] B. C. EAVES and R. SAIGAL, Homotopies for computation of fixed points on unbounded regions, *Mathematical Programming*, t. 3, nº 2, 1972, p. 225-237.
- [6] T. KATO, Perturbation theory for nonlinear operators. Springer Verlag, 1966.
- [7] R. B. KELLOG, T. Y. LI and J. YORKE, A Method of Continuation for Calculating a Brouwer Fixed Point, in: Computing Fixed Points with Applications, S. Karamardian, ed., Academic Press, New York, 1977.

- [8] S. LANG, Analysis, Madison-Wesley Publishing Company, 1968.
- [9] S. SMALE, An infinite dimensional version of Sard's theorem. American Journal of Math., t. 87, 1965, p. 861-866.
- [10] S. SMALE, A convergent process of price adjustment and global Newton methods, J. Math. Econ., t. 3, p. 1-14.

(Manuscrit reçu le 21 septembre 1983)