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ABSTRACT. - This paper deals with the existence of periodic solutions
of Hamiltonian system with N degrees of freedom, on a given energy
surface. The surface is supposed to be symmetric and starshaped with
respect to the origin. We show that any such surface carries at least one
symmetric periodic solution and we give a sufficient condition on the surface
for the existence of N such solutions.

RESUME. - Dans ce travail nous considerons l’existence de solutions

periodiques de systemes hamiltoniens a N degrés de liberte sur une surface
d’energie donnee que nous supposons symétrique et etoilee par rapport a
l’origine. Nous montrons que toute surface de ce type admet au moins
une solution periodique et symétrique, et nous donnons une condition
suffisante pour l’existence de N telles solutions.

§ I. INTRODUCTION

The existence of periodic solutions of Hamiltonian systems with N
degrees of freedom on a given energy surface has been investigated by several
authors (see [10], [14] ] for local results and [8], [1 ] for global ones).

(*) This work has been done during a stay of the author at the I. S. A. S. (Trieste)
and has been partially supported by G. N. A. F. A.-C. N. R.
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In particular I. Ekeland and J. M. Lasry have proved a remarkable
theorem (see also [1 ]) concerning the existence of N distinct periodic
orbits in the case of convex Hamiltonian surfaces. These results have

recently been extended by Berestycki, Lasry, Mancini and Ruf (see [6 ] [7])
to the case of a starshaped surface. 

-

The purpose of this note is to investigate the case of a starshaped surface
V = ~ z E (1~~N : H(x, y) = const} which is symmetric w. r. t. the origin,
i. e. H(x, y) = H( - x, - y). We are able to weaken the assumption of [7] ]
for this class of Hamiltonian surfaces.
Our results have to be compared with a paper by Van Groesen [13 ],

which was also a motivation for our investigation. In [13] ] the Author
deals with Hamiltonian surfaces which are convex and such that

while in the present paper H( - x, - y) = H(x, y) and no convexity is

required ; of course the solutions found in [13 ] and here have the corres-
ponding symmetry properties. The proof here relies in a variational prin-
ciple in a suitable function space which characterizes symmetric periodic
orbits and, in contrast to [13] is more in the spirit of [7].

§ 2. THE RESULT

Let V be a regular C2-manifold of 1R2n. If H, H E C2([R2n, ~) are such
that V = H ~ 1 (a) = H -1 (b), a, and H’(z) ~ 0, VzeV,
then it is well known (see [Il ]) that the Hamiltonian systems

where z = (x, y) E (1~2~, Jz = (y, - x) Vz E have the same trajectories
on V, called « Hamiltonian trajectories on V ».
For let B~ denote the ball of radius p in 1R2N. For Zb z2 E !R2N

let denote the scalar product in fR . For z E V let n ( ) z - H~(z) H’ z’’ " ~ 
. 

I H"(z)) I
be the unitary exterior normal vector to V at z and let d(z) := (n(z), z),
i. e. the distance between the origin of [R2N and the tangent hyperplane
to V at z. If V is starshaped, i. e. d(z) > 0 Vz E V, let d = min { d(z) : z E V } .

We shall assume

(Hi) V = aQ, where Q is an open bounded subset of [R2N, OeQ, star-
shaped w. r. t. the origin.

(H2) V is symmetric w. r. t. the origin
(H3) R2 c 3(rd).
THEOREM 1. 2014 Assume (Hi) and (H2). Then there exists at least one

symmetric periodic Hamiltonian trajectory on V.
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THEOREM 2. Assume (Hi), (H~) and (H 3). Then there exist at least N
distinct, symmetric periodic Hamiltonian trajectories on V.

REMARK 1. If we replace (H3) by
(32) 1 _ k  N such that

We can obtain [7 ] that there exist at least 2014 distinct symmetric periodic
~

trajectories on V, where for  ~].

REMARK 2. 2014 If V is convex; (H~) becomes

and theorem 2 is an improvement, for symmetric trajectories, of the result
of Ekeland and Lasry [8 ].

REMARK 3. - The theorems and proofs are given in the special case
of surfaces lying between two spheres ; the general result, i. e. for surfaces
which are close to an ellipsoid, can be obtained as in [7]. It follows that
also an analogous of weinstein theorem [14 ] can be stated for the existence
of N symmetric periodic solutions.

REMARK 4. - The variational principle introduced here for symmetric
Hamiltonian systems can be easily stated for the unconstrained problem,
i. e. the problem of finding periodic solutions with a given period. Existence
results of the type of [77] ] [12 ] [5 still hold in this case, and the solutions
so found will also be symmetric.

REMARK 5. In [13 ] the Author considers the Hamiltonian surfaces
V == ~ (x, y) E [R2N : H(x, y) = const} where H is convex and

(H2) H(x, Y) = H( - x~ Y) = H(x, - Y) = H( - x, - y) y) E [R2N

The existence of N periodic orbits with the same symmetry properties
is proved under the assumptions (HJ, (H~) and (H;).
The same result could be obtained for a starshaped case, following

the same argument as in [13 ], but using an appropriate Z~ pseudo index
theory constructed as in § 4.

§ 3. THE PROOF

We shall prove theorem 2. Theorem 1 will be an easy consequence.
It is well known (see [11 ]) that there exists

Vol. 1, n° 4-1984.
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homogeneous of degree two, such that V = H -1 ( 1 ) and H(z) = H( - z)
Vz e [R2N.
We seek distinct periodic solutions of the Hamiltonian system

lying on V, symmetric with respect to the origin, (i. e. a solution z(t) such
that there exists T with z(t + r) = - z(t) dt). The proof will be carried
out in the following steps:

STEP 1. Use a variational principle to find periodic symmetric Hamil-

tonian trajectories as critical points of the action integral feu) = 2 o uJ1i

on S = U E E1 : 1 203C0 H(u) = 1 where Ei 1 is a suitable space. 

STEP 2. Prove that the positive critical value of the action integral
have a lower bound on S, which can be easily estimated from below in
terms of d and r.

STEP 3. Use a pseudo-index (see [4 ] [5 ]) to find N positive critical
levels of f on S, c 1, ... , cN say, and estimate c~j through (H 3), to ensure
that the corresponding critical points give rise to different trajectories.

’ 

STEP 1. -- Variational principle.
Let E = H1/2(Sl, 1R2N). For any smooth u E E, we consider the action

integral feu) = - 2 .o uJu and, by extension, we define f as continuous

quadratic form on E. One has f E C 1 (E, f~). Denoting by ( . , . ) the scalar
product in E, we define the bounded selfadj oint linear operator L : E -~ E by

Then E == E0 ~ E1 0 E2 is an orthogonal decomposition of E.

One has R). Let S ==  f Me Ei : 2014 1 = 1}. S is aL ~.o J
regular C1-manifold of Ei, of codimension 1, radially diffeomorphic to
the unit sphere of Ei.
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LEMMA l. - If u E S is a critical point of f Is, with f(u) > 0, then there
exists ~, > 0 such that

~roof . - Denote ~) the weakly continuous functional
1 *27T

u -+ 

203C0 H(u), u E E. If u is a critical point of f Is we have

To prove the lemma we have to show that

From this it follows, by a simple regularity argument, [5] ] that u ~ C1
and verifies (2) for some ~, E R ; the positivity of À easy follows (see (6)).

Let wEE and w = wo + wi 1 + w~ where wi E Ei, i = 0, 1, 2. Clearly
( Lu, = 0. Let un ~ u where un E R2N) n E1 ; then, by defi-

nition of L, one has ( Lu, w2 ~ = lim 0 (Jun, w2) = 0 since Jun ~ E1.

Recall that H’(z)|  C| z| Vz E [R2N, where C = max H’(z)|; H’ is

a continuous mapping from L2(S1, p2N) to L2(S1, R2N). From Un ~ u
it follows un L u and H’(u).
As un ~ E1, H’(un(t + 03C0)) = H’( - un(t)) _ - H’(un) by the symmetry

of V ; then H’(un) E m odd } . It follows
L2

and

The lemma is proved. D
In view of lemma 1, if u satisfies (2), u(~.- lt) is a solution of (1), lying on V,

of period T = 27cA, and if u has minimal period 2x, then u(~, -1 t) has minimal
period T. t

Moreover, since u e E i , u(t + ~c) = - u(t) Vt e S 1, hence u - is symmetric
w. r. t. r. the origin. ~
The existence of N distinct symmetric periodic Hamiltonian trajectories

on V, is equivalent to the existence of N critical points of ui, ..., un
say, f’(ui) > 0, such that

(3) ui has minimal period 2x i = 1, ..., N

Vol. 1, n° 4-1984.
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STEP 2. - Let Z == { = 0, !(u) > 0 ~ ; if we consider
the functional f and the manifold S in the space E = H 1 ~2{S 1 ; (~~N) we
have :

LEMMA. - If u ~ Z then f {u) > 

Proof (see also [7]). Let M = max { H’(z) ( z E H’ ~(1) ~. One has

then

Let u be a critical point of f (u) > 0 ; there exists À > 0 such that
Jic = Then

/*2~

Moreover, for every p~2N), setting v - v -~- C, v = 0 and
o 

-

using the Wirtinger inequality for zero mean functions, we obtain

hence, from (6)

By (7) we have ~, >_ M2 ; then by (6) and (5)

The previous lower bound for the action on the critical points obviously
still holds in the space E 1 ; in this case a slightly stronger result holds.

LEMMA 2. ?.l E Z, then 

Proof - Let M and d as before ; one has
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using Wirtinger’s inequality and the fact that

r

Hence ~ ~ 2014 and, by (6)
M

We have the following easy consequence of Lemma 2.

LEMMA 3. - If u E Z, feu)  then u has minimal period 2.

Proof - First we remark that if u has not minimal period 2x, then its
minimal period cannot ever be x ; in fact this would imply but
also by symmetry u(~) _ - u(o) and hence u(o) = 0 which is absurd. If the

minimal period of u is 203C0 m, m~N, m > 3, setting u*(t) = u t we find,

by direct calculation, f(u*) = 1 f(u)  which is it possible
m m

u* being also a critical point 

STEEP 3. In order to prove (4), define a pseudo-index (see [4] ] [5])
and make use of the invariance of f and S through the S1-action
S 1 x E1 ~ Ei, (0, u) ~ u(t + 0), u E E 1, 

-

The following definitions and properties will be needed below (see _
[4] ] m [6] ] 

Let 4JJm be as before, 6Jm = J = 1, ..., N, m ~ let

Ei = span {03C6Jm : 03C3Jm > 0, m odd }
span { 4JJm : 6Jm  0, m odd } .

Then (see [12 ]) is the orthogonal decomposition of Ei 1
w. r. t. the functional f. Let G be a C1-manifold ofEl, radially diffeomorphic
to the unit sphere of E1, invariant under the Let U be the

family of self-adjoint linear equivariant isomorphisms U : E 1 --~ E 1 such that
c Et and let 

’

I G = {h : G -)- G|h is an equivariant homeomorphism 3g : G ~ R+
continuous and U E U such that h - gU IG is compact}

Then rG is a group. Let E be the family of closed, S 1-invariant subsets
of Ei. For A c G, A E L, the pseudo-index (in the sense of Benci [5])
is defined as

where i is the S1-index introduced by Benci [5]. We recall the following
results :
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PROPOSITION 1. Let Gl and G2 be C1-manifolds radial diffeomorphic
to a sphere of E 1 and invariant under S1-action, and let p : G2 be
the radial projection from Gl to G2. Then

PROPOSITION 2. 2014 1. Let Hh ci Ei be a 2h-dimensional invariant sub-
space and let Hk Q W = E 1. Then for A c G, A ~ 03A3

2. Let Hh as above ; then

By the standard argument of the Ljusternik-Schnirelman theory, if f (G
verifies the P. S. condition, one obtains the following:

Minimax principle: Let Za = { u E G : f’ = 0, feu) = a}; for k ~ N
define:

ak = inf sup feu), i*(A) >_ k ~ .
AEAk ueA

Then ak is a (positive) critical value of Moreover if a = ak+ 1= - - - = ak+ p~
then i(Za) > p.

It is known that f )s satisfies the Palais-Smale condition (see [7]) ;
however we sketch the proof for reader’s convenience. c S,
with f(un) bounded, and w~ = f’ Is(un) = 0. Since

~ ~‘(un), un ~ = 2 is bounded, it follows that 
Also since un E S, un is bounded in L2 and hence

If we write u = un EEi we get

and therefore

which implies )) bounded. Finally, from Lun = + wn and the

compactness of we see that L(un + un ) has a convergent subse-
quence. This complete the proof.
We have now what is needed to prove theorems 1 and 2. Let us consider

S R = u E E 1 : 203C0 |u|2 - R2 which C1-manifold, radially 

morphic to a sphere of El, invariant under the S1-action. Obviously 
verifies the P. S. condition. We apply the minimax principle to S and SR.
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Let us denote by b 1, ..., bN the first N critical value of f ISR of minimax type.
The following simple lemma (see also [1 ]) holds.

LEMMA 4. - For f|SR one has b 1 = ... == bN = nR 2.

Proof It is obvious, as in lemma 2, that if u is a critical (positive)
point then feu) > nR 2. By the P. S. conditions, there exists a minimal
positive critical value of f (S , say. If u is a critical point at level bmin,
u has minimal period 2x. On the other hand

and the minimality of period 2x implies y = 1. Hence

Let HN = ~ ~ cos t + r~ sen t, ç sen t - r~ cos t : ~, ~ E (~N ~ and let

By proposition 2, one has i*(AN) = N. One sees immediately that

Let

It is known that c/s are positive (cJ > d ) and that they are critical
values of Moreover for every u e SR there exists a unique À such that
03BBu ~ S and 03BB  1. For AeS nE one has

where p is the radial projection from S to SR.
By proposition 1, cJ ~ bJ = by (H3) cN  Theorem 2

follows now from lemma 3.
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