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ABSTRACT. - In his fundamental work on linear elliptic equations,
De Giorgi established local bounds and Holder estimates for functions
satisfying certain integral inequalities. The main result of this paper is

that the Harnack inequality can be proved directly for functions in the
De Giorgi classes. This implies that every non-negative Q-minimum (in
the terminology of Giaquinta and Giusti) satisfies a Harnack inequality.

RESUME. - Dans son travail fondamental sur les equations lineaires
elliptiques, De Giorgi a donne des estimations locales et holderiennes

pour des fonctions satisfaisant certaines inegalites intégrales. Le resultat
principal de cet article est que l’inégalité de Harnack peut etre demontree
directement pour les fonctions appartenant aux classes de De Giorgi.
Ceci implique que tout Q-minimum (au sens de Giaquinta et Giusti)
non-negatif verifie une inegalite de Harnack.
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1. INTRODUCTION

In his fundamental work on linear elliptic equations, De Giorgi [7] ]
established local bounds and Holder estimates for functions satisfying
certain integral inequalities. His analysis was further developed by Lady-
zhenskaya and Ural’tseva [5 ] and applied to a wide range of quasilinear
elliptic and parabolic equations.
Through a different approach, Moser [9 ] established a Harnack inequa-

lity for linear elliptic equations which was extended to quasilinear equations
by Serrin [1 D ] and Trudinger [l l ].
The main result of this paper is that Harnack inequality can be proved

directly for functions in the De Giorgi classes.
Let Q be an open set in [RN and m > 1. The De Giorgi classes 

are defined to consist of functions u in the Sobolev space which

satisfy for any ball BR = BR( y) c Q, 6 E (o, 1), k > 0, inequalities of the
form

where y, x and E are non-negative constants, 0  E  m/N, a = and

and ) £ ) I denotes the Lebesgue measure of the set E.
We further define the De Giorgi classes by

and refer to these classes as homogeneous when x = 0.
We can now assert the following Harnack type inequalities.

THEOREM 1. - Let Then for any 6 E (o, 1),
p>O

where C depends only on m, N, y, E and p.
Here we have set

_ ""

THEOREM 2. > 0 and U E DGm (Q), BR = BR( y) c ~. Then there
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exists a positive constant p depending only on m, N, y, ~ such that for any
~, i E (0, 1 ) we have

~~here C depends only on N, y, E, 6, z.

Combining Theorems 1 and 2 we have the full Harnack inequality.

THEOREM 3. Let u > 0 and u E B R = BR(y) c Q. Then for
any 6E(o, 1)

where C depends only on N, m, y, ~, 6.

It is well known that weak solutions of quasilinear elliptic equations
in divergence form, under appropriate structure conditions, belong to
DGm(Q); [5]. Therefore our work provides alternative proofs of the
Harnack inequalities in [9] ] [10 and [11 ]. However our main motivation
comes from quasi-minima in the calculus of variations. Consider the
functional

for f satisfying the usual Caratheodory conditions on Q x [R x [RN and
the structure conditions

for all (x, z, p) E Q x [R x where m, p, b are non-negative constants
and g a non-negative function, m > 1. In the terminology of Giaquinta
and Giusti [3 ], u is a Q-minimum for J if Q > 1 and

for with supp ~ c K. In [2 ] it was demonstrated that
if u E W:: (Q) is a Q-minimum, then u satisfies inequalities like (1.1) and
therefore is locally bounded and Holder continuous. Our results imply
that every non-negative Q-minimum satisfies a Harnack inequality (under
appropriate integrability conditions on g), which is homogeneous when
g --_ 0.
The main tools in our proof consist of a suitable modification of the

De Giorgi estimates, as presented in [5], and a fundamental covering
lemma due to Krylov and Safonov [6 ] and used by them in their treatment
of equations in non-divergence form.
Theorems 1 and 2 are proved in Sections 2 and 3. In the last section we

consider the application of these results to quasi-minima.
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2. PROOF OF THEOREM 1

The proof of the following lemma closely follows [5 ], except that we
are more careful about constant dependence.

= c Q. Then for 
we have 

,

where C depends only upon m, N, and a = NE/m.

Proof We normalize so that R = 1 ; this has the effect of replacing x
by in the final result. Taking some k > 0, to be chosen later, we set

and for fixed 7 > 0, consider the sequence of radii

and the corresponding balls, Bn = BRn, Bn = BRn. Observing that

we let ~~ be a cut-off function in Bn such that ’n = 1 on Bn+ 1 and
2n + 2~{ 1 _ a). Let us consider the case m  N ; the case m = N

follows by minor modification while the case m > N can be deduced
directly from the Sobolev imbedding theorem. Applying now the Sobolev
imbedding theorem, (Theorem 7.10 of [4]), to (1.1), we obtain, for
u E 

where An = Ak~ ~ and as usual m* = Nm/(N - m).
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Next we set

and observe that

Therefore, setting

we deduce from (2 . 2), for k > t) u 

Hence if k > x, we have

and consequently, by Lemma 4 . 7, [5 ], page 66, Yn  0 as n - oo provided

Yo  C(m, n)( 1 - 
that is for

The estimate (2.1) follows immediately.
Theorem 1 may now be concluded by means of an interpolation argument.

For, setting v = u ± , M~ = sup E (0, 1) and
BaR

where p = we have for fixed 11 > 0,

for some 6’ depending on p and r~. But, by Young’s inequality,

By (2.1) applied over 6" - (1 + 6’)/2, we then obtain,

Vol. 1, n° 4-1984.
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so that letting ~ -> 0 and taking (5 sufficiently small, we deduce from (2.6)
and (2.7)

and hence, for arbitrary o- E (0, 1),

Theorem 1 now follows by combining (2.1) and (2.8).
Remarks. i) The proof of Theorem 1 extends to the case m = 1.

ii) Lemma 1 may be alternatively derived by Moser iteration. To see
this, in the case e = we set R = 1 and u = u ± + x. Multiplying (1.1)
by kfJ - 2 for ~3 > 1 and integrating over k, we thus obtain, with the aid of
Fubini’s theorem,

Clearly, by (1.1) again, (2.9) continues to hold for f3 > 1. By applying
the Moser iteration method [8 ] as described for example in [4 ] or [11 ],
we arrive at (2.1).

3. PROOF OF THEOREM 2

The proof is based on the following proposition which is closely related
to the strong maximum principle. For non-negative supersolutions of
divergence structure equations, the corresponding result, obtained using
the logarithm function, was a cornerstone in Moser’s approach to Holder
estimates; (see [8 ] [7]. Theorem 5 . 3 . 2, or [4] Problem 8.6).

PROPOSITION 3 . 1. - Let u > 0, u E B4 R - Q. T hen,
if ’ for some 03B4 E (0, 1),

we have

where ~. is a positive constant depending only on m, N, E, y and ~.

Proof By replacing u with u + it suffices to take x = 0 in (1.1).
Again we normalize R = 1, and consider (1.1) over the balls B2 and B4
for the levels,

where
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We obtain thus

where C depends on y and N. We recall now the following lemma due to
De Giorgi [1 ].

LEMMA 3 . 2. - Let and l > k. T hen

where ~3 depends only on N and

Using Lemma 3.2 we shall derive, .

LEMMA 3 . 3. - Let 8 E (0, 1) be fixed. Then there exists a positive integer s*
such that

with s* depending only on m, N, y, E, ~ and o.

Proof of Lemma 3 . 3. Taking a particular s* to be fixed later, we
may assume that

By the hypotheses of Lemma 3.1, we have

and hence, by (3.2),

We now apply Lemma 3 . 2 over the ball B~ for the levels l = ,u + 2 - S,
k = ~c + 2 - S -1, s = 1, 2, ... Using (3 . 4) and writing AS = Aks, 2, we thus
obtain 

We majorize the right hand side of (3 . 5), by making use of inequality (3 .1),
as follows
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provided s  s*. Substituting in (3.5) we therefore obtain

so that, by summation from s = 1 to s = s* - 1, we have

Lemma 3.3 now follows by choosing s* sufficiently large, for example

where [a] denotes the largest integer less than a.

Proof of Proposition 3.1 (concluded). Consider the sequence of balls
Bn = Bpn where

and the sequence of levels

Obviously Bo = B~ and ko = ~u + 2 - S*. We use inequalities (1.1) over
the balls Bn+ 1 and Bn for the levels kn. We observe that

(Pn - = 2(n+ and since p = inf u, Bn c B4,
B4

Using these remarks we rewrite (1.1) as follows,

where An = Akn,pn.
Consider now Lemma 3 . 2 applied over the ball Bn + 1 for the levels kn> kn + 1.
We thus have

where A, = 1BAkn+ 1 ~Pn + 1’ As before

and
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Substituting these estimates into (3.10), we thus obtain

Setting

we therefore have

From [5 ], Lemma 4 . 7, page 66, we conclude Yn  0 as n - oo, provided

Fixing 9 by (3.12) and choosing s* by Lemma 3.3 we thus have

whence

Proposition 3 .1 is thus proved with À = 2 - S* -1.
The proof of Theorem 2 may now be completed by means of the procedure

of Krylov and Safonov [6], as adapted by Trudinger [4 ] [12]. For the
sake of completeness we repeat some details. First we reformulate Propo-
sition 3 .1 in terms of cubes, by setting, for y E Q, R > 0,

and assume that c Q. Writing u = u + xR~ and replacing u
by u/t for t > 0, we deduce from Proposition 3.1, that if a E (o, 1) and

then

where £ is a positive constant depending only on m, N, y, e, ~.
Defining

we extend this assertion as follows.

LEMMA 3 . 4. Suppose that for fixed 6 E (0, 1), vve have ~ .

Then
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The proof is based on the following covering argument of Krylov and
Safonov [6 ], (see [~] ] [12 ]).

LEMMA 3. 5. - Let KR be any cube in a measurable subset of KR,
~ E (0, 1) and consider

Then either = KR or

Remark. The same conclusion holds if in (3 .14) we require the elements
in the collection denning ~ to be cubes K3p with p small, say p  po.

Proof of Lemma 3 . 4. - Let us apply Lemma 3 . 6 with 6 = 

Obviously we have = 1, 2, ... If for some z E KR and p > 0,
we have 

.

then by (3.13), u(x) > tA" V~c E K3p(z). Therefore, by virtue of Lemma 3 . 5,

Suppose now that I rt > ~s ~ . Then

and hence by (3.13), again we have

Proof of T heorem 2. For each t > 0, choose s so that

By Lemma 3.4,

for (small) C 1 and (large) Co depending on 6 and ~,. Setting

we have from (3 .15)

On the other hand, for any p  I/Co,
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and hence

Returning to balls, we thus have

provided c Q, where C depends on m, N, y, E. The conclusion
of Theorem 2 now follows by means of a standard covering and chaining
argument.

.4. APPLICATION TO QUASI-MINIMA

We consider functionals of the form

where f (x, z, p) is a Caratheodory function, namely measurable in x

for every (z, p) and continuous in (z, p) for almost all x E Q. The function f
is further restricted through structural inequalities:

where 1 are constants and b, g are non-negative functions satisfying
b, g e for q > N/m if m  N, and q = 1 for m > N. We call a function
u E a sub Q-minimum (super Q-minimum) for J if Q > 1 and

for every §  0, ( > 0), E with supp ~ c K. A Q-minimum for J
is thus both a sub and super Q-minimum. The following lemma, adapted
from [2 ] and [3 ], provides a connection between Q-minima and De Giorgi
classes. We assume for simplicity that Q is bounded.

LEMMA 4 .1. Let u E be a sub(super) Q-minimum for J. Then

u E with constants ~ = m - N ~ 1 xm - I g and ;’
__N 

N q

depending on Q, and (diam b 

Proof. Let u be a sub Q-minimum for J and fix a ball BR( y) c Q.
Normalizing R = 1 we take, for k >- 0

where 0~~~1, supp ~~Bs, ~=1 in |~~  2(s - t) -1 and 0  t  s  1.
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Using (4.2), (4.3), we obtain

Now, for m  N, and arbitrary s > 0,

Consequently, by the Sobolev imbedding theorem and appropriate choice
of 5, we obtain

where C depends on Q, m, N, q, II b and diam Q. Inequality (4 . 5) is also
readily extended to the cases m > N. Hence by substitution of (4. 5) into
(4.4) we have

so that

Applying Lemma 3 . 2 of [3 ], we thus infer for any 6 E (o, 1),

and (1.1) follows. The case of a super Q-minimum is proved similarly.
Combining Theorems 1, 2 and 3 with Lemma 4.1 we obtain the corres-

ponding Harnack inequalities for quasi-minima.
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COROLLARY 1. - Let u be a sub Q-minimum for J, BR = BR( y) c Q.
Then for any 6 E (0, 1), p > 0, we have

m- N N
where C depends only on m, N, Q, ,u, q, R q ~ ~ b ~ ~ q, and a = 1 - ,
-- I ~ mC~

COROLLARY 2. - Let u >_ 0 be a super Q-minimum for J, m > 1,
BR = BR( y) c 03A9. Then there exists a positive constant p depending only

on m, N, Q, ,u, q, Rm __N q ~ ~ b ~ ~q such that for any a, i E (0, 1) yve have

where C depends in addition on 6, i.

COROLLARY 3. Let u >_ 0 be a Q-minimum for J, m > = BR( y) c Q
Then for any 6 E (0, 1)

N
m--

Where C depends only on m, N, Q, ,u, q and R q ( [ b [ [q.
When g --_ 0, Corollary 3 reduces to the usual Harnack inequality.

Furthermore, when also b = 0 we obtain a Liouville theorem.

COROLLARY 4. Let u E m > l, be a quasi-minimum fo~ the
functional

and suppose that u is bounded on one side. Then u is a constant.

Finally we remark that the structure conditions (4. 2) can be generalized
in various ways ; in particular the function f can be divided by certain
types of non-negative weight functions.
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