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ABSTRACT. - We study the Cauchy problem for a class of non linear
Schrodinger equations in space time dimension n + 1. We look for solu-
tions which are continuous functions of time with values in the Sobolev

space > n/2. Under suitable assumptions on the interactions,
we prove in particular the existence of global solutions for n  7. The

global existence proof breaks down for n > 8.

RESUME. On etudie le probleme de Cauchy pour une classe d’équa-
tions de Schrodinger non lineaires en dimension n + 1 d’espace temps.
On cherche des solutions fonctions continues du temps a valeurs dans
l’espace de Sobolev > n/2. Sous des hypotheses convenables sur
les interactions, on prouve en particulier l’existence de solutions globales
pour n _ 7. La demonstration d’existence globale ne s’applique pas pour
n > 8.
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INTRODUCTION

Non linear evolution equations are attracting an increasing interest,
both from the mathematical and from the physical point of view. Among
those equations, the non linear Schrodinger (NLS) equation

where cp is a complex function defined in space time ~" 
+ 1, ~ is the Laplace

operator in and fo a local non linear interaction, has been considered
in the last few years by several authors ([2], [5 ]- [11 ], [14 ], [16 ]- [18 ]) as
regards both the Cauchy problem and the theory of scattering. Here we are
concerned with the Cauchy problem only. For suitably regular interac-
tions, the local Cauchy problem can be conveniently treated by Segal’s
non linear semigroup theory [15] or a slight generalization thereof [7 [10].
For that purpose, one recasts the Cauchy problem for the equation (0.1)
with initial data ~p(to, . ) = cpo( . ) at initial time to in the form of the integral
equation

where U is the one parameter group generated by the free equation,

One then looks for solutions of (0.2) as continuous functions of time
from an interval I containing to to some Banach space X. Under suitable
assumptions on fo and for suitable choices of X, one can prove the existence
of such solutions for sufficiently small I by applying the contraction mapping
theorem. The global Cauchy problem, namely the problem of extending
the previous solutions to all times, can be handled for suitable interactions fo
by the standard method of a priori estimates. For that purpose, one exploits
the conservation laws of the L2-norm and of the energy for the equa-
tion (0.1) to derive a priori estimates of the solutions in the Sobolev space H1
(see definition (1.2) below). The second step fits more or less smoothly
to the first one, depending on the choice of X and its relation with H~.
The optimal choice would be of course X = but that choice provides
a satisfactory local theory only for n = 1. Failing to make that choice
for n ~ 2, one is naturally led to follow either of two courses: one can
choose for X a larger space X =3 The local Cauchy problem then
becomes more complicated, as well as the proof of the conservation laws.
However the global problem becomes simple, since a priori control of
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the solutions in H~ immediately implies control in X, thereby leading to
a global existence result with initial data in for arbitrary space dimen-
sion [7] ] [10 ]. Alternatively, one can choose for X a smaller space X 
in the present case X = Hk with k > n/2 (see definition (1.2) below). The
local problem then becomes simple, as well as the proof of the conservation
laws and of the smoothness properties of the solutions. However, the
global problem now becomes harder, since a priori control in H no longer
implies a priori control in X, and the latter has to be obtained recursively
from the integral equation (0.2). This last step has been performed so far
for n  3 only [2 ]. The present note is devoted to a study of that question
in higher dimensions. The main result is that under suitable and natural
assumptions on fo, global existence of solutions of (0.1) or (0.2) holds
for n  7. However the present proof, based on standard Sobolev estimates,.
breaks down in dimension n > 8. When contrasted with the global existence
results in H 1 for arbitrary n mentioned above, that fact suggests that smooth-
ness properties may fail to hold in high dimensions for the global solutions
thereby obtained. -

The corresponding problem for the non linear Klein-Gordon equation
has been treated by Pecher, Brenner and von Wahl [3 ] [4 ] [12 ] [13 with
similar results : global existence in n/2, can be proved under sui-
table and reasonable assumptions on the interactions for n  9. The proof
however, is technically more complicated and requires the use of Besov
spaces in dimensions n > 6.

This paper is organized as follows. In section 1, we recall briefly the
theory of the local Cauchy problem, including smoothness properties
and the relevant conservation laws, for the NLS equation in Hk, k > n/2.
The proofs are standard and will be omitted. A detailed exposition will
be found in [10 ]. In section 2, we derive the basic estimates needed for the
global Cauchy problem, and state the main result in precise form.

1) THE LOCAL CAUCHY PROBLEM

In this section, we state without proof the basic results on the local
Cauchy problem for the NLS equation (0.1) or (0 . 2). For any interval I c R
and any Banach space X, we denote by X) the space of continuous
functions from I to X, and for any positive integer 1, by X) the space
of I times continuously differentiable functions from I to X. If I is compact,

X) is a Banach space when equipped with the norm

We shall use the spaces Lq = 1  q  oo, with corresponding
Vol. 1, n° 4-1984.



312 J. GINIBRE AND G. VELO

norms denoted by and the Sobolev spaces Hk = with k a
non negative integer, defined by

where a = (a 1, ..., an) is a multiindex of space derivatives, and

It is well known that the free group U(t ) defined by (0.3) is unitary in Hk
for all k > 0.
We now state the main results. In everything that follows, fo is a ~~ func-

tion from C to C, for values of that will be specified as needed. The first
result concerns local existence and uniqueness.

PROPOSITION 1.1. - Let k be an integer, k > n/2, let fo E 1 with

fo(O) = 0, and let qJo E H~. Then

(1) There exists Tf> 0, depending on qJo through (( qJo only such
that for any to E R, the equation (0.2) has a unique solution qJ in

~( [to - T, to + T ], Hk).
(2) For any interval I of R and any to E I, the equation (0.2) has at most

one solution in Hk).
The next result concerns smoothness of the solutions.

PROPOSITION 1. 2. - Let k and k’ be integers, k’ >_ k > n/2, let fo E ~k~
with fo(O) = 0, and let qJo E Hk’. Let I be an interval of R, let to E I and let
~p E Hk) be a solution of the equation (0 . 2). Then cp Hk’ - 2 ~)
for any integer I, 0  1  k’/2. If k’ > 2, the differential equation (0.1)
holds in Hk~ - 2.

We now turn to the conservation laws of the L2-norm and of the energy.
For that purpose, we assume in addition that the interaction fo satisfies
the following assumption

ASSUMPTION 1.1. - For all z e C and c.~ e C with 
Furthermore fo( p) is real for all p e (~ + .

It follows from the Assumption 1.1 that fo can be written as

where V is the function from C to (~ defined by
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313CAUCHY PROBLEM FOR SCHRODINGER

The energy is then defined for sufficiently regular ~p as

The relevant conservation laws for the solutions of (0 . 1) can then be stated
as follows.

PROPOSITION 1. 3. - Let k be an integer, k > n/2, let f0 ~ k+1 with
fo(0) = 0, and let fo satisfy the assumption 1.1. Let I be an interval of IF~,
let to E I and Hk, Let cp be solution of the equation (0.2) in Hk).
Then for all sand t in I, cp satisfies the equalities

We conclude this section with an estimate to the effect that the norm in H 1
is controlled by the L2-norm and the energy, so that the conservation laws
of Proposition 1. 3 imply that the solutions of (0 . 2) are uniformly bounded
in For that purpose, we need an additional assumption of lower
boundedness ofV, so that the kinetic and potential parts of the energy (1. 5)
cannot become separately infinite with opposite signs. We state that assump-
tion in the form

with

PROPOSITION 1. 4. - Let satisfy (1.6), (1.7), let 1

be such that E L~ and define E(ep) by (1.5).
Then

where cr is defined by p3 = 1 + 46/n (so that 0  cr  1) and C4 is a non

negative constant (independent of qJ).

The proof is elementary and can be found in [7, Lemma 3 . 2 ]. In Pro-
position 1.4 as well as in the subsequent global existence results that
depend on it, one can also assume that p 3 = 1 + 4/n provided !! ~p ~ ~ 2
is sufficiently small, depending on V. One then obtains an estimate similar
to, but slightly different from (1. 8). This minor extension will not be men-
tioned further.

2) THE GLOBAL CAUCHY PROBLEM

In this section, we study the global Cauchy problem for the equation (0.1)
in the space Hk, k > n/2, and we prove the existence of global solutions for
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n  7. In view of Propositions 1.1, 1.3 and 1.4, global existence will
follow by standard arguments from the fact that for solutions in H~, a priori
control in H~ implies a priori control in H~, and this section is mainly
devoted to a proof of that property. For completeness, we first state without
proof the (elementary) global existence result for n = 1.

PROPOSITION 2 .1. - Let n = 1 and let with fo(O) = 0. Let fo
and V satisfy the assumption 1.1 and (1. 6), (1. 7). Let to e R and qJo E H~.
Then the equation (0.2) has a unique solution in H~). That solution
is uniformly bounded in H 1.

We now turn to the case of dimension n > 2. In addition to the spaces Hk
defined by (1.2), it will be convenient to use the more general Sobolev
spaces [1 ]

with k a non negative integer, and 1  q  oo. In particular, Hk - 
We shall use extensively the Sobolev inequalities in the general form

where 1  p, q, r  0  o-  1, r  1 if p = oo, and

These inequalities imply various embedding theorems between the Sobo-
lev spaces. In particular wk,q c: L°° if kq > n. The estimates of this section
will make an essential use of the following well known smoothing property
of the free group Vet) (see for instance Lemma 1. 2 in [7]) : for any 

and any pair of dual indices q and q, 1  -  2   o0 1 + 1 q - 1 U t is
bounded from Lq to L~ (more generally from to with bound

for all ~p E with

We shall use that estimate in the range

for which 0  6(q)  1, so that the estimating factor in (2.4) is integrable
near t = 0, and for which in addition H~ c L~.
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In all this section, we shall denote by fi’, the sets of first,
second, ..., I-th order derivatives of fo with respect to z and z, by (
the maximum of the moduli of those derivatives, and by ..., Vkcp
the sets of first, ..., k-th order space derivatives of cp.
We now begin the proof of the a priori estimate in Hk of solutions of (o.1)

or (0.2) that are a priori bounded in The first step is valid for all n > ?
and consists in estimating cp in or equivalently ~~p in Lq for some
(large) q in the range (2.6).

LEMMA 2 .1. - Let n > 2 and k > n/2. Let fo E ~k satisfy fo(O) = 0

and

with

Let to E [R and qJo E Hk. Let I be an interval of R containing to, let qJ E Hk)
be a solution of the equation (0.2) and assume that 03C6 is uniformly bounded
in HB namely . _ - _

Let q in the range (2. 6) satisfy

Then cp is estimated a priori in W~’~. More precisely

where depends only on I (through the length I I of I), on (through
I12,2~ and on M1,2 .

Proof - Since H~ c Lq, it is sufficient to estimate Q~p in L~. By the
Sobolev inequalities and (2 . 4), we obtain from the equation (0.2)

Now the assumptions on fo imply that one can decompose f’0 as

and

We can therefore estimate the Lq norm in the right hand side of (2.13) by

Vol. 1, n° 4-1984.
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with 1/l = 1/2 - 1/q. Now E L2 n L’ with ~j ~~2  ~p ~~2
and ~ g1(03C6)~~  C, so that ~g1(03C6)~l is estimated in terms 03C6 112. On
the other hand, by the Sobolev inequalities, II is estimated by
~) cP ~~1,2 provided (p2 - 1)1 ~ 4n/(n - 2), l  oo if n = 2, which is equiva-
lent to (2.11).
The result now follows from (2.13), (2 .17) and the preceding remarks

by Gronwall’s inequality. Q. E. D.

REMARK 2.1. - In Lemma 2.1, the assumptions that ~p Hk)
and fo E ~k are unnecessarily strong. It would be sufficient that cP E X’)
for some X’ c H~ such that the equation (0.2) makes sense in

X’), and that fo satisfy the minimal order of differentiability needed
for that purpose. In particular, one could take X’ = H~ n cpo E H2

and fo E ~ 1. The estimates in the proof of Lemma 2.1, supplemented with
similar but simpler ones for the norm in Lq and with elementary continuity
arguments, actually show that the right hand side of (0’2) is well defined
from H~ n to For simplicity, we have chosen to keep
X’ = Hk, since we know already from the local theory that the equa-
tion (0.2) makes sense in Hk. In the same spirit, if one assumes only f0~1,
then the assumption f6(0) = 0 has to be replaced by

with

Of course for n > 2, q in the range (2. 6) and q > 2, the conditions (2.18),
(2 .19) are equivalent to = 0 as soon as fo E ,

In space dimensions 2 and 3, Lemma 2.1 implies the existence of global
solutions in H2, as we now show (see also [2 ]).

PROPOSITION 2 . 2. - Let n = 

satisfying (2. 8) and (2. 9). Let fo and V satisfy the assumption 1.1 and (1. 6),
(1. 7). Let to E [R and H2. Then the equation (0.2) has a unique solution
in H2). That solution is uniformly bounded in H~.

Proof - The result follows by standard arguments from Proposition 1.1
provided we can show that any solution in H2) satisfies an a priori
estimate in H2. By Propositions 1.3 and 1.4, such a solution is uniformly
bounded in H~. It is therefore sufficient to estimate V2cp in L2. For that
purpose, we choose q in the range (2.6) sufficently large for (2.11) to hold
and satisfying in addition q > 4. By Lemma 2.1, cp is estimated in H~ 
for that value of q. In particular ~~p is estimated in L~, and by the Sobolev
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inequalities, ~p is estimated in L°° since q >_ 4 > n. From the equation (o . 2),
we then obtain for all t ~ I

n~

The norm in the integral is estimated by

By Lemma 2.1 and the remarks above, all the norms in the right hand side
of (2.21) except II have already been estimated. The required esti-
mate of II ~2~p II2 therefore follows from (2.20) and (2.21) by Gronwall’s
inequality. Q. E. D.

REMARK 2 . 2. - We note for future reference that, if fo e ~2 and regardless
of the dimension ~ the estimates (2 . 20) and (2.21) provide an a priori
estimate of V2ep in L2 provided one knows in advance that cp is estimated
in LOO and in L4.

REMARK 2. 3. - If one were willing to estimate II by the Sobolev
inequalities in terms of II Vcp Ilq and at most linearly in terms of II V2ep II2,
one could replace the condition q > 4 by the weaker one q > n. This
remark has no incidence on the global existence problem in H2.
We assume from now on that n > 4. This implies that q  n and q  4

for all q in the range (2. 6)..In particular we can no longer estimate directly cp
in H2 by the arguments given in the proof of Proposition 2.2. Instead of
that, we first estimate cp in for suitably large q in the range (2.6).
It is at this point that the proof breaks down for n > 8.

LEMMA 2.2. - Let 4  n  8 and k > n/2. Let ~o e ~ satisfy
fo(0) = fo(0) = 0, the conditions (2.8), (2.9), and in addition

with

Let to E R and qJo E Hk. Let I be an interval of R containing to, let Hk)
be a solution of the equation (0.2) satisfying (2 .10). Let q in the range (2. 6)
satisfy (2.11) and in addition

(and therefore, by comparison with (2.23),
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Then ~p is estimated a priori in ~V2~q, more precisely

where depends only on I (through its length on (po (through
II ~Po 113,2) and on 

Proof By Lemma 2.1, we know already that cp is estimated in 
and it is therefore sufficient to estimate V2cp in L~. By the Sobolev inequa-
lities and (2 . 4), we obtain from the equation (0.2)

We estimate the first norm in the integrand by

where again 1/l = 1/2 - 1/q, so that for n > 4 and q in the range (2.6),
one has q  4  n  l. By the same argument as in the proof of Lemma 2 .1,
and with the simplification that now l/2 > 2, one sees easily that ( 
is estimated in terms of M ~ ~ alone under the assumptions (2. 8), (2. 9), (2.11).
We next estimate the second norm in the integrand of (2. 26) by

where we have used (2.22), and with lg = 1/m + 1/s.
The first term in the right hand side of (2.28) is the special case of the

second one with p4 = 2 and and we concentrate on the latter.
We estimate ~~p in L2S by interpolation between L2 and Lq if (one
always has 2s > 2q >_ 2) and by the Sobolev inequality if 2s > q. We
obtain in the latter case

with

provided 0  (7  2. We need not worry about the possibility of 6 becoming
negative, since that case corresponds to the harmless situation where
2s  q. We substitute (2.29) into (2.28) and estimate the second term in
the right hand side in terms of the norm of cp in H~ n and at most

linearly in terms of the norm of V2qJ in Lq by imposing that r  1 and
that the norm of qJ in L~ p‘~ - 2~m be controlled through the Sobolev inequa-
lities by the norm of qJ in H 1 n We end up with the condition
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where the last inequality is simply 7  1 rewritten by using (2.30) and
the definition of b(q). Upon elimination of m, or equivalently omission of
the middle member, (2 . 31 ) becomes identical with (2 . 24). The special case
p4 = 2, m = oo in (2. 31), corresponding to the first term in the right hand
side of (2.28), reduces to (2.24’), an immediate consequence of (2.24)
and the condition p4 >_ 2. Furthermore, (2.24) together with p4 > 2 can
be satisfied for any p4 satisfying (2 . 23) by taking b(q) sufficiently close to 1,
namely q sufficiently large. The condition (2.23) implies n  8.

Finally, under the conditions (2.22), (2.23), (2.24), by substituting (2.29)
into (2.28) and then into (2.26) and using in addition (2.27), one obtains
a sublinear integral inequality for II from which the required estimate
follows by Gronwall’s inequality. Q. E. D.

REMARK 2.4. - A remark similar to Remark 2.1 applies to the regu-
larity assumptions on cp and fo in Lemma 2 . 2. What is actually needed is
that ~p E X’) for some X’ c H1 n such that the equation (0. 2)
makes sense in X’), and that fo satisfy the minimal order of differen-
tiability needed for that purpose. In particular, one could take X’ = H~ n 

H3 and fo E ~2. We have taken again X’ = Hk for simplicity.
We are now in a position to prove the existence of global solutions in H3

for space dimensions n = 4 and 5.

PROPOSITION 2 . 3. - Let n = 4 or 5, and let fo with f0(0) = f’0(0)= 0,
satisfying (2.8), (2.9) and (2.22), (2.23). Let fo and V satisfy the assump-
tion 1.1 and (1. 6), (1. 7). Let to and H3. Then the equation (0.2)
has a unique solution in H3). That solution is uniformly bounded
in HI.

Proof - The result follows again by standard arguments from Propo-
sition 1.1 provided we can show that any solution in H3) satisfies an
a priori estimate in H 3. By Proposition 1. 3 and 1. 4, such a solution is
uniformly bounded in H~. It is therefore sufficient to estimate V2cp and

in L2. For that purpose, we choose q in the range (2.6) sufficiently
large for (2 .11) and (2 . 24) to hold, and satisfying in addition q > 3, a condi-
tion compatible with (2.6) for n  6. By Lemma 2.2, cp is estimated in
H~ n for that value of q. By the Sobolev inequalities this implies
that ~p is estimated in L°° (since q > 3 > n/2) and that is estimated in L6
(since  1/3  1/6 + 1/n) and a fortiori in L~. By Remark 2 . 2, this
in turn implies that r~ is estimated in H2, and it remains only to show that
V3cp is estimated in L2. For that purpose, we infer from the equation (0.2)
that for all t ~ I
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We estimate the integrand in (2.32) as

Since we have already estimated qJ in L°°, V qJ in L6 and V2qJ in L~, the last
two terms in (2.33) are also estimated, while the first term is linear in the
yet uncontrolled norm (( I 2 . The required estimate on this last norm
follows therefore from (2.32), (2.33) and Gronwall’s inequality. Q. E. D.

REMARK 2. 5. - We note for future reference that, if f0 ~ 3 and
regardless of the dimension n, the estimates (2.32), (2.33) provide an a
priori estimate of in L2 provided one knows in advance that ~p is esti-
mated in L°°, VqJ in L6 and V3qJ in L~.

REMARK 2 . 6. - If one were willing to estimate II and II 
by the Sobolev inequalities in terms of (( and at most linearly in
terms of !! D3 ~p ~ ~ 2, one could replace the condition q > 3 by the weaker
one q > n/2.

We finally turn to the case of dimensions 6 and 7. This implies that q  3
for all q in the range (2.6). Following the same method as previously, we
postpone the estimate of the L2-norms of D2~p, V3qJ and estimate first cp
in for suitable q in the range (2. 6).

LEMMA 2 . 3. - Let n = 6 or 7 and k > n/2. Let f0~k satisfy fo(o) = fo(0) = 0,
the conditions (2.8), (2.9), (2.22), (2.23) and in addition

with

Let t0 ~ R and qJo E Hk. Let I be an interval of R containing to, let Hk)
be a solution of the equation (0.2) satisfying (2.10). Let q in the range (2.6)
satisfy (2.11), (2.24) and in addition

Then cp is estimated in W 3 ~q, more precisely

where M3,q depends only on I (through its length I ), on qJo (through
11 90 l14,2) and on M1,2.

Proof. By Lemma 2.2, we know already that 03C6 is estimated in W2,q
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and it is therefore sufficient to estimate V3cp in L~. By the Sobolev inequa-
lities and (2 . 4), we obtain from the equation (0.2)

We estimate the first norm in the integrand by

where again 1/l = 1/2 - 1/q. As in the proof of Lemma 2 . 2, ~ ~ fo(~p) 
is estimated in terms of M 1,2 alone. ,

We estimate the second norm in the integrand of (2.38) by

where we have used (2.22) and with 2/l = 1/m + 1/r. We concentrate on
the last term in the bracket, of which the first term is the special case p4 = 2,
m = oo. Since l > n > 6, we have r > 3 > q. We estimate D~p in L~ by the
Sobolev inequalities in terms of II and (( V2cp and by the same
calculation as in the proof of Lemma 2 . 2, with one factor II replaced
by (( V2cp we find that under the condition (2.24), the right hand side
of (2 . 40) is estimated in terms of the norm of cp in H~ n 
We estimate finally the third norm in the integrand of (2. 38) by

where we have used (2.34), and with 1/~ = 1/m’ + I/s’. We concentrate
on the last term in the bracket, of which the first one is the special case

3, m’ - oo. Note that 3s’ > 3q > 9/2 > q. We estimate in L3s’

by the Sobolev inequalities in terms of ( and ] ~q for low values
of s’, and in terms of (] V2cp and ~~ for high values of s’. We obtain
in the latter case

with

provided 0  6’  3. We disregard the lower inequality which is connected
with the harmless low values of s’, and replace the higher one by the stronger
sublinearity condition 6’  1 as in the proof of Lemma 2.2. We impose
in addition that the norm in be controlled through the Sobolev
inequalities by the norm of ~p in H 1 n and obtain finally that the right
hand side of (2.41) is estimated in terms of the norm of cp in H~ n W2~q
and, at most linearly, in terms of the norm in L~ provided
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where the last inequality is simply 6’  1 rewritten by using (2.43) and
the definition of 5(~). Upon elimination of (2.44) becomes identical
with (2 . 36). The special case p5 = 3, m’ = oo in (2.44) reduces to the condi-
tion 1 + 6(q) > n/4, an immediate consequence of (2. 36) and of the condi-
tion P 5 > 3. The condition (2 . 36) together with p 5 > 3 can be satisfied
for any p~ satisfying (2.35) by taking sufficiently close to 1.

Finally, under the conditions stated in the Lemma, one obtains a sublinear
integral inequality for ]( from which the required estimate follows
by Gronwall’s inequality. Q. E. D.

REMARK 2.7. - A remark similar to Remarks 2.1 and 2.4 applies
to the regularity assumptions on ~p and fo in Lemma 2. 3. What is actually
needed is that (~ E X’) for some X’ c H~ n such that the equa-
tion (0.2) makes sense in X’), and that fo satisfy the minimal order
of differentiability needed for that purpose. In particular one could take

and foE3. We have taken again X’ = Hk
for simplicity.
We are now in a position to prove the existence of global solutions in H4

for space dimensions n = 6 and 7.

PROPOSITION 2 . 4. - Let n==6 or 7 and let foE5 with fo(o) = fo(o) = o,
satisfying (2 . 8), (2 . 9), (2 . 22), (2 . 23) and (2 . 34), (2 . 3 5). Let fo and V satisfy the
assumption 1.1 and (1. 6), (1. 7). Let t0 ~ R and 03C60 e H4. Then the equa-
tion (0.2) has a unique solution in H4). That solution is uniformly
bounded in H~.

Proof In the same way as in the proofs of Propositions 2.2 and 2. 3,
it is sufficient to prove that for any solution in H4), and V4cp
are estimated a priori in L2. For that purpose, we choose q in the range (2 . 6)
sufficiently large for (2.11), (2.24) and (2.36) to hold, and satisfying in
addition q >_ 8/3, a condition compatible with (2 . 6) for n  8. By Lemma 2.3,
cp is estimated in H~ n for that value of q. By the Sobolev inequa-
lities, this implies that (p is estimated in L°° (since q > 8/3 > n/3), that O~p
is estimated in L~ (since 3/8  1/8 + 2/n), and a fortiori in L4, so
that V2cp is estimated in L2, by Remark 2 . 2. One can then estimate V2cp in L4
and a fortiori in L3 by the Sobolev inequalities, since 1/q  3/8  1/4 + Iln,
so that V3cp is estimated in L2, by Remark 2. 5. It remains only to show that
V4cp is estimated in L2. For that purpose, we infer from the equation (0.2)
that for all t ~ I
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We estimate the integrand in (2 . 45) as

Since we have already estimated cp in L °°, D~p in L8, V2cp in L~ and 
in Lg~3, all terms but the first one in (2.46) are also estimated, while the
first one is linear in the yet uncontrolled norm ( D4~p ~ ~ 2 . The required esti-
mate of that norm follows therefore from (2.45), (2.46) and Gronwall’s
inequality. Q. E. D.

REMARK 2.8. - If one were willing to estimate all the norms in the
integrand of (2 . 45) in terms of the norms of 03C6 in H1 n and at most

linearly in terms of (( V4cp I I 2, one could replace the condition q > 8/3
by the weaker one q > n/3.
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