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ABSTRACT. - In this paper we consider problems of the type 

{ 
AHu + IL(:I;.)u~ 5 0, in D C RzrL+l, 
‘U 2 0 in D, (1) 

where AH is the Heisenberg Laplacian, D is an unbounded domain and 
h is a non negative function. 

We prove that, under suitable conditions on h, p and D, the only 
solution of (1) is YL - 0. 

Kq words: Liouville property, Heisenberg group. 

RESUME. - Dans ce travail nous considerons des problemes du type 

C 
AHu + Ir(:c)G 5 0, dans D c iR27L-t1, 
?L 2 0 dans D. (1) 

ou AH est le Laplacien de Heisenberg, D est un domaine non borne et 
11 est une fonction positive. 

Nous demontrons que sous certaines hypotheses sur h, ?, et D, la seule 
solution de (1) est u E 0. 
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1. INTRODUCTION 

In this paper we establish some Liouville type theorems for positive 
functions u satisfying, for example, 

AHu + h(<)zP 5 0 in D, 
u 2 0 in D, (1.1) 

where D is an unbounded domain of the Heisenberg group H”. We recall 
that H” is the Lie group (IR2nf1! o) equipped with the group action 

&) 0 t = 
( 

z + 20: y + yo, t + to + 2 &iYOi - Yi:co,) 
) 

* Cl.21 
i=l 

for < := (xi,... , GL, Yl,. . . , g/n, t) := (2, y> t) E lR2n+1 and AH is the 
subelliptic Laplacian on H” defined by 

with 
3 a 

& = TJ-& + 2Yi3’ 

I-+24. 
Y7 

It is easy to check that AH is a degenerate elliptic operator satisfying the 
Hormander condition of order one (see Section 2). 

As an example of our results for the case where D = H” we prove 
that, under some conditions on the non negative coefficient h and suitable 
restriction on the power p, any non negative smooth solution u of (1.1) is 
identically zero. More precisely, denoting by Q = 2n + 2 the homogeneous 
dimension of H” and by [<[H the intrinsic distance of the point < to the 
origin (see [6], [7]), namely 

IElf3 = (& + yp)” + t2) $. 
i=l 

(1.3) 

we have: 

THEOREM 1.1. - Let u be a non negative solution of 

AN(<) + u]<l’H~“(<) 5 0 in H’“; (1.4) 



LIOUVILLE THEOREMS 297 

where a is a positive constant and y > -2. 
Then, if 1 < p 5 E, u G 0. 
A generalized version of this theorem is proved in section 3 below, where 

also several variants covering the cases when the equation holds in a half 
space or some “cone” in H” are considered (see Theorem 3.2, 3.3, 3.4). 

Let us point out that a common feature of our results is that we do not 
impose any condition on the behaviour of u for large ][]H, thus allowing 
u to be, a priori, singular at infinity. 

Therefore our results can be viewed as the analogues, in the present 
degenerate elliptic setting, of previous ones due to Gidas-Spruck [lo] for 
the uniformly elliptic case. However, our method of proof is rather inspired 
by [ 11, where Liouville type results are established for non negative solutions 
of 

Au + aJz(Yup 5 0 

in a cone of IR”. 
We wish to mention that non existence results for non negative solutions 

of semilinear equations on the Heisenberg group have been obtained 
previously by Garofalo-Lanconelli in [8]. Note, however, that the theorems 
in [8], based on Rellich-Pohozaev identities, differ considerably from those 
in the present paper since they require global integrability conditions on u 
and on the gradient of u. (see also [5] for similar results in the uniformly 
elliptic case). 

Finally, we point out that the Liouville theorems presented here are the 
basic tools for obtaining an a priori bound in the sup norm for solutions 
of the Dirichlet problem 

AHU+ f(<>u) = 0 in R C lRzn+l, 
u=o on dSZ, (1.5) 

under some growth conditions on f. This can be done using a blow up 
technique on the lines of [lo], [l], [2] and will be the object of a separate 
paper [31. 

2. PRELIMINARY FACTS 

In this section we collect for the convenience of the reader some known 
facts about the Heisenberg group H” and the operator AH which will be 
useful later on. For their proof and more informations we refer for example 
to [61, 171, @I, 1121, 1131. 

Vol. 14. no 3.1997 
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As mentioned in the introduction the Heisenberg group 13” is the Lie 
group whose underlying manifold is lR2”+i (71 > 1). endowed with the 
group action, 

for < = (:I;~?. . . ,%,,, ~1,. . . :I/,,: t) := (:c, 1~. t). 
The corresponding Lie Algebra of left-invariant vector fields is generated 

by Xi, Y, for i = 1,. . ( II, and T = $. 
It is easy to check that X, and Y, satisfy [X;, Y,] = -3Th,,,. 

[Xi, X,] = [x, Yj] = 0 for any I, j e { 1. . . . . r,}. Therefore. the vector 
fields X;, I/ (Z = l;.... ) 7~ and their first order commutators span the 
whole Lie Algebra. Hence, the Hormander condition of order one holds 
true for AH (see [ 131); this implies its hypoellipticity (i.e. if Ali,~l, E C” 
then ‘II E C” (see 1131)) and the validity of the maximum principle (see [4]). 

An intrinsic metric can be defined on H” by setting 

where 1 . (H has been defined in (1.3), see [6]. Clearly in this metric the 
open ball of radius R centered at EO is the set: 

BH(<,,.T) = (71 E H” : dH(r/.&,) < 1.). 

It is also important to observe that c - j<j~ is homogeneous of degree one 
with respect to the natural group of dilations (ser [6], [7]): 

OX(<) = (Xx. Xy, X’f). (2.1) 

Since the base {Xi. Yi;. T} is obtained by the standard one { 2, &. &}, 
using the transformation 

whose determinant is identically 1, it follows that the Lebesgue measure 
is the Haar measure on H”. 

This fact, together with the homogeneity property of /<In described 
above, implies that 
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where Q = 2n + 2 is the homogeneous dimension of H” (see [ 121) and 
] . ( denotes the Lebesgue measure. 

To conclude this section we recall some simple properties of AH. Observe 
first that 

It is easy to check that the operator AH is homogeneous of degree 2 
with respect to the dilation 6~ defined in (2.1) namely 

A,(b) = ~2b(A~); 
also, for any fixed E“, by the left invariance of the vector fields Xi, Y, 
with respect to the group action we have: 

AHMY 0 0) = @~4(? 0 E) if< E H”. 

The next remark concerns the action of AH on functions u depending only 
on p := ][]H. It is easy to show that 

Q-li3u 
g + ___- 1 P w 

(2.3) 

where the function $J is defined by 

g)(t) = C%41(xf + yy’) = (vHp12 
P2 

for t # 0. (2.4) 

where with VHU we denote the vector field (X;u, Yiu), for i = 1,. . . , ‘IL. 
It is useful to observe that 

AH = div(rr*aV) with 0 = 

3. LIOUVILLE TYPE THEOREMS 

In this section we will generalize to the Heisenberg group some Liouville 
type results which hold for positive solutions of superlinear equations 
associated to the laplacian, see [l], [2], [lo]. 

THEOREM 3.1. - Let u be a non negative solution of 

(3.1) 

Vol. 14. Ilo 3-1997 
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where f is a non negative function satisfying 

(3.2) 

for some function h(c) 2 0 such that, for l<lH large, 

for some K > 0 and y > -2 
If 1 < p < s then IL E 0. 
Before the proof iet us introduce a cut-off function cb~ which will be 

used throughout this section. Consider $R(P) := (i,( $), where p := I~/H* 
R > 0, and 4 satisfies: 

( 4 E cyo, +m). 054121, 

) 4-1 on [I).:]. 

q5 = 0 on [l, +x1). 

/ and I$1 for some constant C > 0. 

Proof. - Set, for R > 0, 

In:= . 
I 

h(+“+R”dt p q withi+A=l. 
If” 

(3.3) 

(3.3) 

Observe that 1~ > 0. Moreover, by equation (3.1) and (3.2) 

hence an integration by parts yields, 
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where VH(<) = 4&(t) d an v is the normal to i3R; dHz, denotes the 
2n-dimensional Hausdorff measure. On the other hand, as observed in 
Section 2 (see (2.3)), 

(3.6) 

Thus we get, using the hypoteses on 4~ and denoting by CR := 
BH(O, R) \ BH(O, $9 

Hence, the Holder inequality yields: 

(3.7) 

Choosing R > 0 sufficiently large, in CR, h satisfies 1~ 1 $KpY. Therefore, 

-r, 5 c [/?Lphc#@( fR(?+:-2). (3.8) 

as 0 < ,I/J 5 1. Then, 

I;-: 5 cR(?+$-2), 

Hence, if 1 < y < @, letting R + $00, we obtain 

I:= * 
I 

hu”d[ = 0 
. Htl 

This implies u G 0 for p large, since h is strictly positive outside of a set 
of measure zero and u is a priori non negative. 

The claim follows now by the maximum principle (see [4]). In fact, 
choose %! > 0 in such a way that, for p > R, /L > 0. Then, 11, G 0 on the 
complementary of BH (0: R), as we proved. Hence, u satisfies: 

I 

u > 0 in BH(O,R + 6), 

AHSL < 0 in Bj(O,% + 6), 

71 ‘- 0 for Z < p < R + 6, 

Vol. 14. Ilo 3.1997. 
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for some 6 > 0. Therefore, by the maximum principle, since u is not strictly 
positive, u has to be identically zero. 

If JJ = E, we obtain, by (3.7), that I is finite and that the right hand 
side of (3.7) tends to zero when R goes to infinity. This yields I = 0 and 
we can conclude as above. 

Remark 3.1. - If !/, = K > 0, we get by the previous theorem that, for 
1 < p < A, the unique solution of 

AHU + K,d’ < 0 in H” (3.9) 

is ‘u E 0. 

Remark 3.2. - The upper bound of the exponent p is optimal. Indeed, 
we claim that the function v(p) = C,(l + p2)-f with o = Q - 2 - E and 
a suitable choice of C, is a positive solution of 

for p > w. 
Indeed, let U(P) = (1 + p’)-t. Then u satisfies: 

1 

d’u 
-Affu = -?J j + 

Q - l&L ~- 
dP2 P a/, 1 

= ,$tr(l + /9)-(~+2)[Q(l +/I”) - (0 + 2)p2] 
= l/iU(l + p2)-(2+2)[p2(Q - (Y - 2) + Q] 
> $lY(Q - lb! - 2)(1 + $)-(i+l). 

Hence, if we impose that 

Q-a>a. p; - ; > (; + l), 

(3.10) 

(3.11) 

(5.12) 

we can choose c = (cu(Q - (Y - 2)) * and u = c’u satisfies: 

Now just choose N = Q - 2 - E then (3.12) holds if y > e for 
any E positive. 

The idea of the function ‘u was taken from Ramon Soranzo (personal 
communication to LB.) who gave a similar counterexample for the 
Laplacian. 



The next result 
an half-space. 

THEOREM 3.2. - 

D 
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concern the case where the unbounded domain D is 

Let D c H’” be the set 

= E E H” : 
C 

n 

c aiz; + biyi + d > 0, 
i=l 

with (a, b) E IR” x IR.” \ {0}, d E R 

Let TL be a non negative solution of 

AdO + f(l, u(l)) F 0 in D, (3.13) 

where f is as in Theorem 3.1 with y > - 1. 
If 1 < p < e, then u E 0 in D. 
A similar result is valid for half-spaces which do not contain the t- 

direction or for particular cones. However, the upper bound of the exponent 
p is lower than in the previous case. 

The following results hold: 

THEOREM 3.3. - Let D c H” be the set 

n 

c ailc; + b;yi + et + d > 0 , 
i=l > 

for a, b E IR’“, c E R \ {0}, d E IR, 

and let u be a non negative solution of 

with f as in theorem 3.1 and y > 0. 
Then, if 1 < p < 9, u E 0 in D. 

THEOREM 3.4. - Let C be the cone 

(3.14) 

and let u be a non negative solution of 

A~40 + f(l, u(l)) I 0 in C, (3.15) 

with f as in theorem 3.1 and y > 0. 

Vol. 14, Ilo 3.1997. 
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Ifl<p<Qlrr ‘UIOinC. 
The proofs of $ek-ems 3.2, 3.3, 3.4 follow from the next lemma. 

LEMMA 3.1. - Let D c H” be an unbounded domain. Assume that ‘11 
satisfies: 

{ 

rj > 0 in D: 
AHrl 2 0 in D, 
r/ = 0 on i3D, 

and let u be a non negative solution of 

(3.16) 

with f as in Theorem 3.1. Then, for 

the following estimate holds 

for R > 0 large enough, where DE := BH(O, R) n D, 62~ := (L3~(0~ R) \ 
B*(O, f)) n D, and q is the conjugate exponent of p. 

Proof - From equation (3.16), assumption (3.2) and the divergence’s 
theorem we get: 

Moreover, since 4~ = 0 on ~JBH(O, R), 71 = 0 on dD, and (1 > 1, the 
integrals on the boundary of DR vanish and therefore, 

IR < - 
.I’ 

UnH((d)R)‘)d‘f. 
DR 

Thus, using the properties of 4~ and observing that, by the hypoteses 
made on rl, 

AH(+) = q(q - 1)7/q-21vH7/12 + 4rlq-%I’l > 0 
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(3.20) 

for R > 0 large enough. The statement is proved. 

Proof cf Theorem 3.2. - Consider, without loss of generality, the half 
space {zi > O}. 

The claim is proved by using the estimate (3.17) applied to D = {xi > 0} 

Indeed, by the maximum principle, to show that u E 0, it is enough 
to check that IR := s huPq5Bqx:d< + 0 when R + 00, (3.21) 

{.c,>O) 

where tin is as in (3.3). 
If DR := BH(O, R) fl {xi > 0}, then (3.17) becomes: 

Therefore, as 0 5 *II, 5 1 and x1 5 CR in OR, for p 5 g we get: 

Vol. 14. no 3.1997 
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and we can conclude using the same arguments as in Theorem 3.1. 

Proof of Theorem 3.3. - As in the proof of Theorem 3.2, the claim is 
proved using the estimate (3.17) of Lemma 3.1 with r/ = A.:l:+ B.;y+ct+d 
and Dn := BH(O,R) n D. 

Let us consider the integral 

I, := 
I 

htLpq5R”~qd~~ 
.n 

where I$R is as in (3.3). By (3.17), using the fact that 

(3.23) 

‘12 CR2 (3.24) 

)‘17~r/l = [(A + 2cy,B - 2~3:)~ 5 CR 

we obtain: 

< &R’~+~‘, - (3.25) 

If 1 < p L: 9 we can conclude as in the previous cases. 

Proof of Theorem 3.4. - This result follows from the estimate (3.17) 
by choosing 17 := C~zI(a;zi - biy;)(bizj + (~~9;) and D := C. Since the 
function 71 has the same behaviour as the function Q chosen in the proof of 
Theorem 3.3, we can conclude in the same way. 

Remark 3.3. - Let us observe that, instead of inequality (3.17), one can 
similarly obtain 

provided f satisfies (3.2) for some h > 0 such that the right hand side 
of (3.26) exists. 

Consequently, if h verifies: 

1 R 
lim - 

.I R++co Rq ,, 
h-: (pw)pQ-‘dp = 0 

where w = &, then the conclusion of Theorem 3.2 holds true. Similar 
conditions on h and p can be given for Theorems 3.3 and 3.4. 
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For the sake of completeness, we will also prove a Liouville theorem for 
bounded solutions of AHu = 0 in the whole space H’“. 

THEOREM 3.5. - If ‘u is a bounded function such that AHu = 0 in the 
whole space H’“, then u is a constant. 

The proof is based on the following representation formula for Heisenberg 
harmonic functions. This formula can be proved easily by using the 
divergence’s theorem, see e.g. Gaveau ([9]) for details. 

LEMMA 3.2. - Let III sati& AHUI = 0 in H”. Then, ,for any < E H’“, 

where 4~ is dqjined in (2.4), and CQ = ~I?H(<, 1)1-l. 

Proof of Theorem 3.5. - Let us first prove that $$ zz 0. Observe that, in 
view of the Hormander condition, the vector field T = $ commutes with 
X; and Y,, i.e. T(XI) = Xi(T) and T(E) = E;(T). Hence, 

AH(Tw) = T(A,*u/) = 0. 

Therefore, applying the previous lemma, we get: 

where vt is the t-component of the exterior unit normal vector to BH([, R). 
Since 

I I g = 1111 Itl < + 
P4 - P2 

from (2.2) we obtain that 

for any [ E H” and for any R > 0. Thus, letting R go to infinity, we get 
g(E) = 0 for any < E H’“. Then, w is a bounded solution of 

n d2W d2W d2w c - - - = 0 in JRarL+l. 
i=l ax; + ay,2 + at* 

Therefore it has to be constant by the classical Liouville theorem (see 
e.g. [ 111). 

Vol. 14, no 3.1997. 
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