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ABSTRACT. - A free boundary problem arising from the bidimensional 
thermal modelling of aluminium electrolytic cells is studied. The medium 
is assumed piecewise homogeneous and nonlinear. A fixed domain method 
is proposed which leads to a weak formulation of the problem. Existence 
of weak solution is proved by regularizing the contact condition between 
the homogeneous subdomains and passing to the limit. 0 Elsevier, Paris 
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1. INTRODUCTION 

In this paper, a free boundary problem motivated by the thermal modelling 
of an aluminium electrolytic cell is studied. 

Aluminium is produced by reduction of alumina dissolved in an 
electrolytic bath based on molten cryolite (see [ 1 I]). This complex process, 
called Hall-Heroult, involves thermoelectrical and magnetohydrodynamical 
phenomena, electrochemical reactions, complex phase equilibria and so on 
(see [12]). 

The Hall-Heroult process takes place in an electrolytic cell (see Fig. 1) 
which consists of a rectangular steel shell with an inner covering of 
insulating and refractory materials. Inside this, there is a linning of prebaked 
carbon cathode blocks with embedded steel current collector bars. Both the 
liquid metal and the electrolytic bath are upon these blocks. A frozen bath 
layer, the so-called ledge, protects the side wall of the cell from corrosive 
electrolyte. This ledge also reduces the heat loss from the cathode and 
works as a heat sink when extra power is supplied to the cell, thus playing 
a major role in the thermal behaviour of the cell. 

The outline of this paper is as follows: in section 2, we recall the main 
features characterizing the thermoelectrical behaviour of an electrolytic cell. 
The unknowns are the temperature, the electric potential and the profile of 
the ledge which becomes a free boundary. 

Theoretical analysis of this problem is extremely difficult due to the 
coupling between thermal and electric equations, the nonhomogeneity of 
the domain, the physical nonlinearities and the free boundary. In [4], a 
discretized thermoelectrical problem is introduced and an iterative algorithm 
is used to compute the solution for a test example and real industrial 
electrolytic cells. 

As a first step, in [6] we study the free boundary problem in the ledge 
which is both piecewise homogeneous and nonconductor, and consequently 
only the thermal phenomenon is considered. Both, existence and uniqueness 
of solution are demonstrated assuming that the ledge is linear (i.e. the 
thermal conductivity coefficients depend on space variables but not on 
temperature). 

In the present paper we also study the thermal submodel. The difference 
with respect to the case considered in [6] is that now thermal conductivity 
also depends on temperature. This fact leads to a nonlinear diffusion 
term which makes more difficult the mathematical analysis. Indeed, since 
thermal conductivity also depends on the space variable, to avoid this 
nonlinearity by using a global Kirchhoff transformation is not allowed. 
To overcome this difficulty we use domain decomposition methods by 
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considering two homogeneous subdomains (which can be distinguished in 
the ledge) corresponding to the levels of bath and aluminium. 

In section 3 we introduce a weak formulation in a fixed domain. 
Mathematically, this problem is a stationary one phase Stefan problem 
with source at the free boundary (see [17]). 

Section 4 is devoted to proving an existence theorem for an auxiliary 
problem, depending on a parameter, which regularizes the contact condition 
between the homogeneous subdomains. After setting some a priori estimates 
in section 5, existence of a weak solution for the thermal problem is proved 
in section 6. 

2. THE THERMOELECTRICAL PROBLEM 

In this section we describe the thermoelectrical behaviour of the cathode 
of an aluminium electrolytic cell. 

The voltage drop between the anode and the cathode causes an increasing 
of the temperature due to the Joule effect. Likewise, the potential distribution 
of the electrolytic cell depends on the temperature through the electrical 
conductivities of the materials. Therefore, from a mathematical point of 
view, the full problem couples both a thermal and an electrical problem, 
and it is similar to the so-called thermistor problem (see [13] and the 
references therein). However two additional difficulties appear in the present 
problem. Firstly, the domain of the model is not homogeneous and then 
physical parameters depend not only on temperature but on position 2 as 
well. Secondly, there is a free boundary: the profile of the ledge, called 
S in Fig. 1. 

The boundary conditions for the electric problem are given by the 
knowledge of the current density through the cathodic bar. Moreover, the 
heat flux through the exterior boundaries due to the losses by convection 
an radiation leads to the boundary conditions for the thermal problem. 

The ledge, being a nonconductor, is actually a fundamental part of the 
cell from the thermal point of view. In the recent years, several attempts 
have been made to determine the heat flux through the surface S (see [l], 
[ 181). Since the temperature is almost uniform in the liquid phase due to 
the strong horizontal flow caused by the electromagnetic field, we assume 
that the temperature, T, is equal to the solidus temperature of the bath, 
called T,, in S. The heat flux on S is given by 
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Fig. 1. - A section of the cell cathode. 

where k is the thermal conductivity depending both on the space variable 
IC = (x1, z2) and on the temperature, nl represents the first component of 
the outward unit normal vector to the ledge at S at point x and h(zz) is 
a function to be given which only depends on x2. In practice, h has to be 
identified from experimental measurements because it depends on factors as 
the electrolyte composition. In [3], a method to identify the function h from 
experimental measurements of the ledge profile is developed. Including n1 
is not only convenient from the mathematical point of view but it also 
makes sense from the physical one because the heat transfer depends on the 
slope of the free boundary: the greater the slope the greater the heat transfer. 

In [SJ, this full thermoelectrical problem is discretized using pentahedral 
finite elements of six degrees of freedom and numerical results are given 
for real industrial situations. 

The difficulties appearing on the theoretical treatment of this coupled 
problem, as the nonlinearities on the physical characteristics of the materials 
or the free boundary, lead us to consider a simplified problem taking place 
on the (unknown !) domain occupied by the ledge. 

3. STATEMENT OF THE PRO3LEM 

As a approach to the theoretical study of the full thermoelectrical problem, 
we consider a simplified bidimensional submodel. The ledge is the domain 
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where the problem is now posed; it is formed by two layers corresponding to 
the bath and the metal levels and, as a consequence, the thermal conductivity 
is different in these two levels (see Fig. 2). Since it is a nonconductor 
material, release of heat by Joule effect does not occur and then we can 
consider only the thermal part of the problem which becomes a one phase 
Stefan problem with source at the free boundary (see [17]). A similar 
problem is developed in [ 161 for the evolutionary and multiphase version 
but it does not cover the present situation. 

0 
-+ 

x1 

Fig. 2. - n- domain 

Let fit- be the ledge. We assume that R- can be written as 

R- = {(x1,x?,) E w2, 0 < x2 < a, fl(X2) < 51 < fi(X2>}, (3.1) 

where a is a positive real number, fi, i = I,2 are Lipschitz functions and 

fl(X2) < f2(x2), v’z2 E [O,a]. (3.2) 

Actually, f2 is an unknown function corresponding to the free boundary. 
The solidified bath and metal are denoted by 0, and R,, respectively 

and we suppose that they are given by 

R; = R- n{(2,,x2) E 5P,b < x2 < u}, (3.3) 

0; = O- n {(x~,x~)E W2,0 < x2 <b}, (3.4) 

where b is a positive real number such that b < a (see Fig. 2). 
Let r,, = XI, fl 80; and rr and S be the graphs of the functions 

fi and i2, respectively. Finally, 

r; = X- n ([x2 = o] u [x2 = u]). (3.5) 

Vol. 15. no 4-1998 
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Notice that rl U r, is the part of the boundary of R- different from 
the free boundary S. We denote 

s, = s n cm,, i = l-2. (3.ci) 

Since (I- is piecewise homogeneous, the thermal conductivity can be 
written as follows: 

(3.7) 

On the other hand, a Robin boundary condition is assumed on PI 
involving a convective coefficient (v and the convective temperature of 
surroundings, Tc. 

We shall assume all along the following assumptions on the data 
(HI) For i = 1,2, k,(s) : Iw -+ Iw are continuous and there exist positive 
constants ICmil,, and k,,,,,, such that knLn 5 ki( s) < k,,,,,.. 
(H2) T, is a positive constant. 
(H3) h E L”(0, ) a 1s nonnegative where a is the height of the domain 
(see Fig. 2). 
(H4) The function cv only depends on the space variable and belongs to 
L”(I’r). Moreover, Q(X) > N,,;,, > 0 a.e. on rl. 
(W Tc E Lm(O,n), with 0 < T ,,,, irL 5 T, < T, a.e. on (0, u). 
(H6) hnl + a(T, - T,.) 2 0 a.e. on I’r, where 7~~ denotes the first 
component of the outward unit normal vector to rl. We assume that 
-1 < n1 < 0. 

Physically, the assumption (H6) establishes an upper bound in the heat 
source at the free boundary. From the theoretical point of view, it is needed 
in order to prove that the solution of our problem is less or equal than T,. 
In [5] and for a onedimensional version, solutions without this property are 
obtained if (H6) does not hold. 

Throughout this paper we use standard notations for Sobolev spaces and 
norms. We also denote 

H(div, 0) = {v E (L’(q)*; diuv E P(R)}, (3.8) 

@/)2(b) = iIL E P(ro); j2 E Hi 
such that z (rO= /L and z J(an\r,j~ 0}, (3.9) 

where PO is an open set of the boundary of 0. 
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Let us consider the following free boundary problem: 

l Problem (P) 

Find T, in H1(R;) and S;, i = 1,2 such that 

-V.(ki(T;(z))VT,(z)) = 0 in fly, (3.10) 

ki(Ti(l:))$(:r) = 0 on I’; n Xl;, (3.11) 

T,(z) = T’, on Si, (3.12) 

ki(Ti(z))~(s) = h(z,)n,,(:c) on Si, (3.13) 

k;(T,(z))$(:c) + a(~)(T;(s) - Tc(z2)) = 0 on Fr n Xi;, (3.14) 

for i = 1,2. Moreover, we must impose the transmission conditions on I?<,: 

TI(z) = Tz(z), (3.15) 

no- being the outward unit normal vector to 0;, % = 1,2. The conditions 
(3.15) and (3.16) express the requirement for the temperature and the heat 
flux not to have jumps on I’<,. 

Equality (3.10) holds in the distributional sense and then k; (T,(z))VT; (3;) 
belongs to H(di~; 02;), i = 1,2. The boundary condition (3.11) holds on 
(H,‘,/“(r; n Xl;))‘, and analogously with (3.13), (3.14) and (3.16). 

For theoretical and numerical purposes, it is interesting to embed the 
problem (P) into another one defined in a fixed domain. For this purpose, 
we consider the sets s2: and C$ called the fictitious domains (see Fig. 3). 

Fig. 3. - n domain. 

Vol. 15, no 4.1998 
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We define fit; as the interior of the set 0, U S, U C$, and 

(3.17) 
(3.18) 
(3.19) 

(3.20) 
(3.21) 

(3.22) 

where the meaning of c is clear from Fig. 3. We define (2 as the interior of 
the set RI u 52a u I’1,2 with boundary r = lTl u r2 u rs. Moreover we set 

x1(n) = Hl(R1) x Hl(R,), (3.23) 

with the standard product norm, i.e. 

II (‘ILl,U2) II= (II Ul IIT,a.n, + II w2 (I~,z,n2)1’2. (3.24) 

As HI(G) is cont+ruously imbedded into T-f1 (n), hereafter a function 
T E I?(R) will be denoted by (Z’r, T2) E ‘I-L’(n) with Ti = T Ifi,, i = 1,2. 

We consider the weak problem: 

0 Problem (WP) 

Find T = (Tl,T2) E I?(R), q; E L”(Q), i = 1,2 such that 

= hz;dI’, V/(Zl, 22) E H1(fq (3.25) 

qi E H(Ti - T,), i = 1,2, (3.26) 

where H denotes the multivalued Heaviside function given by 

if r < 0, 
H(r) = [Oy l] if 1’ = 0, (3.27) 

if r > 0. 

Annales de i’fnstitut ffenri Poincare’ Analyse non linc%ire 
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For a solution of the problem (WP), let the sets 62-, S, fli, @, I’; 
and I’,, be defined by 

R- = {x E R : T(z) < T,}, (3.28) 

S=X-no, (3.29) 

fq=rnoi, (3.30) 

np = L?,\(cq- u Si), (3.31) 

r, =r,nm-, (3.32) 

ry, = an; n x2;! (3.33) 

Si, I’;- and Pi0 being defined in (3.6) (3.19) and (3.21) respectively. 
Notice that qi is equal to zero in n; by (3.26). 

Remark 3.1. - If the solution (Ti; Tz) of the problem (WP) is continuous 
and less or equal than T, and S has twodimensional Lebesgue measure 
zero, then the set equality 

r1.2 = C,, u r;, (3.34) 

holds where I’:,, = any n iX$ (see [ 151 for further details). 

PROPOSITION 3.1. - If there exists a regular solution (TI , T2, ql, q2) of the 
problem (WP) such that T;(X) < T, a.e. in Ri and furthermore I’: c XI;, 
ri c 80: and 0; and 0: are open sets with Lipschitz boundary, (i = 1; 2), 
then (Tl , Tz, q1 , q2, S) is a solution of the problem: 

-V.(k;(T;(z))VTi(z)) = 0 in CI,, (3.35) 

Ti(z) < Ts,, qi(z) = 0 in a,, (3.36) 

--h(xp)-(21) = 0 in 52:. 
dccl 

(3.37) 

T;(z) = T,, 0 < q;(z) 5 1 in C$‘. (3.38) 

Ti(z) = T, on Si, (3.39) 

h,(T@))~(z) = h(x2)qi(“)nl(s) on S,, (3.40) 

k:i(T.(r))z(r) = 0 on r;, (3.41) 

h(22)qi(z) = h(z2) on r;: (3.42) 

hi(Ti(z))g(z) + CX(X~)(T~(X) - T,(Q)) = 0 on II’;, (3.43) 

T&) = T2(4 on r1,2, (3.44) 

Wd)l$(4 +k2(T2(~))$ (4 = 0 on r1,2, (3.45) 
2 

Vol. 15. Ilo 4-1998 
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for % = 1,2 and ~11 as in equation (2. I). 
In (3.40) q1 represents the trace of q, restricted to I$’ on S,. 

Proof. - If we choose 2 E D(12;) (the usual space of functions of class 
Cm with compact support in 12;) and 2 E D(Uj’). we classically have 
(3.35) and (3.37) in Z?‘(I),) and in D’(08), respectively. 

By definition of $2: and it;, we have T, = r, in 12p and q, = 0 in 12,. 
respectively. Thus, by applying the Green formula, equation (3.25) implies 

taking into account that VT, = 0 in 62 \ 62-. From (3.46), we deduce 
(3.40) (3.41), (3.42), (3.43) and (3.45). Finally, since (Tl,T2) E H’(O). 
(3.44) holds true. q 

Notice that if f2p is connected and ri c 807, (3.37) and (3.42) imply 
/),(I, = h in of, and therefore from (3.40) we deduce (3.13). 

The problem (WP) is similar to those arising in the dam problem (see 
[9]), and in the lubrication with cavitation problem (see [2], [IO]). The 
differences lie in both the coefficients of the partial differential operators 
and the boundary conditions. In 161, an easier problem is considered, in 
that thermal conductivity does not depend on temperature and hence the 
differential operator in equation (3.10) is linear. For this problem, existence 
and uniqueness of solution are proved. However, the technique developed 
in that paper can not be directly applied to the present problem. 

In the following sections we are concerned with existence of solution 
of the problem (WP). The proof is laborious and is based on defining a 
regularized problem using maximal monotone operators techniques. 

4. THE REGULARIZED PROBLEM 

In this section we introduce the regularized problem, called problem 
(APA). An existence result for this problem is given after both a Kirchhoff 
transformation and an approximation technique are used. 
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Let us consider the operator 

409 

d : T-P(R) x L”(R1) x L”(R2) --) (W(R))‘, (4.1) 

defined by 

2 

< ~(~1,~2:41,Q2),(~1,~2) > = c 
.I 

ki(Ti)VT,.Vz;dx 
i=l 0, 

nT,z;dr, (4.2) 

and the element 3 of (‘H’(R))’ given by 

We are able to prove the following 

PROPOSITION 4.2. -Let (Tl: Tz! ql? qz) be an elementcf’F11(i2) xL”(fll) X 
Lm(Rp) such that 

.i- d(Tl,Tz,ql,qz) E ~;,zi31{0} h,2@'1,T2)), (4.4 

qi E II(Tz - T,). % = 1: 2, (4.5) 

then (Tl, T2, 41, q2) is a solution of problem (WP), where: 
l dI(o) is the subdifferential of I(o) which is the indicator function of 

the set (0) in I11/‘(l?1,2). 
l y1,2 is defined by 

71,2 : 7-W) - HlWi2) 
(a,zz) -+ 21 lQa -22 Iiyr 

(4.6) 

l r;,2 is the adjoint operator of 71,~. 

Proof. - Since IHI = 110) o y1,2, by using the chain rule of 
subdifferential calculus we obtain 

F - d(Tl;Tz:q1,qz) E ~b,n,(KTz). (4.7) 

Vol. 15, Ilo 4.1998. 
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Therefore, 

and we deduce that (TI, Z’a) belongs to H1 (St). Taking into account that 
H1 (R) is a subspace of X’(n), we easily deduce 

and the proof is complete. 0 
Taking into account (4.4), we define an auxiliary problem by replacing 

the maximal monotone operator 6’I,a, by its Yosida approximation given by 

l Problem (APA) 

For a fixed X > 0, find (T:, T;“, qt, 4,“) in X’(R) x Lm(&) x L”(Rp) 
such that 

’ + 
.I 

CT: - Ti? (zl _ z2)dI’ 
r1,2 x 

ZZ hz;dI’, V(ZI,ZZ) E 3-1l(f% (4.11) 

q; E H(T,” - T,), % = 1,2. (4.12) 

Notice that this problem couples the subdomains RI and R2 through the 
integral on the boundary r1,2 in (4.11). 

The following result establishes a lower bound for the solutions of the 
problem (APA). 

PROPOSITION 4.3. - Under the assumptions (HI)-(H5), let (Tt , T;, qf , qt ) 
be a solution of (APA), then T; 2 T,,i, a.e. in !Ji, i = 1,2. 

Annales de l’htitut Henri P&curt? - Analyse non h&ire 
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Proof. - Let us choose .zi = (T,,, - 7’p)’ as a test function in (4.1 l), 
we have 

2 

- 

CJ’ 
k;(T,?) 1 V(Tmi, - T;)+ 1’ dx 

i=l Q, 

+I?/ 
a(T,? - Tc)(T& - T,?)+d?C 

i=l r; 

+ 
s r1,2 

(T’ ; T”x)((Tm;, - T;)+ - (T,i, - T$)+)dT 

2 

TX 

cl 
h(T,i, - T,x)+dr, 

a=1 G 

since qi x = 0 if T? < T,;,. We distinguish the sets L - 

B = q2 n [Gin > Tf] n [Gin > Til; 
cl = q2 n [TL > Tf] n [Tmin I Til, 

c2 = q2 n [Gin I Tfl n [k, > Til, 

(4.13) 

(4.14) 
(4.15) 

(4.16) 

where hereafter [.] denotes the set of points verifying the condition into 
brackets. The third integral of the left hand side in (4.13) verifies 

.I r1,2 
(T’ ; T’)((Tmi, - Tf’)+ - (Tmi, - T;)+)dr 

=-- 
J 

CT? - T,xj2 dr 
B x 

+ 5 J’ (++l (T’ ; T,x) (Tmi, - T’)+dI’. (4.17) 
i=l G 

Since the right hand side of (4.17) is nonpositive, we deduce the same 
property for the left hand side of (4.13) while its right hand side is 
nonnegative. Therefore, (T,;, - T?)’ = 0 on I?;, i = 1,2, and applying 
the Poincare’s inequality we obtain the result. Cl 

4.1. An equivalent problem 

We are now concerned with the existence of solutions of problem (APA). 
Let us consider the Kirchhoff transformation given in each domain C& by 

Vol. 15, Ilo 4-1998. 
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the function /3; : [T,,i,. +oc~) + R, defined by 

l&(t) = 
.i’ cl 

We define U;” as the function 

(4.18) 

U;“=[-li~Tt, (4.19) 

and the constants 

Ui,rnin = b’;(Tn,i,,): (4.20) 

U,., = h(Ts), (4.21) 

= 1,2. Notice that, in general, U,,, is not equal to U2,s. 
The proof of the following lemma is easy to obtain and is given in [15]. 

LEMMA 4.1. - i) Both ,iJi und ,LfT’ are increasing d$‘erentiable functions, 
= 1,2. 

1 
ii) Pi’(t) satis$es a Lipschitz, condition with constant ~ 

iii) (L?,‘(t) - /y’(i))@ - i) > &(t - i)? 
h,i,r . 

We state the following 

Problem (zA) 

For a fixed X > 0, find (U,“; Ui, qf, ~2”) in ‘Ml(R) x L”(R,) x I,“(&) 
such that 

(4.22) 

y; E H(U,X - &). i = 1,2. (4.23) 

PROPOSITION 4.4. - The problem (APA) is equivalent to the problem (A-Ppx). 
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Proof. - i) Due to the monotonicity of both ,& and /?;l, the following 
set identities hold 

ITiT < Ts] = [U;x < U,J (4.24) 

[T;x > Ts,] = [U,? > UL,?], (4.25) 

[Tf = T,] = [Uf = UJ, (4.26) 

and, consequently, we deduce the equivalence 

q; E H(Tf - T,) * q; E H(U;X - u,,,s), 2. = 1,2. (4.27) 

ii) Let (T$, Ti, q:, q,“) be a solution of (APA). Since ,& is a differentiable 
function, we have Up E H1(&) and VU,? = k;(T?)VT$, i = 1,2 (see 
[14]). Hence, from (4.11), (4.12) and the equivalence (4.27), we deduce 
that (Uf , U,“; q:, qg) is a solution of (GA). 

Conversely, given (17:: U,“, qt, q,“) a solution of (A^p,& we define 
Tf = /I,:’ (U,?), % = 1: 2. Using that pi1 has derivative and lemma 4.1 ii), 
we obtain T? E H’(Qi) and VT: = (k;;(P;l(U;X)))-lVU,?, % = 1:2. 
Therefore, from (4.22) (4.23) and the equivalence (4.27) we deduce that 
(Tf,T;. qt,qi) is a solution of (APA). 0 

Remark 4.2. - Notice that, given (Tf, T$) E Hl(SL), the new variable 
(Uf , U,“) does not belong, in general, to W(R). 

COROLLARY 4.1. - Under + assumptions (HI)-(H5), let (Uf , Ui, q:, q,“) 
he a solution of problem (APA) then 

U,? > Uz,lrLin a.e. in Rj, (4.28) 

where U;.milr is given by (4.20), 1: = 1,2. 

Proof. - As in the proof of the proposition 4.4, we deduce 
that (al’(u,“),a,‘(U,X),q:, s,“) is a solution of (APA). Applying the 
proposition 4.3 and the monotonicity of /3;, (4.28) is deduced. 0 

4.2. A penalized problem 

The proof of existence of solution of the problem (2~) goes through 
the definition of the following regularized problem: 

Vol. 15, Ilo 4.1998. 
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l Problem @‘A,) 

For fixed X > 0 and F > 0, find (Ut,, U,“,) E 7-t1(I 2) such that 

(4.29) 

where Ui., is defined by (4.21), % = 1:2, and 

i 

0 if.550 
He(s)= : ifO<s<f (4.30) 

1 ifs>f 

is the Yosida regularization of the Heaviside multivalued function H. 
Let Ai : H1(R;) + H l(0;)’ be the nonlinear operator defined by 

and, for w E Hl(R;), let F;(W) E H’(lli)’ be given by 

+ I aT,zdr + hzdl?. (4.32) 
. r; .I’ r1.2 

+ir + .I r; 

The idea for proving the existence of problem (GA,) is to apply the 
Shauder fixed point theorem to the operator 

c : P(r1,2) x L2(r1,2) + L2(b2) x Rhd 

(Yl:!J2) + C(91>92) = (P;lw;“,),P,‘m)~ 

(4.33) 

y$ being the solution of the following 
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l Problem (G;,) 

For fixed X > 0 and E > 0, and given gi E L2(I’1,2), find I$ in H1(ni) 
such that 

< A,(V,$),zi >=< ~~(v~;),z< >, \dzi E Hl(R;): (4.34) 

for i = 1,2. 
Notice that, in order to define the operator C, two uncoupled problems 

posed in (I1 and R2 have to be solved, namely (Gl ,), i = 1,2. 

Remark 4.3. - If we set gi = b;‘(Vj$) for j # i in (4.32), the 
equation (4.34) becomes (4.29) for the test function zi E H’(!&) and 
Zj = 0 E Hl(Rj). 

We prove first that C is well defined: 

PROPOSITION 4.5. - Under the assumptions (Hl)-(H5), there exists a 

solution Vi: of problem (A-P; ,), i = 1,2. 

Proof. - We consider Li the mapping which associates to w E H1(R,) 
the solution of the nonlinear problem: 

< AP;),zi >=< E(w),z; >, ‘dz; E Hl($$). (4.35) 

Step 1. - Ai verifies the following properties: 
l A; is a continuous operator: 
Applying the Cauchy-Schwarz inequality, the lemma 4.1, ii) and the 

continuity of the trace, we deduce 

I< Ai(w,) - Aib),~i >I< K II 'un - LJ 111,2,~,II xi 111,2,~,, (4.36) 

where K is a constant depending on 11 u: Iloo,rl, k1)LL7L and X. 
l A; is a strongly monotone operator: 
Using lemma 4.1, iii), we have 

< A&) - A;(v&v~ - 712 > > 
s 

1 V(wr - v2) I* dz 
622 

with Cc depending on o,,in, k,,,,, and X. 
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l Ai is a coercive operator: 
Choosing 112 = 0 in (4.37) and taking into account that A,(O) = 0. 

we deduce 

and then 

Since F;(w) E H1(IL,)‘, by applying the Minty-Browder theorem (see 
[7]), we obtain the existence of a unique IV: E H1(02;) such that 
A;( W:) = Fj (w). Therefore, ZI; is well defined. 

Step 2. - L; is compact. 
Indeed, it is enough to prove the complete continuity of L,. For this 

purpose, let {uI,~ } be a sequence in H1 (S2,) which converges weakly to 
w E Hl(f2& 

Let {IV:‘“} be the sequence defined by 

WL” = L;(Ul,,). b/, E N. 

Then, IV:” y Wi are the unique solutions of 

< A;(W;“). z; >=< F;(w,,). z; >. V’z; E Hl(f2;). 

(4.40) 

(4.41) 

and 
< AJW;),z; >=< F,(w),a; >. Qz, E Hl(Q;). (4.42) 

respectively. By substracting (4.42) from (4.41), taking Z, = 1V:7L - Wi as 
a test function, and applying the definition of A, (see (4.3 I)), we deduce 

< A;(W,x,‘“) - A;(W;). W;” - W; > 

=-.I 
h,( H, (al,, - CT;.,,) - H,(w - U;.,s)) 

qwp - w;, 
i%Jl 

dn:. (4.43) 
0, 

From (4.37), the Cauchy-Schwarz inequality and the Lipschitz continuity 
of H,, it follows that 

c; 11 wp - w; 111.2,~~,< ” h IlmJL 11 w,, (4.44) 
F 

- 711 11”.2,~2, 

Since H’(fli) is compactly imbedded in L’(fti), the complete continuity 
of L, is now clear. 
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Step 3. - Li maps H’(&) in a ball. 
Indeed, by taking zi = IV;“, as a test function in (4.35) and applying the 

definition of Ai we have 

< Ai(W&W,?, >=< F&I),W~~ > (4.45) 

Using (4.38), the Cauchy-Schwarz inequality, the fact that ( HE(s) I< 1 
and the continuity of the trace we deduce 

G II Wt llf,m2, <II h llo,w, II 2 Ilo,z,n, 

+ II Q Ilcd;II Tr Ilo,z,r;Il wt 110,2.r; 

+ ; II 9; llo,2,rl,~ll w,3 II 0>2Jl.? + II h Ilo.2,r;II wt llo.2,q 

5 e II y$ 111,2.R,: (4.46) 

therefor? IV,?, belongs to the ball of H’(0,) with center 0 and radius 

R = ;. 

Finally, the existence of a function I$ satisfying (4.34) results from the 
Schauder fixed point theorem. 0 

The proof of the following result is similar to that obtained in [El, [9]. 
The difference comes from the boundary integrals of (4.34). 

PROPOSITION 4.6. - Under the assumptions (HI)-(H5), the solution V,; of 

the problem (A-P: ,) is unique, i = 1,2. 

Proof. - Let Vi:’ and Via” be two solutions of (4.34) and Q$ = 
V,:’ - yt2. We consider the function 

p6(x) = (1 II:)+ 2 
{ 

x>o 
.x 2 0, (4.47) 

for a fixed S > 0. Since ~6 is a Lipschitz function, p6(QtE) belongs to 
H1(f&) (see [14]). F rom the equalities satisfied by Vi:’ and Vi:’ and taking 
zi = p6(Qte) as a test function, we obtain 

5 J I V(Q,?, - S)+ I2 dz 

0, (Q,?,,” 
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Taking into account the monotonicity of /$:I, the lemma 4.1, iii) and the 
fact that h is a nonnegative function, we deduce 

dz. (4.49) 

Since H, is a Lipschitz function, by using the Cauchy-Schwarz inequality 
we have 

(4.50) 

This leads to 

Ii 

I VQk - S>+ I 
Qk II 

< II h ll0,2,R, = c F> (4.51) 
0,2,fh E 

with C, independent of 6. Thus, dividing (4.50) by 6 and using the latter 
expression, we have 

J 1 V(Qfc - S)+ 12dx + ani, 
(Q,",,' ~ J Jh,mz r; 1 (Q,?, - s)+ I*&7 0, Q,?, 1 -I- SXk,,, r1,2 J 1 (62; - s>+ lzdr < cz, 

Qk - ' (4.52) 

Ann&s de I’lnstitut Hem-i PoincurrrG Analyse non h&ire 
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By passing to the limit when S goes to zero , we obtain that (Q,?, - S)+ = 0 
a.e. on I’; and I’i.z. On the other hand, after an easy computation we deduce 

v ln 

( 
1 + (Qk ; "'+) = a(y$ fi)+ , 

(4.53) 
2F 

and from (4.52) we obtain 

/I ( Qz 
Vln 1 + (Q’S 6)+) 1’dz < C,“. (4.54) 

Now by using the Poincare’s inequality, and letting S -+ 0, we obtain that 
Q,?, 5 0 a.e. in Ri. Interchanging the roles of Vi;’ and Vi;“, we deduce 
Q,?, = 0 a.e. in 0t;, i = 1,2 which completes the proof. cl 

We are now able to prove the following 

PROFQSITION 4.7. - Let gi E L2(I’1,2) be such that gi 5 T, + 5 ae. 

on I-1,2. 
m In 

Under the assumptions (HI)-(H6), the solution V$ of (A-P:,) verifies 

pz~‘(~~) 5 T, f 5 a.e. in Ri, i = 1,2. (4.55) 
“LLTl 

+ 
Proof. - Let Pi”, = pi1 (V,;). Taking zi = Pi - T, - p as a 

m*n 
test function in (4.34), we obtain 

+ J’ + 
,(P; -T,) 

r ; 
P;3 -T, - 5 > dI‘ 

‘m2n 
-t 

+ 
I’ 

(P,“; - a> 
x 

Pi -T, - E 
> 

dr 
* l-l.2 hni?l + 

dI’. (4.56) 

Notice that H,(V,: - U;,,) = 1 a.e. in hr = [PL > T, + &I. Indeed, if 
(x1,22) E JV then Vi2(xi,x2) > ,&(T, + &), and taking into account 
(HI), it follows that 

v;3%52) > ui,, + 
J 

Ts++ 
n’*n ki(s)ds > Ui,, + t. (4.57) 

TS 
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Applying the Green formula in (4.56) we obtain: 

(4.58) 

since h only depends on 22. 
On the other hand, (H6) leads to 

a(Pit - T,) + h711 > 0 a.e. on l?;. i = 1,2. (4.5’3) 

Therefore, we deduce that all of the terms in the left hand side of 
(4.58) are non:egative, and then all of them must be equal to zero. Thus 

P; I T, + ~ 
hr, ill 

a.e. on ri, and applying the Poincare’s inequality, the 

result follows. 0 

COROLLARY 4.2. - The yu;ptions being those of the proposition 4.7, the 

inequality V,;’ < U,., + ??f- holds a.e. in Ri, % = 1.2. 
ki” 

Proof. - By using the proposition 4.7 and the monotonicity of @, we get 

(4.60) 

Finally, from the definition of /3; and (HI) we obtain 

.T, 

y; 5 .I 
*T,++ 

k;(s)& + 
J 

k 

0 T 
“‘l’i k;(s)ds 5 u,;, + fg; 1: = 1,2. 0 

h mzn 
(4.61) 

PROPOSITION 4.8. - Under the assumptions (Hl)-(H$ there exists u 
solution (Ll,“,: U,“t) of the coupfd regularized problem (APA,), defined b) 

(4.29), such that U,?, 5 Ui., + CE a.e. in Ri, i = 1,2. 
1,L t I8 

Proof. - Let us consider the space L2(I’1,2) x L2(I’1,2) with the norm 
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and C the operator introduced in (4.33), where Vi2 is the solution of 
problem (GIE) corresponding to y;, 1: = 1: 2. The propositions (4.5) and 
(4.6) imply that ,C is well defined. 

Let {(g;,g;“)) b e a bounded sequence in L2(11,2) x L2(I’1.2). Then, 
(g,“} is a bounded sequence in L*(I’r,z), % = 1,2. 

We denote by Vii” the solution of (21,) corresponding to gy, i = 1,2. 
If we set zi = T/;;” as a test function in (4.34), we have 

< Ai(T/(;TL), b$” >=< F,(V$“). y;” > (4.63) 

Applying (4.38), the Cauchy-Schwarz inequality and 1 HE(s) 15 1, it 
follows that 

CT II C” IIL,,~ III h llo.z,r; II K? /lo,*,r; 

+ II h /10.2.I?, II E Ilo,z.n, + II (1 Ilcqr; II Tc lIo.2,r; II CL llo,*.r; 

(4.64) 

hence, 
II v;;“‘” ll1,2,52,I c, (4.G) 

where 6 is a constant which depends on X but not on t. It follows that 
{Vii”} is bounded in Hl(f&), and then it has a subsequence {Vi:‘“k } 
weakly convergent to an element Vi: in H’(Q;), % = 1,2. Consequently, 
{V,~“’ } converges strongly to Vi2 in L2(I’i;2). Hence /3-l being Lipschitz 
continuous it follows that { pi1 (I$” 1. )} converges strongly to p,‘(V,t) in 
~5*(I’i,~), i = 1,2. Thus C is compact. 

We define 

M = (91,92) E J52(b2) x Wk2) : 

It is clear from proposition 4.7 that 

L(M) c M. (4.67) 

M being a closed bounded convex set, the existence of a fixed point of C, 
denoted by (U,“,, Vi,), results from the Schauder fixed point theorem. 
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Finally, from corollary 4.2 we obtain 

utt 5 I / , . ,5  + 
k 
Et a.e. in 62~. % = 1.2. 
k,,,;,, 

0 (4.68) 

In the next proposition we pass to the limit in F. 

PROPOSITION 4.9. - Under the assumptions (HI)-(H(j), there exists a 
solution (U:, Ut, q:, qi) qf the problem (GA), dejined by (4.22) and (4.23), 
such that U,” 5 [J;,, a. e. in 12i, i = 1. 2. 

Proof. - For a fixed t > 0, let (Ut,. U,“,) be a solution of (GA+). 
As in the proof of the proposition 4.8, we deduce that { (Ut,, U2C)} is 

bounded in X1(0) independently of F and so we can extract a subsequence 
of t still denoted by t such that 

{“II} - lJ: in Hi(Q) weakly, (4.69) 
{Ui} + lJ,A in L2(12;) strongly: (4.70) 

{‘J?t> -+ U,+ a.e. in Ri. (4.71) 

Moreover, { lJ2 } converges strongly to CT;” in ~5~(I’i.~), L2(I$) and L’(rg), 
1: = 1,2. From (4.68) and (4.71) it follows that 

U,A(3:) < U,., a.e. in R;, % = 1,2. (4.72) 

Since {HF(UtC - U,,,), Ht(lJic - U,,,)} is bounded in L2(R,) x L2(R2), 
there exists (qt,q,“) in L2(n2,) x L2(n2) such that 

{K(@ - w} - q? in L2(R;), i = 1.2. (4.73) 

On the other hand, notice that qf’ belongs to the closed convex set N, 
defined by 

N; = {,f E L”(62,) : 0 5 f 5 1 a.e. in ni} 

since this set is weakly closed. 
Finally, in the set [U;” < TJj,,v] we have 

H,(lJt~ - C/i,,%) 4 0 a.e., 

and applying the Lebesgue theorem we get 

H,(ULX, - Uj,,s) -+ 0 in L2([UV’ < U,.,]). 

From (4.73), we deduce 

K(@ - Ui,,) - q? in L2([U;X < U+]), 

and by the uniqueness of the limit 

qf = 0 a.e. in [U;” < Ui,,s]. % = 1,2. 

which completes the proof. 0 

(-2.74) 

(4.75) 

(4.76) 

(4.77) 

(4.78) 
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5. A PRIORI ESTIMATES 

This section is devotecto obtaining some estimates for the solution of 
the auxiliary problem (APA). 

PROPOSITION 5.10. - Under tJe assumptions (HI)-(H6), a solution 
(Ut , Ui, q:, 4,“) of the problem (APA), dejined by (4.22) and (4.23), satisfies 

U,? 5 Ui,, a.e. in Ri, i = 1,2. (5.1) 

Proof.-Taking (xl,zz) = ((P~‘(U~)-TS)+,(/3;1(U~)-TS)+)asatest 
function in (4.22) and using VU,? = Ici(p;l(U,?))Vp;l(U,?), we obtain 

2 

cl 
k,(/3,‘(U,?)) 1 V(&:l(U,?) - TS)+ I2 dz 

i=l 0, 

wt%?) - a+ dx 

8x1 

+ 2 1 ~(~,‘(U,“) - T,)(&~l(U;) - T,)+dlY 
i=l r; 

+ 
s 

uJ,‘w> - P,vm> -1 
x ((PI (U:> - Z)+ - (P,‘(U,“, - Z)+)dr 

I-l.2 
2 

ZZ Cs h(/3,1(U,?) - T,)+dI’. 
i=l r ; 

(5.2) 

Notice that q? = 1 a.e. in [U,? > U;,,]. By applying the Green formula and 
taking into account that h only depends on x2 it follows that 

2 

Cl k;(/3,-1(U,?)) 1 V(~,‘(U,?) - T,)+ I2 dz 
i=l 0, 

+ 2 J (~(~;~'(u,?, - T,) + hw)(P;l(U,?) - TS)+dr 
&l r; 

+ J wum - P,'W> - x ((PI ‘(UP) - TS)+-(,L3,1(U;)-~S)+)dr=0. 
r1.a 

(5.3) 

From (H6) we deduce that o@,:‘(U>) - T,) + hnl > 0 a.e. on II’;. On 
the other hand, as in the proof of the proposition 4.3, it follows that 
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the third term of the expression (5.3) is nonnegative. Consequently all of‘ 
the terms of (5.3) are nonnegative and then they are equal to zero. Thus 
(jY,:‘(Uf) - Ty)+ = 0 a.e. in r;, i = 1.2. By the Poincare’s inequality 
and the monotonicity of /‘I,:‘. i = 1.2, we deduce (S. I ). 0 

COROLLARY 5.3. - Under the assumptions (HI)-(H6), u solution 
(Tf , Tt, qf , q,^) of the problem (APA) dejined by (4.11) and (4.12) \~er$e.v 

‘r; 5 TV a.e. in 62,. i = 1.2. (5.3) 

Proof. - As in the proof of prop$tion 4.4, we obtain that (U:, Ui, qt , q$) 
is a solution of the problem (APA). By applying the proposition 5.10 it 
follows that U;” 5 ri,,,s a.e. in 12; and then using the monotonicity of 
&T1. i = 1,2, we have (5.4). 0 

PROPOSITION 5.11. - Under t% assumptions (HI)-(H6), a solution 
(Uf . Ui: qf: qi) of the problem (APA) verij?es 

(I @;‘(U;“) - ijj;l(U$) I/o,~,~, ,< KXf. X > 0: (5.5) 

with K a constant which does not depend on X. 

Proof. - Taking (zI.z2) = (/lr,‘(U~),&‘(r/,x)) as a test function 
in (4.22), we obtain 

2 

=a 
hp,,:‘(U;)dr. 

ix1 r; 
(5.6) 

From proposition 5.10, we have U,? 2 Ui,, a.e. in f2;. Using both q? = 0 

a.e. in [U: < U,,,] and $$$ = 0 a.e. in [U;” = Ui,,y], the second term of 
(5.6) vanishes and we have 

= nT&-‘(U,X)dl?. (5.7) 
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Since all of the terms on the left hand side of (5.7) are nonnegative, 
we obtain 

I 
uwm - BXJ;))‘,, 

* l-I.2 x 

By the Cauchy-Schwarz inequality, it follows that 

+ C II a IL,r; II TC 110,2,r; II K’(u?) lkh2.r; 1 
i=l 

(5.9) 

where here and in the sequel meas( . ) stands for the Lebesgue measure 
of the set in parenthesis. 

Let K be the constant given by 

+ 5 II Q! Ilmq II Z llo,u-; ~nensir:)i). (5.10) 
i=l 

Notice that K is independent of A. Thus, from (5.9) and taking into account 
that p,‘(U,?) 5 T, a.e. on II’; and I?:, i, = 1,2, we obtain (5.5). q 

Remark 5.4. - By definition of ,6; and using (Hl), it is easy to deduce 
the following inequality 

u,? I io;‘(u,“, km,. (5.11) 

Thus, from (5.7), we obtain 

Consequently, (U:, U,“) is bounded in X1(R) by a constant which is 
independent of A. 
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6. EXISTENCE OF A SOLUTION 

We are now able to prove the main existence result 

PROPOSITION 6.12. - Under the assumptions (HI)-(H6), there exists a 
solution (Tl , T2, 91, q2) of the problem (WP), dejked by (3.25) and (3.26). 

Proof. - For a fixed X > 0, we consider (U,“, Ui: q:, q$) the solution 
of problem (GA). 

From the remark 5.4, { (Uf , U,“)} is bounded in 3-t1 (R) independently of 
X. Thus, we can extract a subsequence still denoted by X such that 

{u/q - U; in H1(Ri) weakly, (6.1) 
{U;“} i U; in L2(62;) strongly (6.2) 

{u;“} -+ Ui a.e. in 62i; (6.3) 

{U;‘} i U; in JC~(P~.~). (6.4) 

Furthermore, { U,” } converges to U, strongly in L2(I’f) and L2(ri), 
i = 1,2. Then, from (6.3), the proposition 5.10 and the corollary 4.1, 
we obtain 

U- < U; < Ui,, a.e. in Ri; i = 1,2. z,mvn - (6.5) 

Since {Cd, d)} is bounded in L”(0,) x L2(R2), there exists (q1,q2) in 
L2(R1) x L2(R2) such that 

-+I?) - q; in L”(Q), % = 1,2, (6.6) 

and qi belongs to the weakly closed set Ni defined by (4.74). As in the 
proof of proposition 4.9, q; vanishes a.e. in [Uz < U+], i = 1,2. Thus, 
it follows that 

qi E H(U, - Cl,,+), 1. = 1,2. (6.7) 
On the other hand, if we take (zr ) 22) in H1 (0) as a test function 

in (4.22), we get 

+ 2 J’ c@,-‘(U,“) - Tc)zidI- 
i=l =; 

2 . 

= 

c/ 
hzidl?, \J(zl,zz) E H’(O), (6.8) 

i=l =; 
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and letting X -+ 0, we deduce 

For i = 1,2, we set Ti = PET1 (Ui). By taking into account the 
equivalence (4.27), it follows that 

2 J ki(Ti)VTi-VZidx + 2 J i=l *z i=l 0, 

,i$dx+kJ a(Ti - Tc)zidr 
. 1 ix1 r; 

hz;dF, V(,q,zz) E H1(R), (6.10) 
izl”‘3 

qi E H(Ti - Ts), i = 1,2. (6.11) 

Thus, both (Tl,T2) E X’(R) and (ql,qz) E L”(fh) x LoD(%) 
verify (3.25) and (3.26). 

Finally, (5.5) leads to 

{P;“(U,“) - P;‘(U,“)> + 0 in -Wx2). (6.12) 

On the other hand, taking into account that p,:’ is a Lipschitz function 
for i = 1,2, (6.4) leads to 

{p;l(Ut) - p;‘(U;)} --f Tl - T2 in L2(f’1,2). (6.13) 

Thus 
Tl = T2 in L2(I’1,2), (6.14) 

and then (Tl, T2) E H1(R) which finishes the proof. 0 
From the proof of the proposition 6.12, we deduce that T; 2 T, a.e. in 

R;, i = 1,2. Actually this property holds for every solution of (WP): 

PROPOSITION 6.13. - Under the assumptions (HI)-(H6), a solution of the 
problem (WP) satisfies 

T; 5 T, a.e. in &, i = 1,2. (6.15) 
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Proof. - Let us choose z, = (7’; - 7:)+ as a test function in (3.25). 
we have 

since qi = 1 a.e. in [T, > T,] , ~1 = 1,2. By applying the Green formula 
and taking into account that h only depends on x2 it follows that 

2 . 

CJ 
k(T,) 1 V(TL - 7g+ I2 dx 

i=l a, 

+L./( 
hn1 + u(T; - T(.))(T% - Y&)+dr = 0. (6.17) 

i=l r; 

From (H6) we deduce that /UL~ + a(!/?! - T,.) > hr~i + LY(T, - Tc) > 0 a.e. 
on Ii, i = 1,2. Consequently, all of the terms of (6.17) are nonnegative, 
and then they are equal to zero.,Thus (T; - Ts)+ = 0 a.e. on I’:, % = 1.2, 
and by the Poincare’s inequality we deduce (6.15). Cl 

Remark 6.5. - A relationship between the parameters h, Ici, T,, Ts i ‘ILL and 
c ensuring that S is indeed enclosed in R is an open problem. However. 
the following properties are easy to verify: 

1) If hnl + cx(Ts - T,.) = 0 a.e. on Ii, i = 1,2, then 1; = Ts, 
q1 = 1: i = 1.2 is a solution of (WP), and, consequently, the liquid phase 
fills up the whole domain. 

2) If hnl + a(T, - T,) < 0 a.e. on I;. % = 1,2, then there exists a subset 
of I1 where the temperature is greater than T,. Therefore, the assumption 
(H6) is necessary in order to obtain solutions of the initial problem (P). 

3) The following “onedimensional” problem gives us an insight into the 
shape of the solution of the problem (WP): 

Let us consider the problem (WP) taking place in the domain 
0 = [O; l] x [0, I]. Then ~~~ = -1 on I’;, i = 1,2. We choose h, cr and T, 
as three constants and k;(T) = 1, % = 1,2. The solution is as follows: 

i) For h 5 
a!(T,? - Lg) 

cu+1 ’ 
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thus T < T, and no free boundary exists. 

ii) For a(Ts - Tc) 
a+1 

< h> 5 a(Ts - Tc), 

where y is given by 

7= 
a(T, - T,) - h 

ah . 

The free boundary is given by S = {(y, x2): 0 < z2 5 1). 
iii) For h > a(Ts - T,), 

and then condition T < T, does not hold. Thus the liquid phase fills up 
the whole domain. 
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