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460 J. WE1 AND M. WINTER 

1. INTRODUCTION 

The Cahn-Hilliard equation [5] is an accepted macroscopic field- 
theoretical model of processes such as phase separation in a binary alloy. 
In its original form it is derived from a Helmholtz free energy 

where R is the region occupied by the body, U(X) is a conserved 
order parameter representing for example the concentration of one of the 
components, and F(u) is the free energy density which has a double well 
structure at low temperatures (see Figure 1). The most commonly used 
model is for F(u) = (1 - u’)~. 

’ F(u) 

Fig. 1 

The constant E is proportional to the range of intermolecular forces and 
the gradient term is a contribution to the free energy coming from spatial 
fluctuations of the order parameter. Moreover the mass 7% = & Jo uds is 
constant. Thus a stationary solution of E(u) under ??i = h .& ud.7: takes 
the following form 

t2Aw - f(u) = gt in R; 
@X=0 
.T; u = mp 

on dQ2: (1.1) 

where f(u) = F’(u) ( see Figure 2) and O, is a constant. 
There have been numerous studies of the Cahn-Hilliard equation. The 

global minimizer of E(u) has a transition layer. More precisely there exists 
an open set lY c R such that if ‘uu, is a global minimizer then u, + 1 on 
R \ i?, U, ---t -1 on I? and d!Z II G is a minimal surface and has constant 
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Fig. 2. 

mean curvature, see [ 161. The dynamics of the interface have been studied 
extensively, see for example [2], [3], [23]. Also local minimizers of E(u) 
have been studied and their transition layer structure has been established 
in [6] and [ 131. In particular, Chen and Kowalczyk in [6] used boundary 
mean curvature to construct local minimizers (therefore transition layer 
solutions) for equation (1.1). 

In this paper we are concerned with solutions of (1.1) with spike layers. In 
the one dimensional case, Bates and Fife [4] studied nucleation phenomena 
for the Cahn-Hilliard equation and proved the existence of three monotone 
nondecreasing stationary solutions when ?E is in the metastable region 
(m < E < l), (a) the constant solution ‘u. = E, (b) a boundary spike 
layer solution where the layer is located at the left-hand endpoint, (c) a 
transition layer solution with a layer in the interior of the material. 

Motivated by the results of [4], we shall construct a boundary spike layer 
solution to (1.1) for c: << 1 in the higher dimensional case when m is 
in the metastable region. 

The existence of spike layer solutions as well as the location and the 
profile of the peaks for other problems arising in various models such 
as chemotaxis, pattern formation, chemical reactor theory, etc. have been 
studied by Lin, Ni, Pan, and Takagi [14, 17, 18, 191 for the Neumann 
problem and by Ni and Wei [20] for the Dirichlet problem. However, they 
do not have the volume constraint and the nonlinearity is simpler than here. 
To our knowledge the present paper is the first to establish this kind of 
results for the Cahn-Hilliard equation in higher dimensions without any 
symmetry assumptions on a. 

Vol. IS. no 4-1998 



462 J. WE1 AND M. WINTER 

Naturally these stationary solutions are essential for the understanding of 
the dynamics of the corresponding evolution process. While Bates and Fife 
[4] prove some results in this direction for the one dimensional case these 
questions are open for higher dimensions. 

In [l 11 in the one dimensional case the number of all stationary solutions 
is counted by arguments using transversality. 

First we make the following transformation. 
- 

‘U = m, - ‘/I,. 

Rewrite 

g(u) = --f(m) + f(Ei - 1/). 

g’(0) = -m,, g(u) = -m,u + h(v). 

Then equation (1.1) becomes 

C 

c2Av - mu + h(v) - h ./;2 h(u) = 0 in R, 
*=O ond0. (1.2) 
aIf 

(Figure 3 shows qualitatively how the graph of g looks like.) 

Fig. 3. 

To accommodate more general g we assume that 
(1) g’(0) -=c 0, g(O) = 0, 9 G C3(wQ. 
(2) g(v) has only two zeroes for u > 0, 0 < al < ua and 

J 
a2 g(s) ds > 0, g'(a2) < 0. 

0 

Anna1e.s de i’lnsritut Henri PoiwarP Analyse non IinCaire 
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(3) The function u -+ & is nonincreasing in the interval (‘~a, us) where 
wa is defined as the unique number in (ai, a*) such that ,I;“” g(s) ds = 0. 

(4) lh’(w)j, Ih”(w)I 5 C for any 21. 

Remarks. - (1) Condition (3) can be weakened further. For example, the 
conditions in [7] will be enough since we just need the uniqueness and 
weak nondegeneracy of the ground state solutions of (1.3). 

(2) Condition (4) is not a restriction physically since in the physical 
world ‘u is always bounded. Hence we can modify h near infinity so that 
h satisfies (4). 

It is easy to see that for f(u) = -2u(l - u”) conditions (l), (2), (3), 
and (4) are satisfied. Our main result can be stated as follows. 

THEOREM 1.1. - Let R be a bounded smooth domain in RK(N 2 2) and 
PO E dR be such that V,,O H(Po) = 0 and (Y7&0 H(Po)) # 0 where H(Po) 
is the mean curvature of PO E dR and V pa is the tangential derivative at 
PO. Then for t << 1 there exists a solution v, of (1.2) such that v, + 0 in 
Cf,,(n \ PO), v, has only one local (hence global) maximum point P, and 
P, E 80, P, -+ Po,v,(P,) -+ V(0) > 0. Moreover 

as F + 0 where V(y) is the unique solution of 

AV - mV + h(V) = 0, 
V(O) = maxyERN V(y), V > 0, 
V(y) -3 0 at 00. 

(1.3) 

(By the results of [9] and [24], (1.3) has a unique radial solution). 
The method of our construction evolves from that of [8], [21] and [22] 

on the semi-classical (i.e. for small parameter h) solution of the nonlinear 
Schrodinger equation 

(1.4) 

in RN where V is a potential function and E is a real constant. The 
method of Lyapunov-Schmidt reduction was used in [8], [21] and [22] to 
construct solutions of (1.4) close to nondegenerate critical points of V for 
h sufficiently small. 

Vol. 15. Ilo 4-1998. 
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Following the strategy of [9], [21] and [22] we shall construct a solution 
U, of (1.2) with maximum near a given nondegenerate critical point of the 
mean curvature Pa on X2. Heuristically we rescale (1.2) to obtain 

Au, - mu, + Mu,) - h j;,,,p h(uF) = 0 in I&P> 
a-0 (1.5) 
av, - on d62,,p 

where U,(Z) = U,(X) for ,Z = (2; - P)/e, z E b2,,p and fle,~ = {.z E 
RN/ EZ + P E G} and V, is the unit outer normal to i)R,.p. 

Taking the limit E -+ 0, U, + V where V is the unique solution of 

n,w - mu1 + h(w) = 0 in R$. 
‘W > 0 in Ry, 
dw 
8y.v= 0 on P-l x (0) 

(1.6) 

with V(0) = max,; V. Therefore the ground state solution V restricted to 
RT can be an approximate solution for uu,. Since the linearized problem 
arising from (1.6) has the (N- 1)-dimensional kernel span{ g: . . . . z} 

dY,V-I 
we first “solve” (1.6) up to this kernel and then use the nondegeneracy of 
H(Po) to take care of the kernel separately. 

The paper is organized as follows. Notation, preliminaries and some 
useful estimates are explained in Section 2. Section 3 contains the setup 
of our problem and we solve (1.2) up to approximate kernel and cokernel, 
respectively. Finally in Section 4 we solve the reduced problem. 

2. TECHNICAL ANALYSIS 

In this section we introduce a projection and derive some useful estimates. 
Throughout the paper we shall use the letter C to denote a generic 

positive constant which may vary from term to term. We denote Ry = 
{(II;.‘, z,~)]xN > O}. Let V be the unique solution of (1.3). 

Let P E dR. We can define a diffeomorphism straightening the boundary 
in a neighborhood of P. After rotation of the coordinate system we may 
assume that the inward normal to XI at P is pointing in the direction 
of the positive z*v-axis. Denote a:’ = (zi:. . . ,z~-i), B’(Ro) = {XI’ E 
RN-l/ ICC’] < Ro} and Ri = R n B(P, Ro) = {(x’,LG~) E B(P, Ro)jz~ - 
PN > p(~’ - P’)} where B(P, Ro) = {X E RN1 1~ - PI < Ro}. Then, - 
since dR is smooth, we can find a constant R. > 0 such that a0 n Q, can 
be represented by the graph of a smooth function pp : B’(Ro) -+ R where 
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pp(0) = O,Vpp(O) = 0. From now on we omit the use of P in pp and 
write p instead if this can be done without causing confusion. The sum of 
the principal curvatures of 6’52 at P is H(P) = CLi1 pii where 

aP 
Pi=z> i=l,...,N-1 

and higher derivatives will be defined in the same way. By Taylor expansion 
we have 

(I(“:’ - P’> = ; hc p;j(o)(c7Ti - Pj)(Xj - p,) 
i,j=l 

+i *c pijk(O)(X; - Pi)(Xj - Pj)(Zk - Pk) f 0(1X’ - P’l”). 
i,j,k=l 

In the following we use pa to denote the multiple differentiation $$, 
where cy is a multiple index. 

For IC E dQ, let U(X) denote the unit outward normal at 5 and d/av 
the normal derivative. Let (rr (z), . . . . ~~-i (x)) denote (N - 1) linearly 
independent tangential vectors and ( &, . . , &) the tangential derivatives. 

In our coordinate system, for z E w1 := dR n B( P, I&,), we have 

ic= J& i Ngp&-& ‘ 11 1 s.v-P,y=p(z’-P’) q(x) = (0,. . . ,I,.'. ,O,Pi(4), 

For a smooth bounded domain U we now introduce a projection Pu of 
H2(U) onto {u E H2(U)ldv/dv = 0 at XJ} as follows: For ‘U E H2(U) 
let w = PUV be the unique solution of the boundary value problem 

Aw - mw + h(v) = 0 in U, 
&LJ=O 
au on au. 

Vol. 15, no 4.1998. 
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Let /L,,~(x) = V(e) - I’,, >>V( y) where 

f2,,p = {,z E R”IP f tz E (2). 

Then hF,p satisfies 

F2AV - mv = 0 in R, 
al% _ 81~ 
z-z on 80. 

We denote 

(2.1) 

For 2 E RI set now 

{ 

cy’ = x’ - P’. 
Eyx = XN - P.&l - p(x’ - P’). 

Furthermore, for z E RI we introduce the transformation 

C 
5yx’) = xi, 2=1,...,N-1 
TAT(X’) = xx - PLTq - p(d - P’). 

Note that then 

y = fT(x). 

(2.2) 

(2.3) 

The Laplace operator and the boundary derivative operator become 

a2 
t2Az = Ay + (V,q12- - 

aY& 

a 
CA,, p- 

8y, 
for z E S2r: 

(2.4) 

for 2 E wl. 

(2.5) 
Let v1 be the unique solution of 

where V’ is the radial derivative of V, i.e. V’ = V,.(T), and r = ( 5 ( . 
Let u2 be the unique solution of 



STATIONARY SOLUTIONS FOR THE CAHN-HILLIARD EQUATION 467 

Let ‘ug be the unique solution of 

Note that VI, ‘~2 are even functions in y’ = (yt, . . . . y~-r) and w3 is an odd 
function in y’ = (yr, . . . ,YN--1) (i.e. ~I(Y',YN) = w-Y',YN),~~(Y',YN) = 
--‘~s(-y’, ye)). Moreover, it is easy to see that I’url, I’uzI, Iu~[ < Ce-filYl 
for some 0 < p < fi. Let X(X) be a smooth cutoff function such that 
x(x) = 1, x E B(0, R,, - 6) and X(X) = 0 for z E B(O,Ra)C (for a 
positive number S). Set 

Then we have 

PROPOSITION 2.1. 

To prove Proposition 2.1, we begin with 

LEMMA 2.2. - Let u be a solution of 

Au-mu+f =0 in R, 
&- 
au -!? on Xl, 

Assume that Jn If I2 5 CcN, Jan lg12 5 C’E~-~. Then 

II4 I c. 

Pro06 - Multiplying the equation by u, we have 

E2 / IVu12 +mlu’ = lfu+c21ngu. 
R 

Lemma 2.2 follows easily by the following interpolation inequality (the 
proof of it is delayed to Appendix A), 

where flE,p = {zl x = P + EZ E R} for a fixed P E Xl. 0 

Vol. 15. no 4-1998 
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Proof of Proposition 2 . I . - We first compute the equation for 9-lc.p(~~:): 

-E*A~,.~(x) + m*Ip.p(5) 

= f [~~{A,(tw~x + t2(v2x + ZQX))} - rmvlx - ~LE~V~X - mc2u3x] 

1 
=-- 8% 

3 
cAzrp- - 

dYiv 

+c 
d2ll2 

4~2 + IV,~P~~~ - 

+E 
d2U~ 

&,vy + jV,tp12v - 
a&j 

CA,, p- - 
.N dYN 

+Ee (xl 1 
= $ x /a,,*$ - 

H 

dVl 
N-l 

EAp 
N 

dy, - 2 c (Pi - W(O)Yj)& 
i,j=l 2 I 

N-l 

+x 
@f&j 

qJp12- - 
a%,3 au3 

aY& 2czp’&&-jy- c2Ap- 
i=l aYN 

+$E,(x) 

= fe 

where EE(x) denotes all the terms involving derivatives of x. Since 
l~l,l~l, 1~1 L ed-ply)) for SOme P c fi we have ft E L’(%,P) 
and Jo, p f,” 2 C. On the other hand, for 5 E dR it holds that 

Annules de I’lnsrirut Hem-i Poincd - Analyse non lin6aire 



STATIONARY SOLUTIONS FOR THE CAHN-HILLIARD EQUATION 469 

Note that 

+f ‘c /lijk(O)(Zi - Pi)(Zj - Pj)(Xk - Pk) + O(lx’ - P’i4)} 
i,j,k=l 

Furthermore, 

+~(~2kwk4~l))) 
N-1 dVl 
c pk- + 

k=l %/k 

N-1 dv2 
-c 

c Pk-+c 

k=l dyk 

where again E,(x) denotes all the terms involving derivatives of x. This 
implies 

Therefore 

Vol. 15, no 4-1998 
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Let \zl,,P(~) = QIF,P(:~:)!:l: = P + FZ. Then \-ir,,r satisfies 

where fE E L2(R,,p), gE E L2(dGR,,p) and both the corresponding norms 
are bounded independent of F. Hence by Lemma 2.2 

Therefore Proposition 2.1 is proved. 0 
We next analyze a/&~~ Pa,,,, V( 9). After choosing a suitable 

coordinate system we can assume that a/&-p3 = a/aPj. Then 
f3/dPjh,,p(z) satisfies 

E’AV - mv = 0 in 12, 

au aa Z-P 
-ZZ -- 
au BVdPjV E ( > 

on do. 

We compute 

N-1 a a 
(1+ Iv,rp12)&-&(qq = c --V(T)& 

3 i=l axi apj 

Now we have (let x = P + a) 
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a”v((x - P)/E) 
aXidXj 

=$ vf~53+v~{!p}}pi, 

C 

(1+ lV&~V( q) 
3 

,‘3 v”$ - I/‘$ ; ‘c P,&,kyl + h.o.t.. -- 
C 1 k,l=l 1 

= f[;gPil(j$ - j$)!/kyj!h+ kg&kyk] +h.O.t.. 

Let 

[ 
af m&,,v X-P - - - 

dTPJ arp, I( 1 E 
= Wl(Y)X(X - P) + aLI;( 

Here w1 is the unique solution of 

Av-mv=O in Ry 

cfzl Pkl(Obkwj on aR+N. 

Note that IWI 1 < Cexp(-PlyI) for some p < fi and w1 
function in y’ . Then w2 satisfies 

(2.9) 

is an odd 

(2.10) 

Note that 1~21 < Cexp(-PlyI) f or some p < fi. Similar to the proof 
of Proposition 2.1, we have 

PROPOSITION 2.3. - 

[ 

av ap%.v X-P - - - 
arp, arp, I( > E 

= w(y)x(x - P) + twi(x) 

Vol. 15. no 4-1998. 
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where w1 is dejined ubove and 

Finally, let 

L” = A - rn + h’(V) 

We have 

LEMMA 2.4. - 

where H$(Ry) = {u E H*(RT), $$ = 0 on aR,“>. 

Proo$ - See Lemma 4.2 in [ 191. 0 

3. REDUCTION TO FINITE DJMENSIONS 

Let P E R and 

R F,p = (2 E R”ltz + P E 62). 

Let H&(R,,p) be a Hilbert space defined by 

Hi(Q;2,,p) = 
C 

u E H2(&p) 2 = 0 on d&p . 
F > 

For u E Hj$(&,p), set 

S,(u) = Au - VLU + h(u) - & J R h(u). 

Then solving equation (1.2) is equivalent to 

S,(u) = o,u E fwL-,P). 

To this end, we first study the linearized operator 

L”, : u(z) H AU(Z) - mu(z) + h’(Pn,,,V(z))u(z), 

G@L,P) --+ ~2(%P). 

Annole.~ de l’hstitut Hrnri Pnincar6 Andyse non lindaire 
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E, is not invertible due to the approximate kernel 

in H$( 5&p). It is easy to see (integration by parts) that the cokernel of 
Lx, coincides with its kernel. We choose approximate cokernel and kernel 
as follows: 

c -K F,P - E,~ = van 
{ 

aP%J(Z) j = 1,. . . 

dTP 
,N-1 . 

.I > 

Let T,,P denote the projection in L2 (Qt,,p) onto C2p. Our goal in this 
section is to show that the equation 

has a unique solution aE,p E Kkp if e is small enough. 
As a preparation in the following two propositions we show invertibility 

of the corresponding linearized operator. 

PROPOSITION 3.1. - Let LE,p = r,>p o E,. There exist positive constants 
S, X such that for all E E (0, F) 

IIL~,P~lILW,P) 2 4lwwL~) (3.1) 

for all @ E Kkp. 

PROPOSITION 3.2. - There exists a positive constant ? such that for all 
E E (0,s) and P E 6’0 the map 

is surjective. 

L E,P - - TK~,~ o L”, : K,i, -+ C;i, 

Proof of Proposition. 3 .l . - We will follow the method used in [9], [21] 
and [22]. Suppose that (3.1) is false. Then there exist sequences { ck}, { Pk }, 
and {(a,} with Pk E dR, @r~ E Ic&,, such that 

IIL tkrP$kIIL2 + 0, (3.2) 

Ipqlfp = 1, Ic = 1, 2, . . . (3.3) 

We omit the argument fi2tfi,Pk where this can be done without confusion. 
Denote 

a 
ek.j = -Ps&,JI ‘JJ%Jf 

dTP, II dTPj II 
’ 

Ll 

Vol. IS. Ilo 4-1998 
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Note that 
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by Proposition 2.3 and because of the symmetry of the function UUI~, which 
was defined in (2.9), where 6;; is the Kronecker symbol. Furthermore 
because of (3.2), 

as Ic -+ co. Let RI? x, p and T be as defined in Section 2. Then T has 
an inverse T-l such that 

T-l : T(B(P, Ro) n i=i) -+ B(P, R,) n 2. 

Recall that ey = T(z). We introduce a new sequence {cpk} by 

F%(Y) = X(T-l(EkY))~k(T-‘(EkY)) (3.5) 

for y E Ry. Since T and T-l have bounded derivatives it follows from 
(3.3) and the smoothness of x that 

for all k sufficiently large. Therefore there exists a subsequence, again 
denoted by {pk} which converges weakly in H2(RT) to a limit cpoo as 
Ic --+ co. We are now going to show that cpoo E 0. As a first step we deduce 

J CW 

RF 
-i)qi=o, j=l,...,N-1. (3.6) 

This statement is shown as follows (note that det DT = det DT-l = 1) 
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-N 
-+k J +dx) 

fl\fll d-k, 3 

X-Pk 

-N 

s 
@dx) 

iw 7 ( 1 
-‘k 

fl\% apk,j 

-N -‘k 
J 

R, I1 - x(x)l@k(x) 

w(y) 

apk 
J 

where QI is as defined in section 2. In the last expression the first two 
terms tend to zero as k --f cc since ekPN@k is bounded in L2(fl) and 
[. . .] -+ 0 strongly in L2 (G). The last two terms tend to zero as k + co 
because of the exponential decay of av/aPk,j at infinity. 

We conclude 

)I 
co, j=l,..., N-l. 

(3.7) 

This implies (3.6). 
Let Ice and Co be the kernel and cokemel, respectively, of the linear 

operator S;(V) which is the Fr6chet derivative at V of 

So(w) = AU-mw+h(w), 

sf) : H,(f?y) + L2(R!y), 

. 

Note that 

Ica = Cc = span 
{ 

~lj=l,..., N-l}. 

Vol. 15, no 4-1998 
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Equation (3.6) implies that (pea E K$. By the exponential decay of V and 
by (3.2) we have after possibly taking a further subsequence that 

Acpx - mp, -t- h’(V)p, = 0, 

i.e. (pm E X0. Therefore (pa = 0. 
Hence 

‘Pk - 0 weakly in H”(RT) 

as k -+ cc. By the definition of (ok we get ~DP,, - 0 in H2 and 

(3.8) 

Furthermore, 
[[(A - rn)Qkllp --) 0 as k -+ ea. 

Since 

s 
pay+ (2 + ma2 = 

R ~b,Pk / 
[Cm - A)~,rcl% R 

“k.Pk 

I Cll(A - +hll~~ 
we have that 

In summary: 

From (3.9) and the following elliptic regularity estimate (for a proof see 
Appendix B) 

k&P < C(llA@db + (k&d (3.10) 

for +k E H& we imply that 

)l@klJH2 + 0 as k -+ cm. 

This contradicts the assumption 

Jl@kllH” = 1 

and the proof of Proposition 3.1 is completed. 0 

Ann&r de l’lnstitut Hrnri Poincare’ - Analyse non lintaire 
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Proof of Proposition. 3.2. - Assume that the statement is not true. 
Then there exist sequences {tk}, {&} such that ck -+ 0 as k + a and 
Pk E dR and such that for all k, LEb,pk : K&,p, -+ c&,ph. is not surjective. 
Let K,,p and C,,p be the kernel and cokernel of L,, respectively. Then 
T,,,P, : C&P, + C&P, is not surjective, i.e. for all Ic there exists a 
@k E cE',,~, with @I, # 0 such that i& + @k $?! ck,p, for all ‘@ E Ck,p,. 
This is equivalent to +k E Ctbrpk and @k # 0. Because we can assume 
that w.1.o.g. +k = 1 this can be rewritten as follows. For all k there exists 
a @,+ E Cc,,pk such that 

(3.11) 

J 
ah< pv 

@k ’ 
87-P,,, 

=o j=l,...,N-1. 
n LI:>PC 

Now since 

and because of the elliptic estimate (3.10) it follows that 

for some constant C independent of Ic. Extract a subsequence (again denoted 
by {@k}) such that Cpk as defined in (3.5) converges weakly in H2(RT) 
to cpcc as k -+ cc and cpoo satisfies 

boo - mcp, + h’(V)cp, = 0 in Ry, 

with 

a&c - = 0 in RN-’ x (01 
dY7t 

(3.12) 

J av 
-=o j=l,...,N-1. 

R+N (pm ayj (3.13) 

From (3.12) we deduce that cpo;, belongs to the kernel of S;(V) and (3.13) 
implies that cpoo lies in the orthogonal complement of the kernel of Sh (V). 

Therefore cpa = 0. As in the proof of Proposition 3.1 we show by 
the elliptic regularity estimate (3.10) that (I@kllHZ + 0 as k -+ cc. This 
contradicts (3.11) and the proof of Proposition 3.2 is finished. •i 

We are now in a position to solve the equation 

Te,P 0 S,(Pn..J + %,P) = 0. (3.14) 
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Since L,PIKc~, is invertible (call the inverse IL;;) we can rewrite 

@ = -(L,:, 0 G,P)(SC(PRr,pV)) - (L,:, 0 Q+c,P(@‘) = J4.P(@) 
(3.15) 

where 

K,PW = w%2,,, v + @a) - [fwi2..P V) + sm,,, VP] 

and the operator A&p is defined by the last equation for @ E H& (Q,,,). 
We are going to show that the operator A&p is a contraction on 

&,s = {@ E ~2(~,,P)lll~llH’(n~,~) < 61 

if S is small enough. We have 

II~d4~)llHvL,P) 
I X-l(Il~,,p~F,p(~)llL”(n,,~) + IlwPk,P - V>IIL2(n,,P)) 
5 x-lc(c(s)s + t) 

where X > 0 is independent of S > 0 and c(S) -+ 0 as S -+ 0. Similarly 
we show 

IIK,P(@> - W,PWII H*(n,,p) I X-l% + c(qqllQ, - @‘IIH”(fl,,,) 
where c(S) -+ 0 as S -+ 0. Therefore ME,p is a contraction on Bg. The 
existence of a fixed point +E,P now follows from the Contraction Mapping 
Principle and @ <,P is a solution of (3.15). 

Because of 

II%PIIH~(R,,P) 2 x-l(II~~,P(~,,P)llLz(~~,~) + IIk,PV - VllL2) 

I J+(Cf + c(s>ll~a,,PllH2(n,,r)) 
we have 

Cl- ~-w))ll%,Pl(H2 F Ct. 
We have proved 

LEMMA 3.3. - There exists 5 > 0 such that for every pair of E, P with 
0 < E < F and P E 252 there exists a unique GE,p E K& satisfying 
w%,,P V + @‘,,P> E G,P and 

Il%PllHw,,F.) L Cf. (3.16) 

We need another statement about the asymptotic behavior of the function 
@Q as E --t 0, which gives an expansion in E and is stated as follows. 

Annales de l’hstitut Henri P&car6 - Analyse non h&ire 
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PROPOSITION 3.4. 

where 

and G+, is the unique solution of 

A@po - rn@o + h’(V)f& - h’(V)vl = 0, in Ry , 

-0 -=0 ondRy, 
dYN 

@O is orthogonal to the kernel of LO 

where Lo = A - m + h’(V), Lo : H$(Ry) + L2(Ry). 

Proo$ - Note that the kernel of Lo is 

(3.18) 

c I E j = l,... 
dYj 

,N-1 . 
I 

Furthermore we have 

Pot L Cexd-&I) for P < 6. 

The notations for fll, x, p and T are as in section 2. Our strategy is to 
decompose !PF,=. into three parts and show that each of them is bounded in 
11 . llH~cn,,P, as E -+ 0. That means we make the ansatz 

where the functions q,‘, Q$‘, 9:)” will be defined as follows. Let @i be 
the unique solution of 

where 

(3.19) 
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Since [(gtllLz < C there exists a constant C > 0 such that 

(3.20) 

Define Q$’ by 

gj2J F = -fir@&) y - irq (3.21) 

where 77 is the projection in L’(fl,,,) onto K,,F. Because of the exponential 
decay of @a, the smoothness of x and and by (3.20) it follows that 

1l~yl6 F c. (3.22) 

Finally, define KPI,“,“(z) to be the unique solution in Hi(R) of the following 
equation 

(5jqj2,2 
e =0 0ndR 

dv 
(3.24) 

where 
ft = -L(@,,P - ET&)X - E2(q + @‘)). 

Note that the right-hand side of the last equation lies in CkP since 

This is clear for aE,p by definition. By construction we have that 
--&ax - e”(Qi + S$‘) satisfies the Neumann boundary condition. By 
(3.18) and the smoothness of x we conclude that apox E H2. By (3.19), 
Qi E H2. Finally, since ej E H2 where 

dV av 
ej=---- - 

dTP, /I II dTP, 
j = l,...,N- 1 

L~(C,P) 

we have q$’ E H2. Therefore fc E Ci;p. Furthermore, the following 
lemma is true. 

LEMMA 3.5. 

Ilf4L~(n,,p) I Cf2. 
Anna/es de I’hsritut Henri Poincurc2 Analyse non lintaire 
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Proo$ - We have 

+~@0(y)P - m + h’(h,,p V)lx(d + E < Vz@o(Y), R2q4 > 

+~~h’(l’n,,,V)!Pi + c2[A - m + h’(P~c,,V)]!Q$l. 

Note that 

II - WcL,,V) + NV) + wv)~1X(4llL~ 

I II - ~(R&,V) + h(V) + wq%lIL2 

+Il+~‘(v>~l + q+lX)IIL~ 

I C(e2 + exp(-pR0)) 

by the definition of x and the exponential decay of V. Furthermore 

This proves Lemma 3.5. q 

By Lemma 3.5 and the invertibility of 

Proposition 3.4 follows. 0 
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4. THE REDUCED PROBLEM 

In this section we solve the reduced problem and prove our main theorem. 
By Lemma 3.3 there exists a unique solution a,,~ E Kc,‘rp such that 

= 2Au1, - mu, + h(u,) - j+ 
J 

n h(uE) E C,,p. 

Our idea is to find P such that 

Sb.4 1 C,,P. 

Let 

We(P) = (K,,(P), . ..> W.N-l(P)). 
Then Wt( P) is a continuous map of P. 

Let us now calculate WC(P). First of all, from condition (4) on h, we have 

[h(t)1 5 Ct’. 

Therefore 

J 
h(u,) 5 C?. 

R 

Hence by Proposition 2.3 

because 1 - 
EN J WE < 

0 
2 - ~lIw;IlwL’~ 
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and Proposition 2.3. On the other hand, since 

483 

t2hapQe,Pv apo<,,v 
arp3 -m aTp, + h'(V)g = 0, 

J 

we conclude 

=J[ n 1 
= [WL I V + %,P) - h(Pn,,pV) - h'(Pn,.pWh,p] 

ak p v 
.n 

ar' 
6 

+ s[ h’(%A ah,,, v R arPj - wg @‘F,P J 1 
+ J n [W&J) - h(V)] “7;;” 3 

= 1,’ + I,” + Je 

where I,‘, I,“, and J, are defined by the last equality. We first calculate 1:. 

= J[ WfLPV) f@oX n a;;;pv - hl(r;)g 3 I 1 
+E2 J[ h'(%,V) wL,P v 

R arp, 
- h’(V)E 9, 

PJ 1 
= Ep + 21z,2. 
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Note that 

= [h’(PQ,,,V) - h’(V)] “?;;” + h’(V) [ yi;y - g] 
I I ./ 

and 

I .R 

[h’(PnJf) -  h’(V)]y-yfDDX 

/ 

= 
I’ 

fwPn,.,v-v) ar  
dpc140+ ’ h”‘(vl)(Pfl,,,V-V)2 

*cl p, I 

ap,, v 
/,p G,, 

.R i 

+O(exp(-S/t)) 

= qt”+l) 

since a0 is even and V - PQ,,~ V = cVl where Vl is even. By Proposition 
2.1 

J’ 
p@,12 < CP. 

Hence 

so 

We next compute 1:. 

since a0 is even. Finally, we compute the term J,. 

<I, = 
J 

‘[h(Pn,,,,V) - h(V)]‘~;;” 
fl 1 

= J’ h’(V)(P~2e,,V-V) 
aptL,v pml<,,,V 

n 
drF +h”(V)(PCd-V) +o(P-+2) 

1 dTP, 
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=t~h’(V)(~~x+t(li2X+IIQX)+(2~~) ~+w+iw;(x) 
R ( 3 > 

+E2 
s c2 

h”(V)(VfX2 + c(*:)2)a;;;v + o(tN+2) 
3 

=t 2 
I 

’ h’(V)qjg + O(E~+~) 
.R 3 

N+l(l 

dV 

- - 
E h’(V)ug, + c3(c A;+2 ) 

R t P dyj ) 
dV 

h’(V)v,- + O(t 
dYj 

iv+“), 

But 
dV 

h’(V)q- = - 
dYj 

=J’ 
dug dV d dV ,-- 

aR$’ (%N %lj v3 dYN dY.7 

= - f LNpl (;) 2 kgl YkYIYlrlYjPkllrL(“)dY 

Combining I,‘? I,“, J<,, we obtain 

We(P) = YV,H(P) + w:(P) 

where W,(P) is continuous in P and W:(P) = C?(E) uniformly in P. 
Suppose at PO, we have det(VjVkH( PO)) # 0 then standard Brouwer’s 
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fixed point theorem shows that for F << 1 there exists a P, such that 
Wc(Pc) = o,e -+ PO. 

Thus we have proved the following proposition. 

PROPOSITION 4.1. - For t sujjiciently small there exist points P, with 
P, + PO such that WE(Pt) = 0. 

By Lemma 3.3 and Proposition 4.1 we have 

S,(vc) = 0, 

i.e. 

&!.F = 0 on afl. 
av 

Hence so v, = 0. Let u, = iE - 21,. We have 

t2Au, - f(q) = crt, 

iJsu,jav = 0 on ac2 

J u, = mlRI, R 
i.e. u, is a solution of the Cahn-Hilliard equation. Moreover 

and P, + PO E afl. 

Finally, we study the shape of the solutions v,. Let P, be any local 
maximum point of v,. Then by (1. l), 

mv, - h(v,) + &. 
I 
R h(v,) I 0. 

But E-~ so h(v,) -+ JR= h(V) > 0, hence 

mv, - h(vF) < 0. 

So ve(Pf) > u1 > 0. On the other hand, from our construction, 

llV~ll,2 -+ 
1 
z( J jVV(2 -I- mV2). 

RN 

Annules de l’hstitut Hem-i PoincartG Analyse non lin6aire 



STATIONARY SOLUTIONS FOR THE CAHN-HILLIARD EQUATION 487 

Similar proof as in Theorem 1.2 of [18], we conclude P, E XI and there 
is only one such P,. 

Appendix A: Trace Inequality 

LEMMA A.l. - Let 0 < t 5 1. Then 

for all @ E H1(S2) w h ere the constant C is independent oft. 
Note that the constant C in (A.l) is required to be independent of 

E. Therefore Lemma A.1 is special although trace inequalities are quite 
standard. 

Proof of Lemma A. 1. - For <f, E @(R,,p) define @ E HI(Q) by a 
linear transformation: 

Q(x) = Q(z) where z = 9. 

Observe that ll@llL~can,,,~ = ~l~NIl~llL~~~~~ IIW,~~+.~ = 
e-Nl]91&n,, and l~V@II~2cn~,,, = E~-“/~V~~~~~~~~. ‘lkmfore (and 
after translation) (A.l) is equivalent to 

(A-2) ll~ll&2) I wIv~ll&2) + ~l11/22(,,)) 

for all Y? E P(R) and 0 < e 5 1 where C is independent of E. The 
proof of (A.2) is standard and is omitted here (see for example the proof 
of Theorem 3.1 in [l]). 0 

Appendix B: An elliptic regularity estimate 

In this section we prove the following inequality 

03.1) IPII HQ(s,,) 5 C(ll~%w,~) + IPllwcn,,p,) 

for all Cp E H$(Q), 0 < E 5 to where &P is as defined in Section 2 
and C is a constant independent of E. For a point P on XI we can find 
a constant Ra > 0 and a smooth function p : II’ -+ R such that in 
B(P, Ro) the boundary dR is described by the graph of p where p satisfies 
P(O) = 0, VP(O) = 0 ( compare Section 2). Furthermore there exists a map 
v = T(t) with DT(0) = I (the identity map) from a neighborhood Up of 
P onto a ball B(0, RI) (compare Section 3). By a linear transformation 
we naturally get a map T’ from U$ = {(z - P)/E~x E Up} onto a ball 
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B(R~/E) with center at 0. We set y = r//t. Then the Laplace operator 
becomes F’& = Ay + A’ where 

Observe that for given 6 > 0 we can find RI > 0 and to such that for 
0 < E I to 
P.2) 
IIl~,~P1211Lo”(B(Ro/E)) I 6, lIPIlL”@?(Ro/~)) I 6 ll4’Pllw?(R0/~)) 2 6. 

In the same way we transform 

d =--+B’ 
d!ih7 

where B’ is a differential operator on B(R1 /e) u { yN = 0} with coefficients 
which are bounded in L” for 0 < e 5 e. (compare section 2). From 
{Up IP E 6Q} we select a finite subcovering of dR and denote it by 
{Ur, . . . , Un}. Choosing Uo = Q the set {Uo, . . . UrL} is a finite covering 
of 2 consisting of open sets. We keep this covering fixed from now on. 
Let (00, . . . ,0,} be a partition of unity subordinate to this open covering. 
Denote 19,‘(y) = Bi o T-l(cy). Since 

7% 

IL = 
c 

0;ll 

i=o 

we have 

P.3) ll4lifyn,,,, 5 IIw12H~(n,,p) + 2 IlW&L,+ 
i=l 

Since @ has compact support in RN 
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(see for example [lo], Corollary 9.10). Because of 

A(0;) = &Au + 2Vu. 0; + uAH;) 

and 
((W&-(RN) L Cc, I~WJL-(R~ 5 GE’> 

we obtain 

P.4) llQ42H’(n,,,) - < Cw~~~l12,~(n,,r) + llG+(rt,,,,)~ 

We are now going to estimate Bzu, i = 1, . . . , n. Note that 

P.5) &u!*lle~(e~) I llQ4H”(n,,p) I ~llP%)*llH”(R~) 

where k = 0, 1, or 2 and 

v*(y) E II(+)) 

for u E H2(U:). Then 

P.6) +Il(@:~)*lI%yJq) 

(see for example [15], Theorem 4.1). Now (B.2) implies that 

J~W,Fu)*ll&~) I ~“ll(~~4*ll&p 

Therefore from (B.6) 

(1 - cs”)(I(@)*11&~) 
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For the operator B’ we can calculate in an analogous way. The trace 
theorem implies 

(1 - ~s2)~I(H:u)*ll’,?(R~) 

Since (? is by construction independent of E we can choose 6 so small that 
1 - 66” 2 l/2. This implies 

and 

because of du/dv, = 0. Combining (B.7) - (B.9) we get 

We conclude, using (B.3), (B.4) and (B.lO), that 

where C;, depends on n. Since ‘II is independent of F the proof of (B.l) 
is finished. 0 
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