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ABSTRACT. - We prove some weak and strong comparison theorems for 
solutions of differential inequalities involving a class of elliptic operators 
that includes the p-laplacian operator. We then use these theorems together 
with the method of moving planes and the sliding method to get symmetry 
and monotonicity properties of solutions to quasilinear elliptic equations in 
bounded domains. 0 Elsevier, Paris 

RCSUMB. - Nous prouvons quelques theoremes de comparaison faible et 
fort pour solutions de certaines inequalites differentielles likes a une classe 
d’operateurs elliptiques qui comprend le p-laplacien. Ces theoremes sont 
utilises avec la methode de << deplacement d’hyperplanes D et la methode de 
<< translation >> pour obtenir des proprietes de symetrie et de monotonie des 
solutions d’equations elliptiques quasilineaires dans des domaines borne%. 
0 Elsevier, Paris 

1. INTRODUCTION AND STATEMENT OF THE RESULTS 

In recents years several researches were devoted to the study of properties 
of solutions to elliptic equations involving the p-laplacian operator (see 
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494 L. DAMASCELLI 

[l], [4], [7]-[ll] and the references therein). The difficulties in extending 
properties of solutions of strictly elliptic equations to solutions of p-Laplace 
equations are mainly due to the degeneracy of the p-laplacian operator. In 
particular comparison principles widely used for strictly elliptic operators 
are not available when considering degenerate operators. In this paper we 
consider a class of second order quasilinear elliptic operators with a “growth 
of degree p - l”, 1 < p < !x, which includes the p-laplacian operator and 
prove for them some comparison results. More precisely we consider the 
operator -div A(z, Du) in an open set R c I?. N > 2, and we make 
the following assumptions on A: 

(l-1) A E Co@ x RN;R")nC1(~x RN\ {O};R") 

(1-2) A(z,O) = 0 VXEO 

U-3) v x E 62, 71 E RN \ (0) 

(l-4) 

with 1 < p < cc and for suitable constants y,I’ > 0. 
In the case of the p-laplacian operator A = A(q) = (~/P-~rl. 
In section 2 we prove different forms of weak and strong (maximum and) 

comparison principles. The proofs are based on simple estimates contained 
in Lemma 2.1 below that “explains” why maximum principles hold without 
special hypotheses about the degeneracies, while comparison principles are 
not in general available if p # 2 in their full generality (see the remark 
after Lemma 2.1). 

We begin with forms of weak maximum and comparison principles that 
extend to general p a similar theorem proved in [3] for p = 2. If the constant 
A which appears in these theorems is zero then they are formulations of 
classical weak principles, while if A > 0 they are weak formulations of 
the ” maximum principle in small domains ” proposed in [2] for strong 
solutions of strictly elliptic differential inequalities. 

In what follows R will be an open set in RN, N 2 2 and A a function 
satisfying (l-1)-(1-4) for p E (1, ce). Moreover all inequalities are meant 
to be satisfied in a weak sense. 
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THEOREM 1.1 (Weak Maximum Principle). - Suppose 0 is bounded and 
u E wq R) n L”(O), 1 < p < cc, satisfies 

(l-5) -div A(z, Du) + g(z, u) - A]u]~-~u. 2 0 [ > 0 ] in 0 

where A 1 0 and g E C(a x F!) satisfies g(x, s) 2 0 ifs 2 0 [g(z, s) 5 0 
if s 5 01. Let R’ c R b e open and suppose u < 0 [> 0] on da’. 

Then there exists a consyt c > 0, depending on p and on y, r in (l-3) 

(l-4), such that ifA < c then u 5 0 [> 0] in s2’ (where ] ] stands 
for the Lebesgue measyre and WN is the measure of the unit ball in RN). In 
particular if A = 0 then 0’ can be an arbitrary open subset of R. 

Let us put, if u,v are functions in IVl>-(Q) and A C: f2 

hf.4 = MA(u, v> = s;P(IDul + IDvi), 

mA = mA(u,w) = i;f(louj + louI> 

THEOREM 1.2 (Weak Comparison Principle). - Let R be bounded and 
u,w E We” satisfy 

(l-6) -divA(s,Du)+g(z,u)-Au 5 -divA(z,Dv)+g(z,v)-Au in 0 

where A 2 0 and g E C(a x W) is such that for each z E fl g(Ic, s) is 
nondecreasing in s for IsI 5 max{lluIIp, IlwIIp}. Let R’ S: R be open 
and suppose u < u on 80’. 

(a) if A = 0 then u 5 ‘u in 0’, ‘d p > 1. 
(b) ifp = 2 there exists 6 > 0, depending on A and y, I’ in (l-3), (l-4) 

such that if IR’J < 6 then u 5 w in R’. 
(c) if 1 < p < 2 there exist 5, M > 0, depending on p, A, y, I, 101 and 

MQ, such that the following holds: if R’ = AI U A2 with IAl n API = 0, 
IAl] < 6 and MA, < M then u 5 v in 52’. 

(d) if p > 2 and rno > 0, there exist 6, m > 0, depending on p, A, 
y, r, (RI and mn, such that the following holds: if 0’ = Al U AZ with 
IAl n A21 = 0, IAl] < 6 and m& > m then u 5 v in R’. 

Remark 1.1. - As we shall see from the proof if p 2 2 it is enough to 
suppose u, ‘u E W1,p( 0) rl L”(R). If p > 2 and A > 0 to use the theorem 
we need to know that \Dul + ID u is bounded from below by a positive ( 
constant, and this is a serious restriction in applications. On the contrary 
if 1 < p 5 2 we do not have to worry about the degeneracies (provided 
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496 L. DAMASCELLI 

‘u ‘! w E IV’+(n) if p < 2) and this makes the theorem useful, as we shall 
see in section 3. 0 

Remark 1.2. - The typical way we use Theorem 1.2 is the following. 
Suppose that R is a bounded domain, f E C@ x R) and U. v E W’~-(Q) 
are respectively a weak subsolution and a weak supersolution of the equation 

(l-7) -div A(x, Dz) = f(:c. z) in (2 

Then ‘u and u satisfy (l-6) with y(:c, s) = As - f(~;: s), V A > 0. 
(i) Let f(~, s) be nonincreasing in s for :): fixed and /s/ 5 

max{ I(4Lm, ll~ll~-}. If 1~ I 71 on i362’ for an open subset 62’ of 12, then 
U, < %I in (2’ by Theorem 1.2 (a). This particular case of Theorem 1.2 (a) 
has been proved in [lo] by Tolksdorf. 

In particular if ‘u and ‘u are both solutions of equation l-7 and have the 
same boundary data on X2 then they must coincide. 

(ii) Suppose next that f(:c. s) is not nonincreasing, but there exists 
a A > 0 such that 9(:x:. s) = f(:~. s) - As is nonincreasing in s 
for IsI < max{ Il,uIILz. /lrl]lLXZ} (e.g. f(~, s) is (semi)locally Lipschitz 
continuous in s uniformly in :I.). 

If 1 < p 5 2 by Theorem 1.2 (b) and (c) (with AZ = 0) there exists 
6 > 0 such that for any open set 12’ (I R with lP/ < ~5 the inequality u 5 II 
on iJR’ implies that II 5 u in 12’. 

This is a weak formulation and an extension to the case 1 < p 5 2 of the 
“maximum principle in small domains” of [2]. If p > 2 we get analogous 
results under nondegeneracy hypotheses. 

(iii) In the case 1 < p < 2 Theorem (1.2) (c) implies a quite interesting 
and singular result. In fact suppose again that f(z, s) - As is nonincreasing 
in s for s in the range of ‘u, and II and that 1 < p < 2. Then by Theorem 1.2 
(c) (with Al = 0) there exists M > O such that for any open set R’ & 62 
the inequality ‘u 5 71 on %2’ implies the inequality 7~ < w in f2’ provided 
n/ml = supQ’(ID?LI + IOU/) < M. 

Note that this statement is a comparison principle which holds without 
any assumption on the size of R’ but rather on the smallness of JDu] and 
(Dv]. This is, in general, not true even when p = 2. 

Furthermore, as we shall see in section 3, we can use the theorem more 
generally when we can decompose the domain in two subdomains, one 
having small measure while on the other the functions involved has small 
gradients. Cl 

Next we deal with a form of the strong comparison principle. The strong 
maximum principle is well known for the kind of operators we are talking 
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about and can be obtained via Hopf Lemma (see [lo] and [ 131 for particular 
cases) or as a consequence of a Hamack type inequality (see section 2). We 
shall follow the second approach to derive a strong comparison theorem. 
First we prove the following Harnack type comparison inequality. 

THEOREM 1.3 (Harnack type comparison inequality). - Suppose ‘u, w satisfy 

(l-8) -div A(z, Du) + Au 5 -div A(x, Du) + Rv, u, 5 IJ in R 

where A E R and u,u E W,l,‘,“(O) ifp # 2; u:‘u E W~;~(Q) n Lgc(R) if 
p = 2. Suppose B(xo, 56) c R and, ifp # 2, infg(z0,56) (I&( + IOU]) >O. 
Then for any positive s < & we have 

(l-9) II'U - '~IIL.(B(z0,26)) - < cc;4 $-“f6, (11 - U) 
2 > 

where c is a constant depending on N, p, s, A, 6, the constants y, I? in (l-3), 
(l-4), and ifp # 2 also on W& and A/f, where rn = infg(,,,s6) (IOU] + IOU]), 
hf = suPB(Zo,50) w4 + PI). 

Theorem 1.3 implies the following strong comparison principle. 

THEOREM 1.4 (Strong Comparison Principle). - Let u, v E C’(n) satisfy 
(l-8) and define 2 = {x E s2 : (Du(x)( + lOu( = 0) ifp # 2, Z = 0 
ifp = 2. 

Zfxo E R \ Z and u(xo) = u(xo) then u = ‘u in the connected component 
of R \ Z containing x0. 

Remark 1.3. - By the previous theorem if u, II satisfy (1-8) in a domain $2 
and ]Dul + IDv] > 0 in R then u > v in 0 unless u and v coincide in R. In 
[lo] Tolskdorf proved (via Hopf Lemma) a strong comparison principle for 
solutions of a suitable quasilinear equation, under the hypothesis that one of 
the two functions is of class C2 with its gradient away from zero. Since the 
solutions of problems involving the operator A are usually (for p # 2) in the 
the class C1+ (see [4] and [l l]), Th eorem 1.4 is more natural and allows 
the functions to have vanishing gradients, although not simultaneously if 
p # 2. Moreover u and u need not to solve a particular equation. 0 

If in (l-8) A = 0 we can get further results, as the following corollaries 
show. The first one is a corollary to Theorem 1.2 (a) and, in the case when 
the set 5’ defined below is compact, it has been proved in [8] by another 
method. The second one is a corollary to Theorem 1.4 (and Corollary 1.1). 

Vol. 15, no 4.1998 



498 L. DAMASCELLI 

COROLLARY 1.1. - Suppose u, 2, E C1 (0) satisfy 

(I-10) -div A(z, Du) 5 -div A(z, Du), u < ‘U in 0 

Let us define S = {x E s2 : u(x) = u(x)}. If S is either discrete or compact 
in R then it is empty. 

COROLLARY 1.2. - Let u,u E C’(0) satisfy (l-10). Let us define 
2 = (11: E R : Du(z) = Dv(z) = 0) and suppose that either 

(a) R is connected and Z is discrete 
or 

(b) 2 is compact and R \ Z is connected. 
Then u < II unless IL F u. 

Remark 1.4. - Let wj5 ‘u E C’(0) n L”(0) be respectively a weak 
subsolution and a weak supersolution of equation (l-7) with u 5 71 in 0. 
Suppose that there exists a A > 0 such that S(z, s) + As is nondecreasing 
in s for s in the range of u and ‘u (e.g. f(z, s) is (semi)locally Lipschitz 
continuous in s uniformly in x). Then u and IJ satisfy (l-8) and Theorem 1.4 
applies. In particular if f(x! .) is nondecreasing we have (l-8) with A = 0 
and we can use Corollary 1 .l or Corollary 1.2. 0 

In section 3 we apply the previous comparison theorems to the study of 
symmetry and monotonicity properties of solutions to quasilinear elliptic 
equations. For simplicity we consider here the case of the p-laplacian 
operator that we denote by AP, so that -A,u stands for -div (]D~lp-~Du), 
but the same method applies to any operator that satisfy conditions (1 -l)- 
(l-4) as well as natural symmetry conditions (see [3] for the case p = 2). 
Let R be a bounded domain in R”, N > 2, which is convex and symmetric 
in the xi-direction and consider the problem 

(l-11) 
i 

-A,u = f(u) in Q 
?I, > 0 in n 
IL = 0 on 30 

In their famous paper ([5]) Gidas, Ni and Nirenberg used the method 
of moving planes to prove (among other results) that if p = 2 every 
classical solution to (1-l 1) is symmetric with respect to the hyperplane 
T() = {x = (x1,x’) E UP : x1 = 0} and strictly increasing in ~1 for 
.rl < 0, provided R is smooth and f is locally Lipschitz continuous. As a 
corollary if 0 is a ball then u is radial and radially decreasing. Since then 
many papers extended the results and the method in several directions. In 
particular Berestycki and Nirenberg in [2] improved the method by using a 
form of the maximum principle in domains with small measure. If p # 2 the 
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problem is much more difficult since the operator is degenerate and partial 
results were obtained under special hypotheses on the solutions and/or on 
the nonlinearity. In [9] it is proved, using symmetrization methods, that if 
R is a ball, p = N (the dimension of the space) and f is continuous with 
f(s) > 0 if s > 0, then u is radial and radially decreasing. In [7] symmetry 
results are obtained for solutions that in suitable spaces are isolated and 
have a nonzero index. In [I] symmetry in a ball is obtained under the 
crucial hypothesis that the gradient of the solution vanishes only at the 
center of the ball (which is then the only point of maximum). 

Here, using the method of moving planes as in [2] and the above 
comparison results, we obtain the symmetry of the positive solutions when 
1 < p < 2 under quite general hypotheses on the set of the points where the 
gradient of the solution vanishes. In the general case we slightly generalize 
the result of [l] with a simpler proof. To state more precisely the symmetry 
results we need some notations. 

Let R be a bounded domain in RN, N > 2, convex and symmetric in 
the xi-direction (i.e. for each 2’ E RN-l the set {zi E DIP : (x1,x’) E Q} is 
either empty or an open interval symmetric with respect to 0). For such a 
domain we set -a = infzEo x1 and for -a < X < a we define 

TX = {x E RN : x1 = A}, Rx = {x E R : x1 < A}: 

ox = {x E R : x1 > A} 

If x = (xi, x’) let XX = (2X - xi, z’) be the point corresponding to x 
in the reflection through TX and if u is a real function in R let us put 
UX(X) = U(XX) whenever X,XX E R. Finally if u E Cl(D) we put 

z = {x E R : Du(x) = 0) 

and 

zx = {x E CIA : Du(x) = DUE = 0) for -a<XsO 
zx = {x E RX : Du(x) = DUE = 0) for 0 5 X < a 

THEOREM 1.5. - Let 1 < p < 2 and u E C’(a) a weak solution of(l-11) 
with f locally Lipschitz continuous. Suppose that the following condition 
holds: 

- if X < 0 and CA is a connected component of 0~ then CA \ ZX is 
connected, with the analogous condition satisfied by CA \ Zx for X > 0. 

Then u is symmetric with respect to the hyperplane To = {x E RN : 
x1 = 0) (i.e. u(x~,x’) = u(-x1,x’) if(x~,x’) E f22) and u(x~,x’) is 
nondecreasing in z1 for 51 < 0 (and (~1, x’) E R). 
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The condition in the above theorem is in particular satisfied if the set Z 
is discrete. In this case the solution is strictly monotone: 

COROLLARY 1.3. - Suppose that Z is discrete (and 1 < p < 2). Then 
u(z~,x’) is strictly increasing in x1 for x1 < 0 and if 0 = B(0. R) then II, 
is radial and radially strictly decreasing. 

THEOREM 1.6. - Let u E Cl(n) be a weak solution of problem (l-11 ), 
where p > 2 and f is locally Lipschitz continuous. Suppose that the 
set where the gradient of IL vanishes is contained in the hyperplane 
To = {CT E RN : ~1 = 0). Then u is symmetric with respect to To and 
u(z1, z’) is strictly increasing in x1 for :x1 < 0. 

COROLLARY 1.4 [ 11. - Let 61 be a ball B(0, R) in IWN, N > 2 and suppose 
f is locally Lipschitz and ‘u E Cl(n) is a weak solution of (l-l 1) whose 
gradient vanishes only at the origin. Then u is radial and radially strictly 
decreasing. 

Next we apply the previous comparison principles together with the 
“sliding method” as in [2] to get the monotonicity of solutions to suitable 
quasilinear elliptic equations. We illustrate the method with a simple 
problem which is a generalization to the p-laplacian operator of an analogous 
problem studied in [2]. It shows that in some case the sliding method yields 
better results than the moving planes method for degenerate equations. This 
happens because we have a strict inequality between the functions involved 
on the boundary of suitable open sets and we can use Corollary 1.1. Let 
us begin with some notations. Let R be a bounded domain in RN, N 2 2, 
convex in the xi-direction and consider the problem 

(1-12) 
{ 

-a,u = f(u) in 12 
u=$ on a0 

with f continuous and 4 E C’(d62) satisfying the following condition: if 
z’ = (&y), 2” = (z$,~J) E dQ and ZJ~ < ~7 then 

(1-13) de’) < G”) 

We consider solutions of (1-12) satisfying the following condition: if 
z’, ic” E dR are as before and x = (zi, y) E R with X: < IC~ < Z$ then 

(1-14) d+') < u(z) < d+") 

If 7 > 0 let us put R, = R - 7el (where el = (l,O,. . .O)) and 
U,(X) = U(X + rei) for z E R,. Then we define D, = R f? R,, 
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7-l = sup{r > 0 : D, # 0) and 2, = {x E D, : h(x) = h,(s) = 0) 
for 0 < T < 71. 

THEOREM 1.7. - Let u E Cl(a) be a weak solution of (l-12), (1-14) 
with f locally Lipschitz continuous and 1 < p < 2. Suppose that for 
each r E (O,rl) and each connected component C, of D, the set 
C, \ 2, is connected. Then u is nondecreasing in the xl-direction (i.e. 
U(Xl,YI) I 4X2,Y) lf z x1 < x2) and if the set 2 = {x E R : Du(x) = 0} is 
discrete then u is strictly increasing in the xl-direction. 

THEOREM 1.8. - Suppose that f is continuous and nondecreasing and 
u E C’(n) is a weak solution of (l-12), (1-14) with 1 < p < co. Then 
u is strictly increasing in the xl-direction and is the only solution to the 
problem (1-12) that satisfy (1-14). 

Remark 1.5. - Note that no hypotheses on p, 2 or 2, are required in 
Theorem 1.8 by assuming f nondecreasing and only continuous. 0 

2. PROOF OF COMPARISON THEOREMS 

In this section we prove the comparison theorems stated in section 1. 
Throughout this section 0 will be an open set in RN, N 2 2, and A a 

function that satisfy (I- I)-( l-4) for a p with 1 < p < 03. We begin with a 
simple lemma that provides the estimates necessary for the sequel. 

LEMMA 2.1. - There exist constants cl, ~2, depending on p and on the 
constants y, I? in (l-3), (l-4) such that V q, q’ E IWN with 1~1 $ ($1 > 
0, v x E cl: 

(2-l) IA(x,rl) - Ab,v’)l I cl(lrll + Irl’l)p-21rl - VI 

P-2) MT VI - 4x, $)I . [rl - ~‘1 2 cz(lrll + ldl)p-21rl - v/l2 

where the dot stands for the scalar product in RN. In particular, since (l-2) 
holds, we have for any x E R, q E WN: 

(2-3) 14x, 41 I CII#-~ 

(2-4) 4x, rl) . rl 2 c21vlp 

Moreover for each x E 0, Q, q’ E WN we have: 

(2-5) IA(x, rl) - 4x3 ~‘11 I ah - q’lp-l ifl<pL2 

G-6) [A(x,rl) - A(w')] . [rl- $1 2 calrl- dip if P 2 2 
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Proof. - Since (2-l) and (2-2) are symmetric in rl, 7’ we can suppose 
IQ’] > 1~1, 1~‘) > 0. From (l-1),(1-2) we get for j = 1.. N: 

Using (l-3), (l-4) we have that 

(2-7) be> 4 - 4x7 v’)l I I%- rl’l J 
,’ (7’ + t(rj - q’)lp-2 dt 

P-8) [Akw) - A(z> d)l .1v - ~‘1 2 ~lrl - v/l2 J o1 1~' + t(q - q')lp-2 dt 
Since 1~’ + t(q - $)I = ](l - t)~’ + tv] 5 ]v] + ]q’] Vt E [O, l] if p 2 2 
(2-7) yields (2-l), while if 1 < p 5 2 (2-8) yields (2-2). 

To get (2-l) for 1 < p < 2 we have to prove that 

(2-9) J o1 lrl' + t(rl- rl')lp-2 dt I ~(1~1 + l~'l)'-~ (1 < P < 2) 

Analogously to get (2-2) for p > 2 we have to prove that 

(2-10) J o1 Id + +I- d)lp-2 dt L c(Jrl( + lq'l)p-2 (P > 2) 

To this end observe that if 177 - $1 5 q then (since ]v’( 2 In]) 

WI IV + t(v - rl’)l L 171’1 - lrl- dl 2 yj- L WI + lrll 4 

so that (2-9) and (2-10) hold with c = (i}PP2. 
If instead 1~ - $1 > $? > 0 and we put to = & E (0,2) then 

Id + t(rl - d)l 2 1111’1 - +I- 71’11 
= Ito - tllq - r)‘l 2 Ito - tg 2 Ito - tJ’ql’4 WI 

If 1 < p < 2, for any to E (0,2) we have that Jb’ Ito - t]pe2 dt < 

2.L; .zpW2 dz = 5 SO that (2-9) holds with c = ( i)PM2 5. If p > 2, for 

any to E (0,2) we have that si (to - tJpe2 dt 2 Joi zp-’ dz = &( $)p-l 
so that (2-10) holds with c = (i)PP2-&($)P-‘. 
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Finally (2-5) and (2-6) are immediate consequences of (2-l) and (2-2) 
because 1~ - $1 I 1~1 + Iv’/ VV, q’ E RN. 0 

Remark 2.1. - In our applications Q, Q’ will be gradients of C’(a) 
functions, so that they will be bounded but possibly approaching zero. If 
1 < p < 2 then (2-l) blows up when 1~1 + [?‘I approaches zero and the 
natural estimates are (2-5) and (2-2). Unfortunately (2-5) and (2-2) are not 
symmetric, in the sense that the former is an estimate “of order p”, while the 
latter is an “order 2” estimate. Analogously if p > 2 the natural estimates 
are (2-l) (“of order 2”) and (2-6) (“of order p”) which are asymmetric. 
This is the reason why we are forced to use (2-l) and (2-2) both of the 
same “order 2”, when studying comparison principles. If p # 2 this causes 
problems when the gradients of the functions involved are close to zero 
and requires special hypotheses on the sets where their gradients vanish (of 
course no problem arises when p = 2). Note however that (when Q’ = 0) 
(2-3) and (2-4) are both of the same “order p” for each p > 1 and this 
explains why maximum principles hold without restrictions for any p > 1, 
while comparison principles are, in general, not available when p # 2. 0 

If U,V E W?:(R) fl Lgc(0) and ,0 E Co@ x R) we say that (in a 
weak sense) 

(2-l 1) -div A(z, Du) + p(z, U) 5 
-div A(z, Dv) + /3(x, TI) in R 

o 

if for each nonnegative cp E CT (0) we have 

(2-12) 

.I 
[4x, Du) . DP + P(x, ‘1~)cpl dx 5 s 

n[A(x, W . & + P(xc, +P] dx 
R 0 

If 0 is bounded and u, w E W’>P(fl) n L”(0) since /3 is continuous 
and (2-3) holds, by a density argument (2-12) holds for any nonnegative 
cp E w;>p(q. 

Similarly by u 5 ZI on dR (in the weak sense) we mean (u - v)+ E 
W$‘(Q). Of course if u and w are continuous in n and satisfy u 5 w 
pointwisely on aR then they satisfy the inequality also weakly. 

In the sequel we shall use the following 

LEMMA 2.2 (Poincare’s inequality). - Let R be a bounded open set and 
suppose fl = A U B, with A, B measurable subset of R. Zf u E W,“p(n), 
1 < p < 00, then 

(2-w 
-+ 

tbttLp(n) 5 wN tfltk [IA}* ttwLP(A) i- t@ tlhttL~(B)] 
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where p’ = -&. 

Proof. - We slightly modify the proof in [6], where the lemma is proved 
for A = R, B = 0, using potential 
and suppose C is a measurable 
JCI = ]B(x,R)( observe that 

(2-14) 

estimates. Define h(z: y) = 1.x: - :yll-‘Y 
subset of 0. If R > 0 is such that 

< 
-.I 

h dy + 
CfTB(2,v) J 

h &i 
B(z,R)\C 

=.I’ 
h dy = NwNR = NwN 

B(z,R) 

If f E U’(C) by Fubini’s Theorem for almost every z E (2 
f(y) (h(z, y))$ E Lp(C). Let us define VC f(x) = .&f(y) h(x, y) dy. 
Then we have by (2-14) and Holder’s inequality 

Taking the p power and integrating in x over R we obtain, using again 
Fubini’s Theorem and (2-14) with C = R and the role of n: and y 
interchanged, 

(2-15) llvc flt~qnj I: NWN 

Now if u E CT (a) then we have the representation (see Lemma 7.14 in [6]) 

u(x) = & N J 62 1~ - YI-~WY) . (x - Y) dy 

so that if R = A U B we have that [U(X)] 5 & [ VA IDuI(x) + 
V, ]Du](x)]. From (2-15) we obtain (2-13) for u E C,-(O) and the general 
case follows by density. 0 
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Proof of Theorem 1.1. - Let us prove the assertion when u < 0 on da’, 
the other case being perfectly analogous (with u+ substituted by u-). By 
hypothesis uf E W,‘“( 0’) an can be used as a test function in (2-12) d 
yielding 

J A(x, Du) . Du dx + 
J 

g(x, u)u dx - A 
bGo1 b>Ol J lulPdx < 0 

[u201 

where [u > 0] = {x E R’ : u(x) 2 0). Since g(x,u)u 2 0 and (2-4) 
holds we get 

c2 1, IDu+Ip dx = ~2 1 >ol Pulp dx I A 1 Sol lulp dx = A J,, Iu+Ip dx 
‘II u 

where c2 is the constant in (2-4), and from (2-13) (with B = 0) we infer that 

c2 J R' IDu+lpdx <*(!$)rjj3u+lpdx 

So if c2 > A In’l ’ 
( > UN it must be 0 = Jo, ]D~+]~dx = ]]~+]];;,~(o,, and 

u+=OinR’. 0 

Proof of Theorem 1.2. - It is analogous to the previous proof with 
estimate (2-4) substituted by (2-2) and (2-6). Using (u - u)+ E Wi9p(W) 
as a test function we get 

J [A(x, Du) - A(x, Du)] . (Du - Dv) dx 
bbl 

+ J [~~~] k&T u) - dX> 41b - u) dx 

-A J (u-v)2dx 5 0 
b&J1 

Since g(x,u) 2 g(x, w) if u 1 ‘u we get 

J [A(x, Du) - A(x, Dv)] . (Du - Dv) dx 2 A J (u - v)" b&J1 WV1 

If p > 2 and A = 0 from (2-6) we get c2 Jo, ]D(u - ~)+]p dx 5 0 so that 
(u - TJ)+ = 0 in R’ and we have (a) in the case of p > 2. 
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In all other cases we use the estimate (2-2): if p = 2 we get, using (2-13) 
(with B = 0) as in the previous theorem 

c2 J p(u-w)+12dx 5 A ID(u - w)+12 dx 
IZ’ 

where c2 is the constant in (2-2). So if A g L> 
K 

-c c2 we get 

[[(u - ~)+ll~;,~(o,) = 0 so that (U - v)+ = 0 in R’ and we have (a) 
and (b) for p = 2. 

If 1 < p < 2 and R’ = Al U A2 with IAl n AZ{ = 0 we have, using 
(2-13) for p = 2, 

p-2 
c2 M, 

J 

P 2 ID(u - w)I” dx + c2 MA; J I~@ - 41” dx Aln[UlV] Azn[~L> -v ] 

<2hw, -Blfl’l+ [IA,/+ .I,,,,,,,; ID(u - u)I” dx 
- 

+ /RI+ J ID(u - w)I” dx 
A2n[+V] 1 

From this we infer that if IAl 1 and M A2 are small or A = 0 we must have, 
for i = 1,2 , JA,nLU2u1 ID(w, - u)I” = 0 so that I[(u - ~)+/l~;.~(o,) = 0 
and (U - ZJ)+ = 0 in R’ and we have (a) and (b) for the case 1 < p < 2. 

In the case of p > 2, A > 0 we get the same inequalities with MO, MAP 
substituted by mo, m& from which we deduce (d). 0 

Before proving the strong comparison principle given by Theorem 1.4 let 
us recall the statement and the proof (using an Harnack type inequality) of (a 
version of) the strong maximum principle. We shall see that the differences 
between the strong maximum and the strong comparison principle are 
similar to those between the weak maximum and the weak comparison 
principles. The following theorem is a particular case of a more general 
result proved by Trudinger (see [12, Theorem 1.21). 

THEOREM 2.1 (Harnack Type Inequality). - Suppose that ‘U E W:d,p (C?) n 
Lee (St) satisjies 

(2-16) -div A(x, Dv) + hJv]pP2v 2 0, TJ 2 0 in R 

for a constant A E R. Let x0 E R, 6 > 0 with B(xo, 56) & dt and s > 0 
with s < v ifp 5 N, s < co ifp > N. 
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Then there exists a constant c > 0 depending on N,p, s, A, S and on the 
constants y, l? in (l-3), (l-4) such that 

(2-17) 

Of course here and elsewhere inf means essinf if the functions involved 
are not continuous. In Trudinger’s paper the theorem is proved for operators 
that satisfy (2-3) and (2-4) (derived in our case from other structural 
conditions). The following strong maximum principle follows at once from 
the Hat-track inequality. 

THEOREM 2.2 (Strong maximum principle). - Suppose that 0 is connected 
and w E W’,~~!(fI) n C”(Q) satisfies (2-16). Then either w E 0 in R or 
w > 0 in (2. 

Proof. - Suppose U(Q) = 0 with x0 E R. Then the set 0 = {x E 
R : U(X) = 0}, which is closed relatively to R since ‘u is continuous, is 
nonempty. Since z, is continuous, if U(Z) = 0 and 6 > 0 is such that 
B(z,5S) 5 0, then infB(,,s) ‘u = U(X) = 0. From the Harnack inequality 

we have that sB(z.Js) TJ’ dx = 0 for some s > 0 so that v G 0 in B(x, 2S), 
because ‘u is contmuous and nonnegative. So 0 is also open and since R 
is connected it must be 0 = 0. 0 

As in the case of the strong maximum principle the strong comparison 
principle given by Theorem 1.4 follows immediately from the Harnack 
comparison inequality (Theorem 1.3) whose proof is deferred to the 
Appendix. 

Proof of Theorem 1.4. - We can suppose that R \ Z is connected and, as in 
the proof of Theorem 2.2, we have to prove that 0 = {x E R \ 2 : U(X) = 
U(X)} is open. If x E 0 we have IOU(X) + IDw(z)j > 0 and by continuity 
there exist 6 > 0 and m > 0 such that B(x,5S) C R and IDuJ + [Dvl > 
m > 0 in B(x,5S). Since 0 = U(X) - U(X) = infs(,,h) (U - u), by 
Theorem 1.3 we have sB(z,26j (V - U) dx = 0, so that u E ‘u in B(x, 26) 
and 0 is open. 0 

Proof of Corollary 1.1. - Suppose S # 0. We shall prove that u < ‘u in 
S, which is a contradiction. If S is compact let B an open set containing 
S with B compact C R; if S is discrete for each x E S let B = B, be 
a ball such that ?? c R, B fl S = {x}: In both cases dB n S = 0 so that 
u > u on 8B and there exists E > 0 such that v - E > ‘u on the compact 
dB. Since ‘u - t, u E C’(B), v - E 2 u on aB, and 

-div A(x, Du) < -div A(x, Dv) = -divA(x, D(u - E) ) in B 
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Theorem 1.2 (a) yields 7~ - E > u in B. In particular ‘1) > u in S. I7 

Proof of Corollary 1.2. - Suppose u $ ‘u in 12, then ‘u $ II in S2\ Z. 
In fact if u z ‘u in fl\ 2 then by continuity ‘u = ‘u on 132. In case (a) 
82 = 2, so that u = 11 in R. In case (b), since D(u - w) = 0 in 2, it 
follows that u - ‘u is constant in each connected component C of (2)“. 
For any such component C, we have that in C u - ‘u is a constant that 
must be zero because c n 82 # @. So u E u in R and this shows that if 
u $ v in R then u $ v in fl\ 2. 

Since u $ 21 in R\Z.which is connected (in case (a) because N 2 2) by 
Theorem 1.4 we have u < ‘I) in 62\2. So S = {:c E R : U(X) = V(X)} c 2 
is discrete or compact and hence by the previous corollary it is empty. 0 

3. PROOF OF SYMMETRY AND MONOTONICITY RESULTS 

Proof of Theorem 1 S. - If X < 0 the functions U, UA satisfy the equation 

-f&z = f(z) in 0~ 

with f locally Lipschitz continuous. By Theorem 1.2 (c) (see Remark 1.2) 
there exist 6, &r > 0 such that if X 5 0, R’ is an open subset of Rx 
with a’ = Al U AZ, [AlI < 6, AJAX = supAs (IOU/ + lDux)) < &l and 
u < UA on 80’, then u < ux in 0’. If X > --a and X + a is small then 
IflAl < 6. Moreover if z E 80~ tldfi then U(X) = 0 5 U(XX) = UX(X) ; 
if instead z E dRx f7 TX then zA = x and u = uA. So u 2 uLx on ~R,A 
and as remarked by Theorem 1.2 (c) (with A2 = 0) we get u 5 ‘uA in 02~ 
for X > -a, A close to -n. 

Let us define Xc as the sup of those X E (-a, 0) such that for each 
,LL E (-a, A) we have u 5 2~~ in R,,. If we show that Aa = 0 then by 
continuity u 5 ua in no with U(Q, x’) nondecreasing for xl < 0 and the 
same procedure in the symmetric half R” yields u E uo. Suppose that 
Aa < 0. Then by continuity u 5 uxO in Rx,. Since u 5 rhxO in Rx, by 
Theorem 1.4 (see Remark 1.4) in each connected component of fix0 \.Z’,, we 
have u < UX,, unless u and uAO coincide. If CA, is a connected component 
of Rx, then by the convexity hypothesis on R there exists z E 6’0 n ~CA,, 
such that zxO E 52 (because X0 < 0) so that 0 = <U(X) < u(x~,,). From 
this we infer that u $ UA~ in any connected component CA, of fly,. Since 
CA, \ZA, is open and connected by hypothesis and it is a subset of Rx,, \ 2x, 
we deduce that u < uxO in CA, \ 2x,, , unless u G uxO in CA, \ Zx, . On 
the other hand arguing as in Corollary 1.2 we have that if u E ux,, in 
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CJ,, \ .2x,, then ‘u. G uxO in CA,. Since we saw that this is not possible we 
get u < UJ,,, in CA, \ ZA, for each connected component CA, of RJ,, and 
we conclude that w < uxO in Rx, \ 2x,. 

Let C = {z E Rx, : u(x) = u(czT~,)} C 2x,. Since DU = DuxO = 0 
in C there exists an open set A with C C A C: Rx, such that 
MA& = supA(ID~I + IDuA,~) < y. Let K E Rx, be compact with 
IRA,, \ KI < g. In the compact K \ A C Rx, \ C UX,, - ‘1~ is positive 
and it has a positive minimum there. There exists F > 0 such that, by 
continuity, Xa + E < 0 and for X0 < X < X0 + E we have IRA \ KI < 6, 
M,JJ = SUPA(ID~( + IDuAl) < M and ux - ‘u > 0 in K \ A in particular 
on B(K \ A). M oreover for such X we have u 5 ux on d(Rx \ (K \ A)) 
(if x0 is a point on that boundary either z. E TX where u = ‘ZL~ or z. E dR 
where 0 = u < UA or else 20 E d(K \ A) where as observed u < UX). 
Since 0~ \ (K \ A) is the disjoint union of Al = Rx \ K and A2 = K f~ A 
from Theorem 1.2 (c) we infer as before that u 5 UA in Rx \ (K \ A) so 
that ‘u. 5 UA in Rx for Aa < X < Aa + t < 0. This contradicts the definition 
of X0 and ends the proof. 0 

Proof of Corollary 1.3. - If 2 is discrete so is 2~ for each X 5 0 and from 
the previous proof we deduce that for each X E (-a, 0) we have ‘u. < UA 
in 0~ \ 2~. If (21,5’), (y 1, x’) E R with x1 < yi < 0, X = 9 and 
(zi,z’) $ 2~ then ~(51,~‘) < u(yl,z’). If Du(zi,z’) = D&,X’) = 0 
since 2 is discrete there exist z1 E (zi, yi) with Du(zl, z’) # 0. By the 
previous argument we have u(zi, IC.‘) < ~(21, x’) < u(yi, z’), so *u(zi, IC’) 
is strictly increasing for z1 < 0. 

If R = B(O,R) and Z is discrete we can repeat the proof for any 
direction, so u is radial and radially strictly decreasing. Cl 

Proof of Theorem 1.6. - The proof is similar to that of Theorem 1.5 but 
simpler. If the points where the gradient of u vanishes are contained in To 
then for any X E (-a, 0) we have 2~ = 0 so that, if we know that u 5 UA 
in Rx for X < 0, by Theorem 1.4 we get, as in Theorem 1.5, that u < U,J 
in Rx. Moreover, since for any X < 0 we have IDul + lDuxI 2 m > 0 
in 0+, we can use Theorem 1.2 (d) to get the weak inequality ‘u. 5 ux in 
small domains contained in n+ provided X < 0. 

More precisely if ml = infamy [Dul > 0 then for each X E (--a; 2) 
T 

we have IDul + ID’zL~I 2 ml and by Theorem 1.2 (d) there exists Si > 0 
depending also on m1 such that u 5 UA in 0~ provided IRA1 < Si and 
u < UA on 80~. Since for X E (-a, 7) close to -a this conditions 
are satisfied we get, using also Theorem 1.4, that u < UA in 0~ if X is 
close to --a. 
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Let Xa be the sup of the X < C) such that for each /I, E (--(I,, X) we have 
u < 1~~ in R, and suppose that X0 < 0. If we define m2 = info A+ ID4 > 0 
we have /Dul + [Dux[ > rn2 in 0~ for any X < $ and as before there 
exists 62 > 0 such that for X E (X0, 2 x”) if 0’ is an open subset of (2~ with 
measure less than S2 then u < ux in R’ provided u 2 u,, on 30’. 

Proceeding as in the proof of Theorem 1.5 (with 2~ = A = II) we 
conclude the proof. Cl 

Proof of Theorem 1.7. - Let us observe that if 0 < r < r1 with rl - r 
small then u < U, in D,. In fact if this were not the case there would 
exist a sequence 7, -+ 71 and a sequence IC, such that zn E D,> (i.e. 
z,,; .‘c, + r,el E 0) and u(x~~) > u,,% (zrL). For a subsequence, that we still 
denote by x1&, there exists z1 E n such that x, -+ x1 and x,, + r,,ei -+ 
x1 + Tiei. By continuity ~(5~) 2 ~(51 + riei), which contradicts (l-13), 
since by the definition of ~~ necessarily zl, x1 + rlel E dQ. 

Let us define 70 as the inf of those 7 E (0, rr) such that for each 
CT E (r,r~) we have ‘u 5 uL1, in D,. The theorem will be proved if we 
show that ro = 0. Suppose that ~~ > 0, then by continuity u < ‘uu,, in D,. 
By hypothesis C,,, \ Z,, is connected for each connected component C,, 
of D, and as in the proof of Theorem 1.5 we get, using Theorem 1.4, 
u < IL,, in D, \ZT,. Moreover by (l-13),(1-14), we have that u < + on 
dD,, so that the set S = {:I: E D, : U(X) = u,-~~(x)} is compact in D,, 
and for each 5 E S we have DU(IC) = Du,(Lu) = 0. 

By Theorem 1.2 (c) (see Remark 1.2 (iii)) there exists iU > 0 depending 
on A2 and 101 such that for each r E (O,rr) and each open A 5 D, with 
lDul+ IDu,I < A4 in A we have ‘u < u, in A provided u < U, on dA. 
Choose an open set A with 5’ 2 A C D, and I Dul + I Du,,, I < y in A. In 
the compact ET0 \ A the minimum of u%- u is positive and, for r less than 
r. and close to ro, u, - u is positive in D, \ A (in particular on aA>. On the 
other hand for r less than 7-0 and close to ro we have I Du( + IDu, I < 44 
in A with u 5 u, on dA which by the previous remark implies IL < U, 
in A. So there exists r’ E (0, ro) such that for each 7 E (r’, ro) we have 
u 5 U, in D,. This contradiction shows that r. = 0. Finally for the case of 
2 discrete the proof is completely analogous to that of Corollary 1.3. 0 

Proof of Theorem 1.8. - The proof is very simple and it is based only 
on Corollary 1.1. As in the proof of Theorem 1.7 we see that if r < 71 
with 71 - r small then u < U, in D,. Let 70 be the inf of those r > 0 
such that for each 0 E (7, rr) we have IL < uLL, in D,. As before the 
Theorem is proved if we show that ro = 0. Suppose the contrary, then 
r. > 0 and by continuity u 5 u,, in D,. From (l-13), (1-14) we know 
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that u < u,~ on dD, (because ro > 0) and, since f is nondecreasing and 
u 5 UTO’ we have by Corollary 1.1 (see Remark 1.4) that u < u,,, in D, 
and, by (l- 13), (l-14), also in or”. So the minimum of u,, - u in DrO is 
positive and by continuity u < U, in D, for r less than 7-0 and close to 
ro contradicting the definition of 70. 

Finally if u is another solution to the problem the same reasoning made 
before, with u substituted by w, shows that for any r E (0,7-r) we have 
‘u < uL1, in D, and by continuity u 5 u. = u in Do = 0. Interchanging 
the roles of U, u we obtain u = V. Cl 

APPENDIX 

In this Appendix we prove Theorem 1.3, using (2-l), (2-2) to get an 
estimate for the difference u - u analogous to the estimate for u used by 
Trudinger in [12] to prove Theorem 2.1 when p = 2. Then we can follow 
his proof (based on Moser’s iterative technique) closely. 

In the proof we shall use the following theorem, which is a particular 
case of Theorem 7.21 in [6]. 

THEOREM A.l. - Let u E Wl)l(B), where B is a ball in RN, and suppose 
that there exists a constant K such that 

(A-1) 
s 

lDu[ dx 5 KRN-l for all ballsBR 
BnBR 

Then there exist positive constants u and C depending only on N such that 

(A-2) Lexp($lu-ual) dx 5 ClBl 
where UB = h SBUdx. 

Proof of Theorem 1.3. - If (l-8) is satisfied for A < 0 then it is satisfied 
with A = 0, because u 5 IJ. So we can suppose A 2 0. In this case if r > 0 
then u, v + r satisfy (1-8) and we can suppose u - u 2 r > 0 (substituting 
if necessary w with ‘u + r and then letting r + 0). Let B = B(xo, 56) 
and 17 E C:(B), with 0 5 77 5 1. Testing (l-8) with 4 = $(w - u)“, 
,0 < 0 yields 

-IpI .I, rj2(w - u)O-‘[A(x, Du) - A(x, Dv)] . (Dv - Du) dx 

+ 2 
.I 

B q(w - u)~[A(x, Du) - A(x, Dw)] . Dqdx 

+ A 
.I 

/ - w)v2(w - u)~ dx 2 0 
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Using estimates (2-l) (2-2) we get, if 1 < p 5 2 

where cl, c2 are the constants in (2-l) and (2-2) depending on p and on 
the constants y, I? in (l-3), (i-4). If p > 2 we obtain the same inequality 
with the roles of m, A4 interchanged. In any case we have for any /3 < 0: 

I,/?/ s, $(w - 71)8-11D(7/ - u)I” dx 

I Cl ll(w - u)“lD(w - u)((Dql dx + I q2(w - u)~‘+~ dx 
.B > 

for a constant Ci that depends on p, y, I, A and, if p # 2, also on m and 
kf. By Young inequality we have 

7)(w - u)~p(w - u)llDql = (w - Uy7@(w - u)I(w - 24D7jl 

5 (w - zpl [ 
IPI F&y r12Pb - 41” + IPI -l 

1 ( ) 5 (II - u)2p7f 
1 1 

so that we get 

I,$ .I, q2(w - u)-ID(w - u)I’ dx 

and finally 

(A-3) 
.I’ 

r12(v - u) fi-lID(t~ - u)I” dx 
B 

5G(l+g2~ (rj2 + IDrj12)(w - ,A)~+~ dx 

with C2 depending on p,y, I, A and if p # 2 also on m and n/r. 
Now (A-3) is an estimate for w-u analogous to the estimate for w used in 

Trudinger’s proof of Theorem 2.1 when p = 2. The proof is then concluded 
using the Moser’s iterative technique as in the proof of [12, Theorem 1.21. 
For convenience of the reader we recall the details of the procedure. 
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Let us put, if h > 0 and -co < t < cc, t # 0 : 

(a(t, h) = 

so that 

sup (IJ - u) = cP(+co, h) , 
B(Q,h) 

&fh)(V - U) = Q(-c0,/1) 
2 , 

We put in (A-3) /3 = -1 and for y E B(zc, y), r < 9 we choose 
r/ E C:(B) with q = 1 in B(y,r), supp 77 c B(y, 2r) and 10~1 5 2. We 
obtain, with w = log(w - U) 

with C’s depending on Ca and N. It follows, using Holder’s inequality, that 

J pw/ dx 5 c&4-~ = C‘pJ--1 
B(Y,~) 

with C4 depending on C 2, N and 6. By Theorem A.1 there exist r. > 0 
(ru = 5 with g = a(N)) and C = C(N) > 0 such that 

exp(rOlw - wB’[) dx 5 CIB’I 

where B’ = B(xo, ?$ ). As a consequence we have 

J exp(ruw) dz J exp(-row) dx < CIB’12 = C’ 62N 
B’ B’ 

Recalling that w = log(w - U) and taking the 2 power we obtain 

(A-4) 

where C’ depends on N and r-0 depends on Ca, N and 6. 
Next we consider (A-3) when ,0 < 0, /? # -1. Let us put for -1 # 0 < 0 

4= p+1 
2 

r=2q=p+1 

Observe that /3 < -1 iff T < Q, 0 while -1 < /3 < 0 iff 0 < r; Q, T < 1. 
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For 6 I h’ < h” < 56 we take 77 E C:(B) with ~1 = 1 in B(xO, II.‘), 
supp r/ & B(:ra, h:‘) and (Drjl ( &. If ‘~1 = (71 - u)Y from (A-3) 

we get 

where (I jlt;h is the norm in Lt( B(za, h) ) and C5 depends on C, and 
6. It follows that 

ll~(w)llz,rP 6 @” - ~~‘)-lII~~ll*.h” 

Since VW E W$2(Bh//) and IJ’~uII~~,~~ 5 1171w112~,,~1~ we obtain by Sobolev 
inequality that if x = & (x arbitrary if N = 2) 

for a constant C6 depending on C,, 6 and N. By the definition of ?u, q 
and T this is equivalent to 

Taking the i power we obtain 

(A-5) fqxr,h’)lCj [,.,S,(,.~)]ilii”-h’)‘rn(-;li”i 

if y > 0 i.e. -1 < ,Ll < 0 and 0 < ‘r < 1. 
If instead q < 0 i.e. ,8 < -1 and r < 0 we obtain 

For 7’0 > 0 given by (A-4) and k = 0, 1, . . let us define r6 = (-ro) xk 
and hk = 6 [l + $(;,“I. W e h ave that rk -+ -co, /& = ri - 1 i -cc and 
& 5 1; ho = 9, hk: -+ 6 and hk - hk+l = ($f)&. 
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Iterating (A-6) (where we can suppose Cc > 1) we get 

with C7 depending on CG and Q. 
If k + o=; since ri --+ -oc, hl, + 6 and C,,,, 5 = G we obtain - 

where Cs depends on C’s, N and TO. 
If 0 < s 5 r. we have by Holder’s inequality that 

(A-8) 

which combined with (A-4) and (A-7) yields 

04-9) qs, 26) < CCJ s+ 4+x. 6) 

where Cy depends on N and Cs, so it depends on p,y,I,A,fi, N and if 
p # 2 also on m and M. This is exactly (l-9). 

If instead TO < s < & to get (A-8) we proceed as in the deduction 
of (A-7) but taking a finite number of iterations and using (A-5) instead 
of (A-6). 

More precisely if TO < s < x = & then -+ = r1 < r-o for a 
natural number Ice. If we put, for I; = 0,. . . ka + 1, rk = rlx’ and 
/LO = y > 1~1 > . . . hko+l = 26, with hk - hk+l = & 4, then for Ir, 5 h:a 
we have rk < 1 and (A-5) is true. 

After ka iterations of (A-5) we obtain as in the deduction of (A-7) 

(A-10) 

where Cia depends not only on C, and r1 but also on s through the bound 
h 5 &, k = 0, . . . , /GO, with l,L?kO 1 = jr& - 11 = 1 - $. 

Since (A-4) is certainly true with r1 instead of r. and (A-7) can be 
deduced exactly in the same way with r1 instead of ~0, putting together 
(A-10) and (the modified) (A-4) and (A-7) we obtain again (l-9). 0 
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