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ABSTRACT. - We prove existence of solutions for a class of minimum 
problems of the Calculus of Variations, where the integrand depends both 
on Vu and on 1~. 

Kq wor&: Minimization, gradient 

RBsuMB. - On donne un theoreme d’existence de solutions pour un 
probleme du calcul des variations ou la fonctionnelle depend de ‘u et de VU. 

INTRODUCTION 

The purpose of the present paper is to contribute to the theory of 
existence of solutions to minimum problems of the Calculus of Variations 
when there is no assumptions of convexity with respect to the variable 
gradient. When convexity is not assumed, to prove existence of a solution 
one cannot rely on passing to the limit along minimizing sequences, but in 
most cases one has to actually provide a construction yielding the solution. 
Several examples of this approach exist: [l], [3], [4], [5], [8], [13]. The 
constructions appearing in these papers are, so to say, local, in the sense that 
the problem is solved locally and then the construction is extended to the 
full region by means of covering arguments. These constructions are used 
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to solve non-convex problems both in the scalar and in the vector cases ot 
the Calculus of Variations. However, when the functional to be minimized 
depends, besides on the gradient of the function ‘u, on the function YL itself. 
a local constructions in general cannot yield the solution. The purpose of 
this paper is to provide one non-local construction for a class of problems 
depending both on Vu and on U. 

In a paper by B. Kawohl, J. Stara and G. Wittum [ 111, a non convex 
functional, arising in a problem of shape optimization, is investigated, 
partially by numerical methods. The functional to be minimized is of the 
form 

under the condition u = 0 at dR, and R is a two dimensional square. The 
function h is non convex, the infimum of two parabolas (the investigation of 
this functional has actually a longer history, see [lo] and [14]). Numerical 
evidence suggests that (for the parameters considered in the numerical 
evaluations) solutions to the minimum problem do not exist. Notice that, 
in case R was a disk, solutions to the above problem would exist and 
be unique, essentially without any assumptions on h, except some lower 
semicontinuity and growth condition [2], [ 151, [ 161, conditions satisfied by 
the function h in [ll]. In the case of a disk, in fact, one can show the 
existence of a radially symmetric solution to the convexified problem and 
modify this solution to obtain a (radially symmetric) solution to the original 
non convex problem. 

The problem we consider is the minimization problem stated above, 
where h belongs to a class of (not necessarily convex) functions, and R is 
any bounded, open, convex subset of Rz with a piecewise smooth boundary 
(so as to include a square as a special case). We provide a result that states 
that when the width of the set R is small (depending on a property of the 
function h), a solution to the problem exists. Moreover, this estimate on the 
width cannot be improved, in a sense to be made precise, as it is shown by 
an example. Another condition, connecting more accurately the properties 
of h and of 0, is also presented. Again, this condition cannot be improved. 

Our results, as such, give no informations for the map h considered 
in [ll]. However, were the lower parabola, appearing in the definition 
of h, be replaced by a half line (a degenerate parabola; we obtain the 
functional considered by Kohn and Strang in [12]), our result would 
guarantee existence of solutions on squares whose side is of length not 
larger than twice the angular coefficient of the convexification of h. It is 
conceivable that, under similar conditions on the length of the side of the 
square, a solution to the true problem should exist. 
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NOTATIONS AND BASIC ASSUMPTIONS 

By //XII we mean the euclidean norm of :c. When I3 is a matrix, IBI 
denotes the determinant of B. The complement of a set A is denoted by 
C(A) and the interior of A by int (A). By II(z) we mean the set of nearest 
projections on dR from .7: in (2, i.e. II(z) = {y E XI : \1:1:-yll = d(z, 82)). 
Throughout this paper we make the following assumptions on 0. 

The set 12 is convex, open and bounded. Moreover there exist: A/f points 
o,,i = l,.... M, in 80, such that (2 admits a unique (inward) normal n 
at Oj; A4 functions 4,, each defined on a closed interval 1, containing the 
origin in its interior, such that: 

a) with respect to the pair of coordinate axis with origin in (Ii and 
directions defined by the tangent and the (inward) normal at (I,, the points 
(E, (i,;(c)) belong to X2 for every < in Ii; for E in int(l;j, points (C.0 
belong to $2 for < > (b,(c) sufficiently small. 

b) the functions (/I; are of class C2 on an open set containing Ii; as a 
consequence of a) and of the regularity of (i);, we have that (i,;(O) = 0 
and # (0) = 0. 

c) Every point of t)Q is represented in the form above; moreover the 
representation is unique except for the finitely many points of 852, images 
of the endpoints of the intervals I,. 

We recall that the radius of curvature R at a point (I, &(<)) of the 
boundary of 52, < in iut,(I;), is R = +x8 when 4:‘(E) = 0 and 

R = (1 + M(1))w2 
e(t) 

when $:‘(<) # 0. 
The width r/v,, of 12 is defined to be WQ = sup{d(:c, C(0)) : :I; E O}. 

Notice that the word width has been used in convex anaysis with a somewhat 
different meaning. 

We will consider a class of maps h satisfying the following assumption: 

Assumption A 

The map /I, : [O, m) -+ [O, ~01 is a non-negative lower semicontinuous 
extended valued function with minimum value 0. Moreover, sup{r 2 0 : 
/!,(,I.) = 0) is finite. 

Definitions of /, and A 

Set /I = slip{ $7’ > 0 : /I,(Y) = 0}, and call A the set of supporting linear 
functions at /): A = {(I, : /I.(S) > (I,( s - p), for every s 2 0). We have that 
0 E 4. Set A in [O,X] to be : A = sup A. 
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Whenever A < 3~. A is in il. Whenever Ir is smooth, A = 0. In the case 
the map h is convex, we have that 

MAIN RESULTS 

It is our purpose to consider the following problem 

Problem P): Minimize 

on u E lV,‘,‘(fl). 

LEMMA 1. - Let y E II(X), z E $2. Then X2 is differentiable at y. 

Proof. - The open disk centered at II: having radius p = //:I: - y]J contains 
no points of i)R. Since XJ is interior to 0, there is a ball about :1: contained 
in 2. Each half line issuing from points in this ball in the direction of 1/ - :c 
meets the boundary of R in exactly one point. By moving the origin of the 
coordinates to 2/ and the axis oriented as the normal to .7: - y and as :c - y, 
there exists an open interval I containing 0 such that the boundary of 0 is 
represented by (’ = d(r) where 4 is a convex function defined on 1. The 
convex function (i, has both a left derivative (i\ and a right derivative 4; at 
0. Since there are no points of 82 in the disk centered at (0: p) and radius 
p we must have 4’ 2 0 and #+ 5 0 while, being 4 a convex function, 
(I,\ 2 #+, so that $‘(O) exists and equals 0. 

DEFINITION. - Let :I: E X2 be a point of differentiability of X2. Set 
C(x) to be 

t(x) = sup {A > 0 : for :I;’ E C(Q). :c’ # :c, X < d(:f; + An(z), 3:‘)). 

The set inside parenthesis always contains at least X = 0. About the 
properties of e, we have: 

LEMMA 2. - a) t!(x) 5 WO; 
b) For y in R and ~1: in II(y), d(y,C(Q)) 5 !(:I;); 
c) Let Xl be of class C2 in a neighborhood of 1~. Then; l(z) 5 R(2:); 

moreover; 
d) when l(z) < R(x), there exists z E Xl, x # IC, such that 

d(x + Xn(x),z) = l(x). 
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Proof. - a) Obvious when ! = 0. For X < l(z), X = $(:e+Xn(z), C(0)), 
so that a(:~) = d(:r + e(z)n(:r),C(fl)) 5 WQ; 

b) For every X < d(y,C(It)), :c is the unique point in dbl nearest to 
.X + Xl(z); hence the supremum of such X is 2 d(y, C(Q)); 

c) There is nothing to prove when R.(X) = o. Assume R(X) < cx and 
!(:I;) = R(X) +7), ~1 > 0, and choose X = R(z) + z. The open disk centered 
at :I; + An(z) of radius X does not contain points of C(U). Move the origin 
of the coordinates to x and the axis in the directions of the tangent and 
normal in 2, so that dR is represented, in a neighborhood N of (O,O), 
as C = $(<j, with 4(O) = 0 and 4’(O) = 0. Hence, for I<\ sufficiently 
small, we have (6(t) = i#‘(<)E2 withI<\ 2 111. In a neighborhood of 0, 
4”(t) 2 &, while 

cl((<, q+(t)), (0, R. + 71)) = Jr2 + (4(E) - CR + VII2 
= JC” + @(<y + (R. + 7/)2 - %%)(R + 7)) 

= J(R + r/)2 + E2(1 - (R + 7/)@‘(E) + O(C)) 

and, for 111 small, l- (R+q)#‘(;i) +0(E)) < 0, so that d((<, 4(t)); (0: R+ 
71)) < R + 71, a contradiction to the definition of e(z) for z = 0. 

6) Let a(:~) = R(X) - 71 and again consider the origin of the coordinates 
to be in z. From the definition of li, there exist: F,, 1 0, z,, E 82, z,, # 0, 
such that d(z,,: 0 + (C + En)n(0)) 5 II + E,,. For 71 large, all the disks 
centered at 0 + (C + &,)n(O) with radius e + E, are contained in the disk 
with center 0 + (! + :)n(O) and radius ! + ;. In a neighborhood of 0, 
the equation of this circle is 

c = C(E) = ;[c”(LI! + wm2 = ; [R + f7),2) + w(E) E” 1 
In a neighborhood of (0,O) the points of 862 are represented by 

Hence there exists a neighborhood N of (0,O) such that points z,, = (en, CTL) 
cannot be in N, since otherwise we would have 

Then, a subsequence of the z, converges to a point z E i3R n C(N), 
and we have 

VW. 14, no x-1997 
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b34MA 3. - For each ‘i. the j.m~tiot~ t([ . C/J, (< ) ) is continuous O/I I,. 

Proof. - (i) Continuity on int, (1,). 
a) It cannot happen that there exists (:I:,,),, with :I:,, in X2 and .J’~, + .l’)i: 

such that !(x,~) - ? = P(x*) - ‘~1. If this is the case, in fact, three 
situations can happen, in view of Lemma 2: I) on a subsequence, 
a(,,) = R(:c,,); 2) there are points z,, in X2, z,, # :I:,, but d(:r,,. z,,) + 0 
and d( z,, , :c,, + !(:z;71)n(:r,,)) = Y(x,~), and 3) the points z,, are such that 
d(:r:,,, zn) are bounded away from zero. In case I), since R(:r:,, ) - R(:r*), 
then R(:I:*) < P(:r+) and this contradicts Lemma 2 I.). 

Consider case 2). In a neighborhood N of :I’*, R(X) > R(.c*) - z 
when R(x*) is finite, or larger than the diameter of 62 when R(:l.*) = 3~. 
Since the open disk with center :I:,, + !(:~:,,)n(.c,~) and radius !“(.I;~~) has 
empty intersection with X2 and has the two points z,, and :x’,, on its 
boundary, at some point on the boundary intermediate between z,, and :I:,,, 
the radius is not larger than !(:r,,). When both z,, and :I:,, are in N, we 
have !(:I;*) - !j 5 R(:r*) - z < R(x,,) < !?(:I;,,), a contradiction. 

Case 3) cannot happen: the sequence (z,,),, would converge to z* in i)l2, 
z* # :I:* having distance ? from :c* +?n(:c*). The point z* would have 
distance less than J?(M) from :I;* +P(:c*)n(.r,,). 

h) It cannot happen either that there exists (.I;,,),, with :x:,, in i3Q and 
:I:,, + X* such that li(:~:,,) --i 7 = !(:I:*) + ‘1. Let the origin be in :I’* and the 
axis oriented as the tangent and normal. The distance ~1.~~ from .I:’ = (<‘. i’) 

in X2 to 0 + n(O)? is When t(O) = R(O), locally i3f2 
is represented by 

so that 

for [’ small. For rb large, d(:c,, + !(:c,,)n(:c,): x’) < ? so that for large *U 
one would have d(le,, + e(ZrL)n(z,,), :z’) < “(x~). Finally, in the case there 
exists X’ # 1c such that f?(O) = d(0 + n(O)!!(O),:r;‘), again one would have 
&I < ~1 + e(O) = ? and the same conclusion would follow. 

(ii) Continuity at the boundary points of li. 
When < is a boundary point of 1i, either the normal at X2 exists at ([: &(<)) 
or it does not. In the first case li is defined and the considerations above 
apply as one-sided considerations. In the second case it is easy to see that 
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for < close to the boundary of I;, a(<) tends to zero. In this case, by 
defining li to be zero at these boundary points, one achieves the proof of 
the continuity on I,. 

DEFINITION AND PROPERTIES OF THE MAPS yi AND fL. - With respect to the 
system of coordinates centered at <Ii, consider the transformation cli that 
associates to the pair ([, I) : < in int(1;) and 0 < I < !((t,&(<))), the 
vector of components (<r: &) given by 

Here j$$ and & ___ are the components of the normal n at (I, $i (0). 

We will set f?(t) to be ef(r, (p;(t)). Set Si to be the image of the map yi on 
its domain and Sy to be the image of {(<,l) : [ E int(l;),O I 1 < t(e)}. 
On SF the map yi is invertible, since (E, $;(I)) is the unique point in 
80, nearest to yi(<, I). Call f; the map from SF to 92 defined by the first 
component of y-l, so that, for < in int(li), 

I = fi(Yi(E, l)). 

For the derivatives of fi, setting (9:) and (9:) to be the two components 
of yi, we have the system 

so that 

Hence the norm of the gradient of j’i is 
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computed at g,l(c,, I?). Computing IV!/, / we obtain 

so that, since e(c) 5 R(E), IVyi is # 0 on int(1;) x (0 < I < c’(e)}. Since 
our assumptions imply that 4:’ and dm are uniformly bounded on 
I,, the map y; is lipschitzean. Moreover, by setting 5’: to be the image 
of i&(1,) X (0 < I < P(c) - E}, one has that the map j, is Lipschitzean 
on Sf. We will need both properties in what follows. 

About the sets 5’0 and S’g we have the following result. 

LEMMA 4. - We have: lim E+. p(Q\(US:)) = 0. In particular, 
p(a\(usy)) = 0. 

Proof - Fix 2/ E bt and let it’ be in II(y). At :I:, by Lemma 1, the normal 
n(z) exists, and y can be written as y = :I: + n(z)d(y, C(I) and by b) of 
Lemma 2, d(y, C(Q)) 5 C(X). H ence :y may fail to be in US: when either 
the points z in II(y) are represented as (I, 4;(E)) with < in 81, or when there 
is some z in II(w) represented by < in int(1;) but Ct(y. C(n)) < Q(X) - t. 
Points of the first type are contained in the union of finitely many segments 
(on the normal lines through :I:), a set of measure zero. About the other 
points, notice that, in the space 1, x 8, the set {(c,r) : B(e) --E 5 I 5 $;(()} 
has measure E &I,). Its image by the lipschitzean map g; is of measure 
that can be made arbitrarily small in 12 by decreasing E. The union of these 
images contains all points of the second type. 

The following is our existence Theorem. A more precise condition is 
expressed in Theorem 2. 

THEOREM 1. - Let 12 he an open, bounded, convex subset of X2 with 
piecewise smooth boundary, having width WC,. Let h sati& Assumption A) 
and let p and A be dqjined as above. When WQ 5 h, the jknction 
%l.(:c) = -/I d(n:,Lm) 1s u solution to the minimization problem P. 

Proof. - a) The map :I: t d(z. C(0)) is differentiable a.e. and its gradient 
is (a.e.) -n(II(:c)) (see 191, p. 354) . In particular, II(X) is single valued 
for a.e. :I; in 0. The map u is -pd(z, C(f2)) so that a.e., VU(X) = -+(:q), 
y the unique point in II(X). In the case /I > 0, * = -n(w), while for 
p = 0 we set ,,::$fi,, to be -n(y) by definition. 
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Let o be a function in L”(O) and such that: 0 5 n(:~:) 5 A for a.e. x in R 
when A < 00, and 0 5 01 when A = 30. Then, for any vector 90, when p > 0 

h((lVu(:r:) + 1111) = h((lV7L(x)(l + pu(x) + ?/II - ph(Xll) 
2 h(ph(x)~() + a(x)(llVu(x) + ,lllI - Ip?L(x)ll) 

and, for /, = 0 

Hence, for every p and for every function q in w,‘>‘(n), we have 

I (h( IIVU + Vr)ll) + (?l, + 77)) fin: . 11 
> .I 11 (h(llVull) + u) dx + a n(x) ,l;;;;;ll. a,,> + v) fix .I( ( I1 

We are planning to show that there exists a function Q in L”(O), with the 
properties stated above, and such that for every function rl in Cr (SI), 

.i( ( Sl n(z) puck vu(x) . vq(x)) + qci:)) dx = 0 

Finding this function a, then, amounts to proving that the function u is a 
solution to the minimization problem P. In fact, by approximating a function 
r1 in Wt”(b2) by standard mollifiers, one sees that the above equation must 
actually be true for every function 77 in W,11(i2), so that IL solves P. 

b) The function lVg;(<, s)l IS uniformly bounded on I; x (0 < 1 5 4!(c)}. 
Consider the function G,(<, 1) defined by 

I 
f(C) 

Gi(E; I) = lV%(E: .S)l$*~ . 1 

SO that G+ > 0 and Gi(<, e(l)) = 0. S ince e is a continuous function of 
< E Ii, Gi is a continuous function of its variables (E, I). Set the function 
pi to be 

Gi (E, 0 
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so that: 
(i) [ji([, I) is continuous for [ in int,(2,) and 0 5 I < P(t), r1,((. I’(<)) = 0 

and P;(<, 0) < e(t). Th ese last assertions follow by actually computing the 
map ,O;(<: I) using the expression found for IC!g,/: one obtains 

P(() - 1. when qY’(<) = 0 

P,(i;. r> = ;(ii:) - 1) (R(<) - ‘1 -+ (n(t) - ‘(0) 
R(E)-I ’ 

w,,en +“(<) f (), 

From the above expression one can see that the derivative with respect to 
(! of p;(<, 6) exists and a small computation shows that it is negative: ;jI 
achieves its maximum at I = 0. We have: I);([. P(f)) = 0; /ji(<. I) 5 P(c) -I 
and /j;(<,O) = 8(t) when C/I”(<) = 0 and ij,(<.O) = B(E) - (B(<))‘/‘LR(<) 
when qY’(<) # 0. In either case, !1;(E,O) 5 P(e). 

(ii) For every < and I. we have /j,(I;. /)jOg(/,(e. !)I - G,(<. 1) = 0. 
C) Having defined !I, (<. I), define CP~ on S’:) by setting 

(Y,(L) = ij,(,fp(J.)) 

The map CY, is continuous on the open (relative to a) set 0:. By our previous 
claim, the set O\ U 0: has measure zero. The map O, defined to be CY; on 
0,: and 0 elsewhere, is measurable, non negative and uniformly bounded. 

d) Let 11 be any function in C,;“(12) and let us compute 

Since the integrand is in L”(12), by our claim on 0: we have also 

On OF, fl is a Lipschitzean map with values in %?‘K; by the coarea formula 
([7], p. 117) we have 

where H is the one-dimensional Hausdorff measure. 
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The set f,:r (0 is the segment described by 

for 0 5 I! < e(c). On it the Hausdorff measure coincides with the Lebesgue 
measure. We have: 

I 1 

. ,s,2 n,r,- ‘(C) 71 llV.fr II dH = I 
r/lVg;I dH 

. s;nj,-‘(E) 

=I 
a((()-E 

,I/(((. d);(C)) + In(E))IV!j;(<. I)1 d6. 
. 0 

Byintegratingbyparts,since IV!g;(<.1)1 = -$G,(<.l) and $rj((<.@,(<))+ 
rn(<)) = (n, Oq), we have 

Since 7jlur2 = 0, 

4(S)--E + I (n, V7j)G, dl. 
0 

Then 

where n = n(t), )VgiI = lVgi(c, I)1 and the functions Vr/ and fi:i appearing 
inside the integral are computed along { ((<, +i(<)) + In(<)) : 0 < 1 5 
C(t) - E}. At these points the function CQ equals /Ji(<, I). 
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By point i) of b) above, II, 5 B hence, by Lemma 2, a), (I, < I’Vri and. 
by the assumption of the Theorem, (P; < A. Moreover, since by point ii) 
of b) we have that { -3, /VT/~) + G; } z 0. we obtain 

= d(E. 41(f)) + (40 - EM<)) Gi(Et t(E) - f) 

Hence 

I = lim E--*0 II(($~ h(O) + (t(E) - EM<)) G,(E, 40 - E) 4 

Each integrand is a continuous function uniformly converging to 0 so that 

The map o satisfies all the requirements of a). This completes the proof. 

EXAMPLE 1. - Let 11, be the indicator function of any closed and bounded 
set. Then A = cx: and II, is a solution on any bounded convex set $2, with 
a piecewise smooth boundary. 

Next example shows that the condition expressed in terms of Wf, cannot 
be improved. 

EXAMPLE 2. - Consider the function 1~ defined by h(r) = r, for 0 5 7’ < 1 
and h(r) = 30 for 7’ > 1. Then p = 0 and A = 1. Hence problem P 
consists in minimizing a convex coercitive functional on TJV~~’ and admits 
a solution 71. By our previous theorem, 71, = 0 is a solution whenever 
WQ < 1. Let us show that, given any positive E, there are convex sets 62 
with IWO = 1 + E such that a solution must have its gradient different from 
zero on a set of positive measure. 

Consider the rectangle l?,,.k with sides of length 2( 1 + E) and 2( 1 + e) + A 
and a second concentric rectangle Ro,., with sides 2 and 2 + A. For 
f2 = R,,;i, I/c;, = 1 + E, independent of A. The value of the functional 
computed along the map ~0 f 0 is zero. Consider ~1, where ~1 is 
negative with gradient in norm = 1, and orthogonal to the sides, on 
the strip difference of the rectangle R,,il and the rectangle Ro,.\, and 
gradient 0 on R,,.l. Computing the functional along uI we have the value 
(8+2A)~+(4~~) - [(4+2A)~+(4+R)~*+(4/+‘] = 4&-h* - (4/3)~” 
and, for A large, this value is negative. Hence r&a is not a solution. 
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Remark. - The condition appearing in the preceding Theorem is expressed 
in terms of WC), a quantity easily computed. For the validity of the result, 
however, the following condition is actually sufficient, as one can see from 
property (ii) of b) in the Proof of Theorem 1: 

THEOREM 2. - Under the same conditions on h and R assume that, for a.e. 
CL: in XI, P(x) 5 A when R(s) = CO, and a(x) - (~(~))~/2R(x) 5 A when 
R(x) < CO. Then problem P admits the solution u(x) = -p d(n:, 80). 

Next Example shows that this second condition cannot be improved. 

EXAMPLE 3. - Consider the case where R is a disk of radius R. Then, 
for every :I: in X2 we have e(z) = R, and l(z) - (~!(x;))~/~R(x) = R/2. 
So the condition becomes: R/2 5 A. Let IL be as in Example 2 and 
set R to be Bz+~~, a disk of radius 2 + 2~. Since R/2 = 1 + E and 
A = 1, the above condition is violated. Again for ‘u. = 0 the value of 
the functional is 0. Consider a concentric disk 132 of radius 2 and let ~1 
be such that the gradient is in norm 1 on the annulus from 7‘ = 2 + E to 
1’ = 2 and 0 otherwise. Computing the value of the functional one obtains 
- $7r8[3~ + 3~~ + $1 + 47r[2~ + 91, a negative number. Hence ~0 is not 
a solution. 

It is obvious that the examples above refer to our function u not being a 
solution. That other solutions might exist is not a problem easily solvable. 
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