
Ann. Inst. Hvnri Poincarl, 

Vol. 14, no 3, 1997, p. 365-413 Analyse non lindaire 

On the existence of a positive solution of semilinear 
elliptic equations in unbounded domains 

Abbas BAHRI and Pierre-Louis LIONS 

ABSTRACT. - We prove here the existence of a positive solution, under 
general conditions, for semilinear elliptic equations in unbounded domains 
with a variational structure. The solutions we build cannot be obtained in 
general by minimization problems. And even if Palais-Smale condition is 
violated, precise estimates on the losses of compactness are obtained by the 
concentration-compactness method which enables us to apply the theory of 
critical points at infinity. 

RWJMB. - Nous prouvons dans cet article l’existence d’une solution 
positive, sous des conditions g&r&ales, pour des equations semilineaires 
elliptiques dans les domaines non born& avec une structure variationnelle. 
Les solutions obtenues ne peuvent Ctre en general obtenues par des 
problemes de minimisation. Bien que la condition de Palais-Smale n’ait 
pas lieu, des estimees precises sur les pertes de compacite sont deduites de 
la methode de concentration-compacite et nous permettent d’appliquer la 
theorie des points critiques a l’infini. 

I. INTRODUCTION 

This paper is concerned with the existence of positive solutions of 

(1.1) -Au + A,, u = b(x) up in (2, u E H; ((I), u>O in0 

Annales de I’lnstitut Hem PoincarC Analyse non IinCaire - 0294- 1449 
Vol. 14/97/0X 7.00/O Gauthier-Villars 

© 1997 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved



366 :\ BAHRI ~\Nll P.-I. LIOUS 

where X0 > 0. $2 = 0 and 0 is a smooth bounded open set in iw”. I) > 2, 
1 < p < 5 (p < 3~~ if it = 2) and the weight function /‘I satisfies in 
all that follows 

(1.2) b E Cb (ET): b > 0 011 R”. b - 1)” > 0 its I:r/ - 3c’. 

Such problems in unbounded domains arise naturally in various branches 
of Mathematical Physics and present specific mathematical difficulties. 
Indeed, if there exist various general methods to solve the analogue ( I. I ) 
when 12 is bounded, these argument break down in the above situation 
because of losses of compactness which can be illustrated by the following 
well-known fact: the embedding from Hi (62) into L’ (0) is no longer 
compact when R is. say, an exterior domain as above. A more precise 
argument consists in looking at the particular example when 0 = 8. 
b s b” i.e. 

( I .3) -Au + A() 71, = b” 761’ in IF!“. u E H1 (Et”). II. > 0 in iw” 

This problem being obviously invariant by translations, one deduces 
immediately that the set of solutions of (1.3) is not compact in any 
Sobolev space. Let us finally mention that a decisive argument consists 
in recalling the nonexistence result by M. J. Esteban and P.-L. Lions ] 171 
when 62 = Bip”, b E (5”~ (H”), b > b > 0 on Iw’” and b is increasing in one 
direction (notice however that such a b does not satisfy (1.2)). 

Many authors have considered the above problem: the first case to be 
treated was (1.3) by Z. Nehari [29]; G. H. Ryder [31]; M. Berger [S]; C. V. 
Coffman 11 I]; S. Coleman, V. Glazer and A. Martin [14]; W. Strauss [23] 
and H. Berestycki and P.-L. Lions [7] (where general nonlinearities are 
considered). In all these works dealing with the case 0 = Iw’“, 0 = bm, 
the solution is built through a minimization problem and a reduction to 
spherically symmetric function which restores the compactness. 

Next, some effort to understand precisely this loss of compactness 
and related ones occuring in various problems was made by various 
authors (see for example P. Sacks and K. Uhlenbeck 1391, P.-.L. Lions [21], 
C. Taubes [35], [36], H. Brezis and J. M. Coron [lo], M. Struwe [34]...). 
In the particular example at hand, this was done via the concentration- 
compactness method of P.-L. Lions [22] and it led to various existence 
results for minama of say 
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see also W. Y. Ding and W. M. Ni [15], M. J. Esteban and P.-L. Lions 
[ 181, P.-L. Lions [23] for related results. In fact (see P.-L. Lions [24]), one 
knows that approximated solutions of (1.1) i:e., Palais-Smale sequences, in 
the situation when (1.1) has no solutions for instance, break up in a finite 
number of solutions of (1.3) which roughly speaking are entered at points 
whose interdistances go to infinity. 

To conclude this brief review of known existence results, let us 
mention that if b. 12 present symmetries some further existence results 
are known (see W. Y. Ding and W. M. Ni 1151, C. V. Coffman and 
M. Marcus [12], P.-L. Lions [25], [26]). Finally, existence is also known 
in some “perturbation cases”: see C. V. Coffman and M. Marcus [ 131, 
V. Benci and G. Cerami [6]. 

Let us now state our main result which will use the following assumption 
on h 

(Observe that Co, 1x:1-y are not really relevant but we insist on this form 
for reasons which will be clear later on). 

Our argument also requires the uniqueness up to a translation of solutions 
of (1.3): in view of the general symmetry results of B. Gidas, W. M. Ni 
and L. Nirenbberg [19], [20], this amounts to the uniqueness of radial 
solutions of (1.3), a fact which has been shown by M. K. Kwong [22] - 
some partial results in that direction were just given in K. Mac Leod and 
J. Serrin [27]. We may now state the 

THEOREM I. 1. - We assume (1.5). Then, there exists a solution of (1.1). 0 
The proof of this result is rather long and contains several highly technical 

aspects. The idea of the proof relies on the method of critical points at 
infinity [l], [2], [5]. To simplify the presentation, we split the proof in 
various steps which contain interesting elements by themselves. The last 
step consists in some crucial “energy balance” (section IV) which is in some 
sense the key a priori estimate required for the analysis of the existence 
result. Section VII is devoted to various extensions (more general equations 
and conditions), variants and comments. In particular, we explain how a 
much easier existence proof can be made if we relax (1.5) to 

(1.6) b(z) > b” - c (cxp (-2 IxI-y as 1x1 + cm. 

Vol. 14, no 3-1997. 
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Indeed, we show that by a careful inspection of the energy balance 
investigated in section IV, the “interaction of only two solutions at infinity” 
can be used and this allows to use the idea of J. M. Coron [ 151 a bit like 
it was done in V. Benci and G. Cerami [6] (we thus basically refine the 
analysis of 161). We also consider in section VI1 the following equation. 

( 1.7) 
-Au = 1) (,I:) (II, - ,+I)+~’ iii 62. -I-‘71 E L” (62). 

11 E L* (II). ‘/I = 0 011 %52. 71, > 0 in I? 

where X0 > 0, b satishes (1.2) 1 < p < s and 11 2 3. And we show 
there exists a solution of (1.7) as soon as 1~ satisfies 

(1.8) 

Section VIII contains an existence result when 12 and 11 have some 
symmetries which extends the results recalled above; and its proof uses 
and relines some of the arguments introduced in the course of proving 
Theorem I. 1. 

Then, there exists a constant 7 = 7 (p. II) > 0 such that if c’u 5 7. 
then there exists a solution of (1.1) which is obtained via the following 
minimization problem 
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Notice that the above result implies the existence of a solution when b z 1 
as soon as R has “a symmetry group without fixed points” (i.e., N > 2). 
Observe also that the above result applies by a simple translation if R + 20, 
Z, (X + 3~~) satisfy the above assumptions for some z E Iw’“. 

II. A FEW KNOWN FACTS 

We first introduce a few notations. First, the natural functional associated 
with (1.1) is 

(2.1) 
‘dv E E,: ((2). 

Recall that nonnegative critical points of I are indeed the nonnegative 
solutions of (1.1). We will also denote by 

and we will agree that Hi (a) embeds into H1 (I?‘) by extending its 
elements by 0, while H,j (C?) = H1 (IT) if 0 = 0. We next introduce 

(2.3) J(v) = uli I(Xv), II E c 
- 

and we denote by X(U) the unique maximum of I (X v) on [0, CG) for 
‘u E C. Observe that we have here explicit formulae 

(2.4) 
x (w) = (.i,.. b ,?q+1 di) -l’(p-l); 

J (?J) = 2 ;;tl) (s,., b Jw,Pfl dr) -2’cp-1); 

and one checks immediately that X, J are C’ on C and that if -U is a 
(nonnegative) critical point of J on C then u = X (v) w is a nontrivial 
(nonnegative) critical point of I and conversely any nontrivial critical 
point of 1 may be obtained through such a U. Such a reduction to a 
functional defined on sphere was already used in A. Bahri [3], A. Bahri 
and H. Berestycki [4] and is in fact valid for more general nonlinearities, a 
fact that we will not recall in section VII (see [3], [4]). 

Vol. 14, Ilo 3.1997. 
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Of course, C is the sphere of H,f (12) provided we endow H” (R”) with 
the scalar product 

and we will write by /711 the associated norm. The gradient flow of ./ 
restricted to C (identifying H’ (Rn) with its dual, and thus considering 
gradients with respect to the scalar product (2.5)) is the solution of the 
following differential equation 

(2.6) 2 = -J’ (IL) = -X2 (u) %I, + K (blX (IL) ~,,l’- A” (s,J) IL) for s > 0 

where .z = K f is the solution for .f E H-l (0) of 

And one checks that there exists a unique global solution ‘u (t) for (2.6) 
such that u (0) = u() where u0 E C. Furthermore, 11, (t) E C for all t 2 0 
and of course 

(2.8) 
2 

= -$ (J(u)) for all s > 0. 

Finally, since K is order-preserving (maximum principle), it is possible 
to show (see section IV) that if ~0 E C+ then ‘IL (s) E C+ for all s 2 0 
where C+ is given by 

(2.9) C+ = { %I, E C, %I, 2 0 in 12). 

Let us also recall the relations between Palais-Smale sequences for I 
and J (P. S. sequences in short) i.e. sequences ?Lk, ?ik satisfying 

(2.10) is bounded, I’ (‘!&) 5 (1 

or 

(2.11) J (uk) is bounded, J’ (Vk) 3 0, ?ik E c. 

Before we do that, we recall that from Sobolev inequalities X and J are 
bounded from below away from 0 on C. 

Arrml~s de I ‘Instirut Hmri Poinror6 - Analyse non h&we 
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LEMMA 11.1. - 1) Let ?& satisfy (2.11) then // (7~~) is bounded, uk = 
x (uk) uk satisfies (2.11) and )I&[ is bounded away from 0. 

2) Let ‘uk satisfy, (2.10) be such that lukl is bounded away from 0 then 
?ik = 3 satisfies (2.11) and X (uk) jukl-l ; 1. 

Remark. - In fact as soon as J (Vk) is bounded, X (Uk) is bounded and 
thus I’&[ is bounded in (0, cc) (recall that ‘uk E C and compare with (2.4)). 

Proof of Lemma 11.1. - 1) The above remark shows that I’U,+l is bounded 
from above and away from 0, hence I (uk) is bounded. Now, in order to 
prove that 1’ (Uk) 2 0 we just observe that because of (2.3) we always have 

0 = (1’ (I&), vk) = (?/,I; - K (b ll&lp-l ‘Uk). ‘t)k) 

while (2.11) implies 

SUP {I(‘,& - K (b l’&$--l Q), W)l/l’W1 < 1, (W; ‘ok) = o} 7 0 

hence luk - K (blr~kI~-l uk)l 7 0, proving our claim. 

2) If ‘uk satisfies (2.10) then 

Ei = ‘uk - K (b /?&I’-’ ‘uk) + 0. 
k 

in particular )luk12 - Jo b lulcl p+l dzl 5 IE~[ Iukl. And this combined with 
the bounds on 1 (uk) shows that I?& 1 is bounded. Hence, 1 Iukll--p - 
Jr, b I?&lp+l dsl 2 0 or Iukl - x (Vk) 7 0 and we conclude easily. n 

Using the preceding lemma, we may now show easily that J does 
not satisfy the P.S. condition on C or even C+, i.e. that there exist 
sequences I& in c+ satisfying (2.11) for which no subsequences converge. 
In view of Lemma 1.1, we just have to build a sequence Uk satisfying 
(2.10), such that I I Uk is bounded away from 0 and ‘uk does not have any 
converging subsequence. To do so we consider a solution w of (1.3) (whose 
existence was recalled in the Introduction) and we take any cut-off function 
‘p E C” W) satisfying 

(2.12) O<q<l, cpz0 near D, CpEl for 121 large 

Next, let zk be any sequence in I?” going to cc and set 

(2.13) ‘f& = ‘p‘d(’ -z&) 

It is a straightforward exercise to check that Uk E Hi (a), satisfies (2.10) 
I’ukl 7 IwI > 0 while Uk 7 0 weakly in Hi... 

Vol. 14, no 3.1997. 
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Having thus shown that the P.S. condition is violated in general, we 
now explain the precise mechanism involved. This result is derived from 
P.-L. Lions [23], [22] and its proof is given in the Appendix for the reader’s 
convenience. 

PROPOSITION II. 1. - Let uk be a sequence in Hi (I 2) satisfying (2. IO). Then, 
there exists a subsequence (still denoted by ~k),fC)r which the folloMkg holds: 
there exist an integer rr~ > 0, sequences .I:; ,for 1 < % 2 VI,, fimctions ?I,, 
w, for 1 < % < m such that 

(2.15) 
C 

-awi + A(, w, = 11” Iw$-l w, in R’“, 
wi E H1 (R’“), wi $ 0 

?Lk - 
(2.16) 

(u+-&(. -:I;;,)) 70, 
i=l 

1 (Uk) 7 I(W) + -g-P (w,) 
i=l 

(2.17) I& 2 $00, 1x; - :I$ 2 +m for 1 5 % # j 5 ‘111, 

where we agree that in the case rn = 0 the above holds without w;. :L$ and 

I” (u) = 
./ R” 

; IV uJ2+X() u2-2 17LIp+1 dx ,for* a16 u E H1 (W”) 

In addition, if ‘1~k 2 0 then E > 0, and wi may be taken to be for all 
2 5 % 5 m the unique positive radial solution c$ (1.3). 

This result immediately implies the 

COROLLARY II. 1. - Under the assumptions of Theorem I. 1, we denote bql w 
the unique radial solution of (1.3) and by S = & lw12. Then, ifak is a 
sequence in c+ satisjjkg (2.11), there is a subsequence of ?& still denoted 
by ?ik, an integer rn > 1 and sequences :I$ of points in iw” jbr 1 6 % < rrt, 
such that (2.17) holds and 
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Remark. - Of course, we may replace in (2.18) c:L, w ( . - 2;;) by 
q~ (CyL, w (. - xi)) where cp E C” (R”) satisfies (2.12). 

To conclude this section of preliminaries, we recall briefly a few 
informations on w (taken out from [20], 1321, [7] for instance): w E C” (R’l ) 
is radial (w = w (r)) and satisfies 

(2.19) w (:I:) (:p “xp(z/xol:I:I) ” c > 0 its ):I:/ 4 x 

(2.20) w/ (?.) ,,+ cxp ( Jx, ?-) i --c Jx, as 7’ = I.14 + x 

In fact, it is possible to show that c = I’,, ,I,,, h” J’ (&1,)-t 
sh (6 7.) &x for some constant c,, depending only on ‘rt,. This may be 
deduced from the following lemma that we will use later on 

(2.21) $5 (:c) c:xp (fl! I:r:l) IzIf’ + c c/s lx/ - x 

(2.22) 
I 

I$ (x)1 cxp (rr l:I:l) (1 + I.r*I”) tl.1. < X’ 
. R” 

Proc$ - We just have to bound 1~ (:c + ?/) $ (x)1 cxp (0 I:~J/) /‘1/(,’ by an 
L1 function to conclude by the dominated convergence theorem. In order 
to do so, we prove that 

In particular, if ,$ is radial, we deduce that 

This follows from the study of various cases. First of all, if lx: + ?I// 5 1, 
since ly( 5 1 + 1x1, we obtain 

Vol. 14, Ilo 3.lYY7 
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where C denotes various constants independent of .I:. ~1. Next, if 1 < 
):I: + :r/l 5 $$ remarking that [:q/1 < 2 IX), we deduce 

lip (x + TJ) 7) (x)1 cxp(cr /g/i) 1:1/p 5 c' (dl (x)1 I.cy c‘xp(cv Iyl) cxp(-tr Ix + :1/I) 

5 c I$ (.r)I ):I:(;'cxp(c' IX]). 

Finally, if (X + ‘yl > I?][/% we obtain 

J'p (:I; + y) 7) (:7:)I exp (0 1?//1) I?/lij 5 C c:xp (-0 13: + :(/I) lli, (:r:)I cxp ((Y [?]I) 

5 c IT/l (:7;)I cxp (a! 1x1). 

And we obtain the desired bound by summing up the three bounds we 
obtained. H 

III. CONTINUOUS SELECTION OF PARAMETERS 

Proposition 11.1 shows that “almost critical” points are close to a finite 
sum of “elementary solutions at infinity” w centered at points infinitely 
away from 0 and from each other. For later purposes, it will be useful to 
project such configurations on weighted sums of such elementary solutions. 
To this end, we first choose VL > 1, cp E 6”” (6%“) satisfying (2.12) and 
for E E (0. 1) we consider 

(3.1) v (7% &) = 
1 

II E C+/(:r:l...., :7TrrL) E 0"". /:I;; - ZJjJ > i 
ic 

if I 5 % # j _< 711,. IX, ) > f3 

and we want to solve for v E V (rm,. E) the following minimization problem 

PROPOSITION III. 1. - There exists Ed (= ~~ (in)) > 0 such that 
Problem (3.2) has, for any ‘u E V (m, EO), a unique solution (Ej. :cJ)I<~~~,~ 
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up to u permutation and there exist constants (independent of v) g, Z, Ro 
such that (up to a permutation) if IX (II) v - (Cr w ( - zj)j < E for some 
(Lcj)J satisfiing :r,; E 0, Izi - :I:j( > l/E, I:Ejl > l/e ,for 1 < % # j < 70, 
then we have 

Furthermore, if II E V (nt,, E) with 0 < E 5 ~0, (3.3) holds ,for some 
constants Ro (E), g (E), E (E) which sati& 

(3.4) Ro (&) + 0, P(E) + 1, Z(E) + 1 a, s & --t 0,. 

Proo$ - The proof will be made in several stages. We first show (3.3) 
for minimizing sequences (3.2) and the existence of a minimum satisfying 
(3.3)-(3.4). Next, we show some local strict convexity of the solution of 
(nj, :E~) involved in (3.2). F ina 11 y, we prove the uniqueness by a simple 
continuation argument. 

To simplify the presentation, we will only make the proof in the case 
when f2 = R” i.e. cp E 1 and then the conditions l:~+l > i, Xj E R will 
play no role. The general case follows immediately by easy adaptations. 
Let us also remark that we just have to work with 71, = X (II) ‘11. 

To prove the first claims made above, we observe that if v E V (q E) 
there exist :I;~, . . . . II;‘, E R” such that Ix~ - 1~~ 1 > i for 1 5 i # j 5 m and 
I7L - Cm W ( ’ - Xj)l < E; and thus the minimization problem (3.2) may 
be restricted to those &j > 0, %j such that 

In 

(3.5) 7L-- ctjW(’ -:~,j) < &. 
.j=l 

We first claim that this implies that the gj are bounded from above by a 
fixed constant. Indeed, we deduce from (3.5) 

~C”jWi’-:‘j)l 1”~ 1 < 2 E+ C W ( . - T1J.j ) < 2 E + rrb C 
j=l j=l 

where C denotes various constants independent of 71, U, E. Then, this 
implies obviously, using the fact that w is nonnegative, 

Vol. 14, no 3.1997 
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Therefore there exists rU (independent of 0. (L, c) such that 

(3.6) o<fi, <cu for 1 < ; < 711. -. 

Next, we remark that (3.5) implies 

(3.7) 

Hence, if we fix % E { 1. . . . . VL}. we deduce 

where we use the positivity of w and (3.6). Therefore, for E small enough, 
there exists at least one index 3 = j (i) E { 1, . . m} such that 

.I’ R” 

And Lemma II.2 implies that there exists RO such that 

(3.8) I:‘:, - :c,/ 2 R(j. for .j = ;j (i). 

Then, in particular 

1 

and for E small enough, up to the permutation (i --f ,j (a)), we deduce finally 
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for E small enough. But, the same argument as above then shows 

2&j w (x - 2;;) w (x - 2;) dx 

and Lemma II.2 implies in particular that the right-hand side goes to IwI$ 
as E goes to 0 since /:I:, - i:j I 2 i - 2 Ra for i # j. This yields a uniform 
lower bound on (x~j (Vj). In conclusion, we have shown that for E small 
enough, a minimum with the properties claimed in Proposition III.1 exists. 
In addition, the above argument shows that 

+zc 
j#i 

J’ 
~,~ {w (2; - z,) - 3; w (2; - z;)} 

X { W (:I: - Xj ) - E,j W ( :I: - Zi~‘:j ) } d:c 

> Iw(. -:I;,~)- 5, w (. - ?Y.i)l$ - 711 (E) 

where W, (E) + 0 as E --+ 0+ (~1 (E) - exp (-6 $) E* by Lemma 11.2). 
Therefore, cUi w ( . +a: i -:1.;) L” + w as E + 0, uniformly in II. Hence, 5; -+ 1 
as E - 0, uniformly in ‘u and then one checks easily that 2, - Z, + 0 as 
E - o+ uniformly in II. 

At this stage, all the statements of Proposition III.1 but the uniqueness 
have been proved and in fact we also proved the existence for each 6 E 
(0, 1) of & = & (6) small enough such that if IX (u) 7) - Cm w ( . - zj) I < F 
for some (:~j)j satisfying 1:r.j - :cil > $ (V% # j) then a minimum of (3.2) 
exists and any minimum C:” Sij w (. - Zj) satisfies, up to a permutation 
of the indices, 

The second step consists in showing that the functional 

Vol. 14, II” 3.1997. 
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has a definite positive second derivative at all points satisfying (3.10) 
provided E is small enough i.e. L’ < E() < ~1. Indeed, the quadratic form 
obtained through the second derivative of Q, at (Zi, . . . S,,,; F,. . . . . S,,, ) 
acting on variations (h,. . . . . h ,,,,: El, . . <,,,) t R”‘x(R”)“’ is given by 

( 

WI. ,,L 
+ 1 Ej W (. - Zj) - Uu: -2 C }lj TJW (. 

j=l .j=l 

,,l 

+CZJD2W(’ -Tj)[<jj,<j] 

.j=l > 

And, because of (3.10), Lemma 11.2, (2.19), (2.20) we deduce 

(3.11) Q L 2 h: lw12 - P (&) (2 iL; + lt,jl') 

j=l j=l 

( 

n1 

+ IL, 2 C hj VW (. - T,,) ' <j 
j=l i 

( 

1,L 
- ‘iL, C VJ-D*W(’ -T.j)[(j, <j] 

;=1 1 

Here and below, p denotes various positive constants (depending only on E) 
such that jr. + 0. Indeed, observe that we have for all 1 5 (1, p, y 5 n 

E 
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Next, we observe that we may replace II, by C:” w ( . - :~j) and using the 
above rules we finally obtain 

Ill 
(3’12) ()LC Ir:Iw’+~rv,(VW(’ -:Cj) ’ ~j. VW(’ -“j) . Ej) 

j=l j=l 

( 
T,, 

- /L(E) c “; + l[jl” . 
j=l > 

And using once more (3.10) we deduce 
rr, ,,L 

(3.13) Q L C 11: lW[* + C (1 - 6) [VW . (,j12 

J=l j=l 

- (lL (&) + PCs)) (2 “3 + l<j12). 
j=l 

To conclude, we just observe that for all 1 < a, p, y 2 II. 

/ 
2 

dx . 

And this implies that there exists 11 > 0 (independent of U) such that for 
E, h small 

V,L 
(3.14) & 2 7) C h; + l<j/". 

j=l 

To conclude the proof of Proposition III. 1, we use a simple continuation 
argument. Indeed, we have just shown that any minimum (up to a 
permutation) is nondegenerate and since all the above estimates are uniform 
along the paths (t E [0, l] 4 tu + (1 - t) CT w (. - zj)), we just have 
to show the uniqueness (up to a permutation) when II, = C:” w (. - zj). 
But this amounts to check that if Cy ~j w (. - “j) = Cy w ( . - s.j) for 
some Cuj 2 0, YEj E R’“, zJ E R”” where the XJ~ are distinct then {(Ed, zj), 
1 < ,j < Wb} = ((1 . CCj), 1 5 .i < m,}. This is in particular insured by the 
following lemma which thus concludes the proof of Proposition III. 1. 

LEMMA 111.1. - Let N 2 1, zl, . . . . xN be N distinct points in R’” and let 
71: . . . . 7~ E R. Assume that 

N 
(3.15) C yj W ( ’ - :Cj) = 0, 

Vol. 14. n” 3.1997. 
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then y1 = . . . = yJlr = 0. 

Proof: - Denoting by w the Fourier transform of w, we deduce from (3.15) 

(3.16) 

Furthermore, using the decay of w, one can show easily that w vanishes at 
most on a countable set so (3.16) implies 

(3.17) 

and we conclude since the points z’;j are distinct. n 

IV. A LOCAL DEFORMATION ARGUMENT 

This section is devoted to an important technical point, namely the 
analysis of deformation of the level sets of the functional J. This 
deformation argument is quite typical in Liustemik-Schnirelman type 
arguments (see Milnor [27], P. H. Rabinowitz [29]...) and even if, by 
opposition to the rather sharp Morse deformation lemma, it is a rough 
deformation we will have to analyse it very precisely. 

We fix m E N and we consider two positive constants Q,,, i T,,, . We will 
denote by 

(4.1) r’,,, = (71, + 1) s, for all n > 0: 

and we set W, = {U E C’/ J (7~) 5 b,,} (Vn > 0) and 

(4.2) J’ = (7L E C/J(u) 5 c}. vc E R 

We will use a modification of the “true gradient how” (2.6) namely 

du 
(4.3) 

.J’ (u) 
~ = - (1 + j,J’(41”)‘/” 

for s > 0, U],=o = Un 
,. 

where u. is any initial condition in C +. The result which follows will 
give in particular the existence of a global unique solution u (s, 7~~) which 
depends continuously upon !/I,~. We then consider for all 6 E Iw 

(4.4) T6 (uO) = inf (s > 0, .I (u (s, Q)) 5 &-I + 6) 

,41~1~dcv C/P /‘ln\timt H~rlrr I’oinurrt Analyse non lin~aite 
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if no such s exists we set Th (~0) = +oc. We finally denote, assuming 
that (4.3) admits a global solution and that T6 is finite on the set considered 
- all points which will be answered in the result below -, by 

(4.5) lii/,,-l = (7~ (T, ~LO)/~LO E W,,,}, for rrl > 2, 0 < 6 < ; 

where T is given by 

(4.6) T = T (u,,) = (Ts (Q) + ~6) A To (Use). 

Finally, if nz = 1, we set wt-i = Jbofh n C+, for 0 < 6 < f. 
We then have the 

LEMMA IV. 1. - The differential equation (4.3) has a unique global solution 
u (s) = u (s, ug), which depends continuously upon ~0 and maps C+ into 
itself Next, if we assume that (1.1) has no solutions or equivalently that J 
has no critical points on C+ and that (1.3) has a unique radial solution, - 
then Th (~0) is continuous on W, (with values in IO, +oo] $6 = 0), for 
6 2 0. Therefore, for 0 < 6 <_ :, the pair (WIIL, w,,-1) retracts by (this) - 
deformation onto the pair (WApI, Wm-l) and for any E > 0, we may 
choose S > 0 small enough such that 

(4.7) I@;-,\wm-l c v (rn, E). 

Proof - The fact that (4.3) is a well-posed ordinary differential equation 
is easily deduced from the explicit formulas giving X (u), ,I (7~). Indeed, 
X(u), J(U), J’(u), A’( u are clearly locally Lipschitz and the Lipschitz ) 
bounds depend only on a bound from above of J (or A). This, of course, 
immediately implies the existence of a maximal solution of (4.3) which is 
global provided one bounds from above J on this trajectory. But since .I 
is non-increasing along the trajectory, the upper bound on .J is obvious 
and the global existence follows as well the continuous dependence upon 
the initial condition ~~0. 

We now proceed to prove the remaining assertions on the semiflow. We 
first show that the flow preserves C’ (as announced in section II). Indeed 
observe first that by a change of clock, we just have to show that the 
“true” gradient flow (2.6) (which exists for the same reasons as above) 
preserves also C+. To this end, we modify, for u. E C+, the Equation (2.6) 
as follows: if ~0 E C’, there exists by the same arguments as above a 
maximal solution on [0, T[ of 

(2.6’) 
d%l 
- = -A” (u) ‘U + K (11 A”+l (7L) u+q 
dS 
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where X (u) is still defined by (2.4) on U~(62)\{0}, and ,II+ = III;I,~ (II. (I). 
If we show that u remains nonnegative, then IL solves in fact (2.6) and our 
claim is proved. To do so, we fix lo < T. 

Then, denoting by 1/,- = ,I/,+ - (I, we multiply (2.6’) (recall that we always 
use the scalar product of HA (62)) by k:~ and we obtain 

or 

and we conclude easily since j;, ]u; I2 d:c = 0. 
Next, in all the remainder of the proof, we assume that J has no critical 

points on C’. Hence, ,I (IL (s, ~a)) is decreasing for all s > 0. Next, we 
claim that, for each h > 0, there exists y > 0 such that 

This is indeed an immediate consequence of Corollary II. 1, arguing by 
contradiction. Then, since we have for all t > s > 0, %L~) E IX+ 

(4.9) J (?L (t, ug)) - J (u (s. uo)) 

=+ I’ t 1.1’ ( ( SC/, CT, uo))12 (1 + I.J’(u ((T, ,t~n))1~)-“~ do 
. c 

we deduce easily that for all ~a E w,,, T6 (Q) < ix: for all n > 0. 
We next show that Tb is continuous on W, if b > 0, or continuous with 

values in [O: +no] if 6 = 0. The proof being quite similar in both cases, 
and in fact a bit simpler when 5 > 0, we just prove the continuity of 27,. 
To this end, we take a sequence ($),, in w,, such that 1~;; - u() E w,,,. 
To (~6) + To E [0, ~1 and we want to show that To = To (UGLY. First of all, 
if t < T,?‘(uo), J (u (t, 1~)) > b,,-l and by continuity we still have for ‘0 
large enough J (U (t. ~0”)) > b ,,,- r, hence t < To (16;) and T,, > T,, (uo). 
Next, assume that To (Q~) < To and thus in particular To (,ug) < 3~. 
Therefore, for all h > 0 

.J (u (To (q,) + h, uo)) < b,,, - I 
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and again by continuity the same inequality holds for n, large i.e. 

Therefore, To (1~:) < To (*uO) + h for r~ large, and we reach the contradiction 
which proves our claim. In conclusion, T(Q) is continuous on w,, and - 
clearly T(uO) E 0 on W1,l-i. The deformation is now clear: consider 
the map 

In the case 7~ = 1, the situation is much simpler and the deformation 
is immediate. 

To complete the proof of Lemma IV. 1, we have to show (4.7). We first 
consider the case when m > 2 and we will then treat the case when m = 1. 
Again, in view of Corollary 11.1, we just have to show that there exists a 
positive constant C 2 0 (independent of 6) such that 

(4. IO) JJ’(v)I < Chl’“. for all ‘?I E Tvfn _ 1 \Tqn - 1 

To prove this bound, we take ‘0 E ~~,IP1\Wm--l i.e. .1 (II) > b,,-i and 
therefore II = *U (Th (Q) + A, ~0) for some ‘Q E w,,. To simplify 
notations we will denote by <ii = II, (Th (us), ,ug), II (s) = 11 (s, ug) for 
s 2 0. And we deduce from (4.9) 

.TA (WI)+& 
(4.1 1) I 1.7 (u (s))12 (1 + IJ’ (II (s))12)--1’2 ds < 6. 

Tr (IQ,) 

Hence, there exists S E]T~ (~g). To (~0) + fi[ such that 

/I (II @))I” (1 + IJ’ (TG))I”)-“’ 5 fF2 

and thus there exists a constant independent of h E (0; 5) such that 

(4.12) 1.1’ (71 @))I 5 c 61’2. 

Now, in view of (4.3), we deduce 

(4.13) /v - ‘fi (?)I 5 b1’2. 

To conclude, we use the fact that J’ is Lipschitz on C+ fl JR for all R < cc 
and (4.10) follows from combining (4.12) and (4.13). 
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In the case when m = 1, that is we consider ‘(1 E (-lb”+” fl C+)\m,,: 
observe that since ha = i;f J is not achieved then Wo = (I? and by 
1. Ekeland’s variational principle [16], we can find UI E C+ such that 

J(w) 5 J(v), [.I’ (aJ)J < h; (‘0 -?I11 5 h 

and we conclude easily since for b small enough this implies that 
211 E V(1, E). n 

In particular, we deduce from Lemma IV.1 that there exists ynL ( . ) 
continuous, nondecreasing and nonnegative such that 7m (0) = 0 and 

q-1 c Wm-1 u v (m; ym (6)). 

We then set 
-6 
W m-1 = Wm-1 u v (m, Ym (6)). 

V. A TOPOLOGICAL ARGUMENT 

This section is devoted to a topological argument which will imply the 
existence result (Theorem 1.1) provided we admit an important “energy- 
balance” type result (Proposition V.l below) that we prove in the next 
section. Throughout this section we will assume that (1.3) has a unique 
positive radial solution and that (1.1) has no solution and we will reach 
a contradiction proving Theorem I. 1. The topological argument we use 
is quite close to the ones introduced in A. Bahri [l], [2]. A. Bahri and 
J. M. Coron [5]. 

We will need a few notations: S”-l is an (n - 1) dimensional standard 
sphere embedded in G so that X S’“-l c D for all X > 1 and H,-i (S”-’ ) 
embeds in H,-i (a). We may assume without loss of generality that 
STL-’ = {z E FP/Jz] = 1): indeed, this may be achieved by a simple 
scaling. For rr~ 2 1, we denote by (Sn-l)nL its m-th power, by ynL the 
embedding of (Sn-1)7n into a”, and by /\T~ the corresponding embedding 
of (X Sn-l)m into am. 

We will also denote by A,-, = {(ti, . . . . tm)/zr t; = 1, ti 2 0 
for all i} the standard (m - 1)-simplex, by dA,-1 its boundary, by 
Ati-1 = {(tl ,..., tm) E A,-,/supi (4 - &I < &}, by dA&, its 
boundary. Notice that AL-, c A,,-, and (A,-,, aA,-,) retracts by 
deformation on (AL-,, aA&-,). 

Annales dr I’lnstitut Henri Poincnrt: . Analyse non lin&re 
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Next, we denote by D, = {(xi, . . . . z,) E (Sn-1)m/3i # j z; = zj}, 
by cm the group of permutation of { 1, . . . . m}, by V, a a,-invariant tubular 
neighbourhood of D,, V, may be considered as a (n - 1) m dimensional 
manifold with boundary, which retracts by deformation on DD,, (see e.g. 
Bredon [9]). We will denote by (So”-‘)” the (n - 1) m dimensional 
manifold with boundary LW, given by ( Sn-l)m\Vm. Of course, CT, acts on 
(S’L-1)7’L x A,-,, (Sn-l)m x aA,-,)\(D, x A,-,), (S,“-‘)m x A,-,, 
((S:-l)m x dA,-l) U (aV, x A,-,). The quotient of these sets under the 
action of grn will be denoted with a subscript grn under the product or union 
signs; for instance, the quotient of (Sn-l)m x A,-, under the action of (T, 
will be denoted by (Sn-l)nL x A,,-,. We will consider five main pairs 

0.n 

(5.1) ((sn-ly x Am-l, ((Sn-l)m x %a-l)u(& x Am-,))) 
urn ~n1 

(5.2) ((so”-l>” x Am-l, ((S;-l>” 
0, 

x dA,-I) U(Wn x Am-d)) 
0, 

(5.3) ((sn-l)m/%w (s;-‘)“/Gl) 

(5.4) (KL, KrL-1) 

where Wrn-i, w,, v:-i have been defined in the preceding section. 

We denote by s, the map from V (m, ~0) into am/an& which maps 
21 E V (m, ce) into (Zi, . . . . ?&) solution of (3.2) (as given in Proposi- 
tion IILl), by i, the embedding from (,?!$-‘)“/a, into (S+l)m/gmr 
by k, the embedding from 

m?-l)m x A,-,, (So”-‘)” x dA,-1) U(% x A,-,)) 
urn urn 

into 

w-l)m ~* x Am-l, ((Sn-l)m x dA,-I) u(Drn x Am-,))). 
g”r 

Finally, we denote by 

BdSn-l) = 2 ti &&I, .,., &n) E (sn-l)m, (tl, . . . . tm) E A,-, 
i > 
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where 6, denotes the Diract mass at :I:. B,,, (S”-‘) is endowed of the weak 
* topology of measures on S”-‘. One may also think of U,,, (,S”-‘) as 
the quotient of ( S7’-1)‘rr’ x &,,-i (endowed of its natural topology) 

c I,, 
through the following equivalence relation: (.I.~, . . . . :I’,,, . 11. . . . . t,!) - 
(:I;;: . ..) Lx;,, t’l. .,., t:,,) if for any :I’; such that t, # 0 we have 

and if for any 2;: such that t: # 0 we have 

Let ,9,, be the corresponding projection from (S”-I)“’ x Arr,-l onto 
D,,A 

BT,, (SC-i). Let C,,,, be the projection on the :c-component of (x. t) E 
(Sn-l)W’ x A,-, from (ST1-1)7” x &,-i onto (S7’-1)7”/~,,(. 

~,,I c,>, 
For X > 1, we introduce a continuous map from B,?! (S-i) into C+ 

given by 

where cp is a fixed cut-off function in G” (W) satisfying (2.12). 

The following result will be proved in section VI. 

PROPOSITION V.l. - For any rn 2 1, ~1 E (0. EO (mu)) (eo (711) has been 
de$ned in Proposition IIII), 6 > 0 such that (4.7) holds with E = ~1, there 
exists X nL 2 1, E; > 0 such that,for X 2 A,,, we have 

(i) fm (A) maps (B, (SIL--l). B,,,-l (ST’-‘)) into (WL-,. v,,z-l) C 

(wrn, wnJ-l) and fin (A) 0 0, maps ((ST1-l)‘r’t X, A,,,-,), ((S”-l)“’ x 

a&-~) U,,,, (D,, x L-1)) into (WLl, Wrrz--l). 

(ii) frr, (A) 0 19, maps (($-‘)‘I’ X A$-,, ((St-l)“” X aAFl:-l) 
mr,, 

U,,,, (aV,,, x A$_,)) into (W,,-, fl V (7rL. &I), W,,!-l fY V (711. El)) and 
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the following diagram is commutative 

((S;-l)‘” 2, A$-,), ((S;-l)nL x aA;,;-,) 

(iii) 3 UL 2 1 such thatfor rn’ 2 m, fml (A) [BnLi (ST’-‘)] C mm/-l. n 
We may now conclude the proof of Theorem 1.1. Let us recall that the 

argument below is a repetition of the argument introduced by A. Bahri and 
J. M. Coron [5], [2]. We first mention that all homologies below are with 
Z2-coefficients. Next, observe that 0, defines a homeomorphism from 

(S7L-1)T’z x A,-,\((Sn-‘)n’ x dA,-l) u(& x A,,-,) 
~I71 cm 

onto B, (Snp1)/L3,-1 (F-l) 

and that ((S’L-l)m x dA,,-I) U,,,, (OnI x A,-,) is a retract by deformation 
of ((S7L-1)m x b,-l) U,,,,(V, x A,-,) where &-I = {(tl, . . . . tm) E 
A,-,/ C’r It; - &I > &}. Furthermore, ((SrL-‘)‘~ x &-I) lJ,,,(V, x 
A,,-,) is a closed neighborhood of ((S%-l),’ x da,,-1) IJ,, (Dm X 
A,-,). Therefore, we deduce by excision 

(5.6) H, (B, (S-l), B-1 (S-l)) 

= Ht((Sn-l)TrL x A,-,, (S,-l)nL x dA,,-1) 
on, 

X u(k x Am-,)). 
g-7 

As V,, retracts by deformation equivariantly on D,, we also have 

(5.7) H* wnTL ~,~, x ATrLdl, ((,,‘1-1)7n x dA,-I) u(Dm X A,-,)) 
(TV,, 
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Hence, by excision 

(5.8) H, ((S7L-1)m 2, A,,,-,, ((Sn--l)m x WrL-l) u(k, x An,-,)) 
0 r71 

= H, ((So”-‘)“” ot Awl, ((S;-l)T’L x aA,,-1) 

U( aKn x A,,-,)) 
g771 

= H, ((S;-‘)nL x A,-,, a((S,n-l)- x A,,-,)) 
gin mm 

(Observe here that (So”-‘)“/a, is a retract by deformation of some 
neighbourhood of this set in (S”-‘)“/g,,). 

Therefore. we have 

(5.9) He (% (S-l), h-1 W-l)) 

= H,((S,“-l)” x Al,Lpl, a((S;-‘)nL x A,-,)) 
o,n 677, 

The cap product 

(5.10) H* ((So”-‘)” x A,-,) 8 H ((So”-‘)” x A,-,. 
cm rm 
i3((S;-‘)‘rL x A,-,)) 

grn 
+ H,((S,“-l)“” x A,-,, a((S;-‘)Tn x A,,-,)) 

urn o,n 

equips H, (((So”-‘)“” x A,-,), I~((S~-‘)~~~ x A,,-,)) with a structure 
0 n1 cm 

of H* (@)““/a,)-moduli via the homomorphism 

(5.11) i; 07; : H* ((fit)-/,,) --+ H” ((S,n-‘)‘“/Q 

= H” ((S;-l)‘” x A,-,). 
grn 

In the absence of a solution to (l), the deformation Lemma IV. 1 states that -- 
(W,, W,-,) retracts by deformation onto (fiiel, w,-,) and that we 
have *A-i 

- 
c w;-, c IV, and 

(5.12) 
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Therefore, we have on one hand 

(5.13) II* (Wm, Wm-l) = H* ($?-I, w,-1) 
- - 

= H, (TVs,,-,\Wm-1, Fv:pl\W,n-l n K-d 

and on the other hand, we have a well-defined homeomorphism, via the 
map s,. 

(5.14) i* o s; : H* ((a)-/CT,) -+ H* (wl,\~m-1) 

where 1; is the inclusion (5.12). 
(5.13) and (5~14) imply that, in the absence of a solution to (l.l), - 

H* (Wn, mm- > 1 is naturally equipped with a structure of H” ( (a)m/a,)- 
module. 

Using the commutativity of the diagram in (ii) of Proposition V.l, the 
map 

(5.15) (fm (X) o O,), : H, ((So”-‘)” 2, A$,, ((S,“-I)” x aAs-,) 

UC 6-k x Ai-,)) 
UnL 
-+ K (wf,+, n V (m, Q), mm-1 n V (m, G)) 

is H” ((@“/a,)-linear. 
Using the commutativity of the diagram 

and the fact that the vertical arrows are, by (5.8), (5.12) and the equivariant 
retraction by deformation of (A,-,, cYA,-~) onto (Ai-,, aAs_,), 
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isomorphisms, we derive that the map 

(5.17) (fTrL (A) 06)“~). : H, ((S’i-1)“’ x A?,,-.,. ((Sn-l)rn x iIS,,,-,) 
fl,>, 

UC D, x &n--l)) + H, (w:,,-,- W,,r--1) mm 
is H” ((n)“/rr,,)-linear. 

Therefore, via (5.8), (5.2) and (5.13), the map 

(5.18) (fin (A)), : H, (8, (S7’--l), h-1 (S-‘1) --) H, (wm %,-I) 

is H” ( (R)7’L/a,,)-linear. 
Let now 

{ 

Osn-l be the orientation class in H”-’ (A”‘-‘) 

(5.19) and let 05 be in H7’-’ (2) such that -y; (O& = OS?, -j , 

when y1 is the embedding of Snel in 2. 

Let g1 x (T,-~ be the subgroup of a7,) of permutations leaving 1 stable 
(cJ,, permutes { 1, . . . . m}). 

The transfer homeomorphism (see e.g. Bredon [9]) will be denoted by 
LL* defines a map from H” (a x (t)“-‘) into H* ((a)“‘/a,,,) 

ml X~n,-I 
and, similarly, a map from H* (ST’-’ (Jl x;,,,m, (S”-1)7’L-1) into 

H ((Sn-l)l’L/~nl). Let 
q:2 

(5.20) 
~] x;,,,m, mTn-1 + Q 

be the projection on the first component, 

(5.21) 
(r : s-1 n, .;,,,-, (S’z-l)TrJ-l --+ Y--l 

be the projection or1 the first component also. 

Taking X larger than Sup (A,,, . X,,,I-~), the following diagram is obviously 
commutative 

(5.22) 

Hk(Bm (Y-l), B,,-1 (F-l)) 2 H, (Wm. %-I) 

.la 1 31 

H,pl (B,-1 (Y-l). B,,-z (Y-l)) fti K-1 (Wm--1. %-z). 

where d and dl are connecting homomorphisms. 
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we claim that we have 

(5.23) d (y& 0 p* 0 q*(o& n [B, (5-l>, &n--l (s”-‘)l) 

= [BTrL-l (s-l), h-2 (Sn-l)l 

where n is the cap-product and [B, (S-l), B,,-r (SnB1)] is the orienta- 
tion class, via (5.9), of the manifold with boundary (St-1)7rL a:, A,,-, 

(respectively for [E&-l (S-l), I&-2 (Sk-l)], use (S~-l)nL-l X 
~,,I - I 

&,-2). (5.23) will be proved later on. 
Using now the H* ((n)nL/a,,)-linearity of (fm (A)), and the com- 

mutativity of (5.22), we derive: 

(5.24) fir&--l (A), ([&-I (S-t h-2 (slL-l)]) 

= (fn-1 (A))* O a (7; 0 h* O Q* (0,) 

n [B,(S7’-1); B,,-1 (SrL--l)]) 

= 81 0 (fin (A))* (?cL 0 I-1* 0 4* (0,) 

n [I?, (Y-l): Blrl-l (LY’)]) 

= al (P* 0 9* (0,) n fnl (% ([B, (s?, B7rL-l W-‘)I)> 

since the H* ((Q)m/a7,,)-structure of module of H, (B,, (Y-l). 
B1,L-l (9-‘)) is via 7: (see (5.11)) the cap-product action of 
H” ((St-1)‘” x A,,-,) onto 

CT ,I/ 

H, ((S;;-‘)“’ x A,,-,, ti(S;--l)‘” x A,,,-,) 
cm g,,, 

= H, (B,, (Y-l), B,,,.el (Y-l)). 

Therefore, we have the induction 

{ 

fm (A), ([B,,L (F-l), B,,-1 (S7’-‘)I) is non zero if 
(5.25) 

firLel (A), ([B,,-1 (F-l): Bm-2 (S’l-‘)I) is non zero. 

Observe now that by (iii) of Proposition V. 1, fm (A) - 
maps I?,,, (FL--l) into Win-r for m large enough. Therefore 
f7,L (A), (8,s (s7L-1)3 &-1 (SY) . 1s zero. This, together with (5.25) 
implies 

(5.26) j-1 (A), ([Bl (&Y-l), BIJ (27--l)]) = 0. 
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Now we have: 

(5.27) Bl (y-1) = y-1; l3(, (F-l) = 01 

fr (X) maps Br (ST’-‘) by (i) of Proposition V. 1, into WE. As wa = fl 
and as mi\wO is contained in V (1, el) by Lemma IV.l, we have 

TV; c V(1. El) 

We therefore have a map 

(5.28) fl (A) : s-l + V(1, &I) 

y -+ p.d(-Xy) (cpW(~ - Xy)(-‘. 

Then 

(5.29) slofi (X)rnapsyy E ST’-’ intoX!g E XS”-1 c n, with,4 > X1 

as the solution of the minimization problem (3.2) for II = ,;I I, It;;, is 
(Ipd(. - Ay)I-lx(u). Xy). 

Next, the map 

1 
(5.30) [ 1 x, 1 x y-1 + R”” 

(t. y) + Is1 0 .fl (A) 

is valued in 62 and defines there a homotopy of s1 o .fl (X) to the embedding 
y1 of S”-l into 2. 

But yl* (OsT1-~) is non zero. Therefore (sr o SI), (OsJ~ I) is non zero 
contradicting (5.26). Hence, the proof of Theorem 1. 

We nos prove the remaining claim (5.23). The following diagram 
commutes 

and 7m is a71L-equivariant. 
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Therefore, by naturality of the transfer homeomorphism (see e.g. 
Bredon [9]), we have: 

(5.32) 7; 0 p* 0 q* (0,) = p* 0 fj* 0 7; (0,) = p* 0 4”* (Op1). 

Taking into account (5.27), (5.23) becomes: 

(5.33) a (p* 0 cj* (Osn-1) n [B, (5-l), B,-1 (s”-‘)I) 

= [B,-1 (F-l), B,-2 (Y-l)]. 

In order to prove (5.43), we pick a point < in ST’-‘. The map 

[O, l] x B,-1 (P-l) ---) B, (F-l) 

(5.34) 
(t; ?g ti q + t S,$ + 1 ti (5~~ _: 

induces a map T from the cone CB,-1 (P-l) over B,-r (P-l) into 
B, (S-l). 7, in fact, maps 

(5.35) T :(CB,-l (P-l), B,pl (F-l)) 

-+ (B, (Y-l), B,el (P-l)) 

and we have the following commutative diagram 

(5.36) If, (CB,pl (S+‘), B,-1 (Sn-I)) 2 k-1 (&n-l (S”-I)) 

r* 1 / 83 

If, (B, (Y-l), Bm-I (Y-l)). 

& and 83 are connecting homeomorphisms and B* is the reduced 
homology. Observe that & is injective as B,-1 (9-l) is contractible. 

Let II be the restriction of @ to (So”-‘)” x A,,-, 
Dl X~,,,-I 

(5.37) II : (s,“-‘y x a,-, -+ s”-1 
Cl xun,-1 

Ii-l ([) is a submanifold (with boundary dII-’ (E)) of (SF-‘)” x 
“1 xc,-1 

A,-,. Let [H-l (I), 8-l (<)I denote its orientation class. 
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Introducing the quotient map 

(5.38) r’ : ((so”-l)“” x A,,,-,. i)((S,“-I)“’ x L-1)) 01X0,,-.I g, xu,,,-1 

-+ ((S;-l)T” x A,,-,, iJ((S;-I)“’ x A,,,)) 
(I,?? o,,, 

we have the following diagram 

(5.39) 

((So”-‘)‘” x A,,,-,, a((S;-‘)- x A,,-,)) = (II-’ (0, XI-l (I)) 
~01 ~,,I 

t 1 Ji 

((St-‘y x A,-,, a((S,“-‘)P x Am-,)) 
01 XU,,--I 01 XU,,z..l 

In 
f$“-1 

In (5.9), we pointed out an isomorphism, which we denote by I, 

H, (B, (F-l)< B,-1 (F-l)) 5 H, ((S;-‘)Tn x A,-,): 
(5.40) 077, 

8 ((S,“-‘P /, Am-,). 

Similarly, there is an isomorphism V, 

(5.41) u* : H, (C&-l (Y-l), &r-l (S?) 

+ H, (n-’ (0, 3-l (I)) 

and we readily have 

(5.42) I* 0 r* = j, 0 LJ* 

Furthermore, as BmW2 (P-l) is contractible in B,-l (S”-l), the quotient 
map 

(5.43) .J, : I?* (B,-1 (F-l)) --f H, (h-1 (Sn-‘), Km-2 (S-l)) 

is injective. 
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Now H(m-1) (1&-1)+nl-2 (B,-l (F-l), B,-2 (F-l)) is, by (5.23), 
uniquely generated by the orientation class of ((S:-1)“-2 x Ant-x, 

cm - 1 
8 ((S;;--ly-2 x A,-,). Therefore 

nm - 1 

(5.44) H(m-1) (n-l)+m-2 (Bm-1 (s-l), B,-2 (&Y-‘)) = x2. 

The generator was denoted (see (5.23) by [B,,-i (Sn-‘), Bm-2 (F-l)]. 
We then have recalling that da is defined in (5.36), and [II-’ (<), IX-’ (<)I 
is the orientation class of (n-’ (0, XII-~ (I)) 

(5.45) J* 0 82 0 J,-‘([n-’ (F), XII-l (01) 

= [B,-1 (P1), Bm-2 (Y-l)]. 

On the other hand, the transfer map 

(5.46) ,u* : H* ((S;-l)T’L x A,-,) + H* ((S;-‘)m x A,-,) 
n1 X~‘ni-1 CT,, 

is equal to the Gysin-homomorphism as the map T*, defined in (5.38), is 
a covering. 

Therefore, we have for any u in H* ((S,“-‘)m x Am-,> 
ulX~“2-I 

(5.47) P* (4 n Kso”-‘>” x A,-,, a(($-‘)- x A,-,)] 
077, g lli 

= 7‘* (IL r-l [(s;-l)m x A,-,, a((S;-l)nL 
01 X~,,-1 

In particular 

(5.48) IL* (n* (OS-~)) n [(so”-‘)” 2, Am-,, 8 ((St-‘Jm 2, Am-,)] 
= T* pII* (OpI)} f-l [(5p)” x A,-,, cY((S;-‘)~’ 

01 X4,7,--1 

Now, we readily have 

(5.49) II* (OF-l) n [K3” ,,xf”,-l b-1, a&q-‘)- 2, A,-,)] 

= i* ([n-l (E), a-r1 (<)I). 
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Therefore 

(5.50) p* (II” (O,n-I)) n [(Lq-‘y 2, AWL-l, ~((s,“-‘)m 2, &rJ 

= j* ([n-l (I)? m-l (<)I). 

We use now (5.45). As J, is injective as well as ?I, (8, defined in (5.36)) 
(5.45) reads 

(5.5 1) v,-l ([n-l (I)> m-l WI) 
= 8;’ o J,-l ([B,,-, (F-l), h-2 (S-l)]) 

Applying I’* o 7* and using (5.42), we have 

(5.52) A ([n-l (t>i 6’~’ (<)I) 
= I, o rk o 3;’ o J,-l ([%7-l w-‘), &L-2 (S”-‘>I 

(5.48) and (5.51) yield 

(5.53) I, or* o 6’;’ o J;‘([B,-1 (Y-l), k-2 (ST’-‘)]) 

= p*Ql* (Op-1)) n [(so”-l)” 

x Am-,, a((S;-l)m x, A,-,>]. 
urn 

By the commutativity of (5.36), we have 

(5.54) r* 0 a;’ = a,-‘. 

On the other hand, I, is an isomorphism. Therefore, we have 

(5.55) [&,-I (Y-l), &n-2 (S”-‘)I 

= I* 0 a, 0 I,-1 (p* (n* (Op-1)) n [(5yl)“’ 

x Am-,, a((S;-l)nL x An,-,)] 
urn cnz 

and (5.55) yields (5.23) immediately. 
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VI. MAIN ENERGY ESTIMATE 

We now prove Proposition V.l which, in view of the arguments given 
in sections III, IV, reduces to the following assertions 

(6.1) 
- 

If m islarge, fm (X) [B,(F-l)] c W,-1 

(6.2) 
If m > 1, fm (X) o 8, [(S,“-I)” x Azpl] c @m-, n V (m, ~1) 

and 

for convenient choices of the parameters. In fact, (6.2) is very easy if 
m = 1 and we will first prove 

(6.3) If m>2, fin (4 0 or, [(S;-l)‘rL ; A$-,] c V (m, ~1). 

Indeed, the commutativity of the diagram given in (ii) for instance then 
follows from the uniqueness of the selection shown in section III. 

We first prove (6.3). Of course, we may consider in all the remainder of 
this section that m is fixed > 2, ~1 < EO (m). In fact, the proof of (6.3) 
consists only in looking precisely at what really are the various objects 
we are using. Indeed, if [ E (S,“-‘)Tm x A$-,, u, = fm (X) o O,, (I) 

g m 
is given by 

(6.4) 
--I: 

and there exists y > 0 (independent of I) such that 

At this stage the remainder of the proof of (6.3) is quite easy. Indeed, 
observe that by explicit computations X (u) 1~ (cm ti w ( . -X xi)) 1-l -+ m 
asX~oc,E:--tO,henceX(u)u-cp(Cm w(. -X:ci))-)OasX-+oo, 
E: -+ 0, uniformly in c and (6.3) is proved. 
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We now turn to the really important estimate (6.1). Recalling that if 
‘I, E c. 

while 

s = a;p;ll) (w/2 = 
(6.1) is obviously deduced 

(6.7) 

J)-& (.I.. 6” (x)‘“) -2’(p-1). 

from the following 

)I 

2 
x :I:;) 

for all x1, . . . . II:,, E S”+r, tr: . . . . t,,, > 0, ci’” t, = 1, provided X is large 
and ip is chosen conveniently. The proof of (6.7) will require some careful 
analysis and to keep the ideas clear we first prove (6.7) in the particular 
case when 0 = Q) i.e. 62 = Iw” and thus no cut-off function cp is required 
(or in other words we may take y E 1). 

We begin by estimating 

(6.8) i$tjwji’= (~t~)lw12+,tjtj(w..,l 
where we denote by w, = w ( - Xx;). Next, recalling that w solves 

(6.9) -0w + X0 w = b” wp in Iw’“. w > 0 in Iw’“: w E N1 (rWr’) 

we deduce 

(6.10) 
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And by the results of section II, we have for all 1 5 % # j 5 rn, 

(6.11) 
(I’ 

b” wp wj dx 
* R$i > 

x q, (#” AA,,) xv nfy +Co>O asX--+rx, 

where Co is independent of xi. ...i :I:,, Xi, . . . . X,,, and a,j = 1:~ - ~~1. 
Next, we remark 

(6.12) /,,, b (1 t;w,)*+‘dx > s,,> b” ($ tiw,)iJ+ticx 

- / 
R” 

(b” - b)f (C t.i wy+l dx 
1 

And since we may always assume that in (1 S) S < p + 1, we deduce from 
the results of section II that for X > 1 

.I 
Pfl 

(6.13) (b” - b)+ 5 c2 exp (-s xx;‘“) x-9 
R” 

where CZ > 0 is independent of X, :I:~, ...j x;~,~, ti. . . . . t,, 
We next observe that if al, . . . . IL,,, are arbitrary nonnegative reals then 

there exists a constant CS 2 0 (independent of al. . . . . a,,,,) such that 

(in fact, if p > 2, we way take C’s = 0 and in general we only need this 
inequality to hold for 0 < n.; 5 supn,, w). Hence, (6.12)-(6.13) yield 

’ + ( P  + 1) 1 t f  tj 

I  

b” WY Wj do - C2 

i#j 
. R” 
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And in view of the results of section II and of (6.14) we deduce tinally 

where 1 < q < (JI + l), and CA is a positive constant independent of 
x > 1, “cl, ...i :xlrL) t, i . . t,,, 

Now, we have to deduce (6.7) from (6. lo), (6.11) and (6.15). We first 
observe that all the parameters t, may be assumed to be close to & since 
we have 

(6.16) ,,I 
v’f; 2 0: xti = 1 

I 

for some 0 > 0. Therefore, (6.7) holds immediately if mitxi It, - $1 > 
h)(X) where &I (A) + 0 as X -+ +LQ. Hence, we may assume that for 
X > X0, maxi (tj - $1 < fro (A) < &. We now rewrite (6.15) as follows 

where ,LL (X) - 0 as X -+ +rx;. 

To conclude, we just have to observe that we have 
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hence, if m is large enough, there always exist i # j such that 

(6.19) Aij < 612. 

And the combination of (6.17) and (6.19) easily yields (6.7). 
We now explain how we modify the above argument in the general case 

when R = W”. We first observe that (6.15) still holds in this case. On the 
other hand, (6.8)-(6.10) become now 

where we integrated by parts the second term and used the fact that 
0 5 ‘p 5 1. And we deduce easily 

(6.20) cp 2 t. 1 ( 

1 

,wi) 12< ($J tf> 1~1~ + C ti tj S,.. b”wTj dx 
1 i#j 

+G (i,> IA,,,) e~p(-2X;‘~X)(2A)-*, 

where C5 is independent of x1, . . . . x,, tl, . . . . t,, X 1 1 and cp. We may 
now repeat the above argument and conclude the proof. 

To conclude the proof of the existence theorem, we still have to prove 
the second part of (6.2). We first observe that the above estimates show 
that there exists a continuous, positive function K (X) vanishing for X = 0 
such that 

(6.22) J Cp 

(( 

2 tiW(. +XXi) 

1) 
< ms 

i=l 
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as soon as maxi Iti - 51 > K (A), or mini+j IX, - :I:, 1 < l/K (X). On the 
other hand, if maxi lti - & 1 < K (A) an mm;+, j:c, - .c,,/ 2 l/K (X), then d 
.fm (A) (Cl”=, ti S,?) E V (m, yin (~3)) for X large enough. 

And combining these two facts we conclude the proof of (6.2) and of 
the existence theorem. n 

We would like to conclude by mentioning that the proof of the existence 
we gave in fact yields the existence of a solution 1~ such that 

(6.21) I(u) < T-11 I” (w). 

where rn is the least integer such that (iii) in Proposition V.1 holds. 

VII. EXTENSIONS, VARIANTS AND COMMENTS 

We first give an extension of Theorem I.1 where we relax assumption 
( 1.5) and where we consider a more general equation than ( 1.1) namely 

n 

(7.1) - i, j=l & 
c ( 

Uij (X) 8 
1 

+ (I, (3:) ‘U = 9 (X, U) in S2. 

‘U E H,I (0). u > 0 in f2 

where R, n, p are as in the Introduction and where aij, a E Ct, (n) (V%, j) 
satisfy 

(7.2) 3u > 0, ‘d( E R”, v:c E W”, 
i. j=l 

(7.3) 3a>o, a (:z:) 2 n, 011 iw’” 

(7.4) 
a;j (cc) --j UT, u (3;) + (Loo as I:z;l --+ 00, 

for all 1 5 i, j 5 7~ 

Furthermore, g is continuous on n x R+, continuously differentiable in s, 
s $$ (z, s) is continuously differentiable in s and g satisfies 

i 

h;+ supg (:r;, cs) s-l = 0, 
.ZEE 

(7.5) 
inf { 2 (2, s)/ z E 2, 

1 
s E [ 6, ; 11 > 0 
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for all 6 E (0, I), 

(7.6) 30 E]O, 1[, QXE2 

(7.7) 
{ 

39< &, g (g(:& s)s) g3(sq+l). 
Q(x, s) E n x (C, 03) 

for some C 2 0, 

(7.8) 1 g converges, as 121 4 00, to b” s+P uriiforrrdy on [0, R]; 
for all R < co 

for some P > 0. 
Next, we denote by G (x? s) = s: g (2, CT) dcr and we assume 

(7.9) 

I 

3 q > p: q > 2, 3 co > 0, V R < 00, 3 CYR (z), ,l?n (x) > 
b” 

- sp+l - G (z, s) 2 QR s2 + p, 5” 
p + 1 

on 12 X [(I, R] 

li;.up ,BR exp (6 (am)l12 \zI) Izj* 5 co, 

aR exp (6 (a”)“2 1x1) Izlq E L1, for some 6 > 0 

(7.10) 1 (a(x) - am)+ exp (6 (ao3)1/2 1x1) )21+ E L1, 
for some 6 > 0 

(7.11) 
XT (aij (3~) - ag) exp (6 (am)1/2 1x1) 121+ E L1, 

for some 6 > 0 

where At denotes the positive part of the maximal eigenvalue of the 
matrix considered. Observe in particular that all conditions hold if 
g(z, s) = b(z)9 and 

Of course, (1.3) is now replaced by 

(7.12) 

n 
in W’“, -c 

i,j=l 

a$++amw=b”-WY 2, Z) 
w > 0 in R”, w E H1 (W) 
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but up to a rotation, a change of scales and a multiplication by a positive 
scalar, w is still the solution of (1.3). 

Inspecting closely the proof of Theorem I. 1, one sees that the following 
result -whose detailed proof we leave to the reader- holds. 

THEOREM VIII. - We assume (7.2)-(7.1 1) and that (1.3) admits a unique 
radial function. Then, if co is small enough, there exists a solution of (7.1). 

Remark. - If in (7.9) we may take co = 0 in (7.9) then we may replace 
in (7.9) q 2 p, q > 2 by q > 2. 

It is also quite clear that the method presented in the preceding sections 
can be adapted to treat other situations such as, for instance, other non- 
linearities at infinity (replace b” ,sP by another nonlinearity y” (s) with 
appropriate convexity properties) or other unbounded domains such as 
strip-like domains: for instance, take R = (Q x R”“)\a where cl, is a 
bounded, smooth open set in R”, 0 is a bounded, smooth open set in 
R’L-t7n (in fact we may even consider domains which “approach at infinity” 
domains of the form & x FF). Then, the analysis given in the preceding 
sections remains valid essentially replacing S*‘-1 by S”-l provided rr~ 2 2. 
We will not give here more details about such variants and extensions. 

Next, we observe that in general the solution built in Theorem I.1 is not 
equivalent to a minimum of J]c. Indeed, in the case for instance when 
b E b” , <1[~ does not have a minimum if 52 # R” (see for example [21]). 

We would like now to explain how the proof of Theorem I.1 may be 
simplified if we relax ( 1.5) and we replace ( 1.5) by (1.6). Indeed, we claim 
that if (1.6) holds then part (iii) of Proposition V. 1 holds with rn = 2 i.e. 
(7.13) sup J (fz (A> [El) < 2 s, for X large enough 

EEB~ (S-l) 

provided we choose conveniently cp (the cut-off function). Once this claim 
is proven, the existence follows from an easy adaptation of J. M. Coron’s 
argument [15] (see also V. Benci and G. Cerami [6]). Indeed, exactly as in 
the preceding section, we have (this is essentially (6.15)) 

+ (p + 1) 2 t: tj CO eXp (-XX:‘* Aij) (Aa,)-+ 

i#j 

-o(exp(-2X~‘*X)X-+) 
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while (6.20) still holds of course. The proof of (7.13) is then straightforward 
by observing first that Al2 = A,, = /zi - :cq( 5 2 and that replacing cp by 
cp (+) (n > 1) we can make h,z JAcpJ dz as small as possible. 

We may now conclude this section with another existence result 
concerning another model equation namely (1.7). 

THEOREM VII.2. - Zfwe assume (1 .S), then there exists a solution of (1.7). 
We will not give the proof of this result which is very much similar to 

the proof of Theorem I. 1. Let us only mention that the problem at infinity 
becomes in this case 

(7.15) 
-Aw = b” (w - X0)+” in R’“; w E L* JR”), 

VW E L2 (R”), w > 0 in R’“. 

By [19] we know that any solution of (7.15) is radial up to a translation 
and then the uniqueness of a radial solution of (7.15) may be deduced 
from [27]. Furthermore, we have 

(7.17) (-w’ (7.)) T7’-1 --f (7L - 2) C,) as 7’ = I:r:j + cc 

(7.18) for )X > 1, for SOlllC c > 0. 

Finally, up to tedious verifications, the existence follows from the main 
energy balance we sketch now. We consider 

(7.19) 

for all II E Ls (<I), V 7) E L2 (a), ~1 = 0 on a$2 and we denote by 

s = I” (w) = 
I 

I 
. 58” 

; (VW12 - 5 (w - XO)+P+l dn:. 

Then, we claim that for m large the following inequality holds 

(7.20) 1) 
<rn,S. 

, . . . . 2,,) E (S7L--l)T’L/(T,, 
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for X large. Indeed, we obtain by computations similar to those made in 
section VI. 

+ m c, X4’4 + () (/\-b--2)) 

where C2 depends only on (1 .S) and b”, X0. ~1~ n and C, is independent 
of 21 > . . . . LI: ,,,) t1, . . . . t,,,, A 2 1 and cp. Next, we observe that (w, - X0)+ 
has compact support, hence we deduce (from section II) 

- I,,J-(“-2) c ,fj lx, _ ‘,,,T7-2 + cl (x+-“)) 
And we conclude easily since for all (~1.r i . . . . :I;,,~) E (S71-1)7ff/~nL we have 

and we conclude (7.20) taking m large. 

VIII. A RELATED EXISTENCE RESULT 

We now prove Theorem 1.2 considering the following minimization 
problem 

u f 0: u(x) = u, (g . cc) in 62, Vg E G 
> 

Then, by the results of 1261, existence will follow immediately if we show 
p--l IG < Npfl I”. 

(8.2) 
IVwl” + A(]W2dX b” w~~+l & 

>” 
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where w is any ground-state (radial) solution of (1.3) that is minimizing 

(8.3) Min 

In order to show (8.2), we only have to consider the case when N < cc and 
we choose 111 = Re, N(t) = N such that (1.9) holds for some constant to 
be determined later on. Then, we denote by {[I, . . . . EN} = {y . t/g E G} 
and we consider 

(8.4) 

where cp E 6’” (W) is some radial cut-off function to be determined 
satisfying (2.12). Observe that since w is radial, U,A given by (8.4) is 
invariant by G. Hence, showing (8.2) is equivalent to showing (6.7) with 
ii = & for 1 5 % 5 N, rn = N. Then, it is easy to adapt the proof of 
(6.7) given in section VI and to show that (8.2) holds if co is small enough. 
One only needs to observe that 

where E (a) + 0 as CT + 0. Here, we used (1.9) and the results of 
section II. W 
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Remark. - In fact, if we inspect closely the above argument and the 
bounds obtained in section VI, we see that (1.9) may be extended as 
follows: there exist X0 (depending on b through sup !I), 7; = ? (y. iv) such 
that if b satisfies for some X 2 &, ccl < C the following condition 

(8.5) 

then the conclusion of Theorem I.2 still holds. 

APPENDIX 

On Palais-Smale sequences 

We prove here Proposition 11.1; in fact, the arguments which follow 
are taken from [24] and a more general proof than the one we present 
here can also be directly deduced using the full stregnth of concentration- 
compactness lemma as in [24], [22]. We thus consider a sequence (uk)k 
bounded in H,j (0) satisfying 

(A.11 --a’& + ,!o’Ul, - b(z) [‘U#--l uk = Ek 2 0 in H-l ((1). 

Following [22], [24], we introduce for an arbitrary sequence (wk)k bounded 
in L2 (R”) the concentration function of l?11k12 

(A.21 dt)k (t) = sup 
YEW’ s 

I?& I2 dz, forall t > 0. 
Y+& 

We first recall a few preliminary results whose proofs we postpone. 

LEMMA A.1. - Let (?&)k be bounded in HZ (W) and assume that for 
some to > 0 

(A.31 Qk (to) 7 0. 

Then, wk ; 0 in Lp (RrL) for all 2 < q < 2. If in addition ‘1Uk satisfies 

(A.l), then wk 7 0 in H1 (R”). 

LEMMA A.2. - Let ((Pk)k converge weakly to p in H1 (R”) then we have 

(A.41 b Ipkl”-l qk - b I$$-’ ‘p 7 0 in H-l 
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LEMMA A.3. - For each Co > 0, there exists 6 > 0 such that if 
v E H1 (R”) solves 

(A.3 -.-AU + X0 v = b” IvIp-’ v in R”, u E H1 (w”) 

We may now prove Proposition II. 1: to be precise, several subsequences 
should be extracted in the arguments below but we will always denote 
by the same sequence all the extracted subsequences... First of all, with 
these conventions, we may assume that uk converges weakly to some 
‘u. E H,j (0). It is a standard exercise to check that u solves 

(A.@ -Au + X0 u = b IuJP-l u in 0, u E H;(n). 

Because of Lemma A.2, we see that we may always assume that Uk 
converges weakly to 0 replacing if necessary (uk)k by (Uk - u)k. 

Next, in view of Lemma A.l, either uk T 0 in H1 and the proof is over 
or these exists a > 0 such that we have (up to a subsequence...) 

(A.71 Qk (1) > c): > 0 

and thus there exists (&)k in R” such that 

64.8) 
J’ 

Iuk12 dz 2 a > 0. 
YL+Bl 

Therefore, by Rellich-Kondrekov theorem, uk (yk + ) = 6,k converges 
weakly in H1 (IV) to some G $ 0. Since ‘ilk ; 0 in H1, we deduce 

But then from Lemma A.2 we deduce that 7/k = tik - 6, satisfies 

(A.lO) --A’& + &I zik - b” lvklp-’ Vk 7 0 in H-l (R”) 

while U solves 

(A.1 1) -AG + X0 U = b” jClJ’-’ iL in Iw”; ti E H1 (IV). 
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Furthermore, we have 

To conclude, we just iterate the above argument and this iteration 
pocedure has to stop in a finite number of steps since, if ‘iL1. . . . . ti,, denote 
the limit solutions of (A.1 1) obtained through this procedure, we have 

Thus, rr1 cannot go to x in view of Lemma A.2. 
Proof of Lemma A. 1. - We cover IF!” by balls of radius to centered at 

integer coordinates points. Hence, we have (denoting by Q such a generic 
ball) for any 2 < (1 < 1’ < 2 

by Hddcr’s inequalities 

where (Y = ‘-‘I /I = s, and then by Sobolev’s inequalities we deduce .r-‘J 3 

if $ 2 1, where C denotes various constants independent of k. But, since 
9 + z > 1 as r’ --f ‘I, we may now conclude easily. n 

Proof of Lemma A.2. - We denote by $k = (pk: - cp and we observe that 
*& + 0 weakly in H’, a.e. and strongly in Lyor for all (I < 2. Hence, 

b lcp + ‘J’#--l (p + 7/iik) - b I’pIp-l cp 7 0 a,.~., in LIF. 
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It is then easy to conclude by observing that for all E > 0, there exists 
C, > 0 such that 

Indeed, this immediately yields that b Ip+&l~-~ ((P+,&.) -b [‘pi”-l cp 7 0 
J&L 

in L ~2 and thus in H-l (IwTL) by Sobolev embeddings. n 
Proof of Lemma A.3. - Multiplying (AS) by II and integrating by parts, 

we find 

5 CS” llr$zp with y = 
2 r1 

-P 71 - 2 

by Hiilder and Sobolev inequalities, where C denotes various nonnegative 
constants independent of Co, 6 and where Q = (s - (p+ 1)) (5 - 2)-l, 
P = (P - 1) (z - 2)-l (at least if n 2 3, when r~ < 2 the argument is 
easily adapted...). Now, if p > 1 + : then y > 2 and we conclude easily if 
6 is small enough. On the other hand if p < 1 + i, we deduce 

llllllfp 2 cs2 for SOIIlF: CL > 0 (u = 0 (2 - 7)-l). 

While the first inequality also implies 

and we conclude easily. 
Remark. - The proofs of Lemma A.2 and A.3 seem to be highly dependent 

on the power type behaviour of the nonlinearity but it is not so. Indeed, 
appropriate modifications show that the results are still valid for large 
classes of non-linearities: only, the behaviours of the nonlinearity at 0 and 
at cc matter. 

REFERENCES 

[I] A. BAHRI, Pseudo-Orbits of contact forms, Pitman Research Notes in Mathematics, 
Longman London, Vol. 173. 

121 A. BAHRI, Critical points at infinity in some variational problems, Pitman Research Notes 
in mathematics, Longman, London, Vol. 182. 

131 A. BAHRI, Topological results on a certain class of functionals and applications, .I. Funcr. 
And., Vol. 41, 1981, pp. 397-427. 



412 A. BAHRI AND P.-L. LIONS 

[4] A. BAHRI and H. BERESTYCKI, A perturbation method in critical point theory and 
applications, Trans. Amer. Math. Sot., Vol. 297, 1987, pp. I-32. 

[5] A. BAHRI and J. M. CORON, On a non-linear ellepttic equation involving the critical 
Sobolev exponent: the effect of the topology of the domain, Comm. Purr and AppI. 
Math., Vol. 41, 1988, pp. 253-294. 

[6] V. BENCI and G. CERAMI, Positive solutions of semilinear elliptic problems in exterior 
domains. Preprint. 

[7] H. BERESTYCKI and P.-L. LIONS, Nonlinear scalar fields equations, Arch. Rut. Mech. Anul., 
Vol. I 82, 1983, pp. 313-346; Vol. II 82, 1983, pp. 347-376. 

[8] M. BERGER, On the existence and structure of stationary states for a nonlinear Klein-Gordon 
equation, J. Funct. Anal., Vol. 9, 1972, pp. 249-261. 

[9] G. BREDON, Introduction to Compact transformation Groups, New York-Academic Press, 
1972. 

[IO] H. BREZIS and J. M. CORON, convergence of solutions of H-systems or how to blow 
bubbles, Arch. Rational Mrch. Anal., Vol. 89, 1985, pp. 21-56. 

11 I ] C. V. COFFMAN, Uniqueness of the groundstate solution for Au - TL + TL.’ = 0 and a 
variational characterization of other solutions, Arch. Rut. Mrch. Anal.. Vol. 46, 1982, 
pp. 81-95. 

[ 121 C. V. COFFMAN and M. MARCUS, personal communication. 
[ 131 C. V. COFFMAN and M. MARCUS, Existence theorems for superlinear elliptic Dirichlet 

problems in exterior domains, Nonlinear Analysis and Its Applications, Part 2, Vol. 45: 
AMS, Providence, 1983. 

[14] S. COLEMAN, V. GLASER and A. MAWHIN, Action minima among solutions to a class of 
Euclidian scalar field equations, Cumm. Math. Phys., Vol. 58, 1978, pp. 21 l-221 

[ 151 J. M. CORON, Topologie et cas limite des injections de Sobolev, C. R. Acad. Sci. Paris. 
I, Vol. 299, 1984, pp. 209-212. 

[ 161 W. Y. DING and W. M. NI, On the existence of positive entire solutions of a semilinear 
elliptic equation, Arch. Rat. Mech Anal. 

[17] I. EKELAND, Nonconvex minimization problems, Bull. Amer. Math. Sot., Vol. I, 1979, 
pp. 443-479. 

[ 181 M. J. ESTEBAN and P.-L. LIONS, Existence and nonexistence results for semilinear elliptic 
problems in unbounded domains, Proc. Roy. Sot. Edim. Vol. 93, 1982, pp. 1-14; 
C. R. Acad. Sci. Paris, Vol. 290, 1980, pp. 1083-1085. 

[ 191 M. J. ESTEBAN and P.-L. LIONS, ITconvergence and the concentration-compactness method 
for some variational problems with lack of compactness. Preprint. 

[20] B. GIDAS, W. M. NI and L. NIRENBERG, Symmetry and related properties via the maximum 
principle, Comm. Math. Phys., Vol. 68, 1979, pp. 209-243. 

[21] B. GIDAS, W. M. NI and L. NIRENBERG, Symmetry of positive solutions of nonlinear elliptic 
equations in W” , Advanr~.s in Math. Supplementary Studies, Vol. 7, 198 1, pp. 369-402. 

1221 M. K. KWONG, Uniqueness positive solutions of L!.U - v, + up = 0 in W” , Arch. Rat. Mech. 
Anal., Vol. 105, 1985, pp. 243-266. 

1231 P.-L. LIONS, The concentration-compactness principle in the Calculus of Variations, The 
locally compact case, Ann. Inst. H. Poincare’, Vol. I 1, 1984, pp. 109-145; Vol. II 1, 
1984, pp. 223-283, sre also, C. R. Acad. Sci. Paris 294, Vol. 1, pp. 223-283; 1982, 

pp. 261-264; Contributions to nonlinear partial differential equations, Pitman, London 
1983. 

[ 241 P.-L. LIONS, On positive solutions of semilinear elliptic equations in unbounded domains. 
Preprint. 

[25] P.-L. LIONS, Solutions of Hartree-Fock equations for Coulomb systems, Comm. Math. PhyJ. 
[26] P.-L. LIONS, SymCtrie et compacitC dans les espaces de Sobolev, 1. Funct. Anal., Vol. 49, 

1982, pp. 315-334. 
[ 271 P.-L. LIONS, Minimization problems in L1, J. Funct. Anal.. Vol. 49, 1982, pp. 3 15-334. 
[28] P.-L. LIONS, The concentration-compactness principle in the Calculus of Variations. The 

limit case, Riv. Mat. Itwreamericana, Vol. 11, 1985, pp. 145-201; Vol. II 1, 1985, 



EXISTENCE OF A POSITIVE SOLUTION 413 

pp. 45- 121; see also Seminaire, Goulaouic-Meyer-Schwartz, 1982-1983, exposC XIV. 
&ole Polytechnique, Palaiseau and C. A. Acad. Sci. Paris; 296, 1983, pp. 645-648. 

[29] K. MAC LEOD and J. SERRIN, Uniqueness of solutions of semilinear Poisson equations. 
Proc. Nat. Acad. Sci. USA, Vol. 78, 1981, pp. 6592-6585. 

[30] MILNOR, Morse theory, Annals of Mathematical Studies, Princeton .!/niv. Press, Study 
No. 52. 

[31] Z. NEHARI, On a nonlinear differential equation arising in nuclear physics, Proc. Roy. frish 
Acad., Vol. 62, 1963, pp. 117-135. 

[32] P. H. RABINOWITZ, Variational methods for nonlinear eigenvalue problems. In Eigenvalues 
of Nonlinear Problems, Edis. Cremonese, Rome, 1972. 

1331 G. H. RYDER, Boundary value problems for a class of nonlinear differential equations, 
Proc. .I. Math., Vol. 22, 1967, pp. 477-503. 

[34] P. SAKS and K. UHLENBECK, The existence of minimal immersions of 2-sphere, Ann. Math.. 
Vol. 113, 1981, pp. l-24. 

(351 W. STRAUSS, Existence of solitary vaves in higher dimensions, Comm. Math. Phys.. 
Vol. 55, 1977, pp. 149-162. 

[36] M. STRUWE, A global compactness result for elliptic boundary value problems involving 
limiting nonlinearities, Math. Z., Vol. 187, 1984, pp. 5 1 l-517. 

[37] C. H. TAUBES, The existence of a non-minimal solution to the SU(2) Yang-Mills-Higgs 
equations on R3 I, Comm. Math. Physics, Vol. 86, 1982, pp. 257-298. 

[38] C. H. TALJBES, The existence of a non-minimal solution to the SU(2) Yang-Mills-Higgs 
equations on iw” II, Comm. Math. Physics, Vol. 86, 1982, pp. 299-320. 

(Manuscript received September 5, 1995.) 

Vol. 14. n” 3-1997 


