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ABSTRACT. - Global strong solutions of the Navier-Stokes equations in 4 
and 5 dimensional domains with non-compact boundaries are constructed. 
We prove also their asymptotic behaviour as t -+ 00. 0 Elsevier, Paris 

INTRODUCTION 

The purpose of this paper is to construct global strong solutions with 
small initial data of the Navier-Stokes equations in 4 and 5 dimensional 
unbounded domains. We are mainly interested in unbounded domains with 
non-compact boundaries. Let R be a domain in R” (n = 4,5) with uniformly 
(?-boundary 80. Our result covers the case when dR is non-compact. The 
motion of the incompressible fluid occupied in R is governed by the 
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following Navier-Stokes equations: 

I du 
--~u+u.Vu+Vp=O inxEQ,t>OT a 

(N-9 div u = 0 in x E 0, t > 0; 
u=o on dR, t > 0, 
UltzO = a, 

where u = u(x, t) = (ul(x, t), ... ;u”(x, t)) and p = p(x, t) denote 
the unknown velocity vector and the pressure of the fluid at point 
(x,t) E R x (O>co), while a = u(x) = (ul(x); ... , al&(x)) is a given 
initial velocity vector field. For simplicity, we assume that the external 
force is equal to zero. 

Since the pioneer work of Leray [20], energy decay of weak solutions 
to (N-S) in unbounded domains has been discussed by many authors and 
it is now clarified that the asymptotic behavior of strong solutions u(t) 
as t -+ 30 plays an important role in such a decay problem. On account 
of lack compactness, the problem of existence of global strong solutions 
in unbounded domains seems to be more difficult than that in bounded 
domains; we need to pay a more exquisite attention to the analysis near 
/\ = 0 of the resolvent (A + X)-l for the Stokes operator A. In recent years, 
a number of skillful technique such as method of compact perturbation from 
the whole space R” were developed and applied to the exterior problem. 
LP - LQ estimates for the Stokes semigroup {e-tA},>” in exterior domains 
are established by Giga-Sohr [l 11, Iwashita [14] and E&chers-Miyakawa [2] 
and the decay properties of weak and strong solutions are investigated to 
a considerable extent ([3], [17]). In unbounded domains with non-compact 
boundaries, however, there is no L”-theory for the Stokes operator and 
the only L2-theory is available. Based on the linear analysis of the Stokes 
operator, Kato [ 161 and Giga-Miyakawa [lo] obtained a priori LJ’-bounds 
for p > 71 of solutions to (N-S), which yields global existence of strong 
solutions. On the other hand, L2-method enables us only to get the energy 
inequality which bounds IlVu(t)l/ f 2 or all t > O(see (E.I.) below). By the 
Sobolev embedding H1 (0) c L2”/(‘“-2)( Q), we can dominate the L”-norm 
for p > n of solutions if the spatial dimension n 2 3. Galdi-Maremonti [8] 
first established apriori and decay estimates in H1 in case n = 3, and then 
Maremonti [21] improved the decay rates of weak solutions. After their 
results, making use of the identity l\Vullz = IJA1/2~l12, Kozono-Ogawa 
[ 181, [19] derived a sharp estimate of the nonlinear term u . Vu in terms 
of the fractional power A” of the Stokes operator and proved the existence 
of global strong solutions to (N-S) in general unbounded domains in case 
71, = 2 and n = 3 for large and small data, respectively. 
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To treat a higher dimension, one needs to get more a priori estimates than 
those in H1 (n). In the present paper, we shall establish H2-a priori bounds 
which yield P-estimates for p > n of solutions even if the dimension 
n = 4 and ‘II = 5. To this end, we shall make use of the estimate given 
by Heywood [12] 

11~2412 I c(IIwl2 + IL44I2). 

Recently, Borchers-Miyakawa [3] showed the existence of weak solutions u 
of (N-S) with limt,, Ilu(t = 0 for n < 4. This restriction on n stems 
from validity of the energy inequality of the strong form 

(E.I.) 

for all s and t such that 0 5 s 5 t. The importance of the above inequality 
(E.I.) in unbounded domains was pointed out by Masuda [23] and Kato [ 161. 
Leray [20] called a weak solution u satisfying (E.I.) a turbulent solution, the 
existence of which was shown for n < 4 up to the present(see Kato [ 161 and 
Miyakawa-Sohr [25]). Our global strong solution satisfies (E.I.) and hence 
we can construct the solution decaying in L2 even for n = 5. Moreover, 
we shall show a sharp decay of the strong solution as t + cx), which 
seems to be optimal. The decay rates will be furnished in terms of the 
fractional powers A” for 0 < UI < 1. Since we need the additional term 
I]VUI]~ on the right hand side of the above Heywood’s estimate, the decay 
I(A’Y~~(t) II2 for l/2 < a < 1 cannot be directly obtained by investigating 
the linearized equation of (N-S). To get around this difficulty, we shall 
first establish the decay of 6$(t) as t -+ 00. Such a method was first 
introduced by Masuda [22]. To get sharper decay , however, we need more 
calculations than [22]. 

In Section 1 we shall state our main theorem. Section 2 is devoted to the 
estimate of the nonlinear term u.Vu by (A+E)-l which holds independently 
of E > 0. To this end, we shall first introduce the Hilbert scale via fractional 
powers A” and define a family of certain homogeneous Sobolev spaces 
by complex interpolation. This procedure is done by Miyakawa [24] in 3- 
dimensional exterior domains. Then we shall apply Heywood’s estimate to 
obtain bounds of higher derivatives. In Section 3, an explicit representation 
of the time interval where the strong solutions exist will be given in terms 
of the Hilbert scale of the initial data and we shall show the a priori 
estimate of solutions in such a scale. As a result the global strong solution 
will be constructed provided the initial data a is sufficiently small. Finally 
in Section 4, we shall show the decay property of the strong solution. 

Vol. 16. no 5.1999 
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1. RESULT 

Throughout this paper, we impose the following assumption on the 
domain R. 

ASSUMPTION. - R (C R”, R = 4,5) is of class uniformly C” (for 
the de$nition, see Tanabe (28, Definition 1.2.21) and regular, i.e., the 
boundary dR consists offinitely many, disjoint simple C” sur$aces. 

We may treat the domain R with a non-compact boundary dR. 
Before stating our results, we introduce some notations and function 

spaces. Let C’cU denote the set of all C” vector functions d, = (# : . . . ) @ ) 
with compact support in R, such that div 4 = 0. Lz is the closure of C,Tc 
with respect to the L2-norm 11 /12; (., .) denotes the L2-inner product. 
II &, is the L”-norm on 0, 1 2 p 5 30. For simplicity, we abbreviate 
11 . 112 = I/ . 11. Hi,, denotes the closure of C,qb with respect to the norm 

lld4lH~ = IId + Il~4l~ 

where 04 = (i3@/dxj; %,j = 1,. . . , n). When X is a Banach space, we 
denote by (I . II,y th e norm on X. Then Cm((tI,t2); X) and LP((tl, t2); X) 
are the usual Banach spaces, where m = 0; 1,2;. . and tl and t2 are real 
numbers such that tl < t2 5 co. Further, BC((tl, t2); X) is the set of all 
functions u in C”((tl, t2); X) such that ~up~,<~<~, Ilu(t) < 0~. 

We denote by P the orthogonal projection from L*( 0) onto Lz. 
Then the Stokes operator A is defined by A = -PA with domain 
D(A) = {u E H2(s2); I u 80 = 0} f? Lz. More precisely; A coincides 
with the non-negative self-adjoint operator defined by the quadratic form 
a(~, TI) = (VU, VU), U;Q E Hi,,, that is, Au = f (u E D(A),f E Lz) 
is equivalent to the relation a(u, 9~) = (fr U) for all v E Ht,,. Therefore 
we have D(A112) = Hi,, and 

(1.1) IIA1’“4 = ll~4, u E D(A1’2). 

Let 0 < cy 5 1. D(A”) IS a Banach space equipped with the graph norm 

II~D~A~~ = II41 + IlAa41. 

Then it follows from Fujita-Morimoto [6] that 

(1.2) D(A”) c H2”.’ (continuous embedding), 

where H2aJ denotes the Sobolev space over 0. 

Antmles de I’lmtitur Hem-i PoincarP Annlyse non Ii&ire 
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Applying the orthogonal projection P to both sides of (N-S), we get the 
following differential equation in Lz: 

(E) 
~+Au+P(u~ve) =O, o<t<m, 
u f 0) = a. 

Our result on global strong solutions now reads: 

THEOREM. - Let n = 4 and 5. There is a constant p = p(n) > 0 such that 
ifa E D(AS-f) satisjes I~uI],~,~-~, 5 p, then we have a unique strong 
solution u of (E) with the following properties: 

(1.3) u E BC([O, co); D(At-4)) n C((0, cc); D(A)); 

(1.4) f E C((0, co); D(A+)); 

the energy identity 

(1.5) Ib@Il” + 2 ot llW~)l12~~ = 11412 .I’ 

holds for all t > 0. Moreover, such a solution u decays like 

(1.6) IIA”u(t)II = o(t-“) for 0 5 cx < 1, 

(1.7) 
duct) 

II dt 
---II = o(t-1) 

as t -+ 30. 

Remark. - In case when R = R”, the half space R;, a bounded domain 
or an exterior domain with compact boundaries, the global strong solution 
of(E) was obtained provided a is sufficiently small in L’“(Q). See Kato [ 161, 
Ukai [29], Giga-Miyakawa [lo] and Iwashita [14]. It should be noted that, 
by (1.2) the space D(Aa-4) is continuously embedded into L”(R). In 
general unbounded domains R c R3 with non-compact boundaries dR, 
Kozono-Ogawa [19] obtained the same result as in the above theorem 
under the weaker assumption that IIAaall is small; [Iall itself need not be 
small. In our theorem, however, llall must be also small, which stems from 
the fact that llal IP for p > n does not seem to be dominated only by the 
homogeneous norm IIA”ull with CL = S($ - $)(see [19, Lemma 2.11). 

Vol. 16, no 5.1999. 
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2. PRELIMINARIES 

In this section, we shall estimate the nonlinear term ‘II . Vu in terms of 
the fractional power A”. In what follows we shall denote by C various 
constants. In particular, C = C(*. . , *) denotes constants depending only 
on the quantities appearing in the parenthesis. Let us first introduce the 
following estimate given by Heywood [12, Lemma 61: 

LEMMA 2.1 (Heywood). - Under our assumption on the domain 0, there 
is a constant C = C(n) such that 

(2.1) /10*?~11 < C(11Vull + IIAuII) for all u E D(A), 

It should be noted that in gt&&al’;;;k cannot avoid to add IlVu]] on the right 
hand side of (2.l)(see Borchers;Miyakawa [4] and Kozono-Ogawa [17]). 
We shall next define the space D(A”) ‘for 0 < <Y < 1 as follows. 

For 0 5 N 5 l/2 

(2.2) 6(A”) = the completion of D(A) with respect to the norm IIA”uII. 

(2.3) =the completion of D(A) with respect to the norm IIA1/2~~Il+JIA”~II 

Note that @A”) is larger than D(A”). Then it follows from Miyakawa 
[24, Theorems 2.5-2.51 that 

LEMMA 2.2 (Miyakawa). 

(2.4) [I& @A+)], = @AS), 

(2.5) @(A$), E(A)Icy = @A++‘) 

for 0 < Q 5 1, where [X, Ylo: d enotes the space of complex interpolation 
between X and Y. 
By Lemmata 2.1 and 2.2, we can establish the following estimate of the 
nonlinear term 7~ . Vu: 
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LEMMA 2.3. - Let n = 4 and n = 5. For n/2 - 2 5 6’ < 1, there is a 
constant C = C(n,t’) such that 

(2.6) llP(u. Vv)ll 5 C(IIA+uII + l~A~+~u~l)(llA~z~~~ + llA$-bll) 

(2.7) [[(A + E)-+(u. VU)[[ 5 CIJA+ull()lAbl) + [IA”-bll) 

for all u E D(A~+~),u E D(AS-s) and all E > 0. 

Proof. - Let us first show that U. Vv E L2 provided u E D(Aa+:) and 
‘II E D(Aa-i). Indeed, by (1.2) and the Sobolev inequality we have the 
following continuous embeddings: 

o(Ai+g) cH’+‘,~ c LP 1+0 for ! = i _ ~ 
P n ’ 

D(A$-;) cH$-@>z c Hl>Q for ! = 1+B. 
9 n 

Since l/p + l/q = l/2, the Holder inequality yields u . VU E L2 and 
hence P(u . VW) E Lz is well-defined. We shall next show the continuous 
embedding 

(2.8) @At+?) c ,y’, 

By the Sobolev inequality, (1.1) and Lemma 2.1, there holds 

(2.9) 

(2.10) 

(2.11) 

Ilull 2T2 < CllVull = CIIA~uII for 71. = 4,5 

IIG3hKJ 5 fw77Jll4 5 C(IIV~II + Ilw~)ll) 

< C(IIA~uII + llAu/l) for n = 4 

Il7~1110 I cIIwy 5 C(lP~,ll + IIVP~N) 

< C(llA~ull + llAu/l) for 71. = 5 

for all u E D(A) with C = C(n), where BMO denotes the space of 
bounded mean oscillation over a. It should be noted that we do not need to 
add lb114 and II IIT u 1: on the right hand side of the above estimates (2.9) and 
(2.10), respectively, since u = 0 on dR. This implies that the injection i 
is a continuous operator as 

i : @Ai) L, L?z 

i : @A) L) “$f’ 
for n = 4 

7 for 7~ = 5. 

Vol. 16, no 5.1999 
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Since [P, BMO], = L”‘(1-“) for 0 5 Q < l(see e.g., Janson- 
Jones [15]), Lemma 2.2 and the interpolation theory yield the continuous 
embedding (2.8). Moreover, (2.9), (2.10) and (2.11) show that the gradient V 
defines a bounded operator as 

V : D(A$ + L2, 
7 

V :D(A)+Lf+ 

from which and (2.5) we obtain 

(2.12) V:~(A~+~)--+L”, O<a<l for:=:-:. 

Now let us take p and q in such a way that 

(2.13) 
1 1 1+0 I 1+0 -=--- -=- 

* p 2 7-L y 71 

Then by (2.8) we have 

(2.14) ]]I& 5 C(ljA~ull + I(Ai+cull) for all u E D(Ai+a). 

Taking 0: = n/2 - 1 - H, we have by the assumption on 0 and (2.13) that 
0 < o 5 1 and l/q = l/2 - a/n. Hence (2.12) yields 

(2.15) ]]VU]]~ < C(llA&/lj + llA++%# < C(IIAhII + IIA~-%ijl) 

for all ‘u E D(Af-t). Since l/y + l/q = l/2, we have by (2.14), (2.15) 
and the Holder inequality that 

llP(~ . V~)lI I II4lPllw~ 
5 C(llAhll + llA~+~u~l)(llAh~~ + /lA:-hll) 

for all u E D(A++$) and all ‘u E D(AT-t). This implies (2.6). 
We shall next prove (2.7). By (2.4), (2.9) and the interpolation inequality, 

there holds a continuous inclusion 

(2.16) @A$) c L” for 1 = 1 - H. 
Y 2 ‘II 

Hence it follows from (2.9), (2.15) and (2.16) that 

(((A + E)-%‘(u . VU),C$)] = ](I+. VT/I), (A + @+)I 

5 11~. Wl,~ ll(A + +%II, 
< Cll~ll~IIV~II+IIA~(-il + &)-%I1 
< C(lA+ull(llAf~~ll + llA~-b~~)~~~~~ 

Atmtr1e.s dr I’lmtitut Hcnri PoincarB - Analyse non IinCaire 
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for all 4 E Ccc and all E > 0 with C = C(n, 6). Now (2.7) follows from 
the duality argument. This completes the proof of Lemma 2.3. n 

By Lemma 2.3 we can define the weak limit (A + E)-$P(u . VU) in 
Lz as E j, +O. 

LEMMA2.4.-Letn=4,5andn/2-2<6<l. 
(I) For u, u E D(Ai+f) n D(A$-B), there exists a weak limit 

w-!;‘=b(A + E)-~P(u. VU) in Lz. 

(2) Let us denote by &(u, v) the weak limit: 

&&L,v) E w-jfYIO(A + ,)-:I=(, . Vv). 

Then there holds 

(2.17) ll&(u,v)II < C~~A~u~~(~IA&~~~ + llA~-%~ll) 

with C = C(n, 0) independent of u and v. 

Proof. - By (1.1) zero is not an eigenvalue of A. Hence the range R(A4) 
of At is dense in I,: and we have (A + E)-$ Ai 4 -+ c,f~ in Lz for all 
4 E D(Ab) as E 1 +O. Then for every U,V E D(Ai+$) n D(Aa-3) and 
every $ E D(A$), there holds 

((A + E)-%‘(u 1 VT+ A&$) = (P(, . VU), ((A + +A$$) 

(2.18) + (P(u. Vv), 41) as E J. +0 

Since R(Ag) is dense in L z, this convergence together with (2.7) yields a 
weak limit w-lim,i+a(A + E)-~P(u. Vv) in L:. Then the assertion (2) is 
an immediate consequence of (2.7) and the resonance theorem. n 

Let us now define an operator F~(u, v) in a rigorous way which 
is formally written as A- 3 P(u . Vv). We shall follow the procedure 
of Masuda [22]. Let 19 be as in the hypotheses of Lemma 2.4. Since 
D(A%+s) n D(A?-:) is dense in D(A?-i), we can define a bilinear 
operator FB(u, v) for U,V E D(Af-3) by 

F~(21, U) = s-lirn Fe(tij, vj) (strong limit in Lz), 
3-a 

where (2~~)~~~ and {u~}T=~ are sequences in D(Ai+s) n D(A$-4) such 
that uj -+ u,vj + v in D(A$-f). Then we have 

Vol. 16, no 5.1999. 
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LEMMA2.5.-Letn=4,sandn/2-2<6<1. 
(1) The estimate 

holds for all u,‘v E D(AF-i) with the same constant C = C(n,8) 
as in (2.17). 

(2) Zf U,IJ E D(Ai+f) n D(Aa-:), then we have Fe(u,,v) E D(A$) 
with A~FB(u, U) = P(u . Vu). 

Proof. - The assertion (1) can be obtained directly from (2.17) and 
the definition of Fe(u, u). Let us prove the assertion (2). For uu, u E 
D(Ai+t) n D(A:-$), we have FB(u, w) = Fe(u, ~1). Hence by (2.18), 

(F&v), A$) = (Fe(,u,,v), A$) 

= li$(A+e)-tP(~Vr;),As+j 

= (P(U Vv), 4) 

holds for all C#I E D(Ai ), which implies the desired assertion. n 

Remark 2.6. - Ifn/2 - 2 5 19 5 n/4 - l/2, then we have l/2 + O/2 2 
n/4 - 19/2 and the inclusion D(AY-5) c D(A*+$) holds. In such case, 
the above lemma states Fe(u,v) E D(Aa) with A!F~(u,u) = P(u.. Vu) 
for U,ZI E D(A$-$). 

3. LOCAL AND GLOBAL STRONG SOLUTIONS 

In this section, we shall give an explicit characterization of time interval 
(0, T) while the strong solution exists, and then establish a priori estimates 
to show T = cc provided the initial data is small. 

THEOREM 3.1. - (I) Let n = 4,5 and let n/4 - l/2 < y 5 (7~ + 2)/B. 
Then for every a E D(Ar), there exist 0 < T 5 1 and a unique solution 
u of (E) on (0, T) with 

(3.1) u @C([O, T); WY)) n NO, T); D(A)); 
(3.2) $ E C((O,T); D(A+)); 
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the energy identity 

(3.3) ll~w11* + 2 ot llW4112~~ = lkl12 s 
holds for all t E [0, T). Here T is estimated from below as 

-1 
(3.4) T > C(llall + IjA%ll) yP(+i) 

with C = C(n,r) independent of a. 
(2) For n, y as above (I) and any E > 0, there is a constant 

IL = p(n, y, E) > 0 such that if a E D(A:-4) satisfies 

(3.5) Ilull + llA~-*all 5 p. 

then we have a unique solution u of(E) on (0,l) with (3.1) replaced by 

(3.6) u E BC([O, 1); D(A$-3)) n C((O,l); D(A)) 

and (3.2), (3.3) for T = 1 such that 

(3.6’) sup Ilu(t + sup P-(:-+)/A%(t)ll < E 
o<t<1 o<t<1 

Proof. - (1) Since this theorem is concerned with the local existence of 
strong solutions, the proof can be done in the same away as Fujita-Kato [5] 
and Giga-Miyakawa [lo]. However, we give the outline of the proof for 
completeness. Let us transform the unknown function u(t) of (E) into w(t) 
by u(t) = etv(t), which yields 

(3.7) 

d’u - 
z + AU + etP(v. VW) = 0, t > 0, 

w(0) = a, 

where 2 = A + 1. By Duhamel’s principle we may solve the following 
integral equation 

(3.8) w(t) = eptAu - 
- J 

t e-(t-“);iesP(w~ Vw)(s)ds. 
0 

The solution v(t) of (3.8) is constructed by the successive approximation: 

(3.9) 
we(t) = e-'*u, 

2i,+l(t)=Vg(t)--Sde-(t-J)~eRr(v, .V~,)(s)ds, m=O,l:.... 

Vol. 16, no 5.1999 
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Let us recall the estimate given by Inoue-Wakimoto [13, Lemma 4.21 and 
Giga-Miyakawa[ 10, Lemma 2.21: 

for 0 = (n + 2)/4 - y with C = C(n, y). This estimate can be proved in a 
similar way as for Lemma 2.3. Since n/4 - l/2 < y < (n + 2)/s, we have 

(3.11) 
71, 1 --- 
3 2 

<H<l. 

Then for n/4 - l/2 5 Q < 1 and T > 0, there holds 

(3.12) m = 0, 1,. 

Indeed, for m = 0, we have 

(3.13) t”-(t-3)/lA”wo(qll = fd-f)llA”e-l‘ia(~ 

= t~~-(4-t)llA1”-(4-f)e-t~~,;14-4nlI 

for all t > 0 and n/4 - l/2 5 (Y < 1. K,,o(T) can be defined as 

Ka,o(~) 3 sup t”-(?-+)l~A”~-tA -a/j, 
o<t<rr 

Suppose that (3.12) is true for m. Then it follows from (3.10) that 

lI~“%r~+I(~)ll 

5 Ilii%o(t)II + .lt II~e-(f-s)‘~e,sp(w,~~ . v~u~n)(s)llds 

5 K,,o(T)tT-i-” + Ce 
I 

‘I(t - S)-~~~Alewm(S)~~~~A^7w,(S)~~d.S 
. 0 

5 Ka,O(T)t~-~-N + CeKB,,,,(T)K,,,,L(T) 
J 

‘(t T ~-“s~(f-~)~~~‘ds 

= {I&o(T) + CeB(1 - a,; - ~)KR,m(T)~~,~(T)~ta-i-” 

for all 0 < t 5 T 5 1. Hence (3.12) is true for rr~ + 1 if we take 
K a.m+l (T) as 

(3.14) Ka,m+l (T) E K,,o(T) + CeB(l- a,; - $)K~,m(T)K~rm(‘0 

A~mzlrs de I’hstitur Henri PoincurP Analyse non IinCaire 
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Defining K,(T) E max{Ke,,(T), Ky,m(5”)}, we have by (3.14) that 

(3.15) L,l(T) L Ko(T) + c*Kn(T)2! 

where C, = C, (n, O! y) is independent of T E (0: 11. Hence if 

(3.16) Ko(T) < & * 
then the sequence { Km(T)}~=o is bounded as 

- - (3.17) K,(T) 1 5 J1 4C*KO(T) 
2c, 

for all m = 0 > 1 >’ . . . 

It is easy to see as in the proof of Fujita-Kato [5] and Giga-Miyakawa [GM] 
that such a uniform bound yields a limit limlnico urn(t) = v(t) which is 
a unique solution of (3.7) with properties (3.1), (3.2) and (3.3). It remains 
therefore to show that we can take T > 0 so that (3.16) is fulfilled. Indeed, 
since a E D( A”f), there holds 

for all y 2 u: < 1 and all 0 < T < 1. Since y 5 (n + 2)/8, we have y < tl 
and hence (3.18) shows that the condition (3.16) can be achieved provided 

(3.19) T = (8C,I13all)-7--(,_li. 

This implies (3.4). 
(2) Let us take T = 1 in the above argument. By (3.13) we have 

(3.20) &(l) 5 llX~-&zl]. 

On the other hand, (3.17) shows that, according to the size 
of Ko(l), we can control ~upc<~<i ty-(~-3)]IAY~(t)]l(< esuPo<t<l 
t7(fP~)llA-v(t)ii) arbitrarily small. Since ~upc<~<i Ilu(t)II 5 [(a]], (3.20) 
guarantees the existence of such a constant p as (3.5). This completes the 
proof of Theorem 3.1. n 
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Based on (3.4), we can construct a global strong solution for small 
initial data. 

THEOREM 3.2. - Let rb = 4.5 and let y* = (rl + 2)/8. There is a constant 
S = 6(n) > 0 such that ifn E D(AY*) satisfies 

(3.21) II4 + llA”~ll 5 6, 

then the solution u in Theorem 3.1 is global, and we may set T = CC in 
(3.11, (3.2) and (3.3) with y = y*. 

Proof. - Let u be the solution on (0, T) in Theorem 3.1 (1). On 
account of concrete characterization of the time interval for existence 
of the local solution such as (3.4), it suffices to show the a priori bounds of 
Swo<t<T Il4~)II and SUPo<t<T l/AT-u(t)11 which hold independently of T. 
Then by the usual argument of continuation, we may set T = co. 

(3.3) yields that supoCtCT Il~(t)ll < Ilull and hence we have only to 
obtain an a priori estimate of s~p~<~.,~ llA’*u(t)ll. To this end, we shall 
make use of the following representation 

.t 
(3.23) u(t) = e -t(A+l)a + 

I 
e-(t-4(“+l)u(s)ds 

* 0 

- 

- uo(lj O<t<T. 

Since A is a non-negative self-adjoint operator in Lz, there holds 

(3.23) IIA cye-t(il+l)bl( < t-ae-tllbll, 0 5 a < 1 

for all b E Lz and all t > 0. Hence we have 

(3.24) sup IIA”u~(t)ll F IIA”all for 0 ‘: Q: 5 ye. 
o<t<tr 

By (3.3) and (3.23) there holds 

(3.25) IIA”~l(t)ll I 
I 
. ot IIA*e-(t-“)(“+l)ll(s)Ilds 

5 ot(i - s)-“e-(t-“)IIZL(s)JJds 
.I 

5 a;“,“, Ilu(s JDt(t - s)-“(e-(t--s)ds 

56 - Q)lbll> O~u<l 
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for all 0 < t < T. Moreover, it follows from (2.6) with % = n/4 - l/2 that 

(3.26) IlA%Wll 5 

i 

< - 

for 0 < t < T, 0 5 ~1 

.I iA ae-(t-s)(A+l)P(u Vu)(s)llds 
0 

.I 
ot(t - s)- “e-(t-“)llP(uf Vu)(s)llds 

C, o’(t - s)-“~-(~-“)(IIA~~(s)(~~ + ~~AY*~(~)~~2)d~ 
s 

GW - 4( sup IIA%~)ll” + o~pT IIAY*4W12) O<t<T 
< 1 with C, = C*(n) independent of T. 

Defining K(T) = max{supo<t<T llA~u(t>ll, SUP~<~<~ llA7*~(t)ll}, we 

have by (3.24), (3.25) and (3.26) that 

(3.27) K(T) I rl(lbll + IPY*41) + WXV)2, 
where v = I’(1 - y*)(> I’(1/2)). Now we take such S in (3.21) as 

1 
O<S<-. 

fQ2C* 

Then under the assumption (3.21) , we have by (3.27) that 

K(T) < ’ - d1 - 8~2C*(lbll +WWl) < 1. 
46, 4rlC* 

Since the right hand side of the above inequality is independent of T, we 
get the desired a priori estimate. This proves Theorem 3.2. W 

4. DECAY OF STRONG SOLUTION 

In this section, we shall first investigate the asymptotic behavior of 
the global solution u(t) given by Theorem 3.2, and then prove the main 
theorem by making use of smoothing effect for t > 0 of the solution with 
a E D(AS-3). 

THEOREM 4.1. - The global solution u in Theorem 3.2 has the following 
decay properties: 

(4.1) IlA”~(t)ll = o(t-“) for 0 5 u: 5 1, 

(4.2) 
duct) 

II dt 
-11 = o(e) 
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as t -+ cm. 
This theorem will be proved in the series of the subsequent lemmata; (4.1) 

and (4.2) will be obtained from Lemmata 4.9 and 4.8 below, respectively. 
We shall follow the method established by Masuda [22]. To get sharper 
rates of decay as t -+ cc, however, we need the continuous embedding as 
in the proof of Lemma 2.3 and make deeper investigation into h(t)/&. 

PROPOSITION 4.2 (Masuda). - Let 0 5 n < 1 and let g E L”(O, co; L;),fbr 
some p with (1 - a)-’ < p < 30. Then the function fa(t) defined by 

fa(t) z .I” A”e-(t-“)(A+l)g(s)d, 

0 

converges to zero as t + w in L$ 

For the proof, see Masuda [22, Lemma 211. 

LEMMA 4.3. - For the global solution u(t) given by Theorem 3.2 we have 

(4.3) IIA+u(t)ll + 0 us t + x. 

Proof. - By (3.1) for y = y*(- (n + 2)/8) and (3.3) with T = 60, 
there holds 

(4.4) A”u E BC([O, 30); Lt) for 0 5 c): 2 y*; 

(4.5) A~u E L”(0, co; L:) for 2 < p < CQ. 

Let us recall the representation of I such as (3.22). Clearly by (3.23), 
we have 

(4.6) IIA”uO(t)ll = /IA&- t(il+l)all 2 t-~emtllall + 0 as t -+.c0. 

By (4.4), (4.5) and Proposition 4.2 with p = 2, 

(4.7) IIA&(t)ll = IIf ,-(t-s)(“+l)A~~(s)dSI( + 0 asticx 
0 

Taking 0 = n/4 - l/2, we have by Remark 2.6 that FB(u, u)(t) E D(At) 
with A+Fe(u, u)(t) = P(u . Vu)(t) f or all t 2 0. Hence it follows that 

J 
.t 1 

Alum = A3+~e-(t-“)(A+1)~e(u, u)(s)&, 
0 
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Since n/4 - 19/2 = y*, we have by Lemma 2.5, (4.4) and (4.5) 

(4.8) Fe(u, IL) E LP(0, CG; LZ) for 2 5 p 5 co. 

Since (1 - (l/2 + 19/a)}-’ = 8/(6 - n) > 2, Proposition 4.2 and (4.8) 
yield 

(4.9) &4+u2(t)ll + 0 as t + cc. 

Now (4.3) follows from (4.6), (4.7) and (4.9). n 

LEMMA 4.4. - For the global solution u in Theorem 3.2, there exist To > 0 
and afamily {fCl(t)) _ O+<1p of continuous functions on [To, KI) such that 

IIA%(t)ll 5 f&i To I t < cc 

for all sufJiciently small h, where uh(t) E 
u(t + h) - u(t) 

11 
Proof. - Let us first note the identity 

(4.10) (u . VU, w) = -(u . VW? w) for all U,II, w E @A+), 

where a! = n/6-2/3. From this we have (u.Vv, U) = 0 for all u, II E D(A). 
For u,v,w E Crg, (4.10) is an immediate consequence of integration by 
parts. By (1.2) there holds the continuous embedding 

where l/p = l/2 - a/n and l/q = l/2 - (1 + cx)/n. Since l/p + 2/q = 1, 
we have by the Holder inequality and the above embedding that 

with C = C(n), which implies that (U . VU, w) is a trilinear continuous 
form on D(Ap). On the other hand since n = 4,5, we have 0 5 Q < l/2 
and hence Coyn is dense in D(Aq) (see Fujiwara [7] and Fujita-Morimoto 
[6]). Now (4.10) follows from the density argument. 

Since u satisfies (E), 
(4.11) 
&(t) + Auh(t) + P(?&(t) . vu(t)) + P(u(t + h) . vuh(t)) = 0, t > lhl, 

where & = duh/dt. Taking the inner product in Lz with uh and (4.1 l), 
we obtain from (4.10) 

(4.12) -&(t)llZ + 211A3w$)l12 = 2(uh(t) . Vw(t),4t)). 
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By the Sobolev inequality and (2.8) with Q = n/2 - 2, there holds 

(4.13) I(wL(t) . Vu(t): u(t))1 

I Il~~~~~ll~II~~h~~~llll~~~~ll7~ 
5 CllV~h(t)ll”(llA”~(t)ll + llA”-+t@)ll> 

5 CllA~~~~(t)ll~(IIA~‘~~(t)ll + IIA~~(t)ll~IIA’*~(t)ll~) 

with C = C(n) independent of t and h. By (4.4) and Lemma 4.3, there 
exists 570 > 0 such that 

IIA”u(t)ll + IlA~~(t)lI~IIA7*u(t)Il~ 5 & for all t 2 To. 

Hence by (4.12) and (4.13) we have 

(4.14) g1]uh(t)l12 + IIA~uh(t)ll” I o for all t > ~a, 

which yields 

IldtII” I 11wLvdll’ 5 II QYI)ll” + 1, t L To 

for all sufficiently small h, where & = du/dt. Then Jb(t) is defined by 
the constant function 

We shall next consider for a = l/2. Taking the inner product in Lz with 
Auh(t) and (4.1 l), we have 

(4.15) ;-+u,(t)/12 + IIAw$)l12 

< ((P(u&) . vu(t)), ha(t))1 + l(f’(dt + 1~) . Vwz(t))>Aw(t))l 
E p(t) +&‘(t). 
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Take p and q as l/p = l/4 - 1/2n and l/q = l/4 + 1/2n, respectively. 
Then we have by (2.8), (2.12) with Q = n/4 - l/2 and (4.4) that 

p(t) 1 

5 Il~~~~~~ll~ll~~~~~ll~ll~~~~~~ll 
< C(IIAh$ll + IlAY- wM)W%t)II + ll~‘*~~~~~ll~ll~~~~~~ll 
< C(IIAfu,,(t)ll + IIAtUh(t)ll~-~IIAUh(t)ll4-3)IIAll,h(t)ll 

1 1 2. < -IIAw$)l12 + ~llA’~~(t)ll 1 
-4 

.9P @) 

5 IMt + ~~ll,II~~~~~~ll~II~~~~~~ll 
< C(IIA+u(t + h)ll + IlAY*+ + h)ll) 

1 
(IIAWt)ll + II~Y*~~~~~~II~II~~~~~~ll 

2 C(llA&&ll + IIA~Uh(t)l14-~IIAUh(t)ll~-~)IIAuh(t)ll 
1 1 

< -IlAw$>l12 + ClIA%@)ll 2 

-4 

with C = C(n) independent of t and h. Hence it follows from (4.15) that 

$‘b(t)l12 + IlAw$)l12 5 CllAfru/Jt)112, t > Jhl. 

By the Gronwall inequality, we have 

JIAh$)(12 5 llA”w(To)ll 2eC(t-To) 

5 (IlA” &(To)l12 + l)eC(t-TO); t > To 

for all sufficiently small h with C = C(n). Now the function f1,2(t) is 
defined by 

f+(t) E (][A” ;(To)l12 + l)+eC(t-TD), t L 5%. 

For 0 < cy < l/2, we have IIA”uII < llul11-2al(A1/2~~~2c and hence fa(t) 
can be defined by fey(t) = f0 ( t)lp2” fij2 ( t)2m. This completes the proof of 
Lemma 4.4. w 

LEMMA 4.5. - Let To > 0 be as in Lemma 4.4. Then ‘we have 

(4.16) II Wl12 + .I’ _t IIw~)l12~~ F II ?&II” 
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for all s and t such that To 5 s 5 1; < #K and 

Proof. - By (4.14), there holds 

Letting h 4 0 in the above inequality, from Lemma 4.4 and the Lebesgue 
convergence theorem we obtain (4.16). 

Taking 9 = n/4 - l/2 in Lemma 2.5, we have by (4.4) and Remark 2.6 
that AgFe(u,u)(t) = P(u . Vu)(t) f or all t > 0. Hence the identity (E) 
yields 

11 ;(t)l12 = -(Au, ;L) - (P(u Vu), ;) 

= -(A&; A+ &) - (FB(u, u), A: ;) 

< llA&llllA~ ;L /I + IIF&,u)llllA~ 6 II 

2 I(A+u(j* + I)A+ I’m II* 

+ CIIAkII(IIA+uII + IIA”‘YII)II i l(1-8)lAi ;L (1’ 

5 IIA*ull* + (IAt &II* + ;I] i 11’ 

+ C{ IIA+uII(IIA+ull + I/A7*ull)}+llA+ h II+@ 

5 llA+ul12 + /iA+ & II2 + ;I1 i II2 

+ C{ IIA+uII(IIAfull + ~~45~~~~))~ + l/A+ h II2 

5 [\A&//* + allA & II2 + ;I1 4 II2 

+ CIIA&# + CIIAY*u~~2~~A~u~~2. 

for all t > 0 with C = C(n), from which and (4.4) we obtain 

I~~(r)l~2~C{ IIA+Il”+(l+su; IJAY*11(7)l12)IIA~~(t)112+IJA~ E(t)[12} 
- 

for all t > 0. Then (4.17) follows from (4.5) and (4.16). This completes 
the proof of Lemma 4.5. n 
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LEMMA 4.6. - The global solution u in Theorem 3.2 decays like 

(4.18) 11 G(t)11 5 C(t - To)-% 

(4.19) IIA”u(t)ll 5 C(t - TO)-+> 

(4.20) IIAu(t)jl 5 C(t - TO)-+. 

,for all t > TO with C = C(‘IL, TO), where To is chosen as in Lemma 4.4. 

Proof. - By (4.16) we have 

I/ &(t)ll” 5 11 &(s)ll” for TO < s < t. 

Integrating this inequality on the interval (TO, t) with respect to s, we 
obtain from (4.17) 

J 

t 
(t - Toll ~(t)l12 5 To II Wl12ds I 1X II G)l12ds < @2 

TO 
for all t > To, which implies (4.18). 

By (4.10) and (E) there holds (&(t),~(t)) + (Au(t),u(t)) = 0 for all 
t > 0 and hence (3.3) and (4.18) yield 

IIA”u(t)ll” = (Au(t), u(t)) 

I KW, 4t)>l 
5 II Wllll4~)ll 
5 Cllull(t - TO)-+ for all t > To 

with C = C(n,To), which shows (4.19). 
To prove (4.20) notice that there is a constant C, = C,(To) such that 

(4.21) IIAu(t)II 5 C, for all t 2 TO. 

Indeed, by (2.6) with 0 = n/4 - l/2, we have 

(4.22) IIJWII 5 II Wll + II@ * -)(t)ll 
5 II G(t)11 + C(IIAiu(t)ll + llA’*u(t)ll)* for all t > 0 

Hence (4.21) follows from (4.4) and (4.18). Moreover, by (4.21) and (4.22) 
there holds 

IIA~(t)ll i II h(t)11 + CllA3~4)l12 + CIIAY*u(t)l12 
5 11 A(t)11 + CIJA~u(t)~~* + C(llA”u(t)ll”-“‘* IIAu(~)(I*~*-~)* 

5 II ;(t)ll + GllA”4t)ll” + +W)ll* 
I II ;(t)ll + GllA%~)ll” + 4IA4t)ll, t L To 
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for all E > with C, depending only on E. Taking E = 1/2C, in the above 
estimate, we have 

(4.23) IIAu(t)ll 5 C(ll h(t)11 + IIA”u(t)ll”) for all t 2 To 

with C = C(n; To). Now (4.20) follows from (4.18) and (4.19). This proves 
Lemma 4.6. n 

Really, the global solution ‘u in Theorem 3.2 decays more rapidly than 
in Lemma 4.6. To obtain sharper rates of decay, we need to estimate the 
nonlinear term u VU in L2 by means of IIA”uII with (Y 2 I/2, which 
differs essentially from the result of Masuda [22]. 

LEMMA 4.7. - The global solution u in Theorem 3.2 decays, in fact, like 

[IA’~(t)ll = o(t-4) as t + xj. 

Proof. - We shall make use of the representation 

(4.24) u(t) = e -(t-nA9Q) _ 
I 

‘+ e-(t-“)A’P(u . V71,)(s)ds 
.T 

= &l(t) +11(t) 

for all 0 5 T 5 t. By (4.19) and (4.20), there is Tl > To such that 

(4.25) IIA~u(t)ll < Ct-a, IIAu(t)II < Ct-4 for all t 2 TI 

with C = C(To,Tl) independent of t. By (3.1) and Lemma 2.5 (2), we 
have P(u . Vu)(t) = Ae/2Fo(~, I) for all 0 with n/2 - 2 5 0 < 1 and 
all t > 0. Let us take r3 as 2/3 < 0 < 1. Then we obtain from Lemma 
2.5 and (4.25) 

5 C 
s 

‘(t - ,)-~-~llA9,~(s)ll(llA~~(s)ll + I/A”-h~(s)ll)ds 
T 

(4.26) < C 
.! 

‘f(t - s-“-~(llA+u(s)ll’ + IIA”~(s)l12-“IIAu(s)Il”)ds 
T 

< C. 

I 

;(t - s)-t-;(s-+ + s-i-t)& 

5 CT-S 
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for all t 2 T 2 Tl with C = C(To,Tl), where a = n/2 - 1 - 8. Hence 
by (4.24) and (4.26), there holds 

IIA”4t>ll I IIA~~oWll + llA”Ut)ll 
5 (t - TO)-+ l/all + CT-C, Tl<T<t 

with C independent of T and t. Taking T = t/2 in the above estimate, 
we have 

(4.27) IIA”u(t)ll < Ct-C for all t > 2TI. 

Now, substituting (4.25) and (4.27) again into (4.26) we get 

llAi&(t)ll 5 C J ‘(t _ s)-i-:(s-e + s-$(2-“)s-~)~s 
T 

< CT-+(3@-l) 
- 

for all t 2 T 2 2TI which yields 

Ilil~u(t)JI 5 C(t - T)-3 Ilu(T + CT-i(38-1) for all t 2 T 2 2T, 

with C = C(To, TI). Taking T = t/2 in the above estimate, we have 

(4.28) IIA”u(t)ll 2 C(t-~llu(t/2)jl + t-~(30-1)) for all t 2 4TI. 

Since u satisfies (3.3) with T = co, we know lim+, Ilu(t = O(see e.g., 
Masuda [23, Corollary 21). Hence this estimate together with the relation 
(36’ - 1)/2 > l/2 yields the desired result. This proves Lemma 4.7. n 

Let us improve the decay rate for &. 

LEMMA 4.8. - For the global solution u in Theorem 3.2 we have 

11 h(t)11 = o(tKl) as t -+ co 

Proof. - We shall make use of (4.14). To this end, we need to estimate 
IIAiuh(t)ll from below. Since u satisfies (E), by (4.10) there holds 

(4.29) llwtl12 = ( uh,uh - ;) + (uh,;) 
= (uh, uh - ?L) + (uh, -Au - P(u. 0~)) 

= (uh, uh - ‘i) - (A1’2uh, A1’2u) + (U . viuh, U) 

2 jluh1111uh - 4 (1 + llA1’2uhllllA1’2ull + (U. vuh, u), 
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By (2.8) with CI = rb/4 - 1 we have 

< C( IIA+u[[~ + (IA=ul12)IIAhh II 

< C( IJA&L[I~ + (lIA&#-~ llA~lj~-~)‘) ~IA~LFJ 

5 C(IIAhII + llA+ul(“-2 IIA~II~-2)llA3~IIllAt7~hII. 

By Lemma 4.6, there exists T, > To such that 

IIA~u(t)ll + llA31~(t)l1~-~IIA~(t)ll~-~ 5 i for all t > T, 

and hence we have 

(4.30) I(u(t) . V~,~(t),u(t))I < IIA”~(t)llllA~~h(t)II for all t > T,. 

(4.29) and (4.30) yield 

1 
IIA’wMl” 2 Ibdt)l14 _ IlwL(~>ll”ll’ZL&) - Wll” 

8ljAhL(t)\y 4(IA+u(t)l12 

for all t > T,. Substituting this estimate into (4.14), we have 

dbdt)l12 
dt 

for all t 2 T, and all h, > 0. Set y(t) G Ilu,L(t)I12, p(t) E 81/A1’2U(t)/12 
and Eh(t) G 211uh(t) - ;(t)ll”. Then we have from above 

h/(t) + y(t)’ < &/a(t) 
dt 

~ -----y(t)3 
p(t) - P(t) 

t > T, 

which may be regarded as a differential inequality of the Bernoulli type 
with respect to y(t). A standard calculation yields the following estimate: 

This implies that 
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for all t > s 1 T’. Letting h + 0 in the above, we have by Lemma 4.4 
and the Lebesgue dominated convergence theorem that 

for all t > s 2 To. Now the desired result follows from Lemma 4.7. This 
completes the proof. n 

We shall next show (4.1). 

LEMMA 4.9. - For the global solution u in Theorem 3.2 we have 

IIA”u(t)ll = o(t-“) for 0 5 a < 1 

as t + co. 

Proof. - For Q! = 0, the assertion follows from energy decay of 
solutions with (3.3) (see e.g., Masuda [23, Corollary 21). Since IIA”uII < 
II’LLII~-~~~AuII~ for 0 < a < 1, it suffices to show for cy = 1. By 
Lemmata 4.7 and 4.8 we have 

11 h(t)], = o(t-l), IIA”u(t)ll = o(t-+) as t -+ CQ. 

Applying this decay property to (4.23), we can deduce IIAu(t)jl = o(t-‘) 
ast-+c0. w 

Now Theorem 4.1 follows form Lemmata 4.8 and 4.9. 

Proof of the Main Theorem. - Let y+ and S = S = S(n) be as in 
Theorem 3.2. 

By Theorem 3.1 (2), there is a constant b = p(n) such that if 

IbllD(,~-+, I CL> 
then we have a unique solution w of (E) on (0,l) with (3.1’) and (3.2) 
for T = 1 satisfying 

llw2)ll + IIAY”~P/2)ll 5 6. 
On the other hand, by Theorems 3.2 and 4.1, there exists a solution w(t) of 
(E) on [l/2, co) with w(t)1 = t 1,2 = w(1/2) satisfying (4.1) and (4.2) with 
u(t) replaced by w(t). Let us define a function u(t) on (0, m) by 

u(t) = 
{ 

w(t) for 0 5 t 5 l/2, 
w(t) for l/2 < t < m. 

Then it is easy to verify that u is a solution of (E) on (0, CQ) with the 
desired properties. By (1.2) and (1.3) we have 

‘U E BC([O, co); L7,). 

and the assertion on uniqueness follows from Serrin [26] and Sohr-von 
Wahl [27]. 
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