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ABSTRACT. - We study the structure of extremals of a class of second 
order variational problems without convexity, on intervals in R+. The 
problems are related to a model in thermodynamics introduced in [7]. We 
are interested in properties of the extremals which are independent of the 
length of the interval, for all sufficiently large intervals. As in [ 12, 131 the 
study of these properties is based on the relation between the variational 
problem on bounded, large intervals and a limiting problem on R+. Our 
investigation employs techniques developed in [ 10, 12, 131 along with 
turnpike techniques developed in [ 16, 171. 0 Elsevier, Paris 
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RBsuMB. - On Ctudie la structure des extremales d’une classe de 
problgmes variationnels non convexes du deuxi&me ordre, sur des intervalles 
de R+. Ces problbmes sont reliCs a un modgle th&modynamique introduit 
dans [7]. Nous nous intCressons aux propriCt& des extremales qui ne 
dependent pas de la longeur des intervalles, pourvu que ceux-ci soient 
assez grands. Comme dans [ 12,131 l’etude de ces propriCtCs s’appuie sur la 
relation entre le probl&me variationnel sur de grands intervalles born& et un 
probEme limite sur R+. Notre travail emploie des techniques dCveloppCes 
dans [10,12,13] ainsi que dans [16,17]. 0 Elsevier, Paris 
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594 M. MARCUS AND A. J. ZASLAVSKI 

1. INTRODUCTION 

In this paper we investigate the structure of optimal solutions of 
variational problems associated with the functional 

Jf(D;w) = 101-l 
/ 

D j(w(t), w’(t), w”(t))&, VW E W2J(D), 

where D is a bounded interval on the real line and f E C(R”) belongs to 
a space of functions to be described below. Specifically we shall consider 
the problems, 

cpD) inf{Jf(D;w) : %u E W2,1(D)} 

and, for D = (Ti, Tz), 
(G’” 1 

inf{Jf(D;*w) : w E W211(D), ( w; W’)(Tl) = x, (‘W, w’)(T2) = y}. 

In connection with these we shall also study the following problem on 
the half line: 

(Pm) 

where 

inf{Y(w) : w E W,2d,l(O, cc)}, 

Jf(w) = limmizf Jf((O, T);w). 

This can be seen as a limiting problem for (PD) as ID] --+ co. Variational 
problems of this type were considered by Leizarowitz and Mizel [lo]. 
Similar constrained problems (involving a mass constraint), were studied 
by Coleman, Marcus and Mizel [7] and by Marcus [12,13]. The constrained 
problems were conceived as models for determining the thermodynamical 
equilibrium states of unidimensional bodies involving ‘second order’ 
materials (see [73>. 

Let G = G(p, r) be a function in C4(R2) such that 

(1.1) 
d2G/dr2(p, T) > 0, 

G(P, r) L Jr/’ - h IpI” - h, V’(P, ~1 E R2, 

where bi, b0 are positive constants, 1 5 ,B 5 y and y > 1. In addition 
assume that, 

(1.2) max{lG(p, ~11, I~G/WP, r)l, PG/WP, r)II I ~(bl)(l+ Id’)- 
where M : [0, cm) + [0, oo) is a continuous function. A typical example 
is G(p,r) = r2 - bp’. 
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Let a, b2, ba be positive numbers, with cx > /3, and let 

(1.3) c = C(a,bp,bs) = (4 E @(RI) : 4(t) > baJtj”-ba, vt E RI}. 

The space C will be equipped with the standard topology of C2. Finally 
denote, 

where, 

(1.5) ~qhw, r) = d(w) + G(P, r’), V(W,P,T) E R”. 

The relation between the minimizers of (Po) (for large 101) and those 
of (Pm) plays a crucial role in our study of their structure. This relation 
was first investigated by Marcus [ 12, 131 where it was used in order to 
derive structural properties of minimizers of problem (PD) and of related 
constrained problems, in the case f = r2 - bp2 + @(w). In the present 
paper we pursue this investigation combining techniques of [12, 131 with 
turnpike techniques as in Zaslavski [16, 171. 

One of our main results is the uniqueness of periodic minimizers of (Pm) 
which is generically valid in a very precise sense. 

For every potential g!~ E C(cy, b2, b3) there exists a ,family of arbitrarily 
small perturbations {cP~ = 4 + s0 : 0 < s < l}, such that problem (Pm) 
with f = F+. possesses a unique (up to translation) periodic minimizer. 

The function 6’ can be explicitly constructed in terms of the extremal 
values of periodic minimizers of (Pm) with f = F+. Combining this 
result with a recent result of Zaslavski [ 181, we show that for each 
potential 4, in this family, the corresponding integrand F4, possesses 
an asymptotic turnpike property, which involves the behaviour of the limit 
set of minimizers of (Pa). Finally, we show that this asymptotic property 
can be used in order to derive detailed information on the structure of 
minimizers of problem (PD) for all sufficiently large intervals D. In this 
last part the results are valid not only in the generic sense, but apply to 
every f E CG. 

A brief comparison of the present results with those of [13]: In the 
present work, as in [ 131, the structure of minimizers of (PD) is described 
by observing their behaviour in a ‘window’ of fixed length (independent of 
ID]) which can be placed anywhere in D. The results of [ 131 apply to every 
integrand of the form f = r2 - bp2 + 4(w), f or a class of potentials 4 which 
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includes the standard two-well potentials. The behaviour of minimizers of 
(PD) in a ‘window’ is described by integral estimates, involving ‘mass’ 
and ‘energy’. The present results are in part generic, but they deal with 
a very large class of integrands and the behaviour of minimizers in a 
‘window’ is described by pointwise estimates which provide considerably 
more detailed information. 

For a precise statement of the results mentioned above we need some 
additional notation and definitions. 

Let p(f) denote the infimum in (Pm) with f E CG. Leizarowitz 
and Mizel [lo] proved that, if p(f) < infcw,,s)ERA f(w,O,s), then (Pa) 
possesses a periodic minimizer. Zaslavski [ 151 showed that the result 
remains valid for all f E CC. 

For w E W,2d,l(O, CM) put, 

(1.6) 71~F’?4 = (Jf((O, T);w) - WP, T E (0, m). 

Then, either sup O<T<oo j$(T,w)f < 00 or limT+m $(T, w) = +m 
Furthermore, if nf (., w) is bounded then w and ‘w’ are bounded [ 15, 
Prop. 3.11. 

Let w be an (f)- minimizer of (Pm). We shall say that w is (f)-good 
if $(., w) is bounded. Equivalently, w is (f)-good if and only if there 
exists a constant C(UJ) such that, 

(1.7) IJf(Q WI - P(f)l I 4wM~I 

for every bounded interval D. 
We shall say that w is optimal on compacts, or briefly c-optimal, if 

w E Wl”d,‘(O,oo) n W”(0, ) cx) and, for every bounded interval D, the 
restriction w 1~ is a minimizer of (P;‘), where 2, y are the values of (w , w’) 
at the end points of the interval. By a result of Marcus [13, Th. 4.2(vi)], 
if the integrand f is of the form f(w,p,r) = r2 - bp’ + 4(w), then every 
c-optimal minimizer of (pm) is (f)-good. In fact the result remains valid 
for the more general class of integrands studied here, (see Proposition 2.3 
below). 

For w E W:d,‘(O,oo) fl IV ‘+(O, ce) let 62(w) denote the set of limiting 
points of (w, w’) as t + cc. 

DEFINITION 1.1. - Let f E CG. We say that f has the asymptotic turnpike 
property, or briefly (ATP), if there exists a compact set H(f) c R2 such 
that n(w) = H(f) for every (f)-good minimizer w. 

Clearly, if f has (ATP) and w is a periodic (f)-minimizer of (Pa) then, 
H(f) = {(w,w’)(t) : 0 5 t < co}. 
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The asymptotic turnpike property for optimal control problems was 
studied in [4, 51. The more standard turnpike property (for problems on 
finite intervals) is well known in mathematical economics and several 
variants of it have been studied (see, e.g. [l l] and [6, Ch.4 and 61). Here 
we shall consider, besides (ATP), the strong turnpike property, or briefly 
(STP), which is defined as follows. 

DEFINITION 1.2. - Let f E CG and let w be a periodic (f)-minimizer of 
(Pm) with period T, > 0. We say that f has the strong turnpike property 
if, for every E > 0 and every bounded set K c R2, there exists L > 0 
such that every minimizer w of (I$‘,&)), with X,~J E K and T > T, + 2L, 
satisfies the following: 

For every a E [L, T - L - T,,,] there exists z E [0, T,) such that, 

(1.8) lb, 4(a + t) - ( w, ~‘)(a + t)I 5 E, Vt E [0, Tw] 

Note that (STP) implies uniqueness up to translation for periodic 
minimizers of (Pm). Furthermore, if f has (STP), the structural information 
contained in (1.8) extends to arbitrary minimizers of the unconstrained 
problem (P(O,T)). More precisely we have, 

PROPOSITION 1 .l. - Suppose that f E CG possesses (STP). Let w be the 
(unique) periodic minimizer of (Pa) whose period will be denoted by T,,. 
Then, given E > 0, there exists L > 0 such that every minimizer u of (Pc~,~)) 
with T > T, + 2L satisfies (1.8) for every a E [L, T - L - T,] and some 
a E [0, T,) depending on v and a. 

This is a consequence of the fact that the set of minimizers of (P(c,r)) is 
bounded in C1 [0, T] by a constant A independent of T, (see [12, Lemma 
2.21). 

Our main results are the followjng. 

THEOREM 1.1. - For f E CG, (STP) holds if and only if (ATP) holds. 

THEOREM 1.2. - For every $ E C there exists a non-negative function 
8 E C”(R1) with tJ(-) E L”(Rl), m = O,l,. . ., such that for every 
s E (0, l), problem (Pm) with f = F$+,e possesses a unique (up to 
translation) periodic minimizer. 

THEOREM 1.3. - (i) For every 4 E C there exists a function 8 as in 
Theorem 1.2 such that, 

F~+,s possesses (ATP), V’s E (0,l). 
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(ii) (ATP) holds generically in C C, in the following sense as well: there 
exists a countable intersection of open everywhere dense sets in 2, say SC, 
such that 

q4 E 5~ ==+ F+ possesses (ATP). 

A result related to the second part of Theorem 1.3 was obtained by 
Zaslavski [16], who established the generic validity of (ATP) in a larger 
space, in a weaker sense. 

The proofs of these theorems, in a slightly more general form, are 
presented in sections 2 (Theorem I. 1) and 3 (Theorems 1.2, 1.3). In addition, 
in section 3, we establish a number of properties of periodic minimizers of 
(pm) which apply to every f E CG and may be of independent interest. 

2. EQUIVALENCE OF (ATP) AND (STP) 

In this section we shall establish Theorem 1.1 for problems involving a 
larger family of integrands f. Put, 

!2i = {f E G(R”) : lf(:1:~,2~,2~)1 ---f cc as 1x3] + x; 

uniformly with respect to (xi, x2) in compact sets}. 

2l will be equiped with the uniformity determined by the base, 

E(N&) = {(f:g) E u x !2i : 

If(z;) - 9(x)1 I 6, (z = (xz1,z2,x3) E R”, 

(2.1) lzil < N, i = 1,2,3), 

1 - f I (If(x)1 + l)/(lg(z)l + 1) 5 1+ f> 
(x E R”, lql, lzzl I N)} 

where N and e are positive numbers. It is easy to verify that the uniform 
space % is metrizable and complete [8]. 

Let a = (ui,ua,us,a4) E R4,ai > O,,i = 1,2,3,4 and let cy,p,y be 
real numbers such that 1 5 ,O < (Y, p < y and y > 1. Denote by 
M = %R(o, ,O, y, u) the family of functions {f} such that 

(i) f E !2i n C’(R”), i3f/i3z2 E C2(R3). df/dz3 E C”(R”), 

(2 2) “i) a2f/a4 > O? 
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where Mf : [0, oc) I-+ [0, 00 is a continuous function depending on f. ) 
Finally, let %% denote the closure of ZQ in !2k The notations and definitions 
presented in the introduction with respect to f E CG apply equally well 
to f E !J?l and the various statements quoted there remain valid in this 
context. Put. 

(2.3) If(Tl, T2, w) = J ,:’ f(w(t), w’(t), w”(W~ 
where --o;) < T1 < T2 < +cc, w E W211(Tl, T2) and f E n. 

For T > 0, x, y E R2, f E a, put 

(2 3a) U$(x, y) := inf{lf(O,T, w) : w E W2,1(0,T), 
(w, w’)(O) = x, (w, w’)(T) = y}. 

Let ‘u E W2,i (D) where D = (Tl , T2) is a bounded interval. Given 
5 > 0, we shall say that ‘u is an (f, Q-approximate minimizer in D if, 

(2.3b) ~f(T~,T2,4 h u$,(W’), Xv(T2)) + 6, 

X,,(t) = (v(t),v’(t)), t E D. 

For z E R’“, B c R” put d(x, B) := inf{ Ix - yl : y E B} (where 1 . 1 is 
the Euclidean norm) and denote by dist(A, B) the distance in the Hausdorff 
metric between two subsets A, B of Rn. 

We claim that: 

LEMMA 2.1. - Suppose that f E % and that w is an (f)-good function. 
Then, given 6 > 0 there exists T6 > 0 such that, for every bounded interval 
(T, T’) with T 2 Th, 

(2.4) If(T, T’, 4 F U?f&W’), X,,(T’)) + 5, 

i.e. v is an (f, Q-approximate minimizer in (T, T’). 

Proof. - If the claim is not valid there exists a sequence of disjoint 
intervals D, = (T,, TA), n = 1,2, . . . with T,, -+ oc such that, 

(2.5) If(T,,T;,v) - U;&T,(x,, yn) 2 6, ‘~1 = 1,2:. . . , 

where x, = X, (T,) and ya = X,(TA). Let h, denote a minimizer of 
problem (PG;>““) and let C be the function on [0, co) defined as follows, 

C(t) = w(t), t E [O,ca) \ u,D,, C(t) = h,(t), t E D,, n = 1,2,. . . . 
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Then V E IV;, (0, CQ) and 

?f(T, 6) = (If(0, T> 5) - rqo, T, w)) + vf(T, TJ). 

Since $(., V) is bounded, say by M, it follows that, 

This inequality and (2.5) imply that ,~f (57:) 6) + -cc as r~ + cxj. However 
this is impossible because r/-rf(.; W) is bounded from below for every 
w E W12d,l(O, co). 0 

For the next lemma we need the following interpolation inequality (see 
e.g. Adams [l]): 

Assume that p > 1 and t > 0. Then there exists a constant C,(p) such 
that, for every T 2 1, 

(25) 
.I' 

T Iu'lPdt 5 6 
0 

.i' lu"JP dt+C,(p) J'i lulP dt, Vu E W2>“(0. T). 
0 0 

LEMMA 2.2. -(i) For every r > 0 there exist positive constants bo; bl, b2 
(depending on r) such that, for every T 2 r, 
(2.7) \ I 

If(O,T,v) 2 
I 
. oT ~(u31~~il~ + ~,~lvl”)dt - boT 2 hll~llcqo,q - b2T. 

for every u E W2,1 (0, T) and every f E 9X. In particular, for every M > 0 
and T 1 r there exists a constant b,(M, T) > 0 (depending continuously 
on M, T) such that, for every f E @I, 

(2.8) w E W211(0,T)> If(O,T, U) < M 

==+ ‘U E W2,y(0,T), ll’+-2J[,,,T, 5 bT(M,T). 

(ii) For every f E !%I: if ?/ E W12L!(0, w) is an (f)-good function then, 

(2.9) 
.I 

T+l 
SUP ((w”ly + Jal”)dt < cc T>O T 

- 

Consequently, v and II’ are uniformly continuous on [0, 00). 

Proof. - (i) In the proof we shall assume that 7 = 1. For arbitrary 7 > 0 
the result can be obtained by resealing. By (2.2), every f E m satisfies, 

(2.10) f(z) > ~ll~ll~ - a21~21° + a31531Y - a4. 
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Clearly this remains valid for every f E !%. Note that if ,B = 1 then 
y’ = min(cu, y) > 1 and therefore, if p’ E (1,~‘) we have, 

Therefore, without loss of generality, we may assume that j3 > 1. Hence, 
by (2.6) with p = p and E = $&-, we find that, for f E 5% and T 2 1 

(2.11) rf(O, T, v) 2 
s 

T1 
o Z(u31?r”lY+alIvl”)dt-bboT, Vu E W2>l(0,T) 

where 

(2.12) b. = y,x(u2c&3)to - alt72) + a4 + a&. 
- 

(In fact, v E C1[O, T]. Therefore, by (2.2), If(O,T; U) is finite if 
v” E ,Gr (0, T) and $00 otherwise.) This proves the first inequality in 
(2.7). In order to obtain the second inequality in (2.7) observe that, 

.I 

s+1 

s 

sfl 

(Iv”IY + 1vyp L (lv”lY’ + Ivlqdt - 1 s 

2 c8 sup (Iv(t)1 + Id(t) - 1, 
s<t$3+1 

for every s E [0, T - 11, where CO is a constant which depends only on 
y’ = min(o, y). Combining this with the first inequality in (2.7) we obtain, 

s T 

If(O,T,v) L cl (Iw”ly + Iwl”)dt - boT 

2 cl(co sup ;+)I + Id(t) - 1) - boT 
O<t<T 

L cl(cOll’&l(O,T) - 2) - boT> 

where cl is a constant which depends only on ulr u3. This completes the 
proof of (2.7). Finally (2.8) follows from (2.7): 

I 

T 

T Id’lW 5 2(A4 + Tbo)/us, IQdt L T((M + W/h)‘, 
I 0 s 0 

for every 21 as in (2.8). 
(ii) Since ‘u is (f)-good, ( V, u’) is bounded in [0, KI). Clearly, Uf(x, y) 
is bounded for (x:, y) in a compact set. Therefore Lemma 2.1 implies that 
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If(T, T + 1, V) is bounded by a bound independent of T > 0. Hence (2.9) 
follows from (2.7). 0 

Using these lemmas it is easy to verify that, 

LEMMA 2.3. -For .f E ?3.JI, (STP) implies (ATP). 

Proof. - Assume that f has (STP) and let v be an (f)-good function. 
Pick < E R(v) and let {tk} be a sequence tending to +cc such that 
(v, u’)(tk) + <. Put %~k(t) = ~(1; + TV), t > -tk.. By Lemma 2.2, for every 
bounded interval D, 

Therefore there exists a subsequence ‘us,, which converges weakly, say to 
u, in Wl”d,’ (Rl). In particular {(ok,, ) r&J} converges uniformly on compact 
sets. Applying inequality (2.4) to ‘uk,, and taking the limit, we find that 
(for every bounded interval D = (0, T)) uID is a minimizer of problem 
(Pzy), where Z, y are the values of (u, u’) at the endpoints of D. This is 
a consequence of the continuity of U$( ., .) in R2 and of the weak lower 
semicontinuity of the functional Jf(O, T, .) in W’,r(D), (see [3]). Since f 
has (STP) it follows that, for every F > 0, (1.8) holds with ‘u replaced by 
an arbitrary translate of ?L, i.e. TL(. + .T), r E R1. Consequently, if w is a 
periodic minimizer of (Pa) then, E := {(?L,‘u’)(~) : t E RI} = R(w). 
In particular, [ = (?L, “‘)(O) E R( ) w an we conclude that fl(tl) c 0(u~). d 
On the other hand E c 0(u). so that 0(v) = O(W). Thus f possesses 
(ATP). 0 

The fact that (ATP) implies (STP) requires a more delicate argument. 
Actually we shall prove a more comprehensive result, which will also be 
used in the proof of Theorem 1.3. Roughly this result states that if f E ?Dl 
has (ATP) then, for every F > 0 there exists S > 0 such that, if II is an 
(f, S)-approximate minimizer in (0: T) and T is sufficiently large, then 1: 
satisfies (1.8), which is the condition required for (STP). Furthermore this 
property persists in a neighborhood of f in 9X The precise formulation 
follows. 

THEOREM 2.1. - Assume that g E M satisjes (ATP). Let ‘u) be a periodic 
minimizer of (Pa) with integrand g and let T, > 0 be a period of UJ. 

Given E, M > 0 there exists a neighbourhood qf g in B, say U,, and 
positive numbers 15, 1 such that the following statement holds : 

Let f E U, and let T 2 T,,, + 21. lf u E W*,l(O, T) satisfies, 
(2.13) 

IX,(O)l I M, IX,(T)1 5 M: If(O,T.v) 5 u$L(O)Ju(T)) + 6, 

/\,mdr\ de I‘lrrtitut Iferzt-i PoirwrrP Analysr ,,o" I~n&ure 
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then, for each s E [e, T - T, - e] there exists t E [0, T,] such that, 

(2.14) IX,(S + t) - x,(( + t)I _< E, ‘v”t E [O&l. 

Remark. - The conclusion of the theorem can be slightly strengthened 
as follows: 

There exist 71 E [O>e] and 7-z E [T - e,T] such that, for every 
s E [TI: 3 -T,] there exists < E [0, T,] such that (2.14) holds. Furthermore, 
if 

4-&(O), fl(w)) 5 6, trevectively 4X,(T), fl(w>> 5 fi), 

the statement holds with rl = 0, (respectively 7-2 = T). 
The proof of the theorem will be based on several lemmas. One of the 

key ingredients in this proof is provided by the following result due to 
Leizarowitz and Mizel [IO, Sec. 41. (See also Leizarowitz [9] for a similar 
result in the context of a discrete model.) 

PROPOSITION 2.1. - Let f E @I. Then there exist a continuous function 
nf : R2 + II’ given by, 

d(x) = inf{lF+i;f[lf(0, T, w)--T&f)] : w E Wll,‘(O, oo), Xw(0) = z}: 

x E R2 

and a continuous nonnegative function (T, 2, y) + 0$(x, y) defined for 
T > 0 and x, y E R2 such that, 

U&G Y) = T&f) + %3 - rf(y) + 0$(x, y) 

for all x, y, T as above. Furthermore, for every T > 0 and every x E R2 
there is y E R2 such that 0$(x, y) = 0. 

Let f E @I. For D = (T,, T2) and ‘II E W211 (D) put, 
(2.15) 
@CD; u) = ~~2~,(X~(T~), Xv(G)), 

rf(D;4 = If(Tl,T2,v) - (7'2 - TI)P(~) +~$G(Tz)) - +G,(Tl)). 

From (2.15) and Proposition 2.1 it follows that 

(2.1%) rf(D; u) > @(D; w) 2 o. 

Clearly, if ‘u is a minimizer of (I’:‘), x = X,(TI)! y = X,(Tz) then 
l?(D; w) = Of(D;v). H owever I’f (D; 11) may be positive even in this 
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case. Note that, in the present notation, a function ‘u E W”>‘(D) is an 
(f, @-approximate minimizer in D (see (2.3b)), iff 

l?f(D; w) - Of(D; w) < 5. 

In this context we introduce the following additional terminology: Let ‘u be 
a minimizer of (Pm). We shall say that ‘u is (f)-pe$ect if 

(2.15b) If(D, u) = 0 for every bounded interval D. 

If 21 E W:,;:(R) f-l IV1,” (R) and ‘u satisfies (2.15b), then ‘u is a minimizer 
of (Pm) and hence it is (f)-perfect. This is an immediate consequence of 
the definition of I’f and the fact that 7rf is continuous. 

Obviously every (f)-perfect minimizer is c-optimal. Using this fact, it can 
be shown that every (f)-perfect minimizer is (f)-good (see Proposition 2.3 
below). Clearly the converse does not hold, but a partial converse is 
provided by the following result. 

LEMMA 2.4. -Let f E @I and suppose that v is (f )-good. Then, for every 
S > 0 there exists T(h) such that, for D = ( Tl, T2), 

(2.16) 

In particular every periodic minimizer of (Pm) is (f )-per$ect. 

Proof. - Since ,f is continuous, if w is an (f)-good function then 
I’f (D; n) is bounded. Furthermore, since D -+ I’f (D; V) is an additive, 
non-negative set function, it follows that for every S > 0 there exists 
T(S) > 0 such that (2.16) holds. The last statement of the lemma is a 
consequence of this inequality. 0 

The next result shows that every (f)-good function generates a family 
of perfect minimizers. 

LEMMA 2.5. -Let f E !% and let ‘u E W,2d,l(O, w) be an (f)-goodfunction. 
Then, given < E O(U), there exists ‘u E Wl”,;: (R1) such that 

(*) {(u,u’)(t) : t E R1} c $1(v) and (uu’)(O) = c: 

and u is an (f)-perfect minimizer. 

Proof. - Let u be constructed as in Lemma 2.3. Then, ‘u satisfies (*) 
and, in the notation of that lemma, 

l?(D,u) 5 likmEfIf(D +tnk,w). + 
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This follows from the growth conditions on f (see (2.2)), and the 
fact that ‘u,, --+ ‘1~ weakly in W’>-‘(D). However, by Lemma 2.4, 
I’f(D+r, U) + 0 as r + co. Therefore u satisfies (2.15b) and consequently, 
since u E Wl+(R), it follows that it is (f)-perfect. 0 

Another useful ingredient in our proof is the following result for which 
we refer the reader to [lo] (proof of Proposition 4.4) and [ 161. 

PROPOSITION 2.2. - Let f E !??I. For every MI, M2, c > 0 there exists 
a positive number A = Af (Ml, Mz, c) such that the following statement 
holds for every T > c. If 

v E W1(O,T), IX,(O)1 5 Ml, IX,(T)1 5 MI> 

and if v is an (f, Mz)-approximate minimizer in (0, T) (see (Ub)) then, 

IX,(t)1 I A, v’t E [WI. 

Furthermore, for every g E fi there is a neighbourhood U, in 9% such that 
Af (Ml, Mz, c) can be chosen uniformly with respect to f in LL,. 

We also need the following lemma. 

LEMMA 2.6. -Let f E 9.R Then, for every compact set E there exists a 
constant M = M(E) > 0 such that, for every T > 1, 

(2.17) u;b:,~Y) 5 T/4f) + M, VJZ,Y E E. 

Proof. - Let w be a periodic minimizer of (Pa) with period T, > 0. 
Clearly, for every A > 0, 

sup{U~(s,y): z,y~E, llTIA}<cc. 

Therefore, it is sufficient to show that there exists M such that (2.17) holds 
for T > 4T,,. Put D = (0, T). Let r be the largest integer which does 
not exceed T/TW and put 1 = 2-l(T - (Q- - l)T,). Let D’ = (Z,T - I) 
so that ID’] = (r - l)T,. 

Given z, y E E let vr (resp. ~a) be a minimizer of problem (PHI”) with 
z = (w, w’)(Z) (resp. (P,““) with C = (w, w’)(T - I)). Let w E W2>r(D) 
be the function given by, 

v1(t), t E (O,Z) 

v(t) = w(t), t E D’ 
ua(t-T+Z), t E (T-Z,T) 
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Since w and W’ are bounded and T,,/2 5 1 5 T,,, it follows that there exists 
a constant 134~ (independent of a:, y: T) such that, 

Since If(l. T - 1: W) = (T - 21)/~(f) it follows that, 

U;(x,:y) < If(O.T.~~) < (T - 2l)p(f) + 2M1. 

which implies (2.17). cl 
Using these results we can establish the following relation between 

approximate minimizers and (f )-good functions. 

PROPOSITION 2.3. - Let f E 9JI and M > 0. Denote by A( f. M) the family 
Qf minimizers v of (Pm) such that ?I is an (f, IV-approximate minimizer in 
every bounded interval D c R+ such that IDI 2 1. Then 

v E A(f, Ad) ti v is &good. 

In particular, ever?, c-optimal function is (f)-good. Furthermore, the 
family of periodic minimizers is uniformly bounded in the norm 1 Iv 11 (I) : = 
SUPn+ IX,, I. 

Proof. - Let ‘11 be a minimizer of (pa). Then, for every T > 0, 
lim T/+oo &Jf(T: T’: II) = p(f). H ence there exists To > T such that 

If(To,To + 1,~) 5 M := p(f) + 1. 

Consequently there exists a monotone sequence {T,} tending to +oc such 
that, 

I”(T,,:T,, + 1,~) < 111. r~> = 1.2,. . . . 

By Lemma 2.2 there exists a constant MI (independent of v) such that, 

(*I su~{lXv(t)l : T,, L i; 2 T,, + l} 5 Ml, 71 = 1,2,.. . . 

Now suppose that, ‘u E A( f, M). Then inequality (*) and Proposition 2.2 
imply that there exists a constant M2 (independent of v) such that, 

(**I sup{IX,,(t)I : TI 5 t} 5 Mz, 71, = 1,2,. . . . 

Thus IX,1 E L”(R+). (Note that in general TI depends on ‘(1 so that 
supn, IX,1 may not be uniformly bounded relative to ‘u E A(f, M).) 
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Further, inequality (2.3b), the boundedness of X,, and Lemma 2.6 imply 
that, 

Jf(O,T,v) 5 C&X,(0),X,:(T)) + M 5 Tp(f) + M + M’, VT > 1. 

where M’ = M(E) is as in (2.17) with E = cZ{X,,(t) : t E R+}. Thus 
r/f (.,u) is bounded on (1, co) and hence on R+, i.e. ‘u is (f)-good. 

If v is a c-optimal function then, by definition, XV is bounded and 
therefore, by the previous part of the proof, ‘u is (fkgood. 

Finally, if ‘u is a periodic minimizer then inequality (“*) implies that 
supn, IX,1 5 Mz, which proves the last assertion of the proposition. 0 

The next lemma will be needed in order to establish the stability of (ATP). 

LEMMA 2.7. -Let g E m and let D = (0, T). For M > 0 put, 

s 

T 

‘17&l) = {w E W2J(D) : (Iw”Iy + 1~1”) dt < M}. 
0 

Then for every t, M > 0 there exists a neighbourhood ‘yly of g in @I such 
that, for every f E Sn,, 

(2.18) 

and 

IIf(O, T; 71) - Ig(O, T, TJ)/ < E. Q,u E D,,(D), 

(2.19) 2, y E R2, 1x1, IyI < M =j [U&z, y) - U;(11:, y)l < E. 

The neighborhood 3, can be chosen independently of T for T in compact 
sets of (0, cc). 

Proof. - Put MO(T) = s~p{IIv~~~~l~,~l : w E !?Jhf(D)}. By Lemma 2.2, 
if T E (TI,T2), with 0 < TI < T2 < 00, then Ml = SUP~~I~~,~,~ 
MO(T) < cm. For every N, 6 > 0 let B,(N, S) = {f E @I : (f,g) E 
E(N, 6)) (see (2.1)). N ow, given S > 0 choose N > 2MI sufficiently large 
so that, for every f E B,(N, S), 

(2.20) 5 E R”, (~1,1~ 5 Ml, 1x31 2 N * g(z) > 0, 

1 - 2s < f(Z)/g(Z) < 1+ 2s. 

Assume that f E B,( N, S) and v E ‘x7~ (D). Then, 

(2.21) I(f - g)(v, 4~“W 

+ .I’ l(f - g>(v, ~9’ u”)ldt, E’(o,N) 
Vol. 16, Ilo 5-1999 
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where E(v, N) = {t E D: Iv”(t)1 < N} and E’(v,N) = D \ E(v,N). 
The first term on the right is bounded by TS and the second by 
26 .\D Ig(u,,u’, ~“)l. The last integral is uniformly bounded for ‘I/ E !Z?hr(D). 
This follows from the inequality, 

which, by (2.2), holds for f E !7Jl and remains valid also for f E %%. 
Therefore, choosing 6 sufficiently small so that the right hand side of (2.21) 
is smaller than E and then choosing N sufficiently large as indicated before, 
we obtain (2.18). 

Finally, (2.19) is a consequence of (2.18) and the fact that (by 
Proposition 2.2) the family of minimizers of (P2y)7 Ix], l:yl 5 M is 
bounded by a bound independent of .f for f in a neighbourhood of g. 0 

The next lemma plays an important role in the proof of Theorem 2.1 
and the results following it. 

LEMMA 2.8. -Let f E %C and let D. = (T,, Tz) be a bounded interval. 
Suppose that 701,~2 E W”,‘(D) and that I’f(D; ~1) = I’f(D, ‘~2) = 0. 
If there exists 7 E (T,,T2) such that (~1, W:)(T) = (~2. W;)(T) then 
201 = 1~2 everywhere in D. 

Proof. - Put 

u(t) = w(t), t 6 [TV., u(t) = wz(t). t E (qT2]. 

Evidently u E W2J (D) and rf(D,u) = 0. Since U, w1,‘w2 satisfy the 
Euler-Lagrange equation we conclude that u = wl, 702 everywhere in D. •i 

To complete the proof of Theorem 2.1 we need two more auxilliary 
results, stated below as Lemmas A and B. The proofs of these lemmas, 
which are more technical than the previous ones, will be given in 
Appendixes A and B respectively. In both of these lemmas we consider 
an integrand f possessing (ATP) and study the relation between a fixed 
periodic minimizer of (pa), say w, and approximate minimizers of 
(Pc~,~)). In Lemma A it is shown that (given 6, A4 > 0) there exists 
e > T, = (period of w) such that every (f, M)-approximate minimizer in 
(0, T), T > e, whose endvalues are bounded by M, is intermittently close 
to w in the following sense. Every interval D c (0, T) ! 1 D I = e contains a 
subinterval D* of length T,, such that supD, IX, - X,,. I < E where w* is 
a translate of IU. In Lemma B it is shown that if in addition to the above, 
the endvalues of u are sufficiently close to n(w) (=the limit set of w), 
and if M is sufficiently small, then the relation described above holds in 
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every subintewal D* of length T,,,. (In general the translate w* will depend 
on D*.) Finally, these properties persist in a neighborhood of the given 
integrand. The precise formulation follows. 

LEMMA A. -Suppose that g E M possesses (ATP). Let w be a periodic 
minimizer of ( Pa) with integrand g and let T, > 0 be a period of w. Given 
MO, Ml, E > 0 there exists an integer q1 > 1 and a neighbourhood U of g 
in % such that the following statement holds. 

Let f E U and T 2 qlT,,,. rfv E W211(0, T) satisfies 
(2.24) 
IX,(t)1 I MO for t = O,T, If(O, TV) i f-J&G(O), X,(T)) + MI: 

then, for every 7 E [0, T - qlT,] there exist < E [0, T,) and s E 
[r, T + (ql - l)T,,,] such that 

(2.25) IX,(s + t) - Xw(r + t)l I E, t E [UC,]. 

LEMMA B. -Let g, w, T, be as in Lemma A. Given 6 > 0 there exist 
S E (0,l) and Qo > T,, such that for every Q > Qo there exists a 
neighbourhood UQ of g in @I such that the following statement holds. 

Let f E LL, and 7 E [Qo, Q]. Zf ‘u E W211(0, T) satisjes, 
(2.26) 
d(X,(t), R(w)) 5 6 for t = 0, T, If(O, T> 71) I U,f(Xv(O), x&q) + 6, 

then, for every s E [0, r - T,] there exists < E [0, T,) such that (2.25) holds. 

Proof of Theorem 2.1. - It is sufficient to prove the theorem for all 
sufficiently large M. Therefore we may assume that 

M > Wfwll~-(~, + 8. 

By Proposition 2.2 there exist a neighborhood of g in !%, say S(M), 
and a number 5’ > M + 1 such that for each f E n(M) and each 
T 2 inf{l,T,}: 

(2.27) v E W2~1(0,T), IJWOl, lX,(T)I 

F M + 1: If(O, T, v) < L&X,(O), X,(T)) + 4 

implies that, 

(2.28) IX,(t)/ 5 S, t E [O,T]. 

Given E as in the theorem, there exist S E (0,l) and Q. > T, such that 
the statement of Lemma B holds. 
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By Lemma A there exist a positive integer q1 and a neighborhood of g 
in ?%, say %(S, S), such that for each f in this neighborhood and each 
T 2 qlTW: 

(2.29) ‘u E W2~‘(0,T), IX,,(t)1 5 S + 1 for t = 0,T. 

If@, T/u) 5 @(X,(O), X>(T))+4 

implies that for every r E [0, T - qlT1,,] there exist < E [0, T,,.) and 
s E [r: r + (ql - l)T,] such that 

(2.30) 

Choose 

IX& + t) - X,,(< + t)I 5 S, t E [O,T,,]. 

(2.31) QI > S(Qo + qlTw). 

By Lemma B there exists a neighborhood of g in !%%, say %, such that for 
each f E !X, and each r E [QO,Q1]: 

If 21 E W’>l(O,r) satisfies (2.26) then for every s E [O,r - T,:] there 
is c E [0, Tw) such that, 

(2.32) IX& + t) - X,,;(I + t)l 5 6, t E [O,Tw]. 

We claim that the statement of the theorem holds with U, = n(M) 0 
fl(S, 6) f7 ‘&, with S as above and e = 2qlTW + 4(Q1 + 4). 

Assume that f E U,, T > 2C+ T,, and %r satisfies (2.13). Then II satisfies 
(2.28) and consequently (2.29). Therefore, for each r E [0, T - qlTW] 
there exist < E [0, T,,,) and s E [‘T, r + (41 - l)T,,] such that (2.30) 
holds. Let m be the largest integer such that (m + l)qIT,,, 5 T. 

k = O;‘.pr~, rk 
Jk: E [O: T,,) and 

Put rk = kqiT,,. k = 0;. . . , m + 1. Then, for 
is in [0, T - q1T,,,] and consequently there exists 
Sk: E [‘%,rk: -k (41 - l)Tk] C [rh,rk+i) such that, 

(2.33) IXv(.~k + t) - xX,(& + t)I < 6, t E [0, T, 

This implies, 

,I. k: = 0, . . , 717,. 

(2.34) d(x,(sk), b>(w)) 5 6, k = 0.. . , 711. 

Let ~0 be the smallest integer such that v. > Qo/(qlTW) and let vl be 
the largest integer such that v1 5 QI/(qlTW). Since Qi - Q. > 8qlTW we 

Awdrs dc l’htifut Hmri Poir~arG Analyse non lintaire 
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have v1 - v. > 6. an interval Put D,,I, := [sj, sic] where 0 < j < k 5 m 
and observe that if ~0 + 1 < k - j 5 ~1 - 1 then, 

620 I VOQIT~, < rr~ - ~j+l 5 lDj,r~l I ~k+l - Tj 5 VlqlTw I &I. 
Further observe that the last inequality in (2.13) implies that, 

(2.35) asj, %V) I U~(X&j),X&k)) + s. 

Indeed this holds for every subinterval of [0, T] because, 

If(a7 b, U) is additive and U,f_ ,(X,(a),X,(b)) is subadditive 

on finite partitions of (0,T) consisting of subintervals and because 

1% b,v) 2 usf-,(X,(4, X,(b)). 
Therefore we may apply Lemma B to the function ‘u restricted to Dj,n where 
v. + 1 < k - j 5 VI- 1, and conclude that for every s E [sj, sk - T,] there 
exists < E [0, T,) such that (2.32) holds. Finally this implies that for every 
s E [so, sm - T,] there exists < E [O,T,) such that (2.32) holds. Since 
SO 5 qlT, and T - s,, > 2qlT,,, we find that the theorem holds with e as 
above. 0 

The following result is an immediate consequence of Theorem 2.1, 
Proposition 2.2 and Lemma 2.1. Roughly it states that if f has (ATP) 
and w is a periodic minimizer of (Pm) then every (f)-good function is 
eventually ‘close’ to 20. 

THEOREM 2.2. - Assume that g E %l has (ATP) and w E W?i (R1) is a 
periodic (g)-minimizer with a period T, > 0. Then, for every t > 0, there 
exists a neighborhood U of g in ?%Z such that for each f E U: 

If v is an (f)-goodfunction, there exists t, (depending on E, v) such that, 
for every s > t,, there exists < E [0, T,) such that, 

IX&+t) -Xw(F+t)I i E, t E [V’u,]. 

COROLLARY 2.1. -. If f E M has (ATP) then problem (Pa) possesses a 
unique (up to translation) periodic minimizer. 

Finally we observe that Theorem 1 .l can be easily deduced from 
Theorem 2.1. Suppose that G satisfies (1.1) and (1.2) and let Z(a, bZ, b3) 
and & (a, bz, b3) be defined as in (1.3),( 1.4). Clearly, for G and C as in 
(l.l)-( 1.4) and an appropriate choice of a, 

and the operator 

4 --t F+ E W~,,M,~), $ E C(a,bz,h) 
is continuous. Therefore Theorem 2.1 implies Theorem 1.1. 
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3. PROOF OF THEOREMS 1.2, 1.3 

First we establish a more general version of Theorem 1.2: 

THEOREM 3.1. - Let f E 5X. Then there exists a nonnegative function 
4 E CW(R1) such that 4(t) > Ofor all large Itl, 4’“) is boundedfor every 
rn > 0, and the following statement holds. 

Denote 

Then for each p E (0, I), fp E !7X, p(fp) = p(f) and problem (-F,) with 
f = fp possesses a unique (up to translation) periodic minimizer. 

We start with a brief description of the strategy of the proof, which 
will be presented through several lemmas. Given f E ?JJl, denote by CZ( f) 
the set of all periodic (f)- minimizers of (P,). If ‘u E C(f) is not a 
constant, we denote by ~(711) the minimal period of w. In the first lemma 
we show that every non-constant periodic minimizer w has precisely two 
extremal points in each interval [a, a + ~(‘Lu)) and is strictly monotone 
between two consecutive extremal points. Using this fact we show that 
if p(f) < inf{f(t,O,O) : t E R1}, then the set {T(W) : w E E(f)} is 
bounded. Next we show that there exists *UJ* E C(f) whose range D,-. is 
minimal in the sense that it is either disjoint from or stricty contained 
inthe range of any other element ‘w E E(f), unless w is a translate of ,w*. 
Finally we observe that if there exists & E C”(R) which vanishes on D,,.- 
and is positive everywhere else, then the assertion of Theorem 3.1 holds. 
Since D,,* is a closed bounded interval, such a function is easily constructed. 

LEMMA 3.1. -Assume that w E c(f) an w is not constant. Applying an d 
appropriate translation we may assume that w(0) = rninRl w. Then there 
exists 7 E (0,7(w)) such that w is strictly increasing in [0, ?] and strictly 
decreasing in [F, T(W)]. 

Remark. - In the special case f ( w, w’, w”) = lw”12 - qpu’12 - (7~” - q2, 
this lemma was independently established by Mizel, Peletier, Troy [14]. 
Their proof uses the special symmetries of the integrand. 

Proof. - Let E = (7 E [0, a) : W’(T) = 0). We claim that E fl [0, T(W)] 
is a finite set. Otherwise there exists a sequence of positive numbers {tlL} 
converging to a point t* E [0, T(W)], such that w’(tn) = 0, n = 1? 2,. . . . 
By the mean value theorem, this implies that for m = 1, . . . ,4, there exists 
a sequence {tm,n}rZ, converging to t*, such that w(*)(t,,,) = 0 for 
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all n. Therefore w(‘,)(,*) = 0, m = 1, . . . ,4. Since w satisfies the Euler- 
Lagrange equation corresponding to our variational problem this implies 
that w is a constant, contrary to our assumption. (Note that, for f E !7JI the 
Euler-Lagrange equation is a regular, fourth order equation.) 

Put, 

~~ = sup{r E E n [0,7(w)] : w’(t) 2 0, Vt E [0,-r]}. 

Clearly rl E (0,7(w)) and w is strictly increasing in (0,~r). Similarly 
we define 

r2 = sup{7 E En (q,~(w)] : w’(t) 5 0, b’t E [q,~]}. 

Proceeding in this manner we obtain a strictly increasing sequence 
{Tj 1 9 = 0; ’ “, k} such that ~0 = 0, ok = T(W), W’(Tj) = 0, j = 0,. . , Ic 
and w’ does not change sign in each of the intervals Dj = [T): rj+l], j = 
0:. . . , !G - 1. More precisely, ‘w is strictly increasing in Dj, if j is even, 
and strictly decreasing in D,, if j is odd. Obviously t?~ is even. 

Let DT denote the interval [w(~j), w(rj+l)] (resp. [w(~?+l), w(T~)]) 
when j is even (resp. odd). 

Evidently, for each integer j, 0 2 j < Ic the function t  + w( t )  t  E Dj 
is invertible. Composing the inverse function thus obtained with the 
function t  + w’(t), t E Dj, we obtain a function 1~ E C(DT) such 
that w’(t) = hj(w(t)) for every t  E Dj. 

Now we claim that for i < j, w(~j) # w(~i), unless i = 0 and j = k. 
Suppose that there exists (1:, j) # (0, Ic) such that 0 < i < j < k 
and UI(T~) = w(~%). Then let u be the periodic function, with period 
7j - 7;, such that u(t) = w(t), t E [pi, ~j]. Recall that w’(mL) = 0 
for m = O,... , /G . Hence u E W?d,l(I?‘). Furthermore, by Lemma 2.4, 
l-f(D;u) = I’f(D; w) = 0 in every bounded interval D. (Recall that the 
function D -+ I’f(D; U) is additive.) Therefore by Lemma 2.8, u = 211, 
which contradicts the assumption that the period of u is strictly smaller 
than r(w). 

Next, we claim that, if k > 2 then 05 c DTpl for j = 1, . . . , k. We 
verify this claim by induction. For j = 1, we have w(O) < w(7i) < w(~r). 
(Recall that w(0) is the minimum of w.) Furthermore, since k > 2, the 
previous argument yields w(0) < ~(72) < ~(7~). Now suppose that the 
claimholdsforj = I,..., m - 1. To fix ideas assume that m is even. Then 
we know that w is strictly increasing in D, so that w(~~+r) > w(rmL). 
We must show that w(~,+r) < w(~~-I). Suppose the contrary. Since, by 
assumption, DLel c Dhp2 it follows that, 
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Therefore the functions /I,,,, -2 and II.,,, defined in LIE, -2 and D;,, respectively 
must intersect somewhere in [w(T,,,): w(~,~,-~)]. (Recall that both functions 
are non-negative in their intervals of definition and vanish at the end 
points of these intervals.) This means that there exist sl E Drrl-:! and 
.s2 E D,,, such that (w, w’)(s~) = ( ‘w, w’) ( .Q). However, applying once 
again Lemma 2.8, the argument used before shows that this is impossible 
and proves our claim. 

Combining the last two claims we conclude that, if X: > 2, the inclusion 
D,; c D,;-1: ,j = 1.. . . k: is strict. But this is impossible because 
w(q)) = Ul(Tk). 0 

COROLLARY 3.1. - Suppose that f E ?lX and that f(xl,x.,+ :I:~) = 
,f(:xl. -:r~z, ,cg), for every .I’ E R”. Let w and Y he as in the statement 
oj’the lemma. Then ,UI’ > 0 in (0; ?) and u’ < 0 in (7. ‘T(W)). Furthermow, 
7 = 7(w)/2 and w is even. 

PIV@ - Since f is even in the second argument, it follows that the 
function 73 given by IF(~) = ,/1)(-t) is also a periodic minimizer. Recall 
that we assume that W(O) = uliu~~ w so that W’(O) = 0. Consequently, 
X,,,.(O) = X,(O). H ence, by Lemma 2.8, 711 E ,/fi i.e. w is even. Further 
this implies that 70(t) = IC(T(III) - -C) for every real li. Now suppose that 
s E (O.r(u~)) and W’(S) = 0. Then X,.(s) = X,,.(7-(SW) - Y). Using again 
Lemma 2.8 we deduce that rr~(t) = ,r~(t + 2s - T(~I:)), for every /- E R1. 
Thus 2s - ~(~11) is a period of III and therefore it must be equal to X;~(W) 
for some integer X:. Since .s E (0. P-( (11)) it follows that h: = 0. This proves 
our assertion. 0 

LEMMA 3.2. -Assume that f’ E %I satisjes the cotldition, 

(X2) j/,(j) < inf{f’(t, 0.0) : f E LX’). 

Then no element of C( f ) is constut7t cmd 

(3.3) s11p{T(f1!) : ‘/I’ E E(f)} < x. 

Kemnrk. - This result was established by Marcus 1131 in the special case 
.f( I!. 11’. ,v”) = /u”12 - /L171’12 + $(1!), f or a large class of potentials lb. 

Prooj: Step 1 - Suppose that (T,}E”=, is a sequence of positive numbers 
tending to infinity, and that {III; : SW~ E W2,1(0. T;)) is a sequence of 
functions such that, 
(3.4 
(i) rf(O,T;,w;) = T&(f) + 7rf(x,z (0)) - 7rf(x,L;, (T;)). i = 0.1.2.. . . 

(4 { IXW (0) I )z”=o and { IX,.z (T;)I}&, are bounded, 

(iii) w;(t) 2 0, t E (O,T,), i = o> 1.2,. . . 
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We claim that. 

(3.5) p(p) = inf{f(z,O,O) : z E Rl}. 

The same conclusion holds if in (3.4), the condition “uI:(~) 2 0” is replaced 
by the condition “w{(t) < 0”. 

Assumption (3.4)(i) implies that If(0, Ti, wi) = UJ? (Xwz (0), X,wt (T;)) 
and consequently, Proposition 2.2 and assumption (3.4)(ii) imply that there 
exists M > 0 such that, 

(3.6) 

and 

(3.7) II~~ll~~n.-,(~;~+~) 5 M. ‘dT E (O,T, - l), 1 = 0,1,2,. . . . 

Therefore there exits a subsequence (which we shall continue to denote by 
{III~}) and a function u E W:;,‘(O: oo) such that, for every T > 1, 

‘UI, + ‘u weakly in W2.“‘(07 T) as % + 00. 

By the lower semicontinuity of integral functionals [3] and Proposition 2.1, 

I,f(O.T.a) = Tp(f) + r”(X,,(O)) -&(X,,(T)), ‘dT 2 1. 

By (3.7), 

(3.8) l/ull~~~~-,(~.~+1~ 5 M. b’T E (1,x) 

and by (3.4)(iii), 71 > 0 in (0, cc). Consequently I possesses a finite 
limit, say &I, and u’(t) + 0 as t + x. 

Let’Uj,j=0.1,2 ,... be the function defined in [0, 11 by “j(t) = ,u(j+t). 
By (3.8) the sequence {ruj} is bounded in lV2.‘(0, 1) and therefore 
a subsequence will converge weakly in this space to a function U. 
Clearly u is the constant function u E da. Since rf(O: 1; u,) = /i(f) + 
n.f(X(,(i)) - nf(X,,(j + 1)) and X,;(j) converges, we conclude (by the 
lower semicontinuity of integral functionals) that If(t), 1. U) = p(f). This 
implies (3.5). It is obvious that the conclusion remains valid if the sign 
in (3.4)(iii) is inverted. 

Step 2. - Assume that the assertion of the lemma is not valid. Then there 
exists a sequence {wi}~r in E(f) such that 

(3.9) 
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Without loss of generality we may assume that %u; (0) = minn %o,, i = 
1,2,. . . . 

By Lemma 3.1, for each integer i > 1 there exists a number 
7% E (0,+4)) such that w; is strictly increasing in [0, ?i] and strictly 
decreasing in [?i;, r(wi)]. In view of (3.9) either ?; -+ cc or r(wi) -7; -+ 3cj 
or both. In the first case put Ti = 7, and U; = ~i][~.~,l; in the second case 
put Ti = A - ?i and define rii in [O,Z’;] by, u;(t) = wi(t + F%) for 
i = 1,2,..‘. Then the sequence {Ti} tends to infinity and the sequence 
{zJ~} satisfies conditions (i), (iii) of Step 1, possibly with a negative sign in 
(iii). Furthermore, by Proposition 2.3 there exists a number S > 0 such that 

(3.10) sup{JX,,(t)l : t E RI. u E C(f)} < 5’. 

Thus the sequence {rli} satisfies also condition (ii). 
Consequently, the statement established in Step 1 implies that (3.5) holds, 

which contradicts the assumptions of the lemma. q 

LEMMA 3.3. -Let f E %I. If w1,w2 E C(f) then the sets 

Di := {w;(t) : t E R}, i = 1.2 

are either disjoint or one of them is contained in the other. Furthermore 
iJ; say, D1 C D)z then either ~1 is a translate qf w2 or D1 is contained 
in the interior of Dz. 

Proof. -We may assume that wi(O) = minR wir i = 1,2. By Lemmas 2.8 
and 2.4, if w1 $ wz, then for any two points si E (0, I), i = 1,2 we 
have (wI,w~)(sI) # ( w2, wi)(sz). Therefore, if one of the two functions 
(say wi) is a constant, then the value of this constant must be different 
from both the minimum and the maximum of w2 so that our claim holds. 
Thus we assume that neither of the two functions is a constant. Hence, 
by Lemma 3.1, there exists exactly one point ?i in (0, r(wi)) such that 
wi is strictly increasing in [0, Fi] and strictly decreasing in [?ii: r(wi)]. 
Consequently the function w,, i = 1,2 is represented in the phase plane 
(UI, w’) by a simple closed curve Ai consisting of two branches stretching 
between the points (wi (0) , 0) and (w;(?i),O) and Ai fl A2 = 0. Since 
D; = [w;(O), w;(?;)] this proves our claim. 0 

Define 

(3.11) 9 = {{,w(t) : t E R’} : w E C(f)}. 

LEMMA 3.4. -Let f E M. The set 9, ordered according to set inclusion, 
possesses a minimal element Do such that, for every D E 9 either Do C D 
or DO n D = 0. 
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Furthermore, if 

(3.12) p(f) < inf{f(z,O,O) : z E Rl}, 

then 9 possesses only$nitely many minimal elements. 

Proof. - If p(f) = inf{f(Z,O,O) : z E R1} then there exists a periodic 
minimizer which is a constant so that li) contains an element Da consisting 
of one point. Obviously Da is a minimal element of 9. Therefore we may 
assume that (3.12) is valid. We claim that under this assumption, 

(3.13) Q! := inf{]D] : D E D} > 0, 

and that there exists w E PZ( f) such that max ‘u - min ‘u = (u. 
Let { wn} be a sequence in E(f) such that (Y, := max w, - inf w, -+ a. 

We may assume that each function w, attains its minimum at zero. Put 
b,, := minR wn, c, := maxn w, and TV := r(w,). By Lemma 3.2 the 
sequence of periods {I} is b ounded and, by Proposition 2.3, the 
set E(f) is uniformly bounded. Therefore, by taking a subsequence if 
necessary, we may assume that {b,}, {cn} and (7,) converge. We denote 
their limits by b*, c*, r* respectively. By Lemma 2.2, {wn} is bounded 
in W;:(R) d an consequently there exists a subsequence { wn3 } which 
converges weakly in W2,Y(0, T) and strongly in C1[O, T], for any T > 0. 
Its limit w satisfies b* = v(0) = minn+ v and c* = maxR+ V. By the weak 
lower semicontinuity of the functionals, u is (f)-perfect (see (2.15b)). If 
7-* = 0 then b* = c*, i.e. u is a constant. However, by (3.12), this is 
impossible. Thus r* > 0 and u is a periodic minimizer with period r*. 
Hence D* = [b*, c*] E 9 and c* - b* = Q. Since u is not a constant Q > 0. 
Therefore (3.13) holds and our claim is proved. In view of Lemma 3.3 this 
implies that D* is a minimal element. 

In order to verify the last statement of the lemma, observe that if Di, Da 
are two distinct minimal elements of 9 then, by Lemma 3.3, Dt tl D2 = 0. 
Therefore, the uniform boundedness of @Z(f) and (3.13) imply that the 
number of minimal elements is finite. III 

Proof of Theorem 3.1. - Let wg be a function in CZ( f) such that 

[b, cl = @JO@) : t E R} 

is a minimal element of 9,. Let 4 be a function in C”(R) such that, 

4(x) = 0, Q'z E [b, cl, $64 > 0, Qx E R \ Lb, cl, 
Vol. 16, no 5.1999. 
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and c$(-) E L”(R), m = 0, 1,2, . . . In the present case such a function is 
easily constructed. In a more general context the existence of such functions 
was established in [2, Ch. 2, Sec.31. 

With 4 as above, let .f, be defined as in the statement of the theorem. Then 

(3.14) Jf”(7/) 2 +). \d’lJ E ~~C~(o,CO). 

If u is a periodic function, equality holds in (3.14) if and only if 

{u(t) : t E [O, co)} & [b, c] 

Hence 

(3.15) Pop) 2 P(f) = J%Jo) = Jfo(wo) 2 dfp). 

Consequently, p(f) = p(&) and w. is a minimizer of (Pm) with 
integrand f,. We claim that w. is the unique (up to translation) periodic 
minimizer of this problem. Indeed, if w is another periodic minimizer of 
this problem then, by (3.14), (3.15), w E E(f) and {w(t) : t E R} C: [b, c]. 
Since [b, c] is a minimal element of 9 it follows that {w(t) : t E E} = [b, c]. 
However, by Lemma 3.3, this implies that ‘w is a translate of quo. 0 

Next we prove a slightly stronger formulation of Theorem 1.3 (i): 

THEOREM 3.2. - Let f E IM. ifq5 E C”(R) and f, are as in Theorem 3.1 
then, for each p E (0, l), fp possesses (ATP). 

Proof. - First suppose that h(f) < infR f(.,O, 0). In this case the 
statement of the theorem is an immediate consequence of Theorem 3.1 and 
the following result of Zaslavski [ 181: 

Assume that h E M and that p(h) < infR h(., 0,O). Then h has (ATP) if 
and only if there exists a unique (up to translation) periodic (h)-minimizer. 

Next suppose that p(f) = infR f(., 0,O). Then there exists to E R1 
such that f(&, 0,O) = h(f) and 4 is positive everywhere except at <a:By 
Theorem 3.1, for every p E (0, I), problem (Pm) with integrand fp has a 
unique periodic minimizer, namely the constant function with value <a. In 
order to prove that (f,) possesses (ATP) we must prove that, 

(3.16) w E W,‘;;c’(O,xJ) and 71 is (f,)-good ) Jiz(v, v’)(t) = ([a, 0). 

Let ‘u satisfy the assumptions of (3.16) for some p E (0,l). Then, in 
view of (3.14), Jf(u) = p,(f). Since 

A~tnrrles de I’lnstitut Hmri Poincur@ Analyse non Ii&ire 
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and $0 (., U) is bounded on (0, m) it follows that qf(., U) is bounded, i.e. 
‘u is an (f)-good function, and limT+QS JOT @(v(t))& < cc. We claim that 

(3.17) pir v(t) = E”. 

Indeed by Lemma 2.2 ‘u and ‘u’ are uniformly continuous on (0, oc). 
Therefore, if there exists a sequence {&} tending to infinity such that 
~(t,,) + <i # &, then there exists a positive 6 such that 

linn’,“f dist (ia: {v(t) : t,, - S 5 t 5 t, + S}) > 0. 

Since ‘u is bounded and $ is positive except at <o this contradicts the 
integrability of 4( w( .)) on (0, cc). 

Next we claim that limt,a v’(t) = 0. If not, assume for instance that 
limsup v’(t) = 5 > 0. Then, because of the uniform continuity of w’, it 
follows that there exists a sequence {tn} tending to infinity and a positive S 
such that inf{v’(t) : t,, -S 2 t 5 t, + S} > c/2 for all sufficiently large 71. 

Therefore v(t, + 6) - v(t,) > SC/2 for all sufficiently large 71, which 
contradicts (3.17). Thus limt-oc(u, v’)(t) = (<o,O) and (3.16) is proved. 0 

Finally we turn to, 

Proof of Theorem 1.3 (ii). - Denote by E the set of all functions 
4s E Jq%h,b3) such that F4 has (ATP). By Theorem 3.2 the set E 
is everywhere dense in C(Q, ba, bs). For each 4 E E there exist 
vu& E Wl”d,‘(R’),T, > 0 such that 

(3.18) u+(t + T+) = q(t). t E R1, IF”(O, T4, vci+) = ,u(F+)T+ 

Let 4 E E, n > 1 be an integer. By (3.18), the definition of the set E, 
the continuity of the operator 

4 + F$, 4 E C(a,kt,bs) 
and Theorem 2.2 there exist an open neighborhood U(C$, n) of $ in 
C(a, b2, b3) such that for each II, E U($, n) and each (F+)-good function 
w E W,2d,‘(O,co) 
(3.19) dist(n(w), {X,,(t) : t E R1}) 5 (an)-‘. 

Define 
5 = n;=, u {U(+,n) : 4 E E}. 

Let h E 5, wl, wz be (Fh)-good functions. To complete the proof of the 
theorem it is sufficient to show that fl(wr) = R(w2). Let E E (0,l). There 
exist an integer n 2 86-i and 4 E E such that h E U(+, TL). It follows 
from the definition of U(4, n) that 

dist(fl(wi), {X,,(t) : t E R1}) 2 (an)-‘, i= 1,2: dist(o(wi), I) 5 E. 

This completes the proof of the theorem. q 
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APPENDIX A 

This appendix is devoted to the proof of Lemma A, which will be based 
on several additional lemmas. 

LEMMA A. 1. -Let t, ibl > 0. Then there exist 6 > 0 and an integer q1 > 1 
such that ,for each w E W2,1 (0; qlT,,) which sati@ 

64.1) IX,,(s)I 6 Al, s = O,q1T,., 

19(0, q1rLJ, ?I) I 41~wP(S) + 71-“(X(O)) - ~g(xv(qlTu)) + 6 

there exist [ E [0, T,,). T E [0, (41 - l)T,] such that 

Proof. - Let us assume the converse. Then for each integer p 2 I there 
exists up E W2a1(0, pT,) such that 

~gP4P~w,~p) 5 Pch4.~) + ~g(xvp(o)) - ~g(xl&T,,)) + 2-” 

and for each < E [O,T,,), each r E [0, (p - l)T’,,,] 

(A.31 suP{]-K& + t) - X,,,(< + t)l : t E [O, T,,]} > t. 

By (A.2) and Proposition 2.2 there exists Mr > 0 such that for each 
integer p > 1 

64.4) IK&)l I Ml: t E [O,PL]. 

(A.2), (A.4) and (2.2) imply that for any integer n 2 1 the sequence 
{w~}~Yn is bounded in LY[O, nT,]. It is easy to verify that there are 
u E Wr2CT(0, co) and a strictly increasing subsequence of natural numbers 
{pk}r?r such that for every integer n 2 1 

(A.3 ‘flpk + w as k -+ cc weakly in W211 (0, nT,). 

By (A.2) and the lower semicontinuity of integral functionals [3] for 
each integer n 2 1 

64.6) 19(0, G,; u) = nT,p(g) + 7P(X,(O)) - T”(Xv(nTw)). 
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Clearly 

(A.7) IX&)l I Ml, t E [b4. 

It follows from (AS) and the definition of {v~}~W=~ (see (A.2) (A.3)) 
that for each T E [0, co) and each < E [0, TW) 

(A.81 sup{lx,(T + t) - XuJ(< + t)l : t E [O,T,,]} > 2-lf. 

(A.6) and (A.7) imply that the function II is (g)-good. Then 

(A.91 n(u) = O(w). 

There exists a sequence of numbers {tj}cl c (0, co) such that 
(A. 10) 
tl > 8Tw+8, tj+l-tj 2 8T,, j = 1,2,. . . , X,,(tj) -+ X,,(O) as j -+ CC. 

For each integer j > 1 we define uLj E W2,1 (-4T,, 4T,,) as follows 

(A.1 I) Uj(t) = ~(tj + t): t E [-4Tu,,4T,,,]. 

By (2.2), (A.1 l), (A.6) and (A.7) the sequence {z$‘}~=i is bounded in 
LY[-4T,,,, 4Tw]. It is easy to verify that there are u E W2p1(-4Tw, 4T,,,) 
and a strictly increasing subsequence of natural numbers {.j,},“=i such that 
(A. 12) 

uj,(t) + u(t>> u>,(t) + u’(t) as p + cc uniformly in [-4T,, 4T,], 

uyP -+ u” as p --f co weakly in Ly [-4T,,, 4T,,,]. 

By (A.6) and the lower semicontinuity of integral functionals [3] 

(A.13) Ig(-4T,,4Tw,u) = STwp(g) +r”(Xu(-4Tw)) +~~(Xu(4Tw)). 

Clearly 

(A. 14) X,(O) = L(O). 

It follows from (A.1 l), (A. 12) and (A.8) which holds for each r E [0, co) 
and each < E [O,Z’,), that 

sup{lX,(t) - X,(t)1 : t E [O,T,]} > 4;le. 

On the other hand (A.13), (A.14) and Lemma 2.8 imply that u(t) = w(t) 
for all t E [-4T,, 4T,]. The obtained contradiction proves the lemma. q 
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LEMMA A.2. -Let izl,, . ?rll. f > 0. Then there exists an integer q 2 I such 
that ,for each 71 E W2.‘(0. c&) which satisfies 
(A. 15) 
IXt,(.s)l < MO. s = 0. $7 ,,,. I”(()> yT,,,.~u) 2 I’& (X,.(O). X,,(q7;l.)) + M, 

there exist < E [O. Ttlx), 7 E [O; (q - l)T,,,] such that 

(A.16) lX,,(T + t) - X,,:(< + t)I 5 f. t E [OX,!]. 

Procf. - By Proposition 2.2 there is So > k&i + Mi + 2 such that for 
each T > 2-l inf{T,,.. l}. each II E W2~1(0. T) which satisfies 

lX,>(O)I. 1X,.(7)( 5 JJO, I”(0.r. 7)) 5 lJ;(x,.(o). X,,(T)) + Mj + I 

the following relation holds 

(A.17) IX,&)l 5 so, t E [~~.~I. 

By Lemma A.1 there exists an integer y1 > 1 and a number n‘ > 0 such 
that for each ‘II E W2.1(0. qiT,,,) which satisfies 

there exist [ E [O. T(,,). T E [0, ((11 - l)T,,,] such that (A.16) holds. By 
Lemma 2.6 there exists Ku > 0 such that for each 7 > 4T,,,, each :c. :q E R’ 
satisfying IX:], ]:I// < MC, + SC, + 1 the following relation holds 

(A.19) cy(.c.//) ‘: 7&J) + T”(X) - 7r”(Il/) + K(j. 

Here we use the fact that ~9 is bounded on compact sets. Fix an integer 

(A.20) (I > [(Ml + Ko + qn-l + 4]y1. 

Assume that 7~ E VI”.’ (0: q7;, j and (A. 15) holds. It follows from (A. 15) 
and the definition of KO (see (A.19)) that 

(A.2 1) I”(O, 6%. 7)) L: U;y,t<,(X,a(0); Xu(qTw)) + MI 

5 d’wdg) + +‘(Xv(()j) - +‘(X,(qTw)) + MI + Ko 

By the definition of So (see (A. 17)) and (A. 15) 
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There exists a sequence {t;}& c [0, @,I such that 

(A.23) f,, = 0, ti+I = ti+ylT,,, if 0 L: % I s-l, t, E [~T,.-~J~T,,~T,,.]. 

Clearly 

(A.24) s 2 YYl -l - 1 > 3 + S-l(M1+ K(J + 1). 

Together with (A.21) this implies that there is j E (0,. . s - 1) for which 

(A.25) I”(t,j,t,j+l,U) < (tj +l-tj)~(g)+Kg(X,:(tj))-Tg(X,:(tj+l))+b. 

It follows from this relation, (A.22), (A.23) and the definition of S. q1 
(see (A.18)) that there exist [ E [0, !I’,:), r E [“j, tj+l -T,] such that (A.16) 
holds. This completes the proof of the lemma. I? 

Proof of Lemma A. - By Proposition 2.2 there are a neighborhood U1 of 
9 in !??I and a number iI!lz > Ma + Mt such that for each f E U1, each 
T 2 iuf{Z’,;, l} and each II E W2,1(0, T) satisfying (2.24) the following 
relation holds 

(A.26) Ix,,(t)1 5 Adz. t E [O,T] 

By Lemma A.2 there exists an integer q1 > 1 such that for each 
‘II E W2,t(O! qt?“?,,) which satisfies 

(A.27) IXu(O)l, IE=u(~l~w)l I w2! 

I!‘(O, ylT,u. Ii) < U;rlT,, (X,.(O). Xc,(ylT,,.)) + 2M1 + 8 

there exist [ E [O. T,,,), s E [O: (yt - l)T,] such that (2.25) holds. 

There exists a number PO > 0 for which 

(A.28) sllp{Iu;,~~, (:I:.?/)[ : :c.y E R2, Ixl, ly( < A&} < I?(). 

By Lemma 2.7 there exists a neighborhood & of .r/ in !JJI such that 
for each f E Uz, each x:> y E R” satisfying jg:]. ]g/) <= Mg the relation 
]U:l,, (x,~J) - U;i:T,,(:~;. :y)] 5 2-l holds. 

By Lemma 2.7 there exists a neighborhood Ua of !I in !@I such that for 
each f E Us, each ‘u E W2~1(0,y1TU,) satisfying 

inf{I.f(O, yrT,, v),I”(O, yrT,, u)} 5 2l?a + i&l1 + 4 

the relation ]If(O, yrT,,,v) - I”(O,ylT,,,v)] 5 2-l holds. Set U = 
u1 n & n us. 
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Assume that f E U, T > qlT,,,, u E W2>l(0,T) satisfies (2.24) and 
r E [0, T - qlT,]. By the definition of Ui and Mz relation (A.26) holds. It 
follows from (2.24) (A.26) the definition of U2 and (A.28) that 

(A.29) I%. 7 + RT,,,. ,o) 5 rJ&,, (X,.(T). X,:(7 + ~1%)) + MI 

< U,“,T,,,(X~>(r). X,,(r + q~Tw)) + 2-l -t MI L; I?o + 2-l + MI. 

By this relation and the definition of U:% 

II+: r + qlTu,. u) - F’(r; 7- + qlT,,,: ?/)I 2 2-l, 

~g(v + qlTu,.o) 5 ~~~,~(X,~(+L(~ + qlT,,)) + 1 + M,. 

It follows from this relation, (A.26) and the definition of ql (see (A.27)) 
that there exist [ E [0, T,,,), s E [r: r + ylT, - T,,,] such that (2.25) holds. 
The lemma is proved. 0 

APPENDIX B 

Here we establish Lemma B whose proof is based on several auxilliary 
results. 

The following lemma shows that given F > 0 and a (g)-good function U, 
for sufficiently large T the restriction of (‘u, u’) to [T, T -t T,] is within F 
of a translation of (711, PU’). 

LEMMA B. 1. -Assume that II E WzC! (0, co) is a (g)-good @zction and 
E > 0. Then there exists T(F) > 0 such that for each T > T(E) there is 
< E [O,T,) such that 

pL(T + t) - X,>(< + t)l < F, t E [O:T,]. 

Proof. - Since ‘o is a (g)-good function for each S > 0 there exists 
T(6) > 0 such that 

(B.1) 19(n, 72, u) 5 (7-2 - 71)p(g) + ~“(Xv(71)) - T”(X,(T,)) + h 

for each r1 2 T(S) and each r2 > rl (see Lemma 2.4). 
Assume that the lemma is wrong. Then there exists a sequence of 

numbers {ti},“=i c (0,co) such that 

03.2) ti>T(2-i)+2i+2, i=1,2,... 
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and for each integer i 2 1 and each [ E [0, T,) 

(B.3) suP{pGJ(ti + t) - XllJ(< + t)I : t E [O,T,!]} > f. 

For each integer i > 1 we define ui E IV$t (- ti, cc) as follows 

(B.4) P&(t) = v(& + t), t E [-t&m). 

It follows from the definition of T(S), S > 0 (see (B.l)), (B.2), (B.4) 
and (2.2) that for any integer n > 1 the sequence {$}zC=,, is bounded 
in L?[---~L, n]. 

It is easy to see that there exist u E W’2J(R1) and a strictly increasing 
subsequence of natural numbers { $,}Pm,i such that for every integer n > 1 

(B.5) ILL, + ‘u as p -+ co weakly in W2’Y(-7b,n). 

By the definition of T(S), S > 0 (see (B.l)), (B.2), (B.4), (B.5) and the 
lower semicontinuity of integral functionals [3] 

03.6) Jg(n, T2, u) = (72 - 71)&/) + 7%KJr,)) - T”(X,(-r,)) 

for each rl E R1, r2 > TV. 
It is easy to see that for each t E R’ 

X,,(t) E R(v) = {X,(s) : s E R1}. 

Together with (B.6), Lemma 2.8 this implies that there exists [a E [O,T,) 
such that u(t) = w(t + [a), t E R1. It follows from this relation and (BS), 
(B.4) that there exists an integer p. 2 1 such that for each integer p > p. 

I&&, + t) - Xw(lo + t)l I 2-k t E [O,T,,]. 

This is contradictory to the definition of {ti}cl (see (B.3)). The obtained 
contradiction proves the lemma. q 

LEMMA B.2. -Let 6 > 0. Then there exists 6 > 0 such thatfor each r 2 T,,, 
and each s E [0, T - T,], if ‘u is a function in W2,'(0, T) such that 

(B.7) d(X,(s), {X,(t) : t E R’}) < 6, s = O,T, 

IY(O, 7, u) I ~&I) + ~“(Xv(O)) - T”(X,(T)) + 6 

then there is < E [0, T,) for which 

(B.8) IX& + t) - X,,(t + t)l 2 6, t E [V’L]. 
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Proof. - By Proposition 2.1 and the continuity of ~9, U$U for each integer 
% > 1 there exists 6; E (0,4-j) such that for each II:, r/ E R* satisfying 
]z - ~1 < &, d(z, {X,,,(t) : t E R1}) 5 S; the following relation holds 

(B.9) U& (cc, y) < T”(X) - n9(:y) + T,,&) + 22”. 

Assume that the lemma is wrong. Then for each integer i > 1 there exist 
Ti 2 T,, vi E W2,1(0, 7;-) such that 

(B. 10) cqx,,&(s): {X,,(t) : t E Rl}) 5 si. s = o,ri, 

I’(‘> Ti> ?‘i) I GP(.Y) + ry(x?l, (0)) - ~‘(X?J~ (Ti,)) + Sj 

and there exists .si E [0, 7; - T,,] such that for each < E [0, T,,) 

(B.ll) su~{IX,,,(cs; + t) - X,,,((+ t)I : t E [O,T,,]) > c. 

For each integer 1: > 1 there exist <j7 [: E [0, T,,,) such that 

(B.12) IX”J3 - X~&v, lXUx(TL) - Xu.(<‘)I L 6,. 

For each integer i 2 1 there exists a function ui E W*,l(O, ri + 2TU,) 
such that 
(B.13) 
xu,(O) = X&), w(t) = %(t - Tu): t E [T,,Tw + ~17 X,,?(T, + 2Tw) 

= x,&f), Ig(s, s + T,;. II) = U;,, (X,%(s), X,, (s +T,,)), s = 0,~; + T,,:. 

It follows from (B.13), (B.12) and the definition of (S;}gr (see (B.9)) 
that for each integer 1: > 1 

Ig(s, s + Tw: ui) 5 Twp(y) + rg(X,,% (s)) 

-rg(Xu; (s + T,)) + 2+, s = O> ri + T,,,. 

Together with (B. 13), (B.lO) this implies that for each integer i 2 1 
(B. 14) 
Ig(O>7i+2T,,ui) 5 (7-;+2T,)p(.9)+‘irg(X~~(O))-7rg(X~u~((-ri+2Tu,))+3-2-’ 

For each integer i > 1 there exists <f E [T,, 2Tu,] such that 

(B.15) T,T~[[~ + <: - &!+,I is an integer. 

We define sequences of numbers {bi}zp”=l, {c;}~-, as follows 

(B.16) bl=O, ci=bi+q+2Tw, bifl=ci+<;, 1:=1:2 ,.... 
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It is easy to verify that there exists u E W12d,l(O, IX) such that for each 
integer i 2 1 
(B.17) 

4bi + t) = w(t), t E [O,? + 2T,], U(Ci + t) = w(<? + t), t E [O, [i”]. 

For each integer i > 1 we set 

s;=b;+T,,+s+ 

It follows from (B.16), (B.17), (B.13), (B.ll) that for each integer i > 1, 
for each [ E [O,T,,) 

(B.18) sup{p,(sp + t) - Xw(E + t)l : t E [O, T,]} > E. 

(B.17), (B.14), (B.16) imply that u is a (g)-good function. By Lemma B.l 
there exists a number T, > 0 such that for each T 2 T, there is < E [0, T,,) 
such that 

Ixu(T + t) - xw(c + t)l 5 2-k t E [O,T,,]. 

This is contradictory to (B.18) which holds for each integer i 1 1 and 
each < E [0, T,). The obtained contradiction proves the lemma. 

Analogously to Lemma 3.7 in [17] we can establish the following result. 

LEMMA B.3. -Let f E M, w E W,2d,l(R1), T > 0, w(t + T) = w(t), 
t E R1, If(0, T, w) = Tp(f), t > 0. Then there exists an integer q > 1 
such thatfor any [ E [0, T) there is a function u E W2>l(0, qT) such that 
Xv(O) = X,(O)> X,(Q) = Xn(l)r Jf(O, qT, u) I qT&f)+~f(&,(0))- 
~f(xw(r)) + 6. 

Lemma B.3 implies the following result. 

LEMMA B.4. -Let E > 0. Then there exists a number q(E) > 0 such that 
for each 7 2 q(E), each <I, [2 E [0, T,) there exists ‘u E W2>l(0, T) which 
.yatisJie.y K(O) = Xlo(h), X,,(T) = Xw(E2), 

IY(O, 7, u) L 7&l) + 7r”(X,,(O)) - 7r”(X,(T)) + E. 

Lemma B.4, Proposition 2.1 and the continuity of 7r9 and U$ imply the 
following extension of Lemma B.3. 

LEMMA B.5. -Let t > 0. Then there exist numbers S, q(c) > 0 such that 
for each r > q(c), each z, y E R2 sati$ying 

(B.19) d(z, {X,(t) : t E R1}) < S, d(y, {Xu>(t) : t E RI}) 5 S 
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there exists %r E W2,1 (0: T) which satisfies 

X,,(O) = 2> X,,(r) = y. IY(O, T.II) I rp(y)+7(-g(xp,(o))-7rg(xL’(r))+~. 

COROLLARY B.1. - Let c > 0 and let 6, q(t) > 0 be as guaranteed in 
Lemma B.5. Then for each r > q(c), each CC, y E R2 satisfying (B.19) the 
following relation holds 

Corollary B.1 and Lemma B.2 imply the following result. 

LEMMA B.6. -Let 6 > 0. Then there exist S > 0, Q > T, such thatfor each 
T 2 Q, each v E W211(0, 7) which satisjies d(X,,(s), {XW,(t) : t E R1}) 5 
6, s = 0, T, Ig(O, 7, u) 5 U,Y(X,(O), X?:(T)) + 6 and each s E [O,T - T,,] 
there is < E [0, T,,) for which 

t%(s + t) - X,:(E + t)l I t. t E [O,T,]. 

Lemmas B.6 and 2.6 imply Lemma B. 
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