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ABSTRACT. - In this paper we study the positive solutions of the equation 
-au + Au = f( u m a bounded symmetric domain 0 in RN, with the ) . 
boundary condition u = 0 on dR. Using the maximum principle we prove 
the symmetry of the solutions w of the linearized problem. From this we 
deduce several properties of ZI and u; in particular we show that if N = 2 
there cannot exist two solutions which have the same maximum if f is also 
convex and that there exists only one solution if f(u) = ,uP and X = 0. 

In the final section we consider the problem -ATL = up + puq in R 
with ‘u = 0 on 80, and show that if 1 < p < E, q ~10, 1[ there are 
exactly two positive solutions for ,LL sufficiently small and some particular 
domain CL 0 Elsevier, Paris 

R&JM~~. - Dans ce travail nous Ctudions les solutions positives du 
probleme 

-Au + Au = f(u) dans R 
u = 0 sur le bord fi 

oti 12 est un domaine borne et symetrique dans R”. 
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Avec l’aide du principe de maximum nous prouvons la symetrie des 
solutions w du probleme linearise. A partir de ce resultat nous deduisons 
plusieurs proprietes de ‘U et U; en particulier nous montrons que si f est 
convexe et N = 2 on ne peut pas avoir deux solutions differentes qui 
ont le mCme maximum. On prouve aussi qu’il y a une seule solution si 
f(u) = up et X = 0. 

Dans la derniere section nous Ctudions le probleme 

-Au = up + pu’1 dans R 
u = 0 sur le bord de R 

et montrons que si 1 < p < N + 2/N - 2, 0 < (r < 1 et h est petite il y 
a exactement deux solutions positives dans quelques domaines particuliers. 
0 Elsevier, Paris 

1. INTRODUCTION 

In this paper we are interested in studying the qualitative behaviour of 
the solutions of the semilinear elliptic problem 

-AU + Xu = f(u) in R 

(1.1) U>O in R 

u=o on dS2 

where R is a bounded domain of R” and N > 2. It is clear that to 
understand some of the properties of a solution of (1.1) it is important to 
study the linearized operator at u, i.e. 

(1.2) L = A - X + f’(~) 

Here we consider the case of a bounded domain R symmetric with respect 
to the hyperplanes {xi = 0) and convex in any direction 2; , i = 1, . . . , N 
and show how a very simple application of the maximum principle gives 
some interesting results on U. Note that this kind of domains need not 
be convex. 
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More precisely, using some sufficient condition, described for example 
in [6], we show that the maximum principle holds for the operators (1.2) 
in certain subdomains Ri, i = 1, . . . , N determined by the symmetry of R 
(namely R; is “half of R”, see Section 2 and 3). This simple information 
is the key to get all the main results of this paper. 

For example we deduce the symmetry of any solution of the problem 

(1.3) 
'LqkO in R 

.4=0 on dR 

which, in other words, means the symmetry of any eigenfunction of (1.2) 
corresponding to the zero eigenvalue. 

This result was already known for the eigenfunctions corresponding to 
any negative eigenvalues b of L ([4]) and, in the case of the ball, was 
proved in [14] for any p 5 0, when X = 0, using a different argument 
(see Remark 2.1). 

Other important consequences of the validity of the maximum principle 
for L in Ri are some properties of the nodal set of any solution of (1.3) 
(Theorem 3.1) as well as some properties of the coincidence set of two 
possible solutions of (1.1) in the case f is also convex (see Theorem 3.2). 
From this we deduce some results which show that the solutions of (1. l), 
in the symmetric domain considered, behave very much like the solutions 
of the same problem in a ball. For example, in Theorem 3.2 we show 
that if f is convex and N = 2 there cannot exist two solutions of (1.1) 
which have the same maximum; this is a generalization of the uniqueness 
theorem for o.d.e.‘s. 

Exploiting a generalization of this result (Theorem 3.3), we also show 
that if f(u) = up, N = 2 and X = 0 then (1.1) has only one solution. The 
proof is based only on Theorem 3.3 and does not use the nondegeneracy 
of the solution of (1.1). However we also show that in this case solutions 
of (1.1) are nondegenerate and from this we deduce again, as done in [ 131 
for least energy solutions, the uniqueness of the solution to (1.1). 

This last result has already been proved by Dancer in [9] as a consequence 
of a general theorem contained also in [9] and of the known uniqueness 
result for the ball. However our approach is different and does not rely on 
the uniqueness result for the ball. Actually the same proof also applies to 
the case of the ball in lRN, giving so an alternative proof. 

At this point we would like to quote here that, in the case f(u) = uP+Xu, 
the uniqueness result for the ball was proved by Adimurthi and Yadava ([2]), 
Srikanth ([ 171) and Zhang ([ 181) using an o.d.e. approach. Other partial 
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uniqueness results are due to Damascelli ([8]) for star-shaped domains, Lin 
([ 131) and Zhang ([ 193) for convex set in lR2 and f(~) = ‘u?-‘. 

We end the paper by considering the case of f(~) = up + F,u’~, p > 
1, 0 < q < 1, i.e. when f is a sum of a convex and a concave nonlinearity. 
This problem has been extensively studied by Ambrosetti, Brezis and 
Cerami ([3]) who showed, among other things, that for some values of 
1~ and p there are at least two positive solutions. In Section 5 we show 
that in certain symmetric domains and for some small values of 11, there 
are exactly two solutions. This result extends to other domain and with a 
different proof a previous theorem of Adimurthi, Pacella and Yadava ([ 11) 
for the case of the ball. 

2. SYMMETRY RESULT FOR THE LINEARIZED EQUATION 

Let D be a bounded domain in RN, N > 2. Before proving the main - 
result we need to recall a few facts about the maximum principle for 
second order elliptic operators of the form LU = Au + c(z)‘11 with 
c(z) E L”(D), u E M&Y n C(D). 

DEFINITION 2.1. - We say that the maximum principle holds for L in D if 
Lu 5 0 in D and u 2 0 on 8D imply u > 0 in D. 

Two well known sufficient conditions for the maximum principle to hold 
are the following (see [12],[16]) 

(2.1) c(x) 5 0 in D 

(2.2) 
there exists a function g E W2iv flC( D), g > 0 in D such that Lg 5 0 in D 

Now we denote by Xl(L, D) the principal eigenvalue of L in D. The 
meaning and the properties of X1( L, D) are, of course, well known when 
8D is smooth; however in order not to be worried in the sequel about the 
regularity of the domains involved we prefer to refer to the general definition 
of principal eigenvalue given by Berestycki, Nirenberg and Varadhan in [6]. 
This definition is the following 

Xl(L. D) = sup{X : there exists 4 > 0 in D satisfying (L + X)4 2 0) 

In [6] they show that even with this definition all the main properties of 
the “classical” principal eigenvalue continue to hold. In particular we have 
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PROPOSITION 2.1. - The principal eigenvalue X1(L, D) is strictly 
decreasing in its dependence on D and on the coefficient c(x). Moreover 
the “refined” maximum principle holds for L in D if and only if Xl(L, D) 
is positive. 

We refer to [6] for the definition of “refined” maximum principle which 
is a generalized formulation of the maximum principle in the case when 
one cannot prescribe boundary values of the functions involved. 

It is important to notice that, by using this generalized definition of the 
first eigenvalue, it is possible to prove that also the following condition, 
which is slightly different from (2.2), is sufficient for the maximum principle 
to hold. 

(2.3) 
there exists g E 14’2cN tl C(D),g > 0 
in D such that Lg 5 0 in D but g $ 0 

on some regular part of 8D. 

We also recall the following sufficient condition for the maximum 
principle (see [.5], [6]) 

PROPOSITION 2.2. - There exists 6 > 0, depending only on N, 
diam(D), IIcIIP(D) such that the maximum principle holds for L in any 
domain D’ c D with ID’1 < 6 

Finally we remark that regardless of the sign of c if Lu 5 0 in D and 
u 2 0 in D then u > 0 in D unless u z 0 (Strong Maximum Principle). 

Now we consider a solution u E C3(n) rl C1 (n) of the problem 

-Au + Au = f(u) in 0 

(2.4) in Sz 

\u=o on dR 

where R is a smooth bounded domain in RN, N 2 2 and f : R ---+ R is 
a Cl-function with f(0) 2 0. We are interested in studying the linearized 
problem 

(2.5) 

We have 

i 

-Au + Xv = f’(u)v in R 

v=o on dR 

THEOREM 2.1. - Let u be a solution of (2.4) and assume that R is convex 
in the xl- direction and symmetric with respect to the hyperplane {xl = O}. 
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Then any solution v of (2.5) is symmetric in x1, i.e. v(xl ! ~2, . . . , x,~) = 
11(-x1, X2,. . . ) ZN). 

Proof. - The proof is the same as the one shown in a lecture of 
L. Nirenberg in a slightly different case (see also the remark after the 
proof). 

Let us denote a point z in RN by (x1, y), y E lR,“-l. Applying 
the symmetry result of Gidas, Ni, Nirenberg ([lo]) to problem (2.4) 
we get that u is symmetric with respect to z1 and e > 0 in 
R; = {x = (xi, y) E n such that x1 < 0). 

We consider the operator 

(2.6) L = a - x + f’(U) 

and want to prove that the maximum principle holds for L in 0;. To do 
this we show that the sufficient condition (2.3) is satisfied. 

If we set 

(2.7) g=* infi, 
8x1 

we have that g satisfies (2.3) since by the Hopf Lemma & q?! 0 on 
dR n a& (note that we assumed f(0) > 0 in (2.4) ). So the maximum 
principle holds for L in 0,. 

Now we consider the function 

(2.10) 44x:> = 4x1, Y) - 4-Q, Y), x = (Xl, y) E 0; 

where v is a solution of (2.5). By easy calculation, using that u is symmetric 
in x1, we get 

1 

L$J = 0 in $2, 
(2.11) 

?,I) = 0 in f3R; 

and hence 4 = 0 in 0; because of the maximum principle. So 1) is 
symmetric in 2 1. cl 

Remark 2.1. - Let us consider the following eigenvalue problem 

i 

-au + xv = f’(u)v + pv in R 
(2.12) 

v=o on dR 
where u is a solution of (2.4). 

If X = 0 and p < 0 in [4] it is shown that v is symmetric in xi. 
Of course if R is a ball, the previous theorem gives the radial symmetry 

of v. This was already shown by Lin and Ni in [14], using a different 
argument, for any p 5 0 and X = 0. 
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3. SOME PROPERTIES OF THE COINCIDENCE SET 
OF TWO SOLUTIONS AND AN UNIQUENESS RESULT 

In this section we assume that R is a smooth bounded domain in lR” 
convex in the direction zi, Z = 1, . . . , N and symmetric with respect to 
the hyperplanes zi = 0, i = 1,. . . , N. 

Let us consider a solution u of (2.4), where f is a Cl-function with 
S(O) > 0, and a nontrivial solution ‘u of the corresponding linearized 
problem (2.5). 

We make now some important remarks about the nodal set of ‘u that will 
also be used in the sequel. Let us set 

N = {X E R such that U(X) = 0} 

i=i = {ix E R : w(x) # 0) 

0; = {x = (21,. .,2N)E0suchthatzi<0} i=l,..., N 

We have 

THEOREM 3.1. - The following properties_hold 
i) there cannot exist any component of R all contained in one Cl;, 
i = l,...,N. 
ii) if N = 2 then the origin (0, . . . , 0) does not belong to N. 
iii) if N = 2 then N n dR = 0. 

Proof. 
i) Suppose that there exists a component D of 6 all contained in 0; 

and II > 0 in D. Then Xr(L, D) = 0 (where L is the operator defined 
in (2.6)) since w is an eigenfunction of L in D corresponding to the zero 
eigenvalue and does not change sign in D (being ‘u = 0 on dR we have 
II = 0 on a@. On the other hand, in the proof of Theorem 2.1 we have 
shown that L satisfies the maximum principle in 0; and this implies, by 
Proposition 2.1, that Xi (L, 0;) > 0. Then, by monotonicity, also Xi (L, 0) 
should be positive which gives a contradiction. 

ii) We will show that if v(0) = 0 then v z 0. Suppose v(0) = 0 and 
u $ 0 and set Ua = 0. Since u $ 0 and v(0) = 0 by the Strong Maximum 
Principle it cannot be ‘u 5 0 in fl, so that 17: = {X E Ua : U(Z) > 0) 
is open and nonempty. Choose a component Al of U$. If S;, i = 1,2 is 
the operator that sends a point to the symmetric one with respect to the 
xi-axis, we have that $(A,) is also a component of U$ because of the 
symmetry of V. It cannot happen that Al nSl(Al) = 0 or AI fl Sz(A1) = 0 
for otherwise A1 or &(A,) would be contained in R,, which is impossible 

Vol. 16. no 5.1999. 



638 L. DAMASCELLI, M. GROSS1 AND F. PACELLA 

by (i). So Al = S,(A1) = S2(Al) is symmetric with respect to the 
coordinate axes and is open and connected, therefore arcwise connected. If 
we choose four symmetric points Pj, j E { 1; .4} and join them with 
simple polygonal curves symmetric in pairs, we can costruct a simple closed 
polygonal curve Ci C Al which is symmetric with respect to the axes. By 
the Jordan Curve Theorem U0 \ C1 has two components and, because C1 is 
symmetric, the origin belongs to the component which has not au,, as part 
of the boundary. Let us denote by Ui the component that contains 0 and 
call it the interior of Ci, while by the exterior of C1 we mean the other 
component. On dUr = Ci we have ‘u > 0, so that v $ 0 in Ui and, by 
the Strong Maximum Principle, it is not possible that II > 0 in Ui, since 
*u(O) = 0, so that U; = {z E Ii, : U(X) < 0} is open and nonempty. 
Taking a component A2 of UC we observe that u = 0 on dA2 because 
I) > 0 on XJi so that A2 is also a component of R. As before we can 
costruct a closed symmetric simple curve Cz c A2 and in the interior U, 
of C, ( the component of Ui \ C2 to which the origin belongs) we can 
choose a component A3 of U; = {X 5 Uz : U(X) > 0} which is also 
a component of R. Moreover A3 is disjoint from Al because Al contains 
Ci = dRi which belongs to the exterior of C2. Proceeding in this way 
we obtain infinitely many disjoint components {A7j,}7L21 of 0. This is not 
possible because by Proposition 2.2 there exists S > 0 such that IA,, 1 > 0 
for each n, otherwise by the Maximum Principle v would be 0 in A,, , since 
‘U = 0 on dA, and Lw = 0 in A,, with L = A - X + f’(a). Hence there 
are only finitely many components A, which gives a contradiction. 

iii) We will show that in a neighboorhood of 362 we, have u > 0 
or ‘u < 0. Suppose the contrary and choose a component Al of 
U(+{ZEU~ : v(x) > O}. Since v = 0 on 190 we have li = 0 on 
i)Al and as in (ii) we costruct a closed simple curve Ci c Al symmetric 
with respect to the axes. In the exterior Ul of C1, i.e. in the component 
containing dR there are points where II < 0 by what we assumed. So 
we can costruct a closed simple curve C, c A2 where AZ is a nonempty 
component of 17; = {x: E U1 : U(X) < ,O}. Proceeding as in the proof of 
(ii) we obtain infinitely many components of 6 which is not possible by 
Proposition 2.2, as we remarked before. 

Remark 3.1. - If 62 is a ball in R”, the properties i) - iii) are easy 
consequences of the radial symmetry of V. 

Now we consider two solutions u1 and u2 of the problem (2.4) and set 
M={x E R such that ul(z) = Us}; 5^2={z E 0 such that ldl # ~2) 

The next theorem contains some information on M and a partial 
uniqueness result. 
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THEOREM 3.2. - Suppose that f is convex. Then we have 

(3.1) there cannot exist any component D space of 6 
all contained in one fl;, % = 1,. . . i N. 

(3.2) ifN=2 then M n XI = 0 

(3.3) ifN=2 and maxur(z) = maxuz(z) then Ul E u2 
.d=i .a 

Proof. - Set w(z) = ~~(5) -Us, x E 0. Since f is convex w satisfies 

(3.4) 
{ 

Aw - xw + f’(u2)w 5 0 in R 

and 

w=o on dR 

{ 

Aw - Xw + f’(ui)w 2 0 in Cl 
(3.5) 

w=o on dR 

First we notice that if w 2 0 by (3.4) and the strong maximum principle 
w > 0 in Q so that R = R. Thus we assume that w changes sign in 0. 
To prove (3.1) let ut argue by contradiction supposing that there exists 
a component D of R all contained in 0,; for some i E { 1, . . . , N} and 
w > 0 in D. 

Since in Theorem 2.1 we proved that in 0, the maximum principle 
holds for the operators L; = A - X + f’(ui) i = 1,2, by Proposition 2.1 
we have that Xi(Li, C&F) > 0, for i = 1,2. Hence also X1(L1, D) > 0 
and, again by Proposition 2.1, the “refined” maximum principle holds for 
L1 in D. This last fact together with (3.5) would imply that w < 0 in D 
against what we assumed. If instead we suppose w 5 0 in D then we argue 
in the same way using the operator Lz and (3.4). 

To prove (3.2) it is enough to observe that, by the Gidas, Ni and Nirenberg 
symmetry result, u1 and n2 are symmetric in any 2; and hence so is w. Thus 
arguing as in iii) of the previous theorem the assumption M rl dR # 0 
would bring a contradiction. 

Finally, to prove (3.3), we notice that, again by the Gidas, Ni and 
Nirenberg result, ;E~ U;(X) = u;(O), 1: = 1,2; therefore if the two maxima 

coincide the origin belongs to M. As in ii) of Theorem 3.1 this gives a 
contradiction. cl 
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Now we prove a generalization of (3.3) of Theorem 3.2 that will be used 
in the proof of Theorem 4.1. 

Let R be as before and N = 2. Let us call a function u E C’(a) 
symmetric and monotone if u is symmetric in :rl; :c2 and & > 0 in a;, 
% = 1; 2 and let f : IR + R be a Cl-function. 

THEOREM 3.3. - Suppose that N = 2, f is convex and 11,~. 1~~ E 
C”(12) n Cl@) are symmetric and monotone functions that sutisfy the 
equation 

(3.6) -au + Au = f(u) in f2 

Zful(0) = ~~(0) d an u1 < ~2 on dR then ~1 and u2 coincide. 

Proof. - As in the proof of Theorem 2.1 we deduce that the operators 
L = a-x+f’(~;), 1, = 1,2 satisfy the maximum principle in 0;, j = 1: 2. 

Since the difference ‘u! = ‘ul - ‘u2 satisfies a linear equation a,w - X,cu + 
C(X)W = 0 with c E L”(R) and f E C1 we have that Proposition 2.2 and 
the strong maximum principle apply to ‘w. Arguing as in Theorem 3.1 we 
first deduce that cannot exist any component D of 6 = {X E R : 141 # u2 } 
such that u1 = 11,~ on dD and contained in fly, j = 1: 2. 

Then we can follow exactly the proof of Theorem 3.1 with the 
only remark that in the first step we choose a component Al of 
0; = {x E R : W(YJ) > O} and we have ?u = 0 on dAl, because 
of the hypothesis W(X) 2 0 on X2. So Al is also a component of 6 with 
u1 = u2 on dAl. The same property holds, by construction, also for the 
other components Aa: A,; therefore we conclude as in Theorem 3.1. 

Remark 3.2. - If (2 is a ball then any solution u of (2.4) is radial and 
hence the claim (3.3) follows immediately from the theory of ordinary 
differential equation. Therefore this result can be seen as a generalization 
of the uniqueness theorem for an o.d.e. 

Nevertheless it is instructive to see how we can get very easily this result 
in a ball without using the underlaying’ ordinary equation but exploiting 
only maximum principles. Therefore suppose R = BR(O) c RN and 
PL, E C”(n), i = 1,2, satisfying --au = f(u) in 0. Let us prove that if 
‘ul (0) = u2 (0) then u1 G u2. In fact the difference 10 = ~1 - u:! satisfies 
a linear equation aw + C(X),W = 0. By Proposition 2.2 there exists 6 > 0 
such that if 0 5 r1 < 7’2 < R and r2 - rl < 6 then the Maximum Principle 
holds for a + c in B,, \ B,,, We claim that ~1 and u:, coincide on dB,. for 
any r < 6. In fact it cannot be ~1 > ‘~2 on dB,. because by Proposition 2.2 
and the strong maximum principle it would be u1 > up on B,, against the 
assumption ~~(0) = ~~(0). In the same way it is not possible that u1 < up 
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on dB,. So u1 E ~2 in Bs. Making the same reasoning in B;& \ Bi6 (that 
has dB6 in the interior) we get u1 s 212 in Bs6 and after a finite number 
of steps we get u1 s 2~2 in BR. q 

4. THE CASE OF f(u) = up 

Here we assume R C RN as in the previous section and consider the 
case of f(u) = up, p > 1, so that (2.4) and (2.5) become, respectively 

(4.1) 

and 

(4.2) 

-Au+Xu=uP 

u>o 

u=o 

-Au + Xv = pup-lv 

v=o 

in R 

in R 

on dR 

in R 

on dS2 

We recall that u is said to be a nondegenerate solution of (2.4) if (2.5) 
admits only the trivial solution v E 0, i.e. if zero is not an eigenvalue for 
the operator L = -A + X - pup-‘. 

We have 

THEOREM 2.1. - Let X = 0. If N = 2 or R is a ball in RN then 
problem (4.1) has only one solution. 

Proof. - Let u, v be solutions of the problem (4.1) with X = 0 and suppose 
that u(0) 5 v(0). For each k, 0 < k 5 1 the function v~(z) = k*v(kz) 
satisfies the same equation -Auk = v: in 2. Moreover since u and v are 
symmetric and monotone functions (in the sense of section 3) so is vk. If 
we choose E = (#)q ~10, l] we have that u(0) = v,(O), u = 0 < v% 
on dR and u, q are symmetric and monotone solutions to the equation 
-Au = up in R. Therefore, by Theorem 3.3 u and VT must coincide in 0. 
If x < 1 then 0 = u < UC on dR so that it must be % = 1 which means 
u E v1 - v in R. cl 

Now we state a nondegeneracy result 

THEOREM 4.2. - Let X = 0. Zf N = 2 or R is a ball in RN then any 
solution of (4.1) is nondegenerate. 
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Proof. - As in [13] we deduce a useful integral identity. 
Multiplying (4.1) by TJ and (4.2) by u and integrating we get 

(4.3) uPudx = 0 

Now let us consider the function C(X) = IL’. VU(X). Easy calculations show 
that 5 solves 

(4.4) -a< = pup-l{ + 221” 

and from (4.1)-(4.4) we get 

(4.5) 
J 

,,(x. u)ggdo = J,, dv g <d”d ~2 .I’ uPvdx = 0 
R 

where v is the outer normal to 80. 
On the other hand since we are in dimension two by iii) of Theorem 3.1 

we know that the nodal set of Y does not intersect da; hence near the 
boundary of R w has always the same sign, say v > 0. Hence by the Hopf 
boundary lemma E < 0 on dR unless u = 0. Also 2 < 0 on 80 for the 
same reason while (x . V) > 0 and (x . V) $ 0 on dR by the geometric 
assumption on R. This makes the identity (4.5) impossible unless ‘u z 0 
in IR as we wanted to prove. The same argument applies to the case of a 
ball R in RN, using the radial symmetry of ‘u. I3 

Next theorem gives an uniqueness result for p near 1; it was already 
proved by Lin [13] in the case X = 0, assuming R convex but not 
necessarily symmetric. For sake of completeness we state the proof here 
for A > -Xr(a,n) and our domain 0. 

THEOREM 4.3. - There exists p0 > 1, p. < $$ if N > 3 such that the 
problem (4. I) has only one solution for any p E] 1, po [ and X > -Xl. 

Proof - If ur and 7~2 are two distinct solutions of (4.1) then w = u1 - u2 
must change sign otherwise the identity 
(4.6) \ I 
o= 

.I 
ul(-Auz +X112) - u2(-Aul + XUl) = 

.I’ 
p--l 

%,~2(U2 - u-l, 
R il 

deduced from (4.1), would imply u1 = ~2. 
Now let u, be a solution of (4.1) with y = p,, prL \ 1. As already 

recalled, by the theorem of Gidas, Ni and Nirenberg (see [lo]) 

n/r, = maxu,(z) = ~~(0) 
ZEE 

Anna/es de I’lnstrtut Hem-i Poincorf! Analyst? non lint’aire 
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We claim that 

(4.7) Mp -x1+x asn---+oc 

First of all we show that IMP--l is bounded. Suppose that Mz?~-l --+ +cc n 
and set 

(4.8) 

By standard elliptic estimates U, converges uniformly to a function 
;ii E C2(K), for any compact set K in RN and G satisfies 

(4.9) 
1 

-A;ii=G in RN 

u>o in IR” 

Let Xn and 4~ be respectively the first eigenvalue and the relative 
eigenfunction of -A in BR(O) with respect to the zero Dirichlet boundary 
condition. 

For R large we have 

o> 
/’ 

-84, udvdc7 = (1 - X,) 
J' 

i$RdX > 0 
BBR(O) BR(O) 

a contradiction which shows that i14inP1 is bounded. Thus, up to a 
subsequence, Mt--’ ---+ p. Let U, = k, which is a solution of the 
problem 

{ 

-A& + Au, = M$--+‘n n in R 
(4.10) 

u, = 0 on dR 

By elliptic estimates’&, converges to U in C”( 0) fl Co@) and u satisfies 

{ 

-AL+XU=~LL in 0 
(4.11) 

Ti=O on do 

Hence p = Xr + X and U = & the first eigenfunction of -A. So the 
claim (4.7) is proved. 

Now suppose that the assertion of the theorem is false, i.e. let us assume 
that U, and II, are two distinct solutions of (4.1) with p = p,, p, \ 1. 
From (4.7), since E, - 41 uniformly we get Y$‘-’ + 1 and hence 

(4.12) up,,-l-xl+x uniformly in any compact set of R 
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Obviously the same happens to the sequence ~~7i-’ where V, = *. 
The functions w, = ,,U,, “;;7ir;W,,1 satisfy 

{ 

-aeon, + xw,, = gnw, in R 
(4.13) 

W -0 71 - on dR 

where gn = 
uP”L --vPI 
71 - Xi -t X. Since w, is uniformly bounded and un --vn 

IIW?JLq2) = 1, f rom (4.13) and standard elliptic estimates we deduce 
that w, -+ 41 uniformly. This is not possible since & does not change 
sign while we showed at the beginnning of the proof that w, must change 
sign. cl 

From the nondegeneracy of the solutions of (4.1) it also follows the 
uniqueness of the solution. 

THEOREM 4.4. - Suppose that for any p E] 1, $$ [ if N 2 3, or for any 
p > 1, if N = 2, any solution of (4.1) is nondegenerate. Then for any such 
exponent p, (4.1) has only one solution. 

Proof. - Let us consider the case N > 3, for N = 2 the argument is the 
same. From the previous theorem we know that there exists p. > 1 such 
that (4.1) has an unique solution for p E] 1, po[. Let ] 1, p[ be the maximal 
interval with this uniqueness property. If j? = $$ the assertion is proved 
otherwise, since all solutions are nondegenerate, using the implicit function 
theorem we deduce that there is only one solution of (4.1) also for p = j?. 

Arguing by contradiction let us assume that there exists a sequence 
prl, \ p, pn < E and two distinct solutions u,, %)n of (4.1) with p = plL. 
By elliptic estimates (see [l l] or also Remark 5.1 of next section) we have 
that u,, , w, both converge in C”(0) to the unique solution u of (4.1) 
for p = p. Set 

(4.14) W n = u, - IJ,, 
and wn = ,,w,:;;‘;;(n) 

Then w, satisfies 
-A%!& = onwn in R 

(4.15) 
;Ili, = 0 on dR 

where a,(z) = J~pn(tu,(x) + (1 - t)w,(~))~~-‘dt. 
Moreover ?i& - W weakly in H;(R) and W $ 0. In fact, by (4.15) 
we have 

(4.16) 1 = 
s 

]VE,]~& = a,ul;& = j? ?iC-1W2dx + o(l) 
R s R J G 

Ann&s de l’lnstitut Hem-i PoincarJ Analyse non lint’aire 
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which implies w $ 0. Passing to the limit in (4.15) we get 

-a;i-ii = pu’-l;iij in Q 

(4.17) in R 

which is a contradiction since we assumed that U was nondegenerate. 0 

COROLLARY 4.1. - rf N = 2 and X = 0 then problem (4. I) has only 
one solution 

Proof - The assertion follows from Theorem 4.2 and 4.4 providing so a 
proof different from that of Theorem 4.1. 0 

COROLLARY 4.2. - If N = 2 there exists an interval ]A’> A”[ with 
-X1 < A’ < 0 < A” such that (4.1) has only one solutionfor any X E]X’, A”[ 

Proof. - It is a consequence of the nondegeneracy of the only solution 
in correspondence of X = 0. 0 

Remark 4.1. - Of course the statement of the corollaries above apply 
also to the ball R in lRN giving in this way an alternative proof of well 
known results. 

5. THE CASE OF f(u) = up + puq 

Let 0 be a smooth domain in IRN, N 2 2 and let us consider the problem 

( 

-au = up + puq in R 

(5.1) u>o in R 

u=o on dR 

where p is a real parameter, Q l ]0,1 [ and p > 1 if N = 2 or 1 < p < $$ 
if N 2 3. 

Problem (5.1) has been extensively studied in [3] and, among other 
results, they obtained the following theorem 

THEOREM 5.1 [3] - For all q, p, in the range indicated above there 
exists A > 0 such that for any ,LL ~10, A[ problem (5.1) has two solutions 
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‘U1.p. m,p. Moreover ‘1~1,~~ is the minimal solution, ‘~1,~~ < *IQ,, and ~1,~~ is 
increasing with respect to p. 

In this section we prove that for certain domains and some values of 
p (5.1) has exactly two solutions. 

We start with a preliminary estimate 

LEMMA 5.1 . -There exists a constant C = C(p, N, 1~) such that, for any 
solution u,, of (5.1) 

(5.2) I/%&yn) 5 c 

Proof. - We adapt to our case the proof of a similar result, for the case 
p = 0, given in [I 11. It is enough to prove that l]~~]]~ 5 C since the 
claim then follows by standard elliptic estimates. Fixed b, p, N we argue by 
contradiction supposing that there exists a sequence of solutions u,, = II,/,,, 
and a sequence of points :I;,, in R such that 

(5.3) nil,, = II%& = I%, - m as n - 03 

Let us consider the function 

Y,, (2:) = +,, 2,, + + ,, ( n/r,, 2 > 

which is defined in the set R,, = 2-I,? (12 - :I:,,) By easy calculation we 
deduce that II,, satisfies 

(5.4) - in 0,, 

We denote by D the limit domain of 12,,. Since 0 < II,, 2 1 and II,, 
solve (5.4) from standard elliptic estimates we have that the functions II,, 
are uniformly bounded and, up to a subsequence. converge uniformly to a 
function ‘u on any compact subset of D. 

We have the alternative D = IR” or II = IRY, the half space. Moreover, 
since 

(5.5) 

we have that u satisfies 
-au Ix #VP 

(5.6) ‘V > 0 

in D 

in D 

lJ=o on dD (if D = IRY) 
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Since the unique solution of (5.6) is ‘u 5 0 (see [ 111) we have a contradiction 
because v(0) = lim ~~(0) = 1 cl 

n-O.2 
Remark 5.1. - From the proof it is easy to see that the estimate (5.2) 

is indeed uniform with respect to p in any interval ] 1) pa [, pa < $$ if 
N > 2, and with respect to p in [O,R[. 
Now we recall some known results; 

PROPOSITION 5.1. - There exists only one solution of the problem 

(5.7) 

where 0 < q < 
problem 

(5.8) 

-Au = uq in R 

u>o in R 

‘U = 0 on dR 

1. Moreover the solution is nondegenerate, i.e. the linearized 

-Acp = quq-Gp in R 

c/5=0 on 3CI 

admits only the trivial solution 

Proof. - See [7] and [3]. 

PROPOSITION 5.2. - Let up be a solution of (.5.1), for p ~10, A[ and set 

P= &da) ( / pw~2d~ - ql IzlQ-1w2dz) > 0 
,,,,,p=1 .R 

with x being the only solution of (5.7). Zf 

(5.9) 

then up is the minimal solution of (5.1). 

Proof. - See [3] 
Now we also consider the problem 

-Au = U* in R 

(5.10) u>o in s1 

u=o on dR 
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with p > 1 if N = 2 or 1 < p < s if N > 3. As usual we say that 
a solution u of (5.10) is nondegenerate if zero is not an eigenvalue of the 
linearized operator n + pl~p-l. 

THEOREM 5.2. - Suppose that 0 is a bounded smooth domain where 
problem (5.10) admits only one solution which is also nondegenerate. Then 
there exists p* ~10, A[ such that (5.1) has in R exactly two solutions for 
any v E]O, /I * [. 

Proof - For any p E]O, A[ we denote by u~.,~ the minimal solution 
of (5.1), whose existence we know by Theorem 5.1. We argue by 
contradiction and assume that there exist sequences p., \ 0 and 
ulL, E Hi (a) such that 

(5.11) in 62 

I u,, = 0 on dR 

with u, # ul+,,, w, # UZ,~~, . 
From Lemma 5.1 and Remark 5.1 we deduce 

(5.12) 

with C independent of p. 
So we have that U, converges weakly in Hi (0) to a function 4 > 0 

which solves the problem 

(5.13) in I2 

Lp=o on dR 

Then it is easy to see that 4 is a C2- function in R and by the strong 
maximum principle and the assumption on R we have. the two alternatives 

i) 4 E 0 in R 
ii) 4 = U > 0 where U is the only nondegenerate solution of (5.10). 
In the first case we have that U, = ‘u~,~~, for r~ large. Indeed, by 

Lemma 5.1 and the remark thereafter we have that u,, - 0 uniformly 
in R and hence, for n. large, satisfies (5.9), so that, by Proposition 5.2, 
u, coincides with UI,~,, 
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Let us consider the case ii). First of all we remark that also ‘zL~,+~ - ‘ii 
weakly in Hi(R). In fact, if this is not true, using (5.2) and arguing as 
for U, we have that ZL~,+~ - 0 weakly in Hd (R) so that, as before, 

U1,Pn = U2,Pn which is a contradiction. 
Set 

(5.14) W n = un - u2,pn 

and suppose that w, $ 0. By easy calculation we have that w, satisfies 

{ 

-Awn = &Wn in R 
(5.15) 

W -0 n- on dR 

with Jn = & [p(tu, + (1 - t)~~,~~)~-l + pL,q(tun + (1 - t)~~,~~,)~-~] dt. 
Since wuI, $ 0 we can define 37, = ,,W,l;;;ljnj and we have 

0 

{ 

.-AT.!?, = &G&, in R 
(5.16) 

w, = 0 on dR 

Moreover, up to a subsequence, ET’, converges weakly in Hi(R) and 
strongly in L2 (0) to a function 73. Let us prove that W # 0. First of all 
we remark that 

(5.17) l (J” q(tu, +(l - t)U~,~,,)~-~dt)T$dz 5 C Vn E IN 
0 

Indeed from Lemma 5.1 we have that 

(5.18) %L, uz,p, - u - in C’(G) 

and so, by the Hopf lemma 

(5.19) 

in a neighborhood of 80. 
From (5.19) we deduce &(tu, + (1 - t)ui+,) < kg and then 

(5.20) 
1 

tu, + (1 - t)uQ&, > -E 2 

in a neighborhood of da. 
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Arguing as in [3], from (5.20) and Hardy’s inequality we get 

(5.21) l 
I’/( 

dt’L157 + (1 - tbZ,/k ) “-‘dt 
> 

w:dx i q((u, + UP.,,,, II”, 
. n. 0 

JJ 
1 

and (5.17) follows. Moreover, again by Lemma 5.1 we have 

(5.22) ” JJ ( p(t% + (1 - t)u2,P,,)P-1dt w;dx --f p $-1G2dx 
R 0 > 

Finally, from (5.22) (5.16) and (5.17) we get 
(5.23) 

1 = 
I 

IVzo,12dx = 
I 

’ &w;dx = p ?P’-‘w;dx+o(l) as n ---+ cx) 
.R .R I . (2 

and so ;i2i # 0. 
Now, again by (5.16) we deduce, for any 4 E C,-(n) 

(5.24) 
I 

VW,,V$dx = ’ &,&$dx 
.R .! R 

so that, passing to the limit and using (5.17) and (5.22) 

I 

--ATJQ = pup-10 in R 

(5.25) E$O in (2 

ii?=0 on 130 

which gives a contradiction because U is a nondegenerate solution 
of (5.10). cl 

Remark 5.2. - Theorem 5.2 also applies to the problem 

-Au = UP + f(x) in R 

(5.26) ‘U > 0 in R 

u=o on dR 
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where f(z) 2 0 in 1;2, f(z) E L”(R) and llflloo is sufficiently small, p > 1 
if N = 2 or 1 < p < N-2 m if N > 3. Note that the existence of at least _ 
two solutions if 1 IfI loo is small can be proved by standard variational tool. 
Therefore if R is a domain where (5.10) admits only one solution which is 
also nondegenerate then (5.26) has exactly two solutions. 

COROLLARY 5.1. - Zf R is a ball in RN or 0 is a smooth bounded domain 
in IR’, convex in the direction xi, i = 1,2 and symmetric with respect to 
the hyperpzanes (~1 = 0}, i = 1,2, then there exists p* ~10, A[ such that 
problem (5.1) has exactly two solutions for any ,LL ~10, p * [. 

Proof. - It follows from Theorem 4.1, Corollary 4.1, Remark 4.1 and 
Theorem 5.2. 
As already remarked in the introduction if R is a ball the result of 
Corollary 5.1 was first shown in [l] using an o.d.e. approach. Actually 
their result is more general since they also treat the case p = E. 

REFERENCES 

[I] ADIMURTHI, F. PACELLA and S. YADAVA, On the number of positive solutions of some 
semilinear Dirichlet problems in a ball, Di# Inf. Eq.. Vol. 10, 1997, pp. 1157-l 170. 

[2] ADIMURTH~ and S. YADAVA, An elementary proof for the uniqueness of positive radial 
solution of a quasilinear Dirichlet problem, Arch. Rat Mech. Anal., Vol. 126, 1994, 
pp. 219-229. 

[3] A. AMBROSETTI, H. BREZIS and G. CERAMI, Combined effects of concave and convex 
nonlinearities in some elliptic problems, J. Funct. And., Vol. 122, 1994, pp. 519-543. 

[4] A. BABIN, Symmetry of instability for scalar equations in symmetric domains, J. Difi Eq. 
Vol. 123, 1995, pp. 122-152. 

[5] H.BERESTYCKI and L. NIRENBERG, On the method of moving planes and the sliding method, 
Bol. Sot. Bras. Mat., Vol. 22, 1991, pp. l-37. 

161 H. BERESTYCKI, L. NIRENBERG and S. N. S. VARADHAN, The principle eigenvalues and 
maximum principle for second order elliptic operators in general domains, Comm. Pure 
Appl. Math., Vol. 47, 1994, pp. 47-92. 

[7] H. BREZIS and S. KAMIN, Sublivear elliptic equations in IR”, Man. Math., Vol. 74, 1992, 
pp. 87-106. 

[8] L. DAMASCELLI, A remark on the uniqueness of the positive solution for a semilinear 
elliptic equation, Nonlin. Anal. T.M.A., Vol. 26, 1996, pp. 21 l-216. 

[9] E. N. DANCER, The effect of domain shape on the number of positive solutions of certain 
nonlinear equations, J. D$ Eq., Vol. 74, 1988, pp. 120-156. 

[lo] B. GIOAS, W. M. NI and L. NIRENBERG, Symmetry and related properties via the maximum 
principle, Comm. Math. Phis., Vol. 68, 1979, pp. 209-243. 

[I 1] B. GIDAS and J. SPRUCK, A priori bounds for positive solutions of nonlinear elliptic 
equations, Comm. Par. Difl Eq., Vol. 6, 1981, pp. 883-901. 

[ 121 D. GILBARG and N. TRUDINGER, Elliptic partial differential equations of second order, 
Springer Verlag, 1983. 

[13] C. S. LIN, Uniqueness of solutions minimizing the functional J, IVlh/“/(J, I$+‘)‘/(P+‘) 
in JR” (preprint). 

[14] C. S. LIN and W. M. NI, A counterexample to the nodal domain conjecture and a related 
semilinear equation, Proc. Amer. Mat. Sot., Vol. 102, 1988, pp. 271-277. 

Vol. 16, no 5.1999 



652 L. DAMASCELLI, M. GROSS1 AND F. PACELLA 

[ 151 W. N. Nl and R. D. NIJSSBAUM, Uniqueness and non-uniqueness for positive radial solutions 
of Au + f(,u, T) = 0, Comm. Pure Appl. Math., Vol. 38, 1985, pp. 67-108. 

[16] M. H. PROTTER and H. F. WEINBERGER, Maximum principle in differential equations, 
Prentice Hall, Englewoood Cliffs, New Jersey, 1967. 

[ 171 P. N. SRIKANTH, Uniqueness of solutions of nonlinear Dirichlet problems, Difi ht. Eq., 
Vol. 6, 1993, pp. 663-670. 

[ 183 LIQUN ZHANG, Uniqueness of positive solutions of A,u + u + lrl’ = 0 in a finite ball, C~mm. 
Part. DifJ: Eq., Vol. 17, 1992, pp. 1141-1164. 

[ 191 LIQUN ZHANG, Uniqueness of positive solutions of AYL + I$’ = 0 in a convex domain 
in IR’, (preprint). 

[20] H. Zou, On the effect of the domain geometry on uniqueness of positive solutions of 
Au + d’ = 0, Ann. SC. Nor. Sup., 1995, pp. 343-356. 

(Manuscript received January IO, 1997: 
Revised version received December 1.5, 1997.) 

Ama1e.s dr I’htitut Henri Poincarc! Analyse non tin&ire 


