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Existence results for mean field equations
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ABSTRACT. — Let 2 be an annulus. We prove that the mean field equation
o~ B

Joe

Y =0 on Of)

Ay = in

admits a solution for 3 € (—16m, —8). This is a supercritical case for the
Moser-Trudinger inequality.
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RESUME. — On montre que 1’équation de champ moyen

e~ PV
—AyY = W dans

=0 sur 952,

pour {2 étant un anneau, admet une solution pour 3 € (—16m, —8x).
Cela represente un cas supercritique pour 'inegalité de Moser-Trudinger.
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654 W. DING et al.
1. INTRODUCTION

Let Q be a smooth bounded domain in R?. In this paper, we consider
the following mean field equation
. fd'w
—A) = 5o In Q,

(1.1) /O e
P =0, on 912,

for 8 € (—o0,+00). (1.1) is the Euler-Lagrange equation of the following
functional

1/ 1 s
(12) .]ﬁ(’(/)) = — / |vd)|2 + - log/ eaﬂw
' 2 Jo B 7

in H,?(2). This variational problem arises from Onsager’s vortex model
for turbulent Euler flows. In that interpretation, v is the stream function
in the infinite vortex limit, see [12,p256ff]. The corresponding canonical
Gibbs measure and partition function are finite precisely if 3 > —8=. In
that situation, Caglioti et al. [4] and Kiessling [9] showed the existence of
a minimizer of Js. This is based on the Moser-Trudinger inequality

1

: . ‘,
(1.3) 5/Q|vz/;|2 > glog/(ze'sm’, for any ¢ € Hy?(Q),

which implies the relevant compactness and coercivity condition for Jz in
case 3 > —8n. For § < —8m, the situation becomes different as described
in [4]. On the unit disk, solutions blow up if one approaches 7 = —8=
-the critical case for (1.3)-(see also [S] and [19]), and more generally, on
starshaped domains, the Pohozaev identity yields a lower bound on the
possible values of (3 for which solutions exist. On the other hand, for
an annulus, [4] constructed radially symmetric solutions for any /3, and
the construction of Bahri-Coron {2] makes it plausible that solutions on
domains with non-trivial topology exist below —8=. Thus, for § < —8m,
Js is no longer compact and coercive in general, and the existence of
solution depends on the geometry of the domain.

In the present paper, we thus consider the supercritical case 8 < —8r
on domains with non-trivial topology.

TueoreM 1.1. — Let Q C R? be a smooth, bounded domain whose
complement contains a bounded region, e.g. ) an annulus. Then (1.1) has
a solution for all B € (—167,—8).
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MEAN FIELD EQUATIONS 655

The solutions we find, however, are not minimizers of J3-those do not
exist in case 8 < 8w, since Jg has no lower bound-but unstable critical
points. Thus, these solutions might not be relevant to the turbulence problem
that was at the basis of [4] and [9].

Certainly we can generalize Theorem 1.1 to the following equation
Ke 8%

Jo Kem?v’

=0, on J%1,

—Ayp = in 2,

which was studied in [5]. Here K is a positive function on Q.
With the same method, we may also handle the equation

(1.4) Au—c+cKe" =0, for0 <c< oo

on a compact Riemann surface X of genus at least 1, where K is a positive
function. (1.4) can also be considered as a mean field equation because it
is the Euler-Lagrange equation of the functional

1 .
(1.5) J.(u) = 5/ |Vu|2+c/u—clog/ Ke".
s b3 3

Because of the term ¢ fz u, J. remains invariant under adding a constant
to u, and therefore we may normalize u by the condition

/Ke“:l
)

which explains the absence of the factor ([ Ke*)™! in (1.4). ¢ < 87 again
is a subcritical case that can easily be handled with the Moser-Trudinger
inequality. The critical case ¢ = 87 yields the so-called Kazdan-Warner
equation [8] and was treated in [7] and [14] by giving sufficient conditions
for the existence of a minimizer of Jg,. Here, we construct again saddle
point type critical points to show

-1

THEOREM 1.2. — Let 3 be a compact Riemann surface of positive genus.
Then (1.4) admits a non-minimal solution for 8t < ¢ < 167.

Now we give a outline of the proof of the Theorems. First from the
non-trivial topology of the domain, we can define a minimax value g,
which is bounded below by an improved Moser-Trudinger inequality, for
0 € (—16m, —8m). Using a trick introduced by Struwe in [16] and [17], for
a certain dense subset A C (—167,—87) we can overcome the lack of a
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656 W. DING et al.

coercivity condition and show that «p is achieved by some uy for 8 € A.
Next, for any fixed 3 € (—167, —87), considering a sequence (3, C A
tending to 3, with the help of results in [3] and [11] we show that ug,
subconverges strongly to some u; which achieves az.

After completing our paper, we were informed that Struwe and
Tarantello [18] obtained a non-constant solution of (1.4), when ¥ is a
flat torus with fundamental cell domain [—2,1] x [-1.3], K = 1 and
¢ € (8, 4n?). In this case, it is easy to check that our solution obtained

in Theorem 1.2 is non-constant.

Our research was carried out at the Max-Planck-Institute for Mathematics
in the Sciences in Leipzig. The first author thanks the Max-Planck-Institute
for the hospitality and good working conditions. The third author was
supported by a fellowship of the Humboldt foundation, whereas the fourth
author was supported by the DFG through the Leibniz award of the second
author.

2. MINIMAX VALUES

Let p = —F and u = —Fvy. We rewrite (1.1) as

1L

e

Au=p—,  inQ,
(2.1) Joe*
u=0, on 912,
and (1.2) as
. .
(2.2) Jo(u) = ~/ |Vul* — plog/ e
2 /o Ja

for u € Hy*(Q).

It is easy to see that J, has no lower bound for p € (87, 167). Hence,
to get a solution of (1.1) for p € (87,167), we have to use a minimax
method. First, we define a center of mass of u by

g wet
Joer
Let B be the bounded component of R? \ Q. For simplicity, we assume

that B is the unit disk centered at the origin. Then we define a family
of functions

me(u)

h:D — H)*(Q)
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MEAN FIELD EQUATIONS 657

satisfying

(2.3) llqrri Jo(h(r,8)) = —

and

(2.4) ll_)ﬂ% me(h(r, 9)) is a continuous curve enclosing B.

Here D = {(r,0)|0 <7 < 1,6 € [0,27)} is the open unit disk. We denote
the set of all such families by D,. It is easy to check that D, # 0. Now
we can define a minimax value

a,:= inf sup J,{u).
. he€D, weh(D) ol )

The following lemma will make crucial use of the non-trivial topology
of {2, more precisely of the fact that the complement of {2 has a bounded
component.

LemMma 2.1. — For any p € (87,167) a, > —o0.

Remark. — It is an interesting question weather a6, = —00.
To prove Lemma 2.1, we use the improved Moser-Trudinger inequality
of [6] (see also [1]). Here we have to modify a little bit.

LEMMA 2.2. —Let S; and S be two subsets of () satisfying dist(Sy, S3) >
b > 0 and v9 € (0,1/2). For any € > 0, there exists a constant
¢ = c(e,b0,%0) > 0 such that

1 .
U \v} 2
/Qe _cexp{32ﬁ_6/ﬂl ul® + ¢}

holds for all w € Hy*(Q) satisfying

u

ev e :
—ffsl = >v% and jf'SQeu > Yo-
Q )

Proof. — The Lemma follows from the argument in [6] and the following
Moser-Trudinger inequality

(%) l/ |Vu|2—87r10g/e“20
2 Jo Q

for any u € Hy?(9), where ¢ is a constant independent of v € Hy'*(£2).00

(2.5)
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658 W. DING et al.

We will discuss the inequality (x) and its application in another paper.
Proof of Lemma 2.1. — For fixed p € (87, 16m) we claim that there exists
a constant ¢, such that

(2.6) sup J,(u) > ¢, for any h € D,,.
w€h(D)

Clearly (2.6) implies the Lemma. By the definition of h, for any h € D,
there exists u € h{D) such that
me(u) = 0.

We choose ¢ > 0 so small that p < 167 — 2e. Assume (2.6) does not
hold. Then we have sequences {h;} C D, and {u;} C H;"*(€) such that
u; € hy(D) and

(2.7) me(u;) = O
(2.8) }irgo J(u;) = —oc.

We have the following Lemma.

LEMMA 2.3. —There exists o €  such that

u;

fB1/2($o)ﬁQ €

(2.9) lim — 1.
i—00 fQ el
Proof. — Set
Als) = lim S22

1200 fQ el
Assume that the Lemma were false, then there exists zo € Q such that
A(zo) <1 and A(zg) > A(z) forany z € Q.

It is easy to check A(zg) > 0, since 2 can be covered by finite many balls
of radius 1/4. Let vo = A(zo)/2. Recalling (2.8) and applying lemma 2.2,
we obtain

19\31/2(1‘0) e N
Joe*

as ¢ — 0o, which implies (2.9). d

(2.10)
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Now we continue to prove Lemma 2.1. (2.9) implies

Jo xe Jolz — zo)e™
v, To= T
.[Qe ’ fne ’
JB (e (@ = To)E™
_ [BI/Z( of - 0 +0(1)
Ja

which, in turn, implies that |m.(u;) — xo| < 2/3. This contradicts (2.7). OJ
LEMMA 2.4. — a,/p is non-increasing in (87, 16m).

Proof. — We first observe that if J(u) < 0, then log [, e* > 0 which
implies that

Jp(u) 2 Jp(u)  forp' > p.

Hence D, C D, for any 16m > p’ > p > 8m. On the other hand, it
is clear that

J I 11 1, f
2o -2y [vuP 2o
PP 20 9 Ja
if o > p. Hence we have
o, 9
p -
for 167 > p’ > p > 8. a

3. EXISTENCE FOR A DENSE SET

In this section we show that a, is achieved if p belongs to a certain
dense subset of (8m,16m) defined below.

The crucial problem for our functional is the lack of a coercivity
condition, i.e. for a Palais-Smale sequence u; for J,, we do not know
whether [, |Vu;|? is bounded.

We first have the following lemma.

Lemma 3.1. —Let u; be a Palais-Smale sequence for J,, i.e. u; satisfies

(3.1) I o(u)] £ e < o0
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and
(3.2) dJ,(u;) — O strongly in H™"(Q).

If, in addition, we have
(3.3) /|Vui|2 <co, fori=1,2,--
Q

Jfor a constant cg independent of i, then u; subconverges to a critical point ug
for J, strongly in Hy™”(Q).

Proof. — The proof is standard, but we provide it here for convenience
of the reader.

Since fQ |Vu;|? is bounded, there exists ug € Hé ’2(9) such that

(i) u; converges to uy weakly in Hy?(Q),

(ii) u; converges to wug strongly in LP(Q2) for any p > 1 and almost

everywhere,

(iii) e“* converges to e"° strongly in L?((2) for any p > 1.

From (i)-(iii), we can show that d.J{uy) = 0, i.e. ug satisfies

uo

f eto '

—Aug = p5—r

Testing dJ, with u; — ug, we obtain

o(1) = (dJy(ui) = dJ,(u), ui — ug

)
/|V(Uz—“0 p/<—f———7—><—u>
= [ 19 = w)? + o)

by (1)-(iii). Hence u; converges to ug strongly in Hé 2(Q) O
Since by Lemma 2.4 p — «,/p is non-increasing in (87, 167), p — a,/p

is a.e. differentiable. Set

(3.4) A = {p € (8w, 167)|a,/p is differentiable at p}.

A = [87,167], see [16]. Let p € A and choose py " p such that

1 «
3.5 0< lim ——(—£ —
(3:5) T koo (p—pk)(p Pk

for some constant ¢; independent of k.
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LEmMMA 3.2. — «, is achieved by a critical point u, for J, provided that
p € A

Proof. — Assume, by contradiction, that the Lemma were false. From
Lemma 3.1, there exists § > 0 such that

(3.6) ldo(u)lla-12(0) = 20
in . .
No = {u e Hé’z(ﬂ)[/ Vul? < ca, |, (u) — o] < 8}

Q
Here, ¢, is any fixed constant such that N5 # 0. Let X, : N5 — H&’Z(Q)

be a pseudo-gradient vector field for .J, in Ns, i.e. a locally Lipschitz
vector field of norm ||Xp||H01,2 < 1 with

(3.7) (dJ,(u), X ,(u)) < —6.

See [15] for the construction of X,.
Since

ldJ,(u) — dJ,, ()|

p P
ldJ, = —dJ, (W)l + [[(1 = —=)dJp, (W)l
Pr Pk
1 p / 2 p / 2
< -(1=-— Vul®+e(l — — Vul* =0
s =) [ [Vuli+el=—") Q| 1
uniformly in {u| [, |Vu|* < 3}, X, is also a pseudo-gradient vector field
for J,, in Ns with
(‘58) <dJPk-(u)7 XP(“)) < _6/27
for v € Ns, provided that k& is sufficiently large.
For any sequence {ht}, hy € D,, C D, such that

(3‘9) sup ka (u) < Qpy + P~ Pk
u€hy (D)

and all u € hy(D) such that

(3.10) Jo(u) 2 ap = (p = pr),

we have the following estimate

T (W) Ty

1 .
_/ Vul?=p-pp—tr £
2 Jo p— Pk

(3.11) Cop . Qp
<p-ppeE—L+ (p+ pr)
P — Pk
<C

by (3.5), (3.9) and (3.10), where C' = (167)%c; + 327.
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Now we consider in N5 the following pseudo-gradient flow for J,. First
choose a Lipschitz continuous cut-off function # such that 0 < 5 < 1,
n = 0 outside Ns, 7 = 1 in Ng/o. Then consider the following flow in
Hy?(Q) generated by nX,

Sl t) = n(9(u, )X, (9(u. 1)

By (3.7) and (3.8), for u € Ng/3, we have

d .
3. — u, < —
(3 12) df J/)(¢(U’/t))|1:0 — é
and
o d
(3‘1'3) E‘]/)k(d)(u’t))h:o S '—6/2
for large k.

It is clear that for any h € D, h(r,8) ¢ N, for r close to 1. Hence
¢(h,t) € D,, for any ¢t > 0. In particular, ¢(-,t) preserves the class of
hi € D,, with condition (3.9). On the other hand, for any h € D, by
definition

sup J,(u) > «,.
u€h(D)
Hence for any hy € D, with condition (3.9), SuP,eyn(py) Jo(n) is
achieved in N /o, provided that k is large enough. Consequently, by (3.12),
we have

S sup{J, ()l € $(h(D), 1)} < b

for all £ > 0, which is a contradiction. ]

4. PROOF OF THEOREM 1.1

From section 3, we know that for any j € (8w, 16w) there exists a
sequence py " p such that «, is achieved by . Consequently w;, satisfies
A mQ
— QU = Pk . m 34,
(4.1) Joev
ug = 0, on Of1.
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From Lemma 2.4, we have
(4.2) Jo(ur) = @, < co.

for some constant cg > 0 which is independent of k. Let v, =
uy, — log [, e**. Then vy, satisfies

(4.3) ' —Avg = pre’

with

(4.4) szl

By results of Brezis-Merle [3] and Li-Shafrir [11] we have

Lemma 4.1 ([3], [11]). —There exists a subsequence (also denoted by vy,)
satisfying one of the following alternatives:

() {vx} is bounded in LS (),
(i) vx — —oo uniformly on any compact subset of €1,
(iii) there exists a finite blow-up set ¥ = {ay, -+, a,n} C Q such that, for
any 1 < i < m, there exists {xx} C Q, x) — a;, up(zr) — 00, and

vg(x) — —oo uniformly on any compact subset of Q \ ¥.. Moreover,

where m; is positive integer.
For our special functions v, we can improve Lemma 4.1 as follows

LemMA 4.2. —There exists a subsequence (also denoted by vy) satisfying
one of the following alternatives: -

(1) {vr} is bounded in L2 (2);

(i) vx — —o0 uniformly on §);

(iii) there exists a finite blow-up set ¥ = {a1,- -+, am} C € such that, for
any 1 < i < m, there exists {x}} C Q, T — a;, ux(zr) — 00, and
vp(x) — —00 uniformly on any compact subset of ) \ ¥. Moreover,
(4.5) holds.

Proof. — From Lemma 4.1, we only have to consider one more case in
which blow-up points are in the boundary of €2. There are two possibilities:
One is bubbling too fast such that after rescaling we obtain a solution of
—Au = e* in a half plane; Another is bubbling slow such that after

Vol. 16, n® 5-1999.
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rescaling we obtain a solution of —Awu = ¢* in R%. One can exclude the
first case. In the second case, one can follow the idea in [11] to show that
(4.5) holds. See also [10]. O

Proof of Theorem 1.1. — (4.4), (4.5) and p € (8r,16x) imply that cases
(i) and (iii) in Lemma 4.2 does not occur. Consequently {v;} is bounded
in L{° (Q). Now we can again apply Lemma 2.2 as follows.

loc
Let S; and S, be two disjoint compact subdomains of (2. Since {vj} is
bounded in L°.(Q2), we have

loc
js (3“"" .
o :/ e >, =12
‘/Qe * S;

for a constant ¢y = ¢¢(S1,92,€) > 0 independent of k. Choosing € such
that 16— p > 2¢ and applying Lemma 2.2, with the help of (4.2), we obtain

. .
c>J, (uy) = 5/ |Vuk|2—pklog/ ek
0 Jo
1 P ' 2
>-(1-— [ v
=1 167r—e/2>/9| u

| }
> 5= o=l [ vl
2 16m — /27 [

which implies that ]Q |Vug|? is bounded. Now by the same argument in
the proof of Lemma 3.1, w;, subconverges to u; strongly in H,*(Q) and
u; is a critical point of J;. Clearly, u; achieves «;. This finishes the proof
of Theorem 1.1. g

Proof of Theorem 1.2. — Since the proof is very similar to one presented
above, we only give a sketch of the proof of Theorem 1.2. Let 3 be a
Riemann surface of positive genus. We embed X : ¥ — RY for some
N > 3 and define the center of mass for a function v € H»?(X) by

() = fEXe“
) Jpev

Since ¥ is of positive genus, we can choose a Jordan curve I'' on ¥
and a closed curve I'? in RY \ ¥ such that I'* links I'>. We know that
infyep12(s) Jo(u) is finite if and only if ¢ € [0, 87] (see [7]). Now define
a family of functions h : D — H*2(X) (as in section 2) satisfying

‘lin% Jo(h(r,0)) — —o0
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and
lim m(h(r, §)) as a map from S — T is of degree 1.

Let D. denote the set of all such families. It is also easy to check that
D, # 0. Set

o := inf sup J.(u).
h€De yen(D) (1)

We first have
Qe > —00,

using the fact that T'! links I'? and Lemma 2.2. Then by the same method as
presented above, we can prove that « is achieved by some u. € H 1*2(2),
which is a solution of (1.4), for ¢ € (8, 167). ]
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