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Existence results for mean field equations 
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ABSTRACT. - Let R be an annulus. We prove that the mean field equation 

lf!l = 0 on dR 

admits a solution for p E (-16~, -87r). This is a supercritical case for the 
Moser-Trudinger inequality. 0 Elsevier, Paris 

RI~SUMI?. - On montre que l’equation de champ moyen 

-All, = ,‘,5, ~ dans R 

$=O sur dR: 

pour fl &ant un anneau, admet une solution pour /3 E (-167r, -87r). 
Cela represente un cas supercritique pour l’inegalite de Moser-Trudinger. 
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1. INTRODUCTION 

Let R be a smooth bounded domain in IR’. In this paper, we consider 
the following mean field equation 

- 
(1.1) 

,?I/ = 0. on aR. 

for p E (-30, f~o). ( 1.1) is the Euler-Lagrange equation of the following 
functional 

(1.2) 

in Hi,2(R). This variational problem arises from Onsager’s vortex model 
for turbulent Euler flows. In that interpretation, li, is the stream function 
in the infinite vortex limit, see [12,p256ffl. The corresponding canonical 
Gibbs measure and partition function are finite precisely if 0 > -8~. In 
that situation, Caglioti et al. [4] and Kiessling [9] showed the existence of 
a minimizer of Jo. This is based on the Moser-Trudinger inequality 

which implies the relevant compactness and coercivity condition for *I(, in 
case /3 > -8~. For I? < -87r, the situation becomes different as described 
in [4]. On the unit disk, solutions blow up if one approaches /j = -8~ 
-the critical case for (1.3)-(see also [5] and [19]), and more generally, on 
starshaped domains, the Pohozaev identity yields a lower bound on the 
possible values of p for which solutions exist. On the other hand, for 
an annulus, [4] constructed radially symmetric solutions for any /j, and 
the construction of Bahri-Coron [2] makes it plausible that solutions on 
domains with non-trivial topology exist below -8~. Thus, for ,lJ < --ST, 
Jo is no longer compact and coercive in general, and the existence of 
solution depends on the geometry of the domain. 

In the present paper, we thus consider the supercritical case p < -8n 
on domains with non-trivial topology. 

THEOREM 1 .l. - Let 0 c R2 be a smooth, bounded domuin whose 
complement contains a bounded region, e.g. f2 an annulus. Then (1.1) has 
a solution for all ,L3 E (-167r, -87~). 
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MEAN FIELD EQUATIONS 655 

The solutions we find, however, are not minimizers of JO-those do not 
exist in case /3 < %r, since Jo has no lower bound-but unstable critical 
points. Thus, these solutions might not be relevant to the turbulence problem 
that was at the basis of [4] and [9]. 

Certainly we can generalize Theorem 1.1 to the following equation 

which was studied in [5]. Here K is a positive function on 0. 
With the same method, we may also handle the equation 

(1.4) Au-c+cKeU=O, for 0 5 c < 00 

on a compact Riemann surface C of genus at least 1, where K is a positive 
function. (I .4) can also be considered as a mean field equation because it 
is the Euler-Lagrange equation of the functional 

Because of the term c SC %L, J, remains invariant under adding a constant 
to u, and therefore we may normalize ‘u by the condition 

.I’ Ke” = 1 
c 

which explains the absence of the factor (J Ke”)-’ in (1.4). c < 8n again 
is a subcritical case that can easily be handled with the Moser-Trudinger 
inequality. The critical case c = 8~ yields the so-called Kazdan-Warner 
equation [S] and was treated in [7] and [14] by giving sufficient conditions 
for the existence of a minimizer of Jar. Here, we construct again saddle 
point type critical points to show 

THEOREM 1.2. - Let C be a compact Riemann surface of positive genus. 
Then (1.4) admits a non-minimal solution for 8~ < c < 16~. 

Now we give a outline of the proof of the Theorems. First from the 
non-trivial topology of the domain, we can define a minimax value aB, 
which is bounded below by an improved Moser-Trudinger inequality, for 
[? E (-167r, -8~). Using a trick introduced by Struwe in 1161 and [ 171, for 
a certain dense subset A c (-16~, -8~) we can overcome the lack of a 
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coercivity condition and show that cry is achieved by some u,? for [J’ E A. 
Next, for any fixed p E (-16 7r. -ST), considering a sequence ijjk c A 
tending to p, with the help of results in [3] and [ 1 l] we show that UJ, 
subconverges strongly to some 7~3 which achieves n,~. 

After completing our paper, we were informed that Struwe and 
Tarantello [18] obtained a non-constant solution of (1.4), when C is a 
flat torus with fundamental cell domain [ - $. i] x [- $j. $1, K = 1 and 
c E (ST, 47r*). In this case, it is easy to check that our solution obtained 
in Theorem 1.2 is non-constant. 

Our research was carried out at the Max-Planck-Institute for Mathematics 
in the Sciences in Leipzig. The first author thanks the Max-Planck-Institute 
for the hospitality and good working conditions. The third author was 
supported by a fellowship of the Humboldt foundation, whereas the fourth 
author was supported by the DFG through the Leibniz award of the second 
author. 

Let p = -/3 and 

(2.1) 

2. MINIMAX VALUES 

i = -,Lhj. We rewrite (1.1) as 

and (1.2) as 

(2.2) J,(u) = 1 
s 2 R 

Imp - plog e?’ 
I .R 

for u E H,1Y2(0). 
It is easy to see that Jp has no lower bound for p E (87r, 169~). Hence, 

to get a solution of (1.1) for p E (&r, 167r), we have to use a minimax 
method. First, we define a center of mass of ‘u. by 

Let B be the bounded component of R2 \ R. For simplicity, we assume 
that B is the unit disk centered at the origin. Then we define a family 
of functions 

h : D t Ho ‘y2(n) 
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satisfying 

(2.3) Iii1 J,(h(?-, 0)) + -cc 

and 

(2.4 liii m,(h(r, 0)) is a continuous curve enclosing B. 

Here D = {(T, 0)/O 5 T < 1,6’ E [0,27r)} is the open unit disk. We denote 
the set of all such families by D,. It is easy to check that DP # 0. Now 
we can define a minimax value 

ap := inf sup JP(u). 
h-0 uEh(D) 

The following lemma will make crucial use of the non-trivial topology 
of 0, more precisely of the fact that the complement of R has a bounded 
component. 

LEMMA 2.1. - For any p E (%T, 167r) op > -oc. 

Remark. - It is an interesting question weather anjT = -co. 
To prove Lemma 2.1, we use the improved Moser-Trudinger inequality 

of [6] (see also [l]). Here we have to modify a little bit. 

LEMMA 2.2. -Let S1 and S2 be two subsets of fi satisfying dist(S1, Sz) 2 
So > 0 and y. E (0,1/a). F or any 6 > 0, there exists a constant 
c = C(E, 60,yo) > 0 such that 

holds for all u E Hi’2(R) Satisfying 

(2.5) 5 e” Js, e” j?& Lro and Joeu >y”. 

Proof. - The Lemma follows 
Moser-Trudinger inequality 

from the argument in [6] and the following 

(*) ;J 
R 

]Vuj2 - 8nlog/ e” 2 c 
R 

for any u E Hi,2 (n), where c is a constant independent of u E Hi,2 (R).O 
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We will discuss the inequality (*) and its application in another paper. 

Proof of Lemma 2.1. - For fixed p E (ST, 16~) we claim that there exists 
a constant cP such that 

(2X) =& J/3(4 2 cp7 for any h E D,. 

Clearly (2.6) implies the Lemma. By the definition of h, for any h, E D,,. 
there exists u E h(D) such that 

7&(U) = 0. 

We choose F > 0 so small that p < l&r - 2~. Assume (2.6) does not 
hold. Then we have sequences {hi} c D,, and {Q } c Hi>2(bL) such that 
‘u, E h;(D) and 

(2.7) 7rL&;) = 0 

(2.8) lim J(u;) = -cc. i&+33 

We have the following Lemma. 

LEMMA 2.3. -There exists zo E !=I such that 

Proof. - Set 

A(z) := $rir& 
Jb,,,(z)“cl e’“= 

s 
n euz 

Assume that the Lemma were false, then there exists ICO E R such that 

A(Q) < 1 and A(Q) > A(z) for any II: E 62. 

It is easy to check A(zo) > 0, since R can be covered by finite many balls 
of radius l/4. Let y. = A(zo)/2. Recalling (2.8) and applying lemma 2.2, 
we obtain 

(2.10) 

as i -+ 00, which implies (2.9). 0 
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Now we continue to prove Lemma 2.1. (2.9) implies 

659 

which, in turn, implies that Im,(u;) - x01 < Z/3. This contradicts (2.7). 0 

LEMMA 2.4. - cxp/p is non-increasing in (&, 167r). 

Proof. - We first observe that if J(U) 5 0, then log so e” > 0 which 
implies that 

JPlp(4 L J&> for p' 2 p. 

Hence D)p c V,I for any 167r > p' > p > 8~. On the other hand, it 
is clear that 

if p' 2 p. Hence we have 

“p>w 
P - P' 

for 16~ > p' > p > 87r. 0 

3. EXISTENCE FOR A DENSE SET 

In this section we show that op is achieved if p belongs to a certain 
dense subset of (&r, 167r) defined below. 

The crucial problem for our functional is the lack of a coercivity 
condition, i.e. for a Palais-Smale sequence ui for Jp, we do not know 
whether Jo IVu;12 is bounded. 

We first have the following lemma. 

LEMMA 3.1. -Let ui be a Palais-Smale sequence for Jp, i.e. Ui satisfies 

(3.1) IJ,(ui)l 5 c < 0~) 
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and 

(3.2) dJ,(ui) + 0 strongly in H-l.‘(R). 

I’ in addition, we have 

(3.3) 

for a constant CO independent of i, then u; subconverges to a critical point ug 
for Jp strongly in Hil’(R). 

Proof. - The proof is standard, but we provide it here for convenience 
of the reader. 

Since so IVui I2 is bounded, there exists no E HA,*(Q) such that 
(i) ui converges to u. weakly in Ht.2 (Cl), 
(ii) u; converges to u. strongly in U’(R) for any y > 1 and almost 

everywhere, 
(iii) cut converges to elLu strongly in LP( a) for any p 2 1. 

From (i)-(iii), we can show that dJ(uO) = 0, i.e. ua satisfies 

Testing dJ, with u(Li - uo, we obtain 

o(l) = (dJ&) - dJ,(u),ui - uo) 

= .I’ IV(Ui - uo)]’ - Pl(S - y+ - uo) 
R 

= 
/’ R IV(Ui - uo)12 + o(l), 

by (i)-(iii). Hence uLLi converges to ua strongly in Ht,2 (Q). cl 
Since by Lemma 2.4 p -+ ~+/p is non-increasing in (87r7 167r), p -+ c+/p 

is a.e. differentiable. Set 

(3.4) A := {p E (87r, 167r)loP/p is differentiable at p}. 

A = [87r, 167r], see [ 161. Let p E A and choose p,+ /’ p such that 

(3.5) 

for some constant cl independent of k. 

Annulr~ dr I’lmritut Hmri Poincore Analyse non h&ire 



MEAN FIELD EQUATIONS 661 

LEMMA 3.2. - cxp is achieved by a critical point up for JP provided that 
p E A. 

Proof. - Assume, by contradiction, that the Lemma were false. From 
Lemma 3.1, there exists S > 0 such that 

(3.6) IldJp(U)IIH-l.“(R) 2 25 

in 
* N6 := {u E IQ2(R)I 

J 
lVu12 5 c2, IJ,(u) - (Epl < 6). 

R 
Here, c2 is any fixed constant such that N6 # 0. Let X, : NS --f Hi,2(0) 
be a pseudo-gradient vector field for JP in N6, i.e. a locally Lipschitz 
vector field of norm ]~X,~]~;.Z 5 1 with 

(3.7) @J&L), X,(u)) < -6. 

See [ 151 for the construction of X,. 
Since 

lldJ&) - dJ&)ll = IldJp - ;dJdu)ll + I[(1 - ;)dJ&)lj 

5 i(l - ;) J’ IVu12 + c(1 - ;) j; phLl2 + 0 

uniformly in (~1 Jo IVu12 5 c2}, X, is also a pseudo-gradient vector field 
for ?J,, in Nh with 

(3.8) @J/G (‘UL X,(4) < -s/2, 
for u E N6, provided that Ic is sufficiently large. 

For any sequence {Ilk}, hk E V,, c D, such that 

(3.9) lLEy’20, J~k c”> 5 Qp~ + P - Pk 

and all u E hk (D) such that 

(3.10) J~b) 2 a~ - (P - Pk)l 

we have the following estimate 

(3.11) 

by (3% (3.9) and (3.10), where C = (167r)‘ct + 32~. 
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Now we consider in Nb the following pseudo-gradient flow for .JP. First 
choose a Lipschitz continuous cut-off function r/ such that 0 5 71 < 1. 
~1 = 0 outside N6, ~1 = 1 in Nh12. Then consider the following flow in 
H,$2(R) generated by r/X, 

By (3.7) and (3.8), for u E N&12, we have 

(3.12) 

and 

(3.13) 

for large Ic. 
It is clear that for any h. E DPl h(r, 19) $! Nh for 7’ close to 1. Hence 

4(/h, t) E D,,, for any t > 0. In particular, +(.;t) preserves the class of 
hk E D,, with condition (3.9). On the other hand, for any h E D,, by 
definition 

uz;pD) 4(u) 2 Q/l. 

Hence for any hk E D,, with condition (3.9) SU~,~~(~~(~),~) J{,(U) is 
achieved in Nhj2, provided that k is large enough. Consequently, by (3.12), 
we have 

for all 2; 2 0, which is a contradiction. 0 

4. PROOF OF THEOREM 1.1 

From section 3, we know that for any p E (8x, 167r) there exists a 
sequence pk / p such that oPL is achieved by uk. Consequently Uk satisfies 

- 
(4.1) 

uk = 0, 
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From Lemma 2.4, we have 

(4.2) J&k) = apr F co, 

for some constant co > 0 which is independent of k. Let Vk = 
uk: - log Jo e”“. Then ‘uk satisfies 

(4.3) -Auk = pke‘uUI 

with 

(4.4) 
/ 

eu” - 1 - . 

.R 

By results of Brezis-Merle [3] and Li-Shafrir [l I] we have 

LEMMA 4.1 ([3], [ 111). -There exists a subsequence (also denoted by ‘&.) 
satisfying one of the following alternatives: 

(i) {uk} is bounded in LrC(fl); 
(ii) ‘t& -+ --o;! uniformly on any compact subset of 0; 

(iii) there exists a finite blow-up set C = { aI: . . . i a,,,} c R such that, for 
any 1 5 i 5 m, there exists {zk} C R, zk + u;, ?&(zk) --t o;), and 
U,(X) + -cc uniformly on any compact subset of R \ C. Moreover, 

(4.5) 

where rti is positive integer. 

For our special functions Q, we can improve Lemma 4.1 as follows 

LEMMA 4.2. -There exists a subsequence (also denoted by vk) satisfying 
one of the following alternatives: 

(i) {l/k} is bounded in LrC(fl); 
(ii) vk + --oo uniformly on !7; 

(iii) there exists ajinite blow-up set C = {al, . . . , a,} c fi such that, for 
any 1 < % 5 m, there exists {xk} C Q xk -+ ai, uk(xk) -+ 00, and 
uk(z) -+ --co uniformly on any compact subset of fi \ c. Moreover, 
(4.5) holds. 

Proof. - From Lemma 4.1, we only have to consider one more case in 
which blow-up points are in the boundary of 0. There are two possibilities: 
One is bubbling too fast such that after resealing we obtain a solution of 
-AU = e” in a half plane; Another is bubbling slow such that after 
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resealing we obtain a solution of -Au = elL in RI*. One can exclude the 
first case. In the second case, one can follow the idea in [l l] to show that 
(4.5) holds. See also [lo]. 0 

Proof of Theorem 1.1. - (4.4), (4.5) and p E (8~~ 16~) imply that cases 
(ii) and (iii) in Lemma 4.2 does not occur. Consequently {ok} is bounded 
in LEc(n). Now we can again apply Lemma 2.2 as follows. 

Let S1 and 5’2 be two disjoint compact subdomains of 0. Since {uI~} is 
bounded in Lzc(R), we have 

for a constant co = CO ( S1, S2, 0) > 0 independent of Ic. Choosing E such 
that 16n-p > 2~ and applying Lemma 2.2, with the help of (4.2), we obtain 

which implies that Jo ]VU~I * is bounded. Now by the same argument in 
the proof of Lemma 3.1, uk subconverges to uP strongly in H:>2(R) and 
up is a critical point of .,7,. Clearly, YL~ achieves ofi. This finishes the proof 
of Theorem 1.1. 0 

Proof of Theorem 1.2. - Since the proof is very similar to one presented 
above, we only give a sketch of the proof of Theorem 1.2. Let C be a 
Riemann surface of positive genus. We embed X : C + Iw” for some 
N 2 3 and define the center of mass for a function u E @*(C) by 

m,(u) = e. ce” 
Since C is of positive genus, we can choose a Jordan curve I” on C 
and a closed curve I2 in IWN \ C such that Ii links I’*. We know that 
inf UEH1,~(~) Jc(u) is finite if and only if c E [O,Sr] (see [7]). Now define 
a family of functions h : D -+ H 1,2(C) (as in section 2) satisfying 

liil J,(h(r, 0)) -+ --3o 
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and 
Fyl mm-, 0)) as a map from S1 + I” is of degree 1. 

Let ‘D, denote the set of all such families. It is also easy to check that 
V, # 0. Set 

a, := inf sup Jo. 
hEvc &h(D) 

We first have 

Q, > -co, 

using the fact that I” links I’2 and Lemma 2.2. Then by the same method as 
presented above, we can prove that a, is achieved by some U, E @‘(C), 
which is a solution of (1.4), for c E (87r, 16~). 0 

REFERENCES 

[1] T. AUBIN, Nonlinear analysis on manifolds, Springer-Verlag, 1982. 
[2] A. BAHRI and J. M. CORON, Sur une equation elliptique non lineaire avec I’exposant critique 

de Sobolev, C. R. Acad. Sci. Paris Ser. I, Vol. 301, 1985, pp. 345-348. 
[3] H. BREZIS and F. MERLE, Uniform estimates and blow up behavior for solutions of 

-Au = V(z)? in two dimensions, Comm. Partial Diff: Equat., Vol. 16, 1991, 
pp. 1223-1253. 

[4] E. P. CAGLIOTI, P. L. LIONS, C. MARCHIORO and M. PULVIRENTI, A special class of stationary 
flows for two-dimensional Euler equations: a statistical mechanics description, Commun. 
Math. Phys., Vol. 143, 1992, pp. 501-525. 

[5] E. CAGLIOTI, P. L. LIONS, C. MARCHIORO and M. PULVIRENTI, A special class of stationary 
flows for two-dimensional Euler equations: a statistical mechanics description, Part II, 
Commun. Math. Phys., Vol. 174, 1995, pp. 229-260. 

[6] W. X. CHEN and C. LI, Prescribing Gaussian curvature on surfaces with conical singularities, 
J. Geom. Anal., Vol. 1, 1991, pp. 359-372. 

[7] W. DING, J. JOST, J. LI and G. WANG, The differential equation An = 8~ - &he” on a 
compact Riemann surface, Asian J. Math., Vol. 1, 1997, pp. 230-248. 

[8] J. KAZDAN and F. WARNER, Curvature functions for compact 2-manifolds, Ann. Math., 
Vol. 99, 1974 ) pp. 14-47. 

[9] M. K. H. KIESSLING, Statistical mechanics of classical particles with logarithmic interactions, 
Comm. Pure Appl. Math., Vol. 46, 1993, pp. 27-56. 

[IO] YanYan LI, -An = X(,* - W) on Riemann surfaces, preprint, 

[ll] YanYan LI and I. SHAFRI~ Blow-up analysis for solutions of -An = Ve” in dimension 
two, Indiana Univ. Math. J., Vol. 43, 1994, pp. 1255-1270. 

[ 121 C. MARCHIORO and M. PULVIRENTI, Mathematical theory of incompressible nonviscous 
fluids, Appl. Math. Sci., Vol. 96, Springer-Verlag, 1994. 

[ 131 J. MOSER, A sharp form of an inequality of N. Trudinger, Indiana Univ. Math. J., Vol. 20, 
1971, pp. 1077-1092. 

[14] M. NOLASCO and G. TARANTELLO, On a sharp Sobolev type inequality on two dimensional 
compact manifolds, preprint. 

Vol. 16, no 5.1999. 



666 W. DING et al. 

[15] R. S. PALAIS, Critical point theory and the minimax principle, Global Analysis, Proc. 
Sympos. Pure Math., Vol. 15, 1968, pp. 185-212. 

[ 161 M. STRUWE, The evolution of harmonic mappings with free boundaries, Manuscr. Math., 
Vol. 70, 1991, pp. 373-384. 

[ 171 M. STRUWE, Multiple solutions to the Dirichlet problem for the equation of prescribed 
mean curvature , Analysis, et cetera, P. H. RABINOWITZ and E. ZEHNDER Eds.. 1990, 
pp. 639-666. 

[ 181 M. STRUWE and G. TARANTELLO, On multivortex solutions in Chern-Simons gauge theory, 
preprint. 

[19] T. SUZUKI, Global analysis for a two-dimensional elliptic eigenvalue problem with the 
exponential nonlinearity, Ann. Inst. H. Poincar&, Anul. Non Line&w, Vol. 9, 1992, 
pp. 367-398. 

(Manuscript received December 16, 1997.) 


