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ABSTRACT. - We will prove the C” regularity of the classical solutions 
of the equation 

cu = $1 + 19~“d42)3’2 
1 + ug 

ux + uyut 
Lu=u,,+u,,+2”~-7J2utuz~-2 1+u2 

u2 + u2 
uyt + =utt> 

t t 1+ ut” 

4 E C”(a) and q(J) # 0 for every [ E s2. This is a second order quasilinear 
equation, whose characteristic form has zero determinant at every point, 
and for every function u. However we will write it as a sum of squares 
of nonlinear vector fields, and we will extablish the result by means of a 
suitable freezing method. 0 Elsevier, Paris 

RBsuMB. - Nous prouvons la rCgularitC C” des solutions classiques de 
l’equation 

fu = p + lS.‘.~~42)3’2 
1+ u: 
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q E C”(R) et q(e) # 0 pour tout < E 0. 11 s’agit d’une equation 
quasilineaire du second ordre, dont le determinant du symbole principal 
est nul en tout point <, et pour toute fonction 1~. Nous Ccrivons l’equation 
comme une somme de car& de champs de vecteurs, et nous prouvons le 
resultat en employant une methode <c freesing >>. 0 Elsevier, Paris 

1. INTRODUCTION 

In this note we study the regularity of the solutions of the equation 

Lcu = $1 + lv42)3’2 
1 +u: 

in 0 c R” (1) 

where 

and 4 E C” (0). Here we have denoted (z, y, t) a point of R3, uL1, the 
first derivative with respect to 2, and V the euclidean gradient of U. (1) is 
the Levi equation, and it describes the curvature of a hypersurface in R4 
(see for example [9] for some more details on the geometrical meaning 
of the equation). It is a quasilinear equation, whose characteristic form is 
semidefinite positive and has least eingenvalue identically 0, for every u 
and every (z, y, t) E R. Hence elliptic theory does not apply. 

When Q = 0, the following existence and regularity result was extablished 
by Bedford and Gaveau there exist only two point p1 and p2 where the 
tangent space to the graph of $ is a complex line in C2, and these two 
point are elliptic. If R is pseudoconvex in a3 x R, $ E C”+5(dR), then 
the problem 

1 
L(u) = 0 in $1 

IL=+ on dR (3) 

has a solution in C”+“(fl\{pi,pz}) n Lip(fi) (see [l]). 
More recently Slodkowsky and Tomassini proved that, if R is 

pseudoconvex, and Q satisfies a geometric hypothesis related to the Levi 
curvature of $2 x R, the Dirichlet problem associated to equation (I), has 
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C” REGULARITY OF SOLUTIONS OF THE LEVI EQUATION 519 

at least a viscosity solution u E Lip(a) (see [S]). However nothing was 
known about the regularity of the solution. 

On the other hand the author in [2] studied the simplified equation 

Lu = ql + IW 
1 + u: in fl c R3, 

when q # 0 for all [ E R, and proved that if Q > i and u is a solution of 
class C2,” (0) of (4), then it is of class C-(Q). 

Here we show that the same technique can be adapted to prove that 

THEOREM 1.1. - If a > $, q(t) # Ofor every [ E 12 and u is a solution 
of chss C2,* (R) of (1) then u is of class C” (0). 

If u is a fixed C1 function, and 

I 
1 

x= 0 

UY - ‘ZLz’ZLt 

1+ u: 

then L can be formally written 

Lu = x2u + Y2u - C(U)&U, 

Besides 

where 
C(U) = x( Uyl-;2uf) - Y ( u;++;*ut). 

t t 

K Yl = - 1 +&$t 

(5) 

(6) 

(7) 

so that, if u is a solution of (l), and q(t) # 0 V( E R, then 

X, Y and [X,Y] are linearly independent at every point. (8) 

In term of these vector fields the second member in (4) becomes 

Mu = q(l + IXuI + IYu12) (9) 

so that it is a quasilinear second order equation, related to the vector fields X 
and Y. In term of the same vector fields the second member in (1) becomes 

Mu = q(l + \Xuj + lY~]~)~‘~(l + ldtuj2)1’2. (10) 
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Since 8, is proportional to [X, Y], it has to be considered a second order 
operator and M is fully nonlinear. Then equation (1) will be written 

Lu - Mu = 0, (11) 

and it will be treated as a second order, fully non linear equation associated 
to the vector fields X and Y. 

Linear operator sum of squares of C” vector fields which satisfies 
condition (8), have been intensively studied (see for example [4], [5], [6]). 
A very particular non linear problem of the form 

F(<, u, xu, Yu) = 0 

has been considered by Xu, but in his case XU and Yu are linear first 
order C” vector fields. Here, on the contrary X and Y are non linear 
vector fields, who have the regularity of the gradient of U, so that we have 
to adapt to this situation the results in [2]. 

We first consider a simple non linear operator, which has the same 
structure as &u - Mu. If a, b, e, f g are continuous functions on an open 
set R, will denote: 

X= (i) and Y= (8). 

then we will consider the operators formally defined as 

Lu = x*u + Y2u - (Xa + Yb)&u, 

Mu = edtu + f(l + ldtu12)1’2, 

Au=Lu+Mu 

(12) 

i13) 

(14) 

and we will study the equation Au = g. 
In this setting Xu and Yu are the analogous of the first derivatives for 

the elliptic operators, and C:(a) denotes the set of functions such that Xu 
and Yu are continuous. More generally, if the coefficients of X and Y are 
of class Ck-’ (Q), a function u is in C;(R) if Xu and Yu E Ct-l(R). If 

X, Y and [X,Y] are linearly independent at every point (15) 
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C" REGULARITYOFSOLUTIONS OFTHELEVIEQUATION 521 

it is possible to introduce a distance d naturally associated to X and Y, 
(see [6] for the definition in the regular case), and it is equivalent to 

d(t, Eo) = (((x - 20)~ + (Y - ~0)~)~ 

+ (t - to - 4Co)(z - x0) - b(lo)(Y - Yo))2)1'4, 

in the sense that there exist two constants Ci and C, such that 

v’I> lo E fi Gd(l,Co) i &lo) 5 Gd(E,lo). (16) 

A function u is said of class C;(n) with 0 < (y 5 1 if 

ME) - 4Eo)l I Cd”(l,Jo) K,Eo E 0. (17) 

With these notations we will prove that 

THEOREM 1.2. - Assume that a and b are of class Cafe;“, e and 
f E C’~;&(O) and (8) holds. If u is a solution of class C,~;&.( 0) of the 
equation Lu + Mu = g E C~$,(O), with a > l/2, then u E C1t:i;*(0). 

The proof follows the same steps as in [2]: we call frozen operator 
of A the operator whose coefficients are the first order Taylor expansion 
of the coefficients of A, and Xc, and YE,, the related vector fields. The 
operator L,, obtained in this way is a linear hypoelliptic second order 
operator, which has already been intensively studied. Hence it is possible 
we write a representation formula for functions of class C?O, in term 
of its fundamental solution (see section 2). In section 3 we differentiate 
explicitly this formula, and prove the regularity Theorem 1.2. We also get 
some technical regularity results in the directions X,, and YcO. Using these 
theorems, and arguing as in [2] we first deduce that u E C?‘&(Q) and 
&u E C~~$,(n) (in proposition 3.1 we will give a short scheme of the 
proof). Then applying an iterative procedure and theorem 1.2 we deduce 
that u E C-(O). 

We are deeply indebited with A. Montanari, for bringing to our attention 
a mistake in a previous version of the paper, and suggesting us how to 
correct it. 

2. REPRESENTATION FORMULA 

In the sequel X Y will always be the vector fields introduced in (12), 
L and M the corresponding operators, and a, b, e and f are of class 
CIk”(R). Th en e very ‘u E Ck” (Sz) has the following Taylor development: 

40 = J’;p(E> + O(d’+“K to)), (18) 
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where 

q,m = 46,) + X4lo)(x - 20) + Yu(<o)(y - yc,) 

(see [21). Hence it is natural to call frozen operator of L 

L,,, = x;, + Y;) - (Xa + Yb)(~())&, (19) 

where 

while the frozen operator of M will be 

M(,,~~ = e(lo) + ( 
f(loN4Eo) ‘ 

(1 + dtll(<O)*)l/* > &?!. 

(2o) 

(21) 

The resulting operator A,, = L,, + MC, is a linear operator, sum of squares 
of nihilpotent C” vector fields, hence it is well known how to associate 
to it a homogeneous nihilpotent Lie group such that X,, and YE0 are left 
invariant with respect to the traslations, and homogeneous of order 1 with 
respect to the dilations. In this particular case the canonical change of 
variables is 

d&(~, Y, t) 
a(2t - XU(~&? - Yb(lo)Y2 - (Xb(<o) + W<o))ll;.Y) - 

= x; y. 
Woo) - Jwlo) 

_ 4(a(l,) - Y4EO)Y” - XU(~o)Xo)~~ 

WEO) - -wEo) 

_ Wlo) - X~(~o)~o - Xb(lo)yo)y 
Y4Eo) - Xb(Eo) J 

and it changes L,, into the Kohn Laplacian on the Heisenberg group. 
Consequently for every to the control distance naturally associated to 

A,, is explicitly known, and the fundamental solution is equivalent to a 
power of d. Precisely 

where N = 4, and it is the homogeneous dimension of R3, in the sense 
that the Lebesgue measure of the sphere of the metric d is 
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Because of the homogeneity of X,,, and YtO we have 

while 
WE” (I: 0 ‘v d,4(1: 0 

Finally an easy computation shows that there exist constants Co e C1 
such that 

Co& (I. lo) 5 4E: lo) L Gd,,, (<, lo)- (22) 

where d(<, (0) has been defined in the introduction. Hence, because of (16) 
also d,, ([, {a) provides an estimate of d(<, lo). 

Let us now prove the representation formula, in terms of I’<“. In order 
to do so, we fix three open sets 0, Ri and & such that & CC Ri CC (2, 
and a function q!~ E C,-(O) such that 6, -. 1 in Ri, and we study only 
‘UlQ, = vqn,. 

THEOREM 2.1. - If ‘u E C,~“(O), then for every < and <o E 622 
u(t) = I@(<) can be represented in the following way: 

h(I) = A(<, 6)) + B(<, lo) + &4to)C(l. Eo) + E(<, lo)+ 

+FA(s, lo) + FB(E, lo), 
where 
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- (1 + au;<o)2)l/2 * 
.! 

rEo cc> SMCM(c)e 

&v(to)2 
- (1 + &u(&J)2)1/2 I 

‘r,“(E>C)(fiC) - f(~o))4(W<+ . 

+ 450) + fK0) 
( 

&v(Co) 
(1 + &v(Eo)2)1’2 >I r&l (6, CMCPt4(CM, 

- /‘r,,K C)P(C) ((1 + &v(C)“)“” - (1 + a*v(<o)y- 
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Proof of Theorem. 2 .l . - Due to a density argument we only have 
to prove the Theorem for smooth V, a, b, e and f. By definition of 
fundamental solution 

- J rEo(l> C@muY) - kob~)(o)ds- 

- J r&l (I, 0 (~~KMK) - %l w)(~)) 4. (23) 

The second term has been already studied in [2], where we proved that 

- J %I (I> 0 (WSMC) - -ho W)(O)d~ = 

= B(I, lo) + at4to>c(t, Eo) + WI, 6). 
Since 4 E 1 in a neighborhood of co, then ME0 (w$) = ( e(to) + 
f(Eo &v 63) (l+a,l)(Eo;z)w) (atw#~ + at+>- H ence the third term can be evaluated as 

follows: 

- J r&l (I, Cl &w(5) - ME0 b#m)) 4 = 

= - J rco (t, 0 (e(C) - e(to))atw(C)b(C)dC- 
- Jr,,w(m(1 +atan1/2- 

= - Jrt,(t,<)(e(C) - e(to>)(atv(<) - atv(to))~(<)dc- 
Vol. 15, no 4-1998 
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where we have denoted 

- J 
act, lo) = f(” - G)X&~(lo) - i(Y - yo)Y&v(Eo), 

wzo) = 2 J wm 

x (X"K) - tXW<o) - ~X~tW(~o>(~ - ~o))X<,4(<)dC 
Vol. 15. no 4-1998. 
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+ ~,,(E,C)(~(5)-~~~t~~(Eo)t(~-~o)-Y~t~(~o)t(Y-Yo))~Eo~(~)dCt J 

at4<0> 
- (1 + i%w(~o)2)1/2 (at~J(c) - p;,a,wci,,) 4(W- 

at4Eo) 
- (1 + atw(&J)2)1~2 .! 

‘r,,(E,C)(f(i)-f(Eo))(Btw(C)-P:,,i)tw(C))d(~)rlC+ 
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Proof - The assertion can be proved applying Theorem 2.1 to 

and using the fact that 

&w(C) - &w(Eo) = &J(C) - P;o~*4c). 

All term follow straitforward, but A and FB. Hence we will now consider 
the sum of A and the second term in FB applied to w, which we will 
denote Tp. Note that 

-h(5) = Lv(l) - 2dkJ(Eo) - bY&v(lo), 

- .I’%K! Of(C) ((1 + ~+w(c)2)“2 - (I+ 4~4<0)“)“‘- 

&w(lo) 
- (1 + &w([o)2)1/2 (GJ(O - WEod) $(WC = 

- 1 r,“(c, of(O ((1+ hvJ2)“” - (1 + &4co)2)1’2- 

&4lo) 
- (1 + at~(~o)2>‘/2 eJK> - P;la~~m) e34 = 

(adding and subtracting Mu in the first term, and f(<)(l + d,~(c)~)l/~ 
to the second) 

= .I rEo (I, c) (-wc) - 2axdt7dto) - 2b~w~,) + M~K))~(c)~c+ 
+ s l-E0 (I, 0 (MWK) - Mm) 4(04- 
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- J’rc” (t; OS(<) ((1 + &!1(<)2)1’” - (1 + &v(<#)“‘- 

-Ir,,,iE.i).f(ij((l+il,n(C)2)‘/‘-/1 +~j~7~(i)‘)‘l’)o(i)di. 

From this relation the expression of A1 and FB,l follow, since &fllj(<) - 

Mu(C) - (1+3tw({)*)“’ + (1 + &U(<)“)i/’ = e(<)@/(C) - &(1(C)) = 

c(C) (xa?;(~o)(x - q,) - Y&o(~,)(y - yo)). 

3. REGULARITY RESULTS 

In this section we prove Theorems 1.1 and 1.2. First of all we state 
without proof two regularity results, which can be proved differentiating 
the representation formulas just stated. The proof of a similar assertion was 
given in [2], where, however, there is a small mistake on pp. 508-509. 
The proof of theorems 3.1 and 3.2 can be found in the P.h.d. thesis of 
A. Montanari and in [3], where analogous Theorems are stated in a more 
general setting. For simplicity we will denote DC, ,i = Xc, and DC,,, = Y<,, 
where Xc, and YE” are defined in (20). 

THEOREM 3.2. - Assume that are a, b, e, f and y of class C,:“(Q) and 
partially differentiable with respect to t, with derivatives qf class <7,?(O). 
Let ‘u be a solution qf Au = .(I, such that 11 E C-;“‘(fI) and 8,~ E C.\“(O). 
Then &v E c=,“,;TOo,(fI). 

THEOREM 3.3. - Assume that u, b, c:, f and y are of class C.k(‘(O) and 
let ‘u be a solution of Rv = ,q such that II E C.?“(O), and DfO,i,ju is well 
defined in R. Then Dt,,i,j 11 is diferentiable with respect to X and Y at 
the point & and thefunctions & 4 XD$O,;,jv(&,) and (0 -+ YD~~l,i,jv(<o) 
are of class C.(;,lOc (0). 

Proof of Theorem 1.2. - The proof of an analogous theorem can be 
found in [3], and it is obtained by differentiating the representation formula 
proved in theorem 2.1. 

Let us go back to the study of equation (8). If ‘1~ is a fixed functions of 
class Cl, according to (9) we define 

‘$ - uII,. ‘I& 
a, = 

IL, $ uy ut 

1 + IL? 
and h= - 

1+u,2 
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Then the vector fields X = X, and Y = Y, defined in (12) are continuous, 
and it is possible to apply the theory we have just developed to the operator 

LILV - M,uIl) 

where 
L,ulI = x2w + Y2v - (Xa + Yb)&,v 

and 
Mu?l = 4(1 + IXU12 + (YU]2)“‘2(1 + ldtY12)? 

In particular we will denote Ci,a the Lipschitz classes associated to 
L, + Mu. In the sequel we will also assume that u is of class C2,rr 
and it is a solution of the Levi equation, i.e. L,u - Muu = 0. A direct 
computation shows that 

Yu= a and Xu= -b. 

so that in this hypothesis a, b and the coefficient of M,,, f = q(1 + IXu12 + 
lYul2)3/2 are of class Cka(fl). 

PROPOSITION 3.1. - Zf 4 E C?(0), q(J) # 0 for all < E R, u: > i and 
u E C2,” (a) is a solution of (1 l), then u E C”,‘&(n). 

Proojf - The proof is similar to the one in [2], so that we only explain 
to adapt it to the present context. As we have already noticed, a, b and 
f are in Cia(R). Moreover 

lo + G‘G,u(Io) E c,&,,(fl> and <O + &Y~,u(~o) E cZ,dfl) 

From this last assertion and Lemma 7.1 in [2] it follows that 

This means that a = Yu, b = -XU and f are differentiable with respect 
to t, with derivative of class C.&0c (0). Hence, from Theorem 3.2 we get 

This, together with the assumption that u E @&.(fl) implies that the 
function D tO,;,ju are well defined in 0. Hence, by theorem 3.3 the functions 
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to -+ X~.&,~,j~(~o) and lo -+ YD& ijw(<~) are of class C&,,(O). By 
Lemma 7.2 in [2] this implies that (I, ‘d E C~:~O,(fi), so that 

Now we will prove theorem 1 .I: 

Proo$ - By Proposition 3.1 we can assume that u E C~$,~(Q), and 
&u E C~;~o,(ll) so th t a we can differentiate both members of equation (11) 
with respect to X and we get (see also the proof of Theorem 7.1 in [Z]) 

L,Xu = X(q(1 + ]Xu]2 + jYu]2)s’2(1 + ldtuj2)1’2)- 

-(X2u + Y2u) 
xa,ua,u - Y&u 

1+(&u)” + 

+y ( (1 + &r/2 q(1 + ]XulZ + lYu12y2) - 

( 
&U 

-x (1 + (d&)2)1/2 
q( 1 + (Xu12 + /y,,12)3/2) atu+ 

+(XYu - YXU) 
x&&L - Ydtu 

1 + (&U)2 
8 

tU. 

Analogously, taking the derivative with respect to Y, we have 

(3 

L,Yu = Y (q(1 + Jxu)2 + jYu)y2(1 + ptu)y) - 

-(X2u + Y2u) 
X&u + Y&u&u 

1+ (&L)” - 

-x (1 + (&l/2 ( 
q(1 + (Xuj2 + lYu12)S~2) - 

-y (1+ (&l/2 ( 
q(1 + IXuj2 + /Y?~/2)i/+u+ 

+(XYu - YXU) 
X&u + Y&?&u 

1 + (&u>” 
atu. (27) 
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Since the second member is of class C2a((R), then, by theorem 1.2, Xu 
and YU are of class C2a(fl), and u ~2” (Q). 

We can now differentiate both members of (11) with respect of t, and 
we get 

= -2d~YuXd~u+2d~XuYd~u-dt(q(l+lXUl2+lYUl2)3’2(~+l~t~l2~1’2). 

Hence if we set 

e = q(1 + lXU12 + lYU12)3’2(1 + ldtU)2)-1’2dtll 

and 
A = L, + et&, 

then &u satisfies the equation 

Aatu = -2atYuxatu+2atxuYatu- 

-a&i + 1x7~12 + l~~l2)3/2)(1+ lat1112)1/2. (28) 
Since u E C4+ A,l,,(Q) the second member in (28) is of class Ci;yOl:(b2), 

and the coefficients of the operator are C~$:,,(O) hence &u E C?‘&(n). 
Thus the second member of (26) and (27) is of class C,~&.(O), and the 
coefficients are C>,&.(s7,), so that Xu E C~,&.(Q), Yu E C$&(n). Hence 
the second member in (28) is of class C?,&(O). This procedure can now 
be iterated to prove that u E Ci$, (R), for every k, and this implies that 
u E c-(n). 
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