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ABSTRACT. - We study variational problems of the form 

with small E and 0 5 F(t) 5 cltj* 2 on a domain of dimension n > 3. The 
corresponding Euler Lagrange equation is a semilinear Dirichlet problem 

-Au = Xf(u) in R, 
u = 0 on X2 

with f = F’ and a large Lagrange multiplier A. Our goal is to obtain 
qualitative information on the extremals IL, for small E. The integrand F 
can be nonconvex and discontinuous. Thus our results apply to nonlinear 
eigenvalue problems as well as to certain free-boundary problems. 

Our starting point is a generalized Sobolev inequality that covers 
the classical Sobolev inequality and the isoperimetric inequality relating 
capacity and volume as special cases. Using a local version of this inequality 
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270 M. FLUCHER AND S. MiiLLER 

we prove a generalized concentration-compactness alternative and show that 
as E -+ 0 the extremals concentrate at a single point. The local behaviour 
of the extremals near the concentration point depends only on F. On a 
microscopic scale they tend to an extremal for the generalized Sobolev 
constant on IR” provided that F satisfies certain growth conditions at 0 
and infinity. 0 Elsevier, Paris 

Key words: variational problem, concentration, critical Sobolev exponent, free-boundary 
problem. 

RBSUML - Nous Ctudions des problemes variationnels 

sllp{~F(a) : JriVe12<c2, u=O sur X2} 

ou E est petit et 0 5 F(t) 5 cJt( ?5 et R est un domaine de dimension 
n 2 3. L’equation d’Euler-Lagrange correspondante est un problbme de 
Dirichlet semilineaire 

-Au = Af(u) in R, 
u = 0 on dR 

oti f = F' et X est un multiplicateur de Lagrange grand. Notre objectif est 
d’obtenir des informations qualitatives concernant les solutions extremales 
‘ZL~ pour E petit. La fonction F peut &re non convexe et discontinue. 

Nos resultats s’appliquent par consequent a des problemes aux valeurs 
propres non lineaires et a certains probkmes a frontiere libre. Notre point 
de depart est une inegalite de Sobolev generalisee qui contient 1’inCgalitC 
de Sobolev classique et l’inegalite isopCrimCtrique qui relie la capacite et le 
volume. En utilisant une version locale de cette inegalite nous demontrons 
une version generalisee de l’alternative concentration-compacide de Lions 
et nous montrons que les solutions extremales se concentrent en un seul 
point lorsque E + 0. Le comportement local de ces solutions extremales 
au voisinage du point de concentration depend uniquement de F. A une 
Cchelle microscopique elle tend vers la solution extremale de la constante de 
Sobolev gtntkalisee dans JR” a condition que F v&tie certaines conditions 
d’accroissement en zero et a l’infini. 0 Elsevier, Paris 

MOB cl& : probkme variationnel, concentration, exposant de Sobolev critique, probkme 
?I front&e libre. 
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1. INTRODUCTION 

We investigate the asymptotic behaviour of solutions and approximate 
solutions U, of the variational problem 

(1) sup{LF(u) : ~~VU~‘<E~, u=O on Xl} 

in the limit E -+ 0. The integrand F is supposed to satisfy the growth 
condition 

0 I: F(t) 5 cjt12*, 

where 2* := 5 denotes the critical Sobolev exponent. For smooth F the 
extremals uLL, satisfy the Euler Lagrange equation 

(2) -Au, = XEf(uE) in R, 

UE = 0 on dR 

with f = F’. Our main result, Theorem 3, says that: 
1. The extremals (uE) concentrate at a single point ~0 E fi. 
2. On a microscopic scale near the concentration point they tend to an 

entire extremal, i.e. to a solution of (1) on IR” with E = 1. 
The first result extends work by P.L. Lions for the critical power function 
to general integrands. The second one is essentially contained in Lions [lo]. 
Nevertheless we present a new proof based on a local generalized Sobolev 
inequality (Corollary 9) that is used several times for both results and 
should be useful for other purposes as well. In a forthcoming paper [5] we 
discuss the problem of identifying the concentration point zo. 

2. DEFINITIONS AND HYPOTHESES 

1. In this paper we consider the so called it zero mass case characterized 
by f(0) = 0. In this case the natural function space for variational 
problems of the form (1) is D ‘12 (R), defined as the closure of Cr (R) 
with respect to the norm 

WJlla := (/n IV@) 1’2. 
For the positive mass case with f(0) < 0 the appropriate space is the 
usual Sobolev space Hi (a). The only constant function in D’?“(n) 
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272 M. FLUCHER AND S. MijLLER 

is 0. If R has finite volume D1y2(s2) and Hi(Q) are the same spaces. 
In general, however, D’)“(n) $ L2(R). For instance the functions 
w(z) = min(1, [ICI-“) with (YZ - 2)/2 < cr. 5 n/2 are contained in 
Di~“(lR”) but not in L2(lR”). Throughout this paper functions in 
D1y2(R) are extended by 0 to all of IR”. Thus D1>2(R) c D’~“(IR”). 
Weak convergence, denoted as 

is equivalent to 

vu, - Vu weakly in L2(Q) 

which implies 

v, - %I weakly in L2* (Q), 

v, -+ u in LyO,(R), 

for every p < 2* by Sobolev’s embedding theorem and Rellich’s 
compactness theorem. 

2. We consider the variational problem (1) for integrands F satisfying 
F(t) 2 F(0). Without loss of generality we can assume F(0) = 0. 
To motivate our hypotheses on F recall Sobolev’s inequality 

(3) 

for functions in D’a2(fl). The optimal constant S* is independent 
of R. Usually 

s, = (s*)%? = n(n - 2)7r v 
( ) 

2/” 

is called the best Sobolev constant. Throughout this paper we make 
the following general hypotheses. 
(R) R is a domain in IR” of dimension n 5 3. 
(F) The integrand F satisfies the growth condition 0 5 F(t) 5 c lt12- 

for some constant c. It is upper semicontinuous and F $ 0 in 
the L1 sense. 

(F+) max(F2, FL) < SF/S* with Fz, Fz as defined below and 
SF. S* as in Section 3. 
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The following numbers are used to compare F to the critical power 
functions. 

J’(t) Fz := limsup - F(t) 
t-i0 \ti2* ’ 

F; := lim$f lt12’, 

w FL := limsup- w F; := liminf -. 
ItI+= lt12* ’ ItI-= lt12* 

We write F. := Fz = F; and F, := FL = F; in the case of 
equality. 

3. Throughout this paper fi denotes the closure of R in IR” = 
R” U {cc} 2 S”. The class of non-negative Bore1 measures on 
fi of finite total mass is denoted by M(a). They can be identified 
with the non-negative elements of C(a)*. Thus convergence in the 
sense of measures 

is defined by Jfi 4 d,uE + JO 4 dp for every test function 4 E C(n). 
To detect the asymptotic behaviour of the extremals u, we analyze 
the limit of the measures 

/LE := 
IVu,\2dz- 

so lW2 
5 p in M(Q) 

which exists for a subsequence. A priori the limit can be any 
probability measure on fi. We will show that it is a Dirac measure 
I-L = b,. 

3. GENERALIZED SOBOLEV INEQUALITY 

DEFINITION 1 (Generalized Sobolev constant). - Dejine 

S,F(s2) := E-2* sup (s F(u) : u E DlT2(R), ~~VU~~~ 5 E 
R 

and the generalized Sobolev constant 

SF := Sf+R”). 

Vol. 16, no 3-1999 
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We say that (u,) is a sequence of almost extremals for S:(R) if u, is 
admissible for the dejnition of SF (fl) and 

E-2* 

J 
. F(UE) = S,F(f2)(1+ o(l)) as ~40. 
R 

This paper is about almost extremals. They exist by definition of S:(n). 
We do not discuss the question of existence of exact extremals. The 
hypothesis (F) implies 0 < SF 5 c S* < cc. Our extension of the classical 
Sobolev inequality to general integrands (Lemma 2 below) is a simple 
consequence of the basic scaling properties of integrals in lR”. Define 

u”(czg := u(z/s). 

Then 

(4) s F(d) = s7L F(u), sn 
I’ 

J, 
. sR Ivu~)2 = s+‘i (Vu12. .s2 

We will refer to this transformation as it horizontal scaling. In particular it 
can be used to normalize a function whose Dirichlet integral is not 1. If 

-A we choose s = llVullz then IJVu”I( = 1 and 

l, F(d) = Ipu”~~,2* 1; F(u). 

Using horizontal scaling it is clear that 

sp2c(s12) 2 S,F(fq. 

If 0 is starshaped with respect to the origin then also SF+ (a) > 

SF,, (so) for every s < 1. This shows that SF(n) is non-in&la&g in E 
at” lias” for starshaped domains. 

LEMMA 2 (Generalized Sobolev inequality). - Assume (Q) and (F). Then 
I. S,F(fl) 5 SF for every E > 0. 
2. In particular the generalized Sobolev inequality 

(5) .I’ 
F(u) 2 SFllW;* 

0 
holds for every domain R c R” and every u E D’>“(G). 

Annuks de l’hstitut Henri Poincar6 Analyse non h&ire 



LOW ENERGY EXTREMALS 275 

3. SEF(f2) --f SF as E -+ 0. 
4. Fo- 2 SF/S, F; 2 SF/S’. 

Proof. - To prove 1. let ‘u be an admissible candidate for the definition of 
SF(a). The horizontally scaled function W(X) := U(E&Z) is admissible 
for the definition of SF. Therefore 

SF 2 J F(w) = E-~* 
J 

F(u). 
IR” R 

Taking the supremum over all such u yields 1. and 2. To prove 3. fix S > 0, 
x0 E R, and a candidate w for the definition of SF satisfying 

J F(w) 2 SF - 6. 
Et” 

For T large enough &,’ F(w) 2 SF - 26. In Lemma 8 we construct a 
cut-off function C& with & = 1 in B,’ vanishing outside Bf such that 
JB: (V(&w)12 < 1 + 6. For E small enough 

ub) := (&w,( (yf)A(,-xo)) 

has its support in R and JIVulj2 5 E. Thus 

S,F(R) 1 Ec2* J F(u) cl = p+(!j-2% J F(&w) > (1 + S)-*(SF - 26) 
B,R 

Since 6 was arbitrary we obtain 3. To prove 4. choose an extremal w for 
S*. Such extremals exist and are of the form (9) below. The functions 
s -9 ws are admissible for the definition of SF and they tend uniformly 
to 0 as s -+ co. Therefore 

SF 2 / F(s-+w”) . R” 
= s n 

s F(s-*w) 2 (F,- + o(l)) J 1W12”. IF-L" IFt" 
The inequality for F; follows as s + 00. Letting s -+ 0 we obtain the 
inequality for F; in a similar way. 0 
Vol. 16, no 3-1999 



276 M. FLUCHER AND S. MijLLER 

For the critical power integrand one has St(n) = S* for every E. 
Typically however, S:(0) decreases as E increases. In [5] we show that 
under suitable assumptions on F including (J’+) one has 

ST(R) = SF - cF i;f rc2 + 0(c2) 

with some constant cF > 0. Here 7 denotes the value of the Robin function, 
the regular part of the Green’s function with equal arguments [ 11. We show 
that every sequence of low energy extremals concentrates at a minimum 
point of the Robin function. This is not true for almost extremals. They 
can concentrate at an arbitrary point in 0. 

4. MAIN RESULTS 

An extremal for the generalized Sobolev constant or entire extremal is a 
function w E D1>2(R”) with ]JVW]]~ = 1 and j& F(w) = SF. It satisfies 
an Euler Lagrange equation corresponding to variations of the independent 
variable. For monotone integrands it is radially symmetric with respect to 
some point and strictly decreasing or increasing in radial direction. For 
general integrands this is true outside a compact set. In particular every 
entire extremal is either strictly positive or strictly negative. These properties 
together with exact decay rates are derived in [4]. The uniqueness question 
is unsolved. 

THEOREM 3 (Concentration theorem). - Assume (Cl) and (F) and let (u,) 
be a sequence of almost extremals for ST(R). 

1. If Fz = Fi and R # IR” in the sense of capacity, i.e. 
cap,, (EL” \ R) > 0 then a subsequence of (uE) concentrates at some 
point x0 E 0, i.e. 

‘vUc’2dx 2 6 
&2 IO in M(Q) > 

E-~* F(u,)dz A SF&, in M(Q). 

If F$ < SF/S’ or if R has finite volume the hypothesis Fz = Foe 
is not needed. 

2. If (F+) holds then there are points x, + x0 such that the resealed 
functions 

WE(Y) := zL~(x,+E*y) 
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tend to an extremal for SF, i.e. w, -+ w in D1~2(R”), ]]Vw]Jz = 1, 
and j& F(w) = 1. 

COROLLARY 4. - Assume (F) and (F+). Then an extremal for SF exists. 
We expect that the conditions (a), (F), and R # IR” already imply 

concentration. The latter condition is not obsolete. In fact, for the critical 
power integrand on IR” the functions 

u,(x) = 
(c’+ ,:I 

n-2 
2 
) 

2 

with suitable c are extremals for SZ(IR*) but 

lW2 E2dx = ]Vvl12dx 

does not tend to a Dirac measure. Maximizing sequences for the critical 
power integrand can concentrate arbitrarily fast (Lions [lo, Theorem 1.11). 
This is ruled out by our growth condition at infinity which permits us to 
prescribe the rate of concentration. Nevertheless the conditions on Fz and 
FL allow for critical growth at 0 and infinity as shown by the following 
example. 

Example 5. - Let 

F(t) G(t)lt12*, G(t) I 1 (t 5 1 or t 2 4), := = 
2 (2 5 t 5 3) 

and 1 < G(t) 5 2 else. In this example we have Fo = 1, F, = 1, and 
(F+) because JR,, F(U) > S* for every extremal for S* with max u 2 2. 

5. APPLICATIONS 

Theorem 3 applies to the following examples. 

Example 6 [Volume integrand]. - Set 

F(t) := 
{ 

0 (t<l) 
1 (t 2 1). 

In terms of the set A := {U 5 1) the variational problem (1) can be 
written as 

sup { IAl : cape(A) I E”} 

Vol. 16, no 3.1999. 
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because JoF(u) = ]A] and Jo JVu12 = cap,(A). This form explains the 
term volume integrund. The weak form of the Euler Lagrange equation 
is Bernoulli’s free-boundary problem: Given the domain R and a number 
Q > 0, find a set A c 0 (with the free boundary 8A) and a function 
u : R \ A + IR such that 

--Au, = 0 in 62 \ A, 

IL = 0 on dR, 
u = 1 on i)A, 

3u - 
dv 

= Q on i3A. 

A derivation of the free-boundary condition together with a detailed 
analysis of this problem and its applications can be found in [6]. The entire 
extremals for the volume integrand are given by the translates of 

n-2 

w(x) = (1x1 > RI> 

(1~1 F W 

with R such that cap,, (BF) = (7~ - 2) IS-l 1 Ram2 = 1. The slope at the 
free boundary is Q = (n-2)/R. This example shows that an entire extremal 
actually may have flat parts. The generalized Sobolev constant is given by 

In three dimensions Sr” = (48~~)~~ (Talenti in [8, p. 11381). The 
generalized Sobolev inequality (5) for the volume integrand is the 
isoperimetric inequality relating capacity and volume: 

IAl 5 S’lcapo*(A). 

In the radial situation Q = B: Bernoulli’s free-boundary problem can be 
solved explicitly. Denote by 

K(r) = (n _ 2)l&n-2 

the fundamental singularity of the Laplacian. The optimal sets are concentric 
balls A, = B,‘. The corresponding extremal functions are given by 

K(IxI) - K(R) 
uE(z) = K(r) - K(R) 

(r 5 1x1 5 R) 
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extended by 1 in B,’ with 

279 

(6) E2 - - J BoR IW2 
= cap,uR(B,‘) = 

1 
K(r) - K(R). 

This gives the relation between E and T. Also on a general domain the 
optimal sets A, concentrate at a single point as follows from Theorem 3. 
In [3] (n = 2) and [5] (n 2 3) we show that the concentration point is a 
minimum point of the Robin function (see also [ 1, 61). 

Example 7 [Plasma problem]. - In contrast to Bernoulli’s free-boundary 
problem the plasma problem has a continuous integrand vanishing below a 
certain positive value. Concentration in two dimensions for 

with p > 2 has been shown in [l]. By Theorem 3 concentration also 
occurs in higher dimensions for every p E (0,2*]. The corresponding Euler 
Lagrange equation is 

-Au = Xf(u) in R \h’A, 

u = 0 on dR, 
u = 1 on dA, 

u ,is C1 across dA. 

More information on this problem for large X can be found in [7]. The 
entire extremals for the plasma problem in 3 dimensions with p = 2 are 
the translates of 

(1x1 > RI, w(x) = 
(1x1 I R) 

with R = (67r)-l. 

In both examples we have Fa = 0. Several proofs of this paper can be 
simplified considerably under this additional hypothesis. 

Vol. 16. no 3-1999. 
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6. LOCAL GENERALIZED SOBOLEV INEQUALITY 

Using n-harmonic cut-off functions we derive a local version of the 
generalized Sobolev inequality. This result will lead to simple and 
unified proofs of the generalized concentration-compactness alternatives 
(Theorems 12 and 20) and Theorem 3. 

LEMMA 8. - For every 6 > 0 there is a constant k(S) > 0 with the 
following property. If 0 < r < R with r/R < k(S) then there is a cut-off 
function & E H’?“(lR”) such that & = 1 in B,‘, c#& = 0 outside B:, and 

for every u E D1~2(lFL”). 

Proof - We may suppose IC = 0. As a cut-off function we choose the 
n-harmonic capacity potential 

extended by 1 in B& and by 0 outside Bf. It minimizes the conformal 
energy 

/ 
pp;;l” = PBI 

. B: (log +)n-l. 

In contrast to the 2-capacity the n-capacity tends to 0 as R - m. By 
Holder’s and Sobolev’s inequality 

s IV(&u) I2 BoR 5 (1 + PI .I B~~~~12/Cl12+(1+~)J,nl~l~l~~12 
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for arbitrary p > 0. With the optimal choice of p the square bracket is < 6 if 

( > 
-(n--l) 

log$ n I 
m-1 

Gl 

Hence we can choose 

k(S) := exp (-( & ,,“). 

0 
COROLLARY 9 (Local generalized Sobolev inequality). - Assume (Cl) and 

(F). Fix 6 > 0 and r/R 5 k(S) with k(S) as in (7). Then 

for every u E D’~2(lR*). 

Proof. - We may suppose z = 0. By Lemma 8 and the generalized 
Sobolev inequality (5) (note that &u vanishes on aI3:) we have 

For the second inequality we use the cut-off function (1 - &)&: with 
r < R < RI < R2 and let RI and R2 + cc such that Rz/RI -+ 00. 0 

7. GENERALIZED CONCENTRATION- 
COMPACTNESS ALTERNATIVES 

The critical power integrand has a special invariance. Namely u and 
2 H s-(“-~)/~u(z/s) have the same Dirichlet integral and L2* norm. 
For this reason the critical Sobolev embedding is noncompact on bounded 

Vol. 16, no 3-1999. 
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domains. The failure of compactness can be described precisely. Every 
maximizing sequence concentrates at one point. This follows from a 
concentration-compactness alternative of P.L. Lions (Lemma IO below). 
We quote it in a form adapted to our purpose. In particular we allow for 
concentration at infinity. 

LEMMA 10 (P. L. Lions [lo, p. 1581). - Assume (0) and consider a 
sequence (II,) in D112(fl) with 

lIV%ll2 5 1: 

,V&Z 

- vo weakly in D’>“(0), 

5 p in M(i=l), 

~?J,~2*dx -2 u* in M(i=l). 

Then: 
1. The limit measures are of the form 

u* = Jwo(2*dx + ‘p;szJ, u(~) 5 s* 
j=l 

with J E IV U {w} and a nonatomic B E M(a). Moreover 

The atoms satisfy the Sobolev inequality 

2. Zfv*(fi) = S* then p(G) = 1 an d one of the following statements 
holds true. 
(a) Concentration: p and V* are concentrated at a single point, 

i.e. wo = 0, p = 6,,, and Y = S*S,, for some x0 E Q. 
(b) Compactness: v, --+ wo in D’>“(0), ,U = ]V~a]~drc, and u* = 

~wo~2’dx. 
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The key point in the proof of 2. is the following convexity argument. With 

.I 
IV71()12, .!I; := 

J Iv01 
2’ po := 

R R 
one has 

n 72 - 2 

5 (p(n))* 

by Sobolev’s inequality (3) for the regular part and for the atoms (8). By 
strict convexity of the function t H t& on III+ only one of the ,LL~‘S can 
be nonzero. Hence either concentration or compactness occurs. Lemma 10 
applies to maximizing sequences for the critical power integrand. 

Example 11 [Critical power integrand]. - Assume 52 # IR” in the sense of 
capacity, i.e. capRt, ( lR”\R) > 0 and suppose \)Vw,)(z 5 1, Jo ]o,]~* -+ S*. 
Then v*(o) = S*. If alternative (b) would hold then the optimal Sobolev 
constant would be attained by a function vanishing on IR” \ 0. This is 
impossible because all extremals for S’ are of the form 

with x0 E IR”, s > 0, and a constant c (see Talenti [12]). In three 
dimensions c = 2/(&r). It follows that alternative (a) must hold, i.e. that 
a subsequence of (wE) concentrates at a single point x0 E fi, p = I$.,, and 
v* = S*S,,. On the other hand it is possible to construct a maximizing 
sequence for S* concentrating at an arbitrary prescribed point z. E a. 

Our aim is to extend this conclusion (concentration of maximi- 
zing sequences) to general nonlinearities. The following generalized 
concentration-compactness alternative is the basis of part 1 of Theorem 3. 

THEOREM 12 (Generalized concentration-compactness alternative I). - 
Assume (0) and (F). Let (u,) be a sequence in D’,2(fl) with IIVU~]I~ 5 E 
and define v, := u,/E. Assume 

- 210 weakly in D’~“(Cl), 

]VU,]~> 5 p in M(n), 

E-2* F(u,)dz L v in M(R). 

Vol. 16, no 3-1999. 
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Then: 
1. The limit measures are of the form 

j=l 

with J E IV U { oo}, a nonatomic t3 E M(o), and g E L1 (Q). The 
total mass, the atoms, and the regular part satisfy the generalized 
Sobolev inequality 

v(s=i) < s”(@q) 3, 

vj < SF&+, 

.I’ g 5 sF(j pvo(2 +#))-i.- I1 5-l 
g 5 FO+jz1012” a.e. in R, 

2. Zf v(Q) = SF then u(o) = 1 and one of the following statements 
holds true. 
(a) Concentration: vg = 0, p = S,,, and v = SF&, for some 

CEO E R. 
(b) Compactness: 

p = lvvo~*drc+~, 

21, --+ vo in L2*(R), SF 5 c 
.I 
R bo12’, 

E-~* F(u~) - g weakly in Ll(fl), 

SF = I g 5 F,+S. 
R 

If in addition F$ = FG then v, + v. in D1>2(fl), SF = FoS*, 
vo is an extremalfor S’ and Sz = IR” up to a set of capacity zero. 

Proof. - The proof of Theorem 12 is divided into a number of steps. 
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STEP 13 (Generalized Sobolev inequality for total mass). - The total mass 
of p and v satisfy 

v(O) 5 SF (p(i=q) *. 

Proof. - By the generalized Sobolev inequality (5) 

.I &-2*F(U,) 5 SF R (J, /vqT 

Passing to the limit E + 0 yields the claim since I$ E 1 is an admissible 
test function for convergence in M(n). 0 

STEP 14 (Decomposition of b and v). - The limit measures ,Q and v 
are of the form 

with J E IV U {CO}, a nonatomic ,G E M(o), and g E Ll(fl). 

Proof. - For a subsequence we have 

\u~~‘*~x:v* in M(n). 

From Lions’ result for the critical power integrand (Lemma 10) we know 
that p is of the above form and 

V* = ,vn,2*dx+~v;6z~, 

j=l 

Iz), - ~~\~*dx 5 c vj*Szj in M(a). 
j=l 

By our growth condition (F) we have 0 5 v 5 c v*. Application of the 
Radon Nikodym theorem with respect to the measure v* yields 

v = g dx + 2 vj&, 
j=l 

with g E Ll(s2). 

Vol. 16, no 3-1999. 
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STEP 15 (Generalized Sobolev inequality for atoms). - For every j > 1 

Proof. - Let S > 0 and R > 0. If X~ E IR” it follows from the local 
generalized Sobolev inequality that 

for T 5 k(S)R. The assertion follows as T + 0, S + 0, and R -+ 0. If 
xj = cc we apply the second inequality of Corollary 9. 0 

STEP 16 (Generalized Sobolev inequality for regular part). - The regular 
part g of u satisjes 

/ g 5 SF (.I’ p71*12 + ii(Q)) *. 
R R 

Proof. - This step is complementary to the previous one. Now we excise 
the atoms. Fix S > 0, RI > 0, and a finite 1 2 .I such that C,“=,+, bj < S. 
Choose R > 0 so small that the balls Bz , . ! Bfr are disjoint. The cut-off 
function I 

is supported in BP \ Uf=, B,‘, . By the local generalized Sobolev inequality 
there exist T > 0 and R2 > RI such that 

Then let R --+ 0, RI + 00, and S + 0. 
We even have the following pointwise estimate. 

STEP 17 (Pointwise estimate of regular part) 

g 5 Fo+10~1~‘ a.e. in R, 

0 
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If F$ = Fi then 

Proof. - The pointwise estimate of g is based on the fact that the large 
values of the U, do not contribute to the regular part. Let U c IR” be an 
open set. For t > 0 we have 

5 lirnntf 
s 

E-2* F(UE) 
u 

5 limsup 
s 

E -2* F(u~) + c lim sup 
J’ 

lVu,12’ 
E-i0 Un{b,l<tl Ed0 Un{b, 131 

L (I?,+ + o(l))v*(U) 

+ c 22* lim sup 
E’O (J’ ~NbJcl~~~ 

bo12* + / 1% - vol“>. 
u 

Since 
p+pEI 2 t)l = 0 E 

we deduce in combination with Lemma 10 that 

s u 
g 5 F&v*(D) +22*c c z/j’ 

Z,EU 

5 F(jq 1vo12* + (1+ 22’4 c v;. 
x,EU 

Application of the Radon-Nikodym theorem yields g 5 FO+IV~~~* a.e. 
The second inequality follows by integration and the standard Sobolev 
inequality. The last inequality follows from the second one and the 
inequality F; S* 5 SF. 

The proof of part 1 of Theorem 12 is complete. 0 
STEP 18 (Part 2 of Theorem 12). 

Proof. - Let v. := Jo g and ~0 := Jo IVva12 + p(R). By Step 13 and 
normalization of 21, we deduce 

SF = v(i=q < s”(/@))* 5 SF. 
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Hence ~(02) = 1. By the Steps 13, 15 and 16 

Strict convexity of t +-+ t* on R+ implies that all but one of the pj 
vanish. If puo = 0 then alternative (a) holds and we are done. If ~0 # 0, 
then Y: = vj = pj = 0 for every j > 1, ~0 = 1, JC2 9 = ~0 = SF. 
From Lemma 10 we know that v* = ]vo]~*&z and JU lv,12* -+ du I’ugj2* 
for every bounded measurable set U. Together with weak convergence 
we get v, 4 v. in LfiJfl). The measure ,U is nonatomic. In particular 
~({oc}) = 0. Hence v*({cc}) = 0 and 

‘UC + w. in L2’ (0) 

By our growth condition F(u~)/E~* 5 c]u,]~* -+ ~~~~0~~‘ in L1(R). 
Thus the functions (F(u~)/E’*) are equi-integrable. By the Dunford-Pettis 
compactness criterion (see e.g. Dellacherie and Meyer [2, Theorem 251) 

E-2’F(UE) - g weakly in Ll(R) 

for a subsequence. Although we know that Jfl g = SF = lim Jo F(u~)/E~* 
we do not obtain ,C1 convergence because the L1 norm is not strictly convex. 

Now assume Fz = F; = Fo. We may assume Fo > 0 since otherwise 
SF = 0 which contradicts the hypothesis F f 0. By Step 17 

SF = u. 5 sF(s, ,vqT 

Hence IIVVOJJ~ = 1. Since VW, - Vwo weakly in L2(R) it follows that 
v, -+ w. strongly in D1>2( St). We show that (w,) is a maximizing sequence 
for S”. Fix t > 0. We estimate 

.I ’ E-~‘F(u,) 5 
J 

E-~* F(Ew~) + c 
R Ibclltl .I 

lVE12’ 
hIa 

I (F: + o(l)) L/G/~* + CL b(w,) as E ---f 0 

with 
h,(s) := ls12’ (ISI 2 t>> 

0 (otherwise). 
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By Fatou’s lemma applied to the functions IZI, 12* - &(v,) 1 0, upper 
semi continuity of ht, and the fact that w, -+ w. a.e. the second term is 
asymptotically dominated by 

lim sup h&E> I lim sup ht (v,) 
E-+0 s R s R E-0 

s n s 

Letting first E + 0 and then t t cc we obtain 

F;S* < SF = lim - 
s E-0 R E-‘*F(u,) 

< F,f lim E-O R ld2* i F,+S* 
s 

by Sobolev’s inequality and normalization of w,. Since F; = F,j+ > 0 
the sequence (uE) is maximizing for S*. The assertion follows from the 
hypothesis cap,, (II%” \ 9) > 0 and Example 11. 0 

The proof of the generalized concentration-compactness alternative I is 
complete. 0 

In particular we found that ~(0) = SF > FzS* implies concentration. 
For power nonlinearities compactness holds if and only if Fo = co. For 
general integrands this condition is not enough to rule out concentration as 
shown by the following example. 

Example 19. - Consider 

F(t) = log $ + e ltj2* 
( > 

with F, = 1, FO = cc on a domain fl # lR” in the sense of capacity. 
We claim that every sequence of almost extremals (u,) for S,“(Q) forms a 
maximizing sequence for the critical power integrand. Thus they concentrate 
by Example 11. To see this we rescale w, = ‘IL,/&. Then 

s,“(n) -o(l) = EY2’ 
s R 

F(w) = -log(~) +4 
s 

where 

.s(t) = lt12’ - 
log (ItI-’ + ee) 

lO!d&) 
1ti2*. 
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Since (2~~) is a sequence of almost extremals for S,F(fl), so is (v,) for 
5”:’ (0). A simple estimate yields 

se(t) = Jt12*(1 +0(l)) +0(l) as e---f 0 

uniformly in t. Choose an arbitrary maximizing sequence (eE) for S”. By 
almost optimality of vu, we have 

s 
R 1%12* = (1 + o(l)) J’ SE(%) + 41) 

R 

2 (1 + 41)) 
I’ 

SE(G) + 4) 
.R 

2 (1+ o(1)) 
s 

lv,12‘ + o(1) = s* +0(1). 
R 

This shows that (v,) is a sequence of almost extremals for S*. Thus it 
concentrates. 

The following variant of the generalized concentration-compactness 
alternative I is used to analyze the asymptotic behaviour of almost extremals 
near the concentration point. 

THEOREM 20 (Generalized concentration-compactness alternative II). - 
Assume (0) and (F). Let (we) be a sequence in D1>2(0) of norm 
IIVw,)l2 5 1 such that 

WE - w weakly in D1,2(O), 

jVw,12dy 5 h in M(Q), 

F(w,)dy L Y in M(fi). 

Then: 
1. The limit measures are of the form 

u = gdz+-&Y,,, z@) <SF 
j=l 

with J E ~U{co}, a nonatomic /Ii E M(o), andg E L1(R) such that 
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2. Zf I = SF then p(n) = 1 and one of the following statements 
holds true. 
(a) Concentration: w = 0, p = S,,, and u = SF&,, for some x0 E 5% 
(b) Compactness: w, --f w in D’2”(fZ), w is an extremal for SF, 

p = IVw12dx, and F(wE) -+ F(w) in L1(R). 
Compactness can only occur $0 = R” up to a set of capacity zero. 

Proof. - The proof of Theorem 20 is similar to that of the first alternative 
with the following exceptions. Step 17 is omitted and the following ones 
are added. 

STEP 2 1. - In the compactness case we have strong convergence w, -+ w 
in D’>“(n), w is an extremal for SF, and F(w,) --f F(w) in L1(R). 

Proof. - For a subsequence w, + w a.e. By upper semicontinuity of 
F and application of Fatou’s lemma to the sequence c)w,j2* 
it follows that 

- w) 

SF = liio F(w,) 
s n 

< _ 1 limsupF(w,) 5 
J 

F(w) 5 SFI(vwlJ;* < sF 
R e-0 R 

Hence ~]VW]]~ = 1 which implies strong convergence. Moreover w is an 
entire extremal. Equality in the above chain of inequalities implies 

(10) lirnn;pF(wE) = F(w) a.e. 

By the same arguments as in Step 18 we have 

(11) F(w,) - 9 in L1(R) 

for a subsequence. Moreover g 5 F(w) a.e. by upper semicontinuity of F. 
On the other hand so F(w) = SF = so g and thus g = F(w) a.e. By (10) 
we have (F(w,) -F(w))+ --+ 0 a.e. Since 0 < F(wE) 5 +I,~~* -+ c)w12’ 
in L1 (0) a suitable version of Lebesgue’s dominated convergence theorem 
implies (F(w,) - F(w))+ --f 0 in L1(0). By (11) the same is true for 
the negative part: 

/(F(w) - F(w))- = .I’(F(wc) - F(w)) - ljF(wJ - F(w))+ 
R R 

which tends to 0. This completes the proof. 0 

STEP 22. - Compactness can only occur if Q = IR” up to a set of capacity 
zero. 

Proof. - This follows from the fact that every entire extremal is strictly 
positive or strictly negative in all of JR” [4]. 0 
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8. PROOF OF THE CONCENTRATION THEOREM 

8.1. Concentration 

We show that Theorem 12 implies part 1 of Theorem 3. Let (uE) 
be a sequence of almost extremals for S:(G). Then a subsequence of 
(u,) satisfies the hypotheses of the generalized concentration-compactness 
alternative I. Since u, is almost extremal we have Y(Q) = SF and it 
suffices to exclude compactness. Suppose on the contrary that compactness 
occurs. Then vu, + v. # 0 in L2* (IR) and a.e. Moreover SF 5 F,fS*. Thus 
compactness is excluded if Fo’ < SF/S*. We may assume Fz > 0 since 
otherwise SF = 0 which contradicts the hypothesis F $ 0. The assertion 
in the case F; = F,f follows from the last claim of Theorem 12. As to the 
assertion for domains of finite volume we first consider the case U, 2 0. 
Fix t > 0 and let rE(t) be the radius of the ball { wu,* > t} where * denotes 
Schwarz symmetrization. Define 8, = UT on {vu,* > t} and extend it to all 
of R” by the radial harmonic function vanishing at infinity. By (6) we have 

/ pv,12 = /’ pw:12 + t2(n - 2)pn-1(TE(~)*L-2. 
IR” 

. ~(,e> 
* t 

~ 

Since JIv7~:(12 L (IV~112 F 1 we we can estimate the first part of the 
Dirichlet integral by 

Let R denote the radius of the ball a* which is finite by hypothesis. 
Define r(t) := liminf+,o E T (t). Clearly ~~(0) < R. Combining the above 
estimates and monotonicity of the function 

’ +-+ Rn-2 _ p-2 

we obtain 

lim sup 
E-+0 s In” 
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The functional changes according to 

.I 
E-2*F(E21E) 2 J E-2* q&w,*) 

R” Iv; >t1 = s EC2’ F(EWg) - .I E-2* F(&t&) 0 1% ItI 
> SF + O(EO) - c 

J 
lVE12” 

1% it1 

> SF-c I lvo12* + 0(&O). 

For small t we have r(t) 5 c > 0 because u. # 0 and 

I{~o > t)l 2 liyj?f I{ve 1 4 

As E -+ 0 we obtain by the generalized Sobolev inequality (5) 

SF - clR]t2* 5 limsup 
s 

Ec2* F(&ZI,) 
E-b0 IR” 

5 SF - 
ct2 

Rn-2 _ (t)n-2 ’ 

For small t this is a contradiction. If o, changes sign we symmetrize the 
positive and the negative part separately and use the relations 

8.2. Blow up and convergence to an entire extremal 

Although part 2 of Theorem 3 is almost identical with Theorem I.5 of 
Lions [lo] we present a new proof based on the local generalized Sobolev 
inequality. It also applies to discontinuous integrands not covered by Lions’ 
result. Note that ]]VW,]]~ 5 1 and JR” F(w,) = so F(u~)/E~* -t SF. As 
Lions [lo] we first apply the compactness-splitting-vanishing alternative 
(Lemma 23 below) to the measures 

Q& := F(lzl,)dy with GE(y) := U, 
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LEMMA 23 (P. L. Lions [9, p. 1151). - Every sequence (oE) of positive 
Bore1 measures on IR” with 

Of --) S > 0 as E ---t 0 

has a subsequence for which one of the following statements holds true. 
1. Compactness: The measures (a,) converge up to translation, i.e. there 

is a sequence of centers (x,) in JR” such thatfor every 6 > 0 a radius 
R exists for which 

OE(BE) > S-6 

for every E. 
2. Splitting: The measures (a,) separate into two distant pieces, i.e. there 

are S1, S, > 0 with S1 + S, = S, such that for every S > 0 a radius 
T and centers (x,) exist, such that for every R > r 

for E small enough. 
3. Vanishing: The measures (a,) smear out in the sense that for every 

radius R one has 

lim sup OE(Bf) = 0. 
E-t0 zERr> 

As to the proof of part 2 of Theorem 3 we first prove compactness 
in the above sense by exclusion of splitting and vanishing. Then we 
apply the generalized concentration-compactness alternative II to obtain 
convergence in the D1az sense. This requires exclusion of concentration. 
The condition Fz < SF/S* prevents the sequence from vanishing, the 
condition FL < SF/S* excludes concentration. With no loss of generality 
we can assume x, = 0. 

STEP 24. - Exclusion of splitting. 

Proof. - Suppose for a contradiction that there are Sr, SZ > 0 with 
Si + Sa = SF, such that for every 6 > 0 a radius T exists, such that 

sz-s 5 .i F(G) 
lR”\B; 
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for all R > T and E small enough. For every S’ > 0 the local generalized 
Sobolev inequality (Corollary 9) provides two radii R, p such that 
R > p > T and 

Adding these inequalities we obtain 

For 6’ and 6 small enough this is a contradiction since S1 > 0 and 
52 = SF - s1 > 0. 0 

STEP 25. - Exclusion of vanishing. 

Proof. - Suppose on the contrary that 

sup lim sup 
.I R>OE--'ozEIR" BR 

F(ic,) = 0. 
D 

By the local generalized Sobolev inequality and the fact that u, is almost 
extremal the above assumption implies 

SF ZE inf lim inf 
J R>O c-0 ZEIR” IRn\B~ 

J’(G) 

inf lim inf SF 
r>o E-+0 ZEIR” 

or 

(12) 

< - 

Another application of the local generalized Sobolev inequality yields 

sup lim sup 
r>o --+“xaR” .I 

(WEI = 0. 
B: 

vanishing with respect to a modified volume integrand, namely 

(13) lim sup I{ IG,l 2 6) fl B,‘I = 0 for every 6 > 0, T > 0. 
++O,Eln” 
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By hypothesis there exists a to > 0 such that 

(14) 

Define 

F;(t) := W) (ItI < to>, o (ItI 1 to), 
F2 := F--F1 

Then 2* 

F2(t) < F3(t) := c . 
+ 

We claim that 

(15) lim 
s E-+0 R” 

F;(&) = 0. 

To this end consider a cube Qz := z + [0, 1)” with z E 2” and observe 
that (13) implies 

i.e. that F3(W,) vanishes on most of Qz. Application of Lemma 28 from 
the appendix yields 

for E small with a constant c independent of z. After summation over 
z E 2” we find 

Now (15) follows from (12). In view of (14) we obtain 

SF = limsup F(G,) = limsup FI(&) < SF 
E-+0 s El.= E+O s R" 

which is a contradiction. 0 
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STEP 26. - Exclusion of concentration; convergence of (w,) in D’~2(lR”) 
to an entire extremal. 

Proof - By Lemma 23 and the Steps 24 and 25 there is a sequence of 
points (x~) such that the measures F(w,)dy do not concentrate at infinity. 
A subsequence of (w,) satisfies the hypotheses of Theorem 20 on IR” 
with v(e) = SF. Compactness in the sense of the compactness-splitting- 
vanishing alternative excludes concentration at infinity. Concentration at a 
finite point is excluded by our growth condition at infinity. Indeed, if (wE) 
concentrates at a finite point then 

SF = lim 
s &‘O {bJel2tl 

F(WE) 

L (FL + o(l))S* < SF as t+cm. 

Thus alternative (b) in part two of Theorem 20 occurs. 

STEP 27. - x, + x0. 

0 

Proof. - Let v, = u,/E. By part 1 of Theorem 3 there exists a subsequence 
and x0 E fi such that ]VZI,]~&--* S,, in M(n). On the other hand one has 

o< J,, IVw12 = li;J,, IVw,12 = lim / ~VW,(~ E’O BR” %E 

for R large enough with R, := ~5 R. This inequality fails if x, does not 
tend to x0. 0 

APPENDIX 

In the proof of part 2 of Theorem 3 we used the following variant 
of the standard Poincare-Sobolev inequality. The corresponding variant of 
Poincare’s inequality can be found in Morrey’s book [ll, Theorem 3.6.51. 

LEMMA 28. - Suppose Q is a connected domain of finite volume with 
Lipschitz boundary and let B E [O,l). Then there is a constant c(Q, 0) 
such that 

bIIz* I CC&> W7412 

for every w E P(Q) with I{w # O}l I 01&l. 
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Proof. - Suppose the assertion was false. Then there exists a sequence 
(w) such that (jwb112- = 1, j{wk # O}l 5 elQl and IIVwkc)12 --+ 0. By 
Rellich’s theorem wk -+ w in L2(Q) for a subsequence. Hence Wk: -+ w 
in P(Q) and L2*(Q). M oreover VW = 0 a.e. By connectedness of Q the 
limit function is a constant, say w = t E IR a.e. By the normalization 
of Wk and strong L2’ convergence we deduce t # 0. On the other 
hand j{lwk - tl > S}l -+ 0 as k ---) 00. For 6 < ItI this contradicts 
Ilwk # 011 5 4&l. 0 
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