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ABSTRACT. - In order to develop a Lebesgue appry;h for the fully non- 

linear non autonomous evolution problem, CPZ = { dt + a(t)A,(t)u 3 0) 
with t E I C_ [O,T], in an arbitrary Banach space X, we define an 
abstract L1- comparison mode (called coherence) between multivalued 
time dependent families of operators (Aa(~)),EI and (BP(~)& defined 
on compact subintervals I and J of [0, T] and weighted by functions Q 
and ,i3 which belong to L”( [0, T]; R+) . The solutions of these problems 
are limit of discrete schemes and the crucial point is to define these 
approximations in a Lebesgue sense. The results about this Cauchy problem 
consist in existence of an evolution operator, integral inequalities (extending 
Benilan’s inequalities for integral solutions), and continuous properties ; 
they extend the theory of evolution equations initiated at the beginning of the 
seventeenth by Crandall, Liggett, Benilan, Kobayashi, Evans, ([lo], [12], . ..). 
and include more recent generalizations as in [ 181 and [6]. This general study 
motivated by the observation problem of a heat exchanger (see [16]) where 
a LOO-control multiplies an unbounded operator, establishes in Theorem 3.4 
a suitable continuity property with respect to the weak* topology on the 
weights (see applications in [3], [7], [20], . ..). 0 Elsevier, Paris 
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300 J. F. COUCHOURON AND P. LIGARIUS 

RIkSUMIk - Ce papier esquisse une approche de type Lebesgue 

des problbmes d’evolution pleinement non lineaires CP.T = { 2 + 

QWL&)~ 3 0) avec t E I C [0, T] dans un espace de Banach quelconque. 
Pour cela nous definissons un mode de comparaison (nomme coh&ence) 
entre familles d’operateurs multivoques (Aa(~))sEI et (I?P(~)),~~ definies 
sur des sous-intervalles compacts I et J de [0, T] et pondbrees par des 
fonctions c): et /I de LO”([O, T]; R+). Pour les problemes d’evolution 
consider& les solutions sont des limites de schemas discrets: le point 
crucial est alors de definir ces approximations sur un ensemble denombrable 
de nceuds (et done de mesure nulle) en un sens compatible avec une 
infinite de classes de fonctions Lebesgue integrables gCnCrCes par notre 
approche. Nous mettons ainsi en evidence pour les problemes de Cauchy 
CPZ un operateur d’tvolution, des inegalites integrales (generalisant 
les inegalites des solutions integrales de Benilan) et des proprietes de 
continuite: ces resultats Ctendent des travaux de Crandall, Liggett, BCnilan, 
Kobayashi, Evans, ([lo], [12], . ..). et absorbent des generalisations plus 
recentes obtenues dans [18] et [6]. Cette etude motivee par un probleme 
d’observabilite pour un Cchangeur thermique (voir [ 161) ou un controle 
L” agit multiplicativement sur un operateur non borne, contient en outre 
(Theoreme 3.4) une propriete de continuite vis-a-vis de la topologie *-faible 
des poids dans L” (cf. [3], [7], [20], . . . pour les applications). 0 Elsevier, 
Paris 

Mars cl& : ProbEme de Cauchy, systkmes de dimension infinie, cohkrence, bonnes 
solutions, convergence *-faible. 

1. INTRODUCTION 

This paper deals with the abstract Cauchy problem CPz(I, u”) in a 
general Banach framework, for a class of nonlinear systems in which the 
control (Y acts on unbounded operators. These situations could be met, for 
instance, in the field of heat transfer applications, transport phenomena or 
biochemical processes, for which, so far as we know, the classical theorems 
of existence of discrete approximations, uniqueness and continuity with 
respect to the parameters of the solutions could not be applied directly 
(see [3], [14], [16]). This study unifies in a same approach different classes 
of systems as autonomous systems, quasi-autonomous systems, bilinear 
systems . . . 
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WEIGHTED EVOLUTION PROBLEMS 301 

We define a comparison mode of multivalued families of operators 
(A&L~I and (4&)>,,J (for subintervals I and J of [0, T]), that is, 
for a.e. s E I, for a.e. t E J, V(u,G) E Am(s), b’(w,G) E BP(~), 

where the bracket [u, w] denotes as usual lj?O ((11~ + Xwl] - ]]~ll)/X) (see 

section 2.3 for the assumptions on the functions $, and 19,,,). 
In the case (Aa)I = (Bp)J , and when, the null function is the unique 

positive continuous solution in ZY(]O, a(T)[) of the inequation 

with a(t) = s,” a(~) d r we have a generalized L1 time dependent accretivity 
condition, called “strong self-coherence”. In view of these definitions, we 
see immediately that our generalization on CPZ relates on three directions: 
the time dependent framework, the accretivity conditions, the weight Q . 
This framework contains the cases studied in [18], [5] or [6] and allows to 
study, without restriction on the weights (see [20] for instance). 

As in the classical accretive case, the solutions of CPZ considered 
throughout this paper, called mas are continuous limits of discrete implicit 
schemes. More precisely, given a partition A = (so, . . . , SN) , we approximate 
CP; by the discrete system u; - u;-~ + (si - s~-~)cx(s~)A,u~ 3 0. One 
of the main difficulties lies in the fact that the discrete schemes involve 
countable sets; and consequently neglectible subsets of I. According to 
our L1 time dependence, suitable choices of partitions of I are needed to 
give a good approximation of Q(S) and Aa . Since we take 8,,, E W 
(this space has been introduced by Crandall and Evans in [9]), there exist a 
sequence of C1 functions (0’), and a sequence (Fk)k converging towards 0 
in Ll(I, W+) satisfying 18a,a(s, t) - B’“(s, t)I 5 Fk(s) + Fk(t), a.e. s E 1: 
a.e. t E I. Our choices of partitions A (called adapted partitions) are 
those which lead to Lebesgue sums for G! and each Fk . We prove in 
Proposition 2.1 that such a partition exists. We say that the partition A is an 
e-Lebesgue partition for the real function f if each s; is a Lebesgue point 
for f and if the step function A(f) built with the nodal values f(si) satisfies 
.I1 If - www 5 E . Discrete schemes associated with a sequence of 
adapted partitions with step sizes decreasing towards zero are said adapted. 

The theorem 3.1 states that, if the family (A,)I is strongly self-coherent 
and if there exists a bounded adapted discrete scheme, the Cauchy problem 
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CP; has a unique solution ; moreover this solution does not depend upon 
the choice of any “free” parameters used in the construction of the mas. 
This theorem gives rise, with a range condition and a stability condition, 
to a continuous evolution operator (Theorem 3.3). This evolution operator 
is then endowed with a suitable continuity properties with respect to the 
weak* topology of L” for the weights and the inferior limit of the families 
of operators (Theorem 3.4). In fact, all these results are deduced from an 
asymptotic maximum principle (Theorem 5.1) for discrete schemes which 
gives a fundamental upper bound for lim supQ (IQ(S) - v~(t) 1) where 
(‘zLQ)~ and (uu&)~ are respectively discrete approximate solution sequences 
of CP,“(I, u”) and CP{(J, u”). 

This paper is organized as follows. In Section 2 we introduce the basic 
notations and definitions and we give the time-dependence framework. 

The main results are stated in Section 3. 
In Section 4, we list in a long lemma (Lemma 4.1) the properties needed 

the solutions of our problem. 
The proofs of our main results are given in Section 5. 
Some technical proofs and considerations are postponed in an appendix 6. 

2. NOTATIONS, CONVENTIONS AND BASIC DEFINITIONS 

2.1. Definition of CP*,CY(I, u”) 

Let X be a real Banach space. The infinite intervals 1 = [&, Sal, 
J = [Tl, 5721 are compact subintervals of [0, T]. A weighted family on I, 
with weight (u E L”([O, T]; W+), is a family (A,(T)&~ of multivalued 
nonlinear operators (more precisely, a family of classes of operators) from 
X to X, and the notation D,“- is used for the domain of A,(r). 

Let CPg(I, u”) be the following Cauchy problem 

+ a(t)A,(t)u 3 0 
__ 

u(S,) = u” E Ds” ) t E I. 

DEFINITION 2.1. - Given a weighted fumiZy (A,)l, we write S(a, I), the 
following stability condition: there exist a function c E L1 ([0, T]; IF!+), and 
a set En c I with Lebesgue measure equal to 5’2 - S1 , such that for all 
so E I, and for all w E Ds”,- , there exists w-~ E X satisfying for all 
SE= -Cl? and for all (u,,z) E Am(s), 

-[u-w&- G] 5 c(s>(llu - wll + 1) 
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Remark 2.1. - Of course, the above stability condition holds in the 
classical case A,(s) = A - g(s), w h ere A is w-accretive, and where g 
belongs to L1([O,T],X), as we see by setting c(s) = w + 11g(s)ll ,and 
w, E Aw. 

2.2. NOTATION. - As in [9], W stands for the closure of the C1 functions 
on [0,T12 in L’([0,T12; W) under the norm (].]I* , which is defined by : 

llhll, = inf {ll~ll, + llGlll ; IV+ t>l L F(s) + G’(t) at. s, a.e t, 
with F, G E L1 ([0, T]; R8’)} . 

where ]J.](P denotes the Lp([O,T];R) norm. By convention, the notations 
ll*llp > Nl* ) and W used for functions defined on I, or on I x J, 
suppose that the functions are extended to [O, T] or [0, T12 . The sequence 
A’ = A = (S(),Sl,... , sN, sN+r) is called a partition of I. If we 
have so = Si < s1 < ... < sN < Sz = sN+i , we denote by 
r(A) = supi,i,...,N+l (si - si-i) the step size of the partition A’. Let 
w be a function from I to E (for an arbitrary set E ), we define the step 
function A’(w) from I to E by, 

C 
A’(w)(&) = w(&) 
A’(w)(s) = W(%N ifs E]s~-~,s~] with i = l,..., N. 

Now, let A = A’ = (so, . . . . SN+r) be a partition of 1 and A’ = A’J = 
(t 0, . . . . tPfl) be a partition of J. Then, for any function w : I x J --+ E 
defined on A x A’ , we denote by AmA’ the step function from I x J 
to E satisfying 

@A’W(s> 4 = 4W A(t)> 

And the notation I@A’(w) stands for the step function defined by : 

@A’(w) = w(s, A’(t)) , (a,t) E I x J. 

The functions a, (u,, p, pn belong to L”([O, 7’1; W+) , and the functions 
a, an, b, b, are set for the respective integrals of the functions (Y, Q,, p, ,& 
on [0, T] (i.e. Vt E [0, T] , a(t) = $ CY(T) dr , a,(t) = s,” Q,(T) dr , . ..). 

2.3. Definition of Jhe coherence notion 

First, we introduce two functions. 
(1) We suppose that 0, ,p belongs to W. 
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(2) The function $ : [0, !I’]* x W* -+ W+ , is assumed to be (u.s.c. and) 
such that for each K > 0, there exists a decreasing sequence ($J:), 
pointwise convergent on KK = [0, ZJ2 x W x [-K, K] towards $. 
Moreover for each T E N, the function $J: is required to be C1 and 
w:-Lipschitz on KK. 

Remark 2.2. - All the results of this article remain valid if we replace 
the condition $ 2 0 by the following : there exists X0 5 0 : 
have, V(s,t,[,~) E [0, T12 x R* 

Similarly, we can assume that 0, ,p takes its values in some 
< E W”. 

In the case { g(s, t, I, X) = cp(s, t, X) + <, with cp > 0}, the 
on $ means simply that cp is U.S.C. (see [5]). 

DEFINITION 2.2 (Cohence definition). 
i) The weightedfamily (A,), is (?,!I, B,,p)-coherent (or $I 

coherent) for (B~)J, iffor a.e. s E I and for a.e. t E 
V(u, GJ E A,(s),V(v.G) E BP(t), 

such that we 

(1) 

oip” and then 

hypothesis 2 

-coherent, or 
J we have : 

-[u - v, G - Gil 5 ?b(s, 6 hY,P(% t), lb - 41) . (2) 
ii) The weighted family (A,), is ($J, 0,,,)-self-coherent (or 

self-coherent, if it is (I/J, eoi,,)-coherent for itself 
iii) Zf (A,), is $-self-coherent, and if the null function is the unique 

positive continuous solution in D’(]O, a(T)[) of the inequation : 

then (A,)r is said strongly (ti, 6’,,,)-self-coherent. 
The set where u-l is multivalued is at most countable. 

Notation. - In the sequel, Ia, and Jcu,p are respectively neglectible 
subsets of I and J such that the relation (2) doesn’t hold for all 
(5 t) $ L,p x Ja,p . 

Example 2.1. - Let A be accretive, then (ACY)r = A and (AP)J = A are 
strongly O-coherent and (ACY)r is strongly O-self-coherent. 
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Example 2.2. - The classical w-accretive quasi-autonomous case : 
Q = 1, A,(t) = A - f(t), g ives rise to a strong (4, @-self-coherence 
with, $(s, t, I, z) = wx + t with 0(s, t) = [If(s) - f(t)11 . 

Example 2.3. - VA,(t) = a(t) A is everywhere defined, the strong self 
coherence of appears as a generalized Nagumo’s condition for the ordinary 
diflerential equation CP,” (see [13]). 

Remark 2.3. - By convention, when (A,), = A and (BD)J = B 
(the operators does not depend on time) a function 111 of the form 
(s, t, <, z) H $(x) will be always required for the meaning of $-coherence 
between the families (A,), = A and (B~)J = B 

2.4. ASSUMPTIONS. - For all weighted family (A,)1 we will suppose 
realized in the sequel the following conditions, denoted by C, : 

(a) VltE[O,T], VX>O, we have R(I+XA,(t))=(I+XA,(t))(X)=X ; 

(b) the nonvoid values operator t H O$’ is closed ; 
(c) the weighted family (A,), satisfies the stability condition S(a, I) . 
(d) the weighted family (A,), is ($, B,,,)-self coherent. 

2.5. DEFINITION OF MAS AND DAF. - We are ready to give the fundamental 
definitions of coherent dicretizations and coherent solutions of GP,” . 

According to the hypothesis ea,p E ti E W , let us introduce 

(%>k = (Ok>k a sequence of Cl functions on [0, T12 satisfying, for 
some F E Ll([O,T];IW+), 

(a) lO(s, t) - 8”(s, t)l 5 F”(s) + F’“(t) 
(b) Fk E L1([O, T]; K!+) (4) 

and for a.e. s, limk F’“(s) = 0, and F”(s) 5 F(s), 

DEFINITION 2.3. - We say that a sequence 3 = .Tcy,p = (ok, F”, F) k is 
stemmed from 0 E W, if the above conditions (4) hold. 

We recall that it has been said in introduction that A is an &-Lebesgue 
partition of I for the real valued function f on I, if T(A) 5 E, if 
JI If - WI - < E and if each point of A is a Lebesgue point for f. 

DEFINITION 2.4. - Let (A,)1 be $-coherent with (Bo)~ and 3a,,~ = 
(Ok, F”, p) k be stemmed from 8,,p. We will say that a partition A = 
(Si )i=l,...,R+l of I (resp. J) is E-adapted with respect to 3a,p, if we have 
for all i = 1, .a., R , s; E E, fl IQ,0 (resp. si E Z:, n J,,a) and if A is 
an E-Lebesgue partition of the restrictions to I (resp. J) of a (resp. /3), c, 
and every F”, k E N. 
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We will see in the next subsection that, for all E > 0, E-adapted partitions 
do exist. 

DEFINITION 2.5. - An e-adapted solution with respect to 3Q,a of 
CP,“(I, u”) is a step function u from I to X, such that there exist, an 
&-adaptedpartition A = (s~,...,s~v,sN+~) ofI; and (~i,ci) E A,(s;)for 
1: = 1, . . . . N, satisfying : 

A(u) = u, and (lug - u’[( 5 E, and 
ui - ui-1 + S;a(si)ci = 0 1 where Si = s; - s;-~. (5) 

Remark 2.4. 

(i) Given an e-adapted partition, with the strong range condition (assumption 
(a) of C,), it is possible to fmd an e-adapted solution of CPZ . 
(ii) We can replace 0 in the second member of (5) by ei , with the condition: 

DEFINITION 2.6. - Let (A,), be $-coherent with (a,), 
and 3e,,ti (resp.3a,p) be stemmed from tl,,, (resp. B,,(3). An 
(3a,w3a;a) - (4 -d iscrete adapted approximating family, denoted by 
(3u,a, 3a,p; Ed)- DAF , ofCP,“(I, u’), is a sequence (un) of(E,)-adapted 
solutions with respect to both 3a,,, . and 30,0, such that Jim, E,, = 0. If each 
U, is associated with an E,,-adapted partition A, , we will say that (u.,~) is a 
(A,)- DAF . We will say more simply a M when no ambiguity is possible. 

Remark 2.5. - Of course, when (AO1)I = (BbT)J and 3<,,,,, = 30.,j 
in the previous dejinition we talk about (3cp,,; E,,)- DAF or more simply 
3,, n-DAF. 

Finally, we are in position to give the notion of solutions considered here. 

DEFINITION 2.7. - Then a mild adapted solution ( mas ) ‘u of CPA:(I,~uo) 
is a uniform continuous limit on I of a 3,,,,- DAF (u.~),, of CPz(I, 7~“). 
We say that (1~~~)~~ generates IL. 

DEFINITION 2.8. - Let us assume that (AN)I is coherentfor (Bo),. Then, a 
mas u of CPz(I, u”) is coherentfor a mas u of CPi( J, v”) ifu and v can 
be generated respectively by an (3bi,,, 30,p)- DAF and an (,T~,p, 3Q,p)- 
DAF . 
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2.6. Existence of DAF 

In view of the strong range condition we have just to prove that for each 
E > 0, there exist c-adapted partitions. 

First, recall that a function f from [0, T] to X is Bochner-integrable 
(written f E Ll([O, T]; X)) means JoT ]]f(t)]I dt < cc and that f is almost 
everywhere on [0, T] limit of a sequence (fn), of simple functions (that is 
step functions on Borelians of [0, T]) (see [l 11). 

Second, let us mention without proof (see [2] or [17]) the following 
lemma. 

LEMMA 2.1. - Let f E L1(I; X) and JV be a subset of I = [S,, &] of 
measure zero. Then, for all E > 0 there is a partition h = (so, . . . . sn;, sN+l) 
of I, satisfying, 
(i)for i = 1, . . . . N, s; is a Lebesgue point off, and si $ N. 
(ii) the step size of A verifies : r(A) 2 E . 
(iii) J’ Ilf(~) - W)(~)ll da 5 E. 

Third, according to this previous lemma, given E > 0 the conditions 
of the definition 2.4 can be obviously satisfied if we prove the following 
proposition. 

PROPOSITION 2.1. - Let l”(R) be the space of the bounded sequences 
on R, equipped with the supremum norm ].lo3. Suppose that the integrable 
functions F and FL for k E N* satisfy the relations (b) of (4). Then, the 
function s H (Fk(~))ktN., from [O,T] to l”(R) is Bochner integrable. 
Therefore ifN is a null subset of [0, T], f or all E > 0 there exists a partition 
A of [O; T] with points in [0, T] j N satisfying, 

YJk E hl*, 
I 

‘T- IF”(s) - A(Fk(s))) ds < E. 
. 0 

Proof. - In this proof, for Y c [0, T] , Y” is written for Y’ = [O? T] \ Y . 
a) Let F, be the function s H FW(s) = (F1(s),F2(s),...,Fk(s),...). 

The relation ]Fm(s)], 2 F(s) a.e. on I, guarantees the inequality : 
JOT I F,(a) loo da < 00 . Therefore, we have to prove that F, is limit 
almost everywhere of a sequence of simple functions. 

b) By Egorov’s theorem (see for instance [l I], [4]) for each 7~ E N*, there 
exists E n,l 2 [O, T] with P(E~~,~) 5 & and N,, E N* such that we have, 

1 
(s E (&,I)~, and Y > N,) * ( s 7t!)] (6) lFq( )I 5 L 

c) For each 7~ E fW*, once more by Egorov’s theorem , and in view of 
the integrability of F” for k = 1, . . . . NrL , we can find En,2 C [0, T] with 
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p(E,,s) _< h and simple functions J?t from [0, T] to R for k = 1, . . .i N,, 
verifying, 

(s E (&,a)‘, and k E (1, . . . . w%}) * (IF:(s) - F"b)l 5 ;) (7) 

d) Then, let us define for all n E N*, the sets J3, = E,,i U E1~,2, and 
the functions gn = (Fi, . . . . F?, 0, 0, . ..). Then we deduce the following 
statements : 

i) for each n E N*, gTL is a simple function from [0, T] to Z”(R) ; 
ii) Let & be the set E = nk, (U k2ko (Eb)). Then for s $! E, there exists 

ka E N*satisfying s E nkzrc, E,” . And therefore in view of relations 
(6) and (7) if s $ I, we have : 7~ > kc, + /gn(s) - Foot, 2 i. 
Thus, s $! E + limn gn(s) = F,(s) . 

iii) If ,D stands for the Lebesgue measure on [0, T] , we have p(E) = 0. 
Indeed, the inequality p(Ek) < ,u(Ek,,) + I = $ implies, 
for all Ica E N*, 

e) Finally, the function F, is therefore, limit almost everywhere of 
the sequence of simple functions (g7L)11 , and consequently F, is 
Bochner-integrable on [0, T]. 

2.7. Boundedness of DAF 

Let us end this section by the following proposition which gives from 
the stability condition (assumption (c) of C,), an a priori upper bound for 
the discrete schemes. 

PROPOSITION 2.2. - Fix for instance, w E Ds”: Let us suppose that E > 0 
realizes, 

Let u be an E-adapted solution of CPT(I, u”). Then we have, for all s E I, 

114411 5 lbll + e3 Ilnl~,(lJCIJ1+E)(/(u” - WI/ + E + IIcxII,(IIcII1 + E) 

+llGIIM~) + &)I. 
Proof. - Let A = (so, . . . . s~+i) with si E & for i = 1, . . . . R, u = A(U) 

and u(ti) = ui . We have for i = 1, . . . , R , if Si = s; - si- 1 , 

u; - U&l - 
si 

+ a(si)ci 3 0 with u^i E A,(si)ui 
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Then, the assumption 2.4-(c) of C, leads to, (setting c(si) = c;), 

And, immediately by iterating, we have, 

lIui - wl1 s fi (1 - &)Ci6r) 
[lluo-4+~~ ~~(4W + Gx~)lI’UI,lI) &- 1 . 

According to the following inequalities 

and since we have ln(1 - z) 2 --5 - x2 for x ~10, i] , we obtain, 

Thus, the required inequality holds. 

3. THE MAIN RESULTS 

Let us point out that the operator Da,@ = p(t)(a/&) + a(s)(d/dt) 
considered in ZY(t x i) , plays the part of the operator D = d/ds + 
d/dt (= Dl,I) introduced at the first time in the classical case by Crandall 
- Evans [9]. 

THEOREM 3.1. - Let (A,)* be strongly self-coherent. Then, 

(i) If Fe,, is stemmed from 8cy,oI , then, all (bounded) 3-,,, - DAF of 
the problem CPz(I, u”) is uniformly convergent on I towards its 
unique mas . 

(ii) The mus of CP,” (I, u”) does not depend upon any function Q! chosen 
in its class in L”, and upon any sequence 3a,a stemmed from 6,,, . 
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Really, the part (i) of the theorem 3.1 can be applied in a wider framework 
than C, (which ensures boundedness and existence of a DAF). In particular, 
the tangential condition 2.4-&-a) is not needed. 

THEOREM 3.2. - Suppose that u is a mas of CPz(I, u”) coherentfor a mas 
2) ofCPi(J, u”). Let B be the continuousfunction on a(I) -b(J) satisfying: 

I 

~(~-wl)) = ll4~-'(4) - uOll iffl E UV) = [4sl)4(wl @) 

B(u(S,) - T) = lluO - I@-1(-d))\/ ifT E b(J) = [b(Tl), b(T2)] 

Then, i3 is a single valued continuous function, and we have V(s, t) -E I x J 

114~~) - ,+>I1 L m3(&), b(i)) . (9) 

More precisely, thefunction e(s, t) = ]/u(s) - I]] satisfies in D’(F x T) . 

Dm,fl[e(s: t)] 2 (u(s)p(t)$~(s, t, Bcy.3(s, t). e(s, t)) . (10) 

And for (Q&), = (PBB), 3 we have in D’(ayI)), if X(T) = 
e(u-l(r), U-‘(T)) 

-$X(T) I $(d(T), u-l(T),~~,<~(u-l(T); u-‘(T)),~(T)) 

The function mu defined in the next paragraph (see definition 4.1) denotes 
(in some sense) a maximal solution in D’(T x T) : of the inequation (IO). A 
suitable choice of /3, BP and J, shows that the mas u is a Benilan’s integral 
solution of CP;(I! u”) in a generalized but natural way (see [ 11 or [5]). 

COROLLARY 3.1 (general variable change). - Let (N(~)A)[~,~] where A is 
strongZy self-coherent on [0, u(T)], then the unique mas u of CP<y( [0, T], u,‘) 
is given by the variable change u(t) = ~(u(t)) , where II is the unique mild 
solution of CPl([O, u(T)]; u”). If@ rt h ermore, the operator A is continuous 
the mas of CP-T( [0, T], u,“) is a strong solution. 

Let (A,)[,,,] be a strongly $-self-coherent family on [O; T] . According 

to Theorem 3.1, for all ,u” E D,$ the evolution problem CPz( [s, T], u’) 
admits a unique mas U. We will set S(t, s)u” = u(t) the value taken 
by u at t. Now we can state the two last results which concern strongly 
$-self-coherent families. 

THEOREM 3.3. - Let (A,)[,,,] be a strongly $-self-coherent family on 
[0, T] . Then, 

4 thefamily S = (S(~,S))~<~<~<~ is an evolution operator, that is ; 
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(i) For 0 5 s < t <_ T , the operator S(t, s) maps D$ into D$’ ; 
(ii) For all s E [0, T] , we have S(s, s) = 1 (0 denotes the identity 

operator} ; 
(iii) For 0 5 T 5 s 5 t 5 T, we have S(t, s) 6 S(s, r) = S(t, r) ; 
b) the evolution operator S is continuous on 

THEOREM 3.4. - For all n E N U {M} , let ,A, = (AS,,),, Tl (satisfying 
C,,,) be a strongly $-self-coherent family on [0, T] , let S, be the evolution 

operator generated by A,, and let u: E Do”‘% . We suppose that (cY~),,-~ 
converges to a, in the weak* topology in L” ([0, T], Iw) and that we have for 
almost every s E [0, T] : A:-(s) G 1 im L:fN A’;, (s) . Finally, we suppose 

that (L%l InEN converges towards fJa,,cy, in (W, 11.11,). Then, if(UE)7tEN 
converges towards u”, , and if the sequence offunctions (S,(., O)U~),~~ 
is bounded, then (S,(., 0)~:)~~~ converges uniformly towards S, (. , 0)~: 
on [O,T]. 

Remark 3.1. - This last theorem appears like a Lebesgue dominated 
theorem for evolution equations (setting for instance aIL = 1 and Azn ( .)u = 
fnC.1 6 L1([O, Tl. Xl,. 

4. THE U.S.C. HULL LEMMA 

Now, we will give a basic lemma called “the U.S.C. hull lemma” which 
is proved in the appendix. It summarizes in one proposition the most 
important results that we will need in this article on the inequation 
Da,&] 5 @(sJ, 0,x) 

The type of results and the methodology developed in this lemma 4.1 
are similar to ones of [6] . But new problems appear here, because of the 
time dependence in L1 , the multi-valued aspect and the lack of regularity 
of a-l and I!-‘. 

We denote by EQ(<, a’, 8, a, cy, p) the following inequation in D’(O) 
with 0 = Qmy.o = la(&), a(%)[ x ]W’I), V2)[ = 4;) x b(j), 

= D[y(c, ~11 F @(a-‘(o), b-l(T), (?a-l(o), b-l(T)), da, T>) 
~(0, b(Tl)) 5 B(o - I) and, ~(a(%),~) 5 a(~(&) - T) .(lI) 
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The function B is continuous on a(l) - b(J) G [-b(Tz), u( Sz)] and 0 
belongs to W We denote by Eo (=, a’, 8, B, CX, /?) the equation in D’( 62) 
obtained by replacing the three symbols “I” in Eo( 2, @, 8; B, (Y, /3) by “=“. 

A similar notation is used for the characteristic equations. More precisely, 
we introduce for d E a(1) - b(J), the notation xd,o(<, a’, B,B, c-r,/?) = 

Xd(6, Q’, 8, a) f or the following inequation in D’(Td) with 1, = 
[MW - 4 v Wl): Wz) A MS,) - 41 7 

and xd,d=, @, o,B, Q, P) will denote the equation in ;T)‘(id) obtained by 
replacing the two symbols “I” in xd,o(<, a, 19, B, a, ,D) by “=“. 

In the inequations or equations Eo(., . . .) or xd,o(., . . .) . we will 
sometimes forget the parameters when no ambiguity arises (for instance, 
E(<,+,ti,B) E Eo(~,+,B,B,a,P)). We emphasize that for all 
d E u(l) - b(J) there exists a unique (ao,ro) E (u(l) x {b(Ti)}) U 

cMw x W)) such that we have 00 - r. = d. 
About inequation of xd(<, @‘, 8,B) type, we just recall that for 

cp E Ll([u,bl:dW), a continuous function z on [a, b] is solution in 

‘o’(]%b[) of -&%I F cp@), is equivalent to, the integrated form 

z(t) - Z(S) 5 J?‘cp(-r)dr with u < s < t 5 b. 

LEMMA 4.1 (u.s.c. hull lemma). - We suppose that there exists a decreasing 
sequence (%jrEN of C1 functions on [0, T12 x R2 (pointwise) convergent 
towards @ 2 0. We assume that for each r E N, the function aV is w,- 
Lipschitz. Let B be a continuousfunction on u(I) - b(J) C [-b(Tz), u(S2)] 
and let fia,p = R = 145’1)4@2)[ x ]b(W,b@)[. 

i) The inequation En(<, Cp, 8, B, cy, ,8) in D’(n), has a unique U.S.C. 
solution on D, denoted by rn(@, 8, B, a, p) or m(@, 8,l3) or mn , 
which bounds above each continuous solution of En( 5, Cp, 8, i?) and 
satisjes: for all d E u(I) - b(J) the function 

Yd = ?/d(@, 8,W : T H rna(T + d, r) 

is continuous on Id = [(u(Sl) - d) V b(T,), b(Tz) A (u(S2) - d)] , 
and is the maximal continuous solution in V’(id) of the inequation 
Xd.Q(<, Q’, 878, (1, P) . 

Anrtales de i’lnstitut Henri P&car@ Analyse non lirkaire 
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ii) For s E [0, T], let Z?, be defined on [-T, T] by, B,(s) = 
B(a(s) - b(Tl)) and 23,(-s) = B(a(S,) -b(s)). Let IC be a 
continuous (on 521,1) soEution in D’(]S,, Sa[ x]Tl,Tz[) of the 
inequation En, 1 (5, a’, 0, &, 1, 1)) constant on each set value taken 
by (a-‘, b-l). Then we have, for (s, t) E I x J, 

iii) Let the functions al, a~, Bl,&, be deJned us at the beginning, then 
we have, 

iv) Zf + is Cl on [0, T12 X R2 , if 

qs1, Tl, QSl, Tl), fw%) - ~(~I))) = 0 7 

if 0 is C1 on [0, T12, if B is C1 on a(I) - b(J), if cx and ,0 are 
strictly positive and continuous, then rnn is CL on a and is the 
unique classical solution of ER(=, a, 0,23, Q, /?) . 

v) If @ is w-Lipschitz, then rnB is continuous on 2, and verifies (in 
D’(0)) the equation EQ(=, @, 8, B, (~1, /3). 

vi) Let (a,,, PO) E Y = (L”( [0, T], R+))2. Zf @ is w-Lipschitz, then 
(Q,Fa,D) H m(+,~,&a,P) is sequentially continuous from 
W x C”(uo(I) - bo( J)) x LO to Co (2) where LO, is the closed 
subset of y equipped with its weak* topology, de$ned by LO = 
U%P) E Y ; %,,,o s f&d. 

vii) The sequence of functions (yd(aV, 8, a)), converges uniformly on 
I, by decreasing towards yd(+, 0,23) (for all d E [-b(T2), u(S2)] ), 
undparticzdarly (m(@,, 0, B)), converges (pointwise) by decreasing 
towards m(@, 19, B). 

According to the following definition, all the results stated in section 3 
remain valid whenever Q! or /3 are the null function on I or J . 

DEFINITION 4.1. - The maximal solution rn8 = m(@,O, B, 0) of 
En ( 5, @, 0, t3, (Y , ,B) given in the part i) of the lemma 4.1 is said u. s. c. hull 
of&(L,Q,@,~,~,P). If QI E 0 on I (resp. ,B 3 0 on J) we set for 
(v) E a, 

rnB(0, T) = Z?(u(S,) - T) (resp. mB(o, 7) = B(u - b(Tl)) ). 

For K > 0, we define thefunction $2 on [0,T12 x R2 by, $<(s, t,<,le) = 
d+,~>J,PK(4) > h w ere, PK denotes the projection on [0, K]. 
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We denote by L the assumption on Q, asked in the lemma 4.1, that is, 

ASSUMPTION C. - There exists a decreasing sequence (@F)TEN of C1 
functions on [0, T12 x W2 convergent (pointwise) towards FK! and, for each 
T E N, the function a? is WK 1 ,,-Lipschitz. 

LEMMA 4.2. - The function $$ satis$es the assumption C. 
The proof of this lemma is left to the reader. 
LEMMA 4.3. - Let us assume that the condition SC($, d,,,) of the 

definition 2.2 iii) holds. Then, for all K > 0, the property SC($$, O,,) 
is also true. 

Proof - Let r~ 2 0 be a continuous solution in [0, a(T)] of 

If we have K 2 Ilyllo,, clearly, we have y E 0. If we have K < Ilyllm, let 

TK = SUP {t E [O, a(T)]; y(T) I K $ v~r E [O, t]}. 

Then, the continuous function, y1 defined by yr(t) = y(t) for t E [0, TK] 
and yl(t) = I = K for t E [TK, u(T)], is solution of x($J, [0, u(T)]). 
Consequently, we have yl 3 0, and then K = 0, which is a contradiction. 

Remark 4.1. - Eventually by changing $ into ?$$K for a suitable constant 
K > 0 (derived from the stability condition), in the sequel we will suppose 
always that the function II, satisjies the assumption C introduced before the 
lemma 4.2. With this convention, the existence of m($, 0, B) is guaranteed. 
According to the remark 2.2, for the same reason, the results of this paper 
remain true (see [7]) with, 

5. PROOFS OF THE MAIN RESULTS 

5.1. A discrete maximum principle 

All the results stated in the section 3 are corollaries of the discrete 
maximum principle given at the end of this section. 

Annnles de l’lnstitut Hmri P&cart5 - Analyse non lint%& 
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Let us introduce the following notation. Given partitions A = 
(so, Sl, . . . . SN+~) and A’ = (to, . . ..t~+~ ) respectively of I and J, and 
given a function w : I x J + X, the symbol A@A’[Da,p](w) is the step 
function ‘u defined on 15’1, S2] x ]TI, T2] by the relations, 

i 

u(s, t> = “(tjr\P) 
W(SiAN, +lP) - W(S(iAN)-1, tjAP) 

&AN 

+P(hN) 
w(%N, tj/\P) - w(hN, t(jr\P)-1) 

^IjAP 

for (s, t) ~]si.-l> s;] x]tj-1, tj] and i = 1, . . . . N + 1 and j = l> . . . . P + 1. 
(14) 

LEMMA 5.1 (discrete lemma). - We suppose 0 5 r 5 @ on [0, T12 x W2 and 
@ w-Lipschitz on [0,T12 x W2. For all Q E N, let AQ = 

( s$, . . . . so,,,) 

(resp. Ab = (t~,...,t~Q+l) ) be an EQ-Lebesgue partition of I (resp. J) 

for a (rev. P). Let (YQ)Q and (8,)~ be sequences of functions on I x J 
verifying VQ E N , 

0 L AQ@&{-~~,~YQ)(s, t) + ~(s)D(@‘(s,& ~Q(s, t>, YQ(S, t))) 

Let Gj : [Sl, S.4 + [Sl, S2] and & : [T,, T2] --+ [T1, Tz] be integrable 
functions such that : 

J 
S2 

lim sup a(s)lAo(a;(s)) - SI ds = h 
Q Sl 

and lim;upkT /3(t)lA$&(t)) - tl dt = h’. 

Moreover, we suppose that for all Q E N, the functions yQ , & , HQ , 
satisfj, on I x J, & E W , HQ E W , and, 

o 1 AQ@Ab{ -%P(Y’) 

+n(s)4(t)a(al;(s)~ &(t), &(s, t), yQ(s, t)) + cx(s)P(t)H&, t)} 

lim;w s~pIlA~~Ab(HU(~,t))ll* = K.. 

We assume realized the conditions, with yz = yQ and x” = 

7 

cx(s”) = 0 + yz 5 yE1, and Y,y 2 Yi!,, 

,B(t”) = 0 + (y$ < yzel and yZy 1 Y$?-1), (15) 
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316 J. F. COUCHOURON AND P. LIGARIUS 

For some b E W+ we suppose, 

limiup sup AQ@)A~ it/&(% Tl) - Y’(s, Tl) + 

s,t ?/Q(‘%, t> - YQ(sl, t) ) <b(t). 

we assumejnally that there exist sequences of nonnegativefunctions (fQ)Q 

and (gQ)Q such that we have, for (s, t) E I x .J . 

and let X = lim sup 
Q J’ 

T2 
AQb(s)fQ(s)l ds + Ab[P(t)gQ(t)l dt 

Tl 

Then, we conclude, 

Proof - Let xy = yQ (s” , ty ) and yz = yQ (s”, ty) and so on for the 

functions OQ , 6, HQ, . . . According to the hypothesis HQ E W ! pick up 
integrable nonnegative functions FQ and GQ realizing, 

*Q@*blH~I(s,t) 5 FQ(s) + GQ(t) a.e. s, a.e. t. 

Then, we have with the hypotheses on I’ and G’, 

with rs = &%~/w~h~ 
a(sQ)sQ+p(tQ)rQ ’ 

and S? = s? - s? z ? z-l ) 3;” = ty - ty-1. 

With conditions’(l&), we see that the relation (16) remains valid with the 
following conventions : 
a) whenever, I = 0 and /3(tP) # 0, we take -& = 1 ; 

Annules de I’lnstitur Henri Poincare’ Analyse non lintaire 
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b) whenever, P(tq) = 0 and a(~?) # 0, we take TQ;:t9j = 1 ; 
',Q ’ 

c) whenever, CV(S~) = 0 and ,B(t$) = 0, we take m = -qz$$q = 5 , 
i I 3 3 

and ~79 = 0. 
Thezfore, it follows 

J 3 1 ) J 
tQ’ hb[p(t)gQ(t>l dt 
J--1 

J 

tQ 
’ + 

tQ 
hb [P(~)GQ (t>l dt + w 

7-l 

Then by recurrence on the double suffix i, j , with for instance, Q sufficient 
to ensure wS&a(sF) 5 i and w-y7,6(ty) 5 k, we obtain, 

+ fk$(t(gQ(t) + (I&@) - $)] ,,) 

Q 

J 
‘* &(“(S)&(s)) ds + J 

tQ 
+ ’ &#+)G,(t)) dt 

Sl TI 
where 

MQ = SUP S;PAQ(?/Q(S,%) - Y'(S,TI))+, 

suP$(Y&%d) - Y”(Sl;t))) . 
t 

Therefore the upper bound announced follows easily. 
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LEMMA 5.2. - Let us assume (A,), $-coherent for (Bo)~. Let u be 
an z-adapted solution of CPz(I; u”) (with respect to 3a,a) bounded by a 
constant L, with associated partition A and let v be an E-adapted solution of 
CP,P( J, v”) (with respect to 3a,p) bounded by a constant L’, with associated 
partition A’. Then , we have, 

and for all w E Ds”p: , w’ E Dg10 , s E I, t E ,J : 

A(l(44-v”(l) 5 Ilu”-wI(+ll~o-~II+~ + (A(~(s)-~(S1))+~)JJW,II 
+ (L + 1 + 11~11) J““’ A[a(+(a), da 

A’(llu”-v(t)II) 5 Ijli”-ii,‘/j+~lvO-w~~~~~+~A’(h(i)-h(~~)) +~)llGlll 

+ (L’ + 1 + Ilw’II) (t) A’[/?(T)c(T)] h) . 

Proof. - i) Let A = (so, . . . . sRfl) be the partition associated with the 
E-adapted solution u , and let A’ = (to, . . . , tp+l) be the partition associated 
with the q-adapted solution v , and let us write for the sake of simplicity 
ui = u(s;) , vj = v(tj) ; then we have with Si = s; - si-l and i = I, . . . . N, 
and rj = tj - tj-l and j = 1, . . . . P ~ 

ui - u;-1 + Sic~(si)C~ 3 0 , u^, E Aaui and, 
7/j - Wj-1 + rjfl(tj)G 3 0 (19) , 7$ E BpWj + 

Let d(s, t) = [Iu(s) - w( t ) / )  and di,j = d(si, tj). Then we obtain from 
the coherence of (A,) with (Bp), 

(&Q(s~) + yj/Wj))4,j 

With the equations (19) it follows easily from the above inequality, the 
required relation, 

0 5 @A’[-&;&(s, t> + a(s)P(t)ll(s, 4 e(s, t>, x)1 . (20) 

Ann&v de I’lnstitut Henri I’oincarL Analyse non 1inCaire 
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According to the inequality lying in the stability condition S(A,, I), we 
can write, 

(IUi-WI1 ~sia(s;)c(s;)(~~u;-w~~+1)+~~ui + &a(s;)G - w - si+;)iql 

i &+i)c(si)(L + 1 + 1141) + I(%1 - ‘WI1 + Si4%)l@Jl. 

Hence, by iteration, the claim of Lemma 5.2 is easily ended. 

Remark 5.1. - The inequality (20) could be rewritten in the following form, 

a) dij = di-lj if I = 0 ; b) dij = dij-1 if @(tj) = 0; 
c) dii = di-lj = d;j-l = di-lj-l if Q(s;) = /3(ti) = 0. 

Let us state now the maximum principle which remains valid if a E 0 
on I or ,D = 0 on J. 

THEOREM 5.1 (maximum principle). - Assume (A,)1 $-coherent for 
(B~)J. Let also the sequence (zLQ)~~~ be a (AQ)Q- DAF ofCPz(l, u”) 

and let the sequence (vQ) QEhl, be a (h'Q)Q- DAF of C@( J, v”) . Let Z? 
be continuous on a(I) - b(J) . We suppose, 

Then, for all d E u(I) - b(J) C [-b(G), a(&)], we have, 

lim sup 
Q n(E~~~)=d*~*‘[/I1lQo - wQ(t>lJ - w(4s), b(t))] I 0. 

Proof of Theorem 5.1. - With the stability condition, it exists a constant 
M > 0 such that the sequences of functions (IIuQII)Q and (IlwQll)Q 

are bounded by M (resp. on I and J). Let (Bk) be a sequence of C1 
functions on the compact interval u(l) - b(J) , converging uniformly to 
B ; and let F = (ok, F”, F) k be the considered sequence stemmed from 
0 a,~. Let (anIn and (A), respectively, continuous strictly positive on I 
(resp. J) converging in L1 ([0, 2’1, R+) respectively towards a and /? . Let us 
recall that u,(s) = J: a,(t) d< and b,(t) = s,“,!&(l) de. We can suppose, 
GL(Sl) = a(&), an(S2) > 4S2)v and &(TI) = VI), b(T2) > b(T2). 
Let (QT), be a decreasing sequence of positive C1 functions pointwise 
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convergent towards li/ with a,. w,-Lipschitz on [0, T12 x lR2 .We also 
introduce the following notations, (for $ E n(l) - b(J) , and r E Id = 
[(@l) - d) v @3 b(T2) A (a(S2) - 41) 

y;lr@) =m(Q,.> Ok, Z3k, a, ,!3)(~ + d, T) 

Y;>‘>“(T) =m(~~:ek,Bk.n,,/~,)(7 + d:-r) 

Yd(‘) =m($. Bru,N, Z?, cr,p)(r + d, T) = ,~B(T + d, T) . 

eQ(s,t) =l(u”(s) - uQ(t)l) b’(s,t) E I x J. 

We can suppose without lost of generality that m( @‘l-, ok, &. Q,,, &) = 
mk,r,n is Cl on [0, T]’ , because of the U.S.C. hull lemma 4.1-iv) and the 
proof part c) of this lemma 4.1. 

Then, for all d E (L(I) - b(J) c [-b(Tz),a(&)], and for (s,t) E 1 x J, 
we have, the following inequality, 

sup 
a(s)-h(t)=d [I\Q@bieQb t)l .- mBb(s)7 b(t))] 

= sup 
a(s)--b(t)=d 

[hQ@A~[eQ(s7 t>l - %I(~@))] 

f SUP Yd (3) 

For all n, I;, ankQ 

I kl"'"(b(u - Ydjb(t))] 

2 &’ in order to have a&(1) x b&(J) & a,(1) x b,(J) 
define, the following fun”ctions for s, t E [0, T] 

I 

..IQ(S)V& 
aQ(s) = n(S1 A s) + 

.I 
AQb(t)ldt 

b&(t) = b(T, A t) + J;J(‘)vTJ A:, Ml)14 > 
2 = .-I o aQ 

H,Wk(s,;; = ,k(gyg$jY O bQ) 

If 8” is pk-Lipschitz (with Pk _> 0), we have, 

jh@AB, [B(s. t> - o:,k(“, t)] 1 

5 A~@Abl@,t) - ~“(s,t)l +A~@Ai$“(s:t) - e$(s.t)l 

5 AQFk(s) + ALP”(t) + pk 
[i 

AQ(s) - Z?(S) + R;(t) - Z!(t) 
1 I II 
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Let us define &j” on I x J by 

@(s, t) = AQ@Al, [-Da,P(mk'TiTl(aQ(s), bQ@))) 

+QQ)P(t)% Z(s), s(t), B 
( 

k(~(s);~(t)),~~kl~,~~(uQ(s)~~Q(t)))] . 

Since rnklr,n is C1 and Bk(~;‘(a),b;~(~)) is continuous (even Cl) on 
I x J, an immediate computation gives 

lim sup (~ s&., lll;“(sd)j 5 lI”llmllPll,s~tp (-ol,lm~~“l”(a(S),b(t)) 
Q , 

+ ~~(a,loa(s),b,lob(s),~~(u,loa(s),b,l oh(s)), 

rrPkqL(S)~ b(t))) ( . 

By definition of rnT>“ln it follows : 

lim sup Q ,,,s~~,., I,u~“(s,t)l = 0, and then, l@ IIP$“I/, = 0. 

Thus, setting, 

Sa T2 
h, = 

.I 
N(E)\< - a;’ o u(r)1 d( and h’,= P(t)[t - K1 45[ de> 

Sl s Tl 
and, 

.I 

sz 

s 

TZ 
x; = 4W’“(E) dt; + P(t)F’“(t) 4 + pk(h + h’n) , 

Sl Tl 

from the discrete lemma 5.1 we obtain, 

h;Up SJlfn,@hb[fZ~(S,t) - mk’r’n(rLQ(S),bQ(t))]+ 

= 1im;up ;,“tp hQ@$ [eQ(s, t) - m”‘T’n(a(s), b(t))] + 

< &+(Sz)+b(Tz)) ((llallo, + lIPll,)~J; + G(K + hi) + bk) 3 

with bk = dE[--b;;y 
>a 

(sz)l I/&(d) - B(d)//. Since it is not difficult to show 

the relations, 

hy = ~a(s)~u,‘(u(s)) - s(ds = J[,,, )u,~(o) - u-‘(cT)\ dunTmO 

h; = 
.I’ 

,B(t)jb,l(b(t)) - t]dt = 
I .I 

b(J) 14%) - b-1(d1 dr --+ 0 > n3w 
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we obtain, if Xk stands for XI, = Jz a(l)F”(C) dl + Jz P(I)Fk(<) dE1 

limsup lim~upsJlPA~~Al,[es(s,t) -~~~‘~,~~((~(s),b(t))]+ 
n 

< ,$44Sa)+b(~d) Wll, -I- IIPllc&Jk + h-1 ) 

Therefore clearly now, when Q + co, then n -+ co, and then k ---f cc , and 
then finally T -+ 00 , using the U.S.C. hull lemma 4.1 (and according to the 
uniform continuity of rnk,rln on a(l) x b(J)) all the terms (1) to (3) in the 
right side of the inequality (22) vanish and we get, for all d E a(l) - b(J) . 

lim sup 
Q 

a(s)~;;)=d (eQ(s, t, - m(a(s>, b(t))) 5 ‘. 

5.2. Proof of theorem 3.2 

The function I3 satisfying (8) is single valued continuous since u o a-land 
u o b-l are single valued continuous and since for (g, T) E a(l) x b(J): 
the equality g - b(Tr) = ~(5’~) - r is equivalent to 0 = u(Sr) and 
r = b(Tr) . Let (UQ) be a suitable (RQ),-DAF associated with U, and a 
suitable (Ab) Q-DAF (wQ) converging towards w . Let us write eQ(s, t) = 

IbQ(s) - wQtt)li > and e(s,t) = IIu(s) - ~(t)(l. The inequality (17) 
written with uQ and 2/Q leads (multiplying by hQ@Ab[p(s, t)] with 

cp E D((T x .;,) and cp 2 0 and rearranging), 

Thus, taking the limit when Q -+ +cc , the Lebesgue dominated theorem 
(since the DAF are adapted with respect to Fm,p) yields in 27’ 

Since e(., .) is continuous on I x J, and of course constant on each set 
values taken by (a-‘, 6-l) , thanks to the lemma 4.1 ii), the relation 9 in 
the theorem 3.2 is shown. 

5.3. Proof of theorem 3.1 

Let (un), be a (Fe,,; (E,))-DAF. Set Fe,, = F = (@, Fk, F),, 
Because of the stability condition S(Q, I), (‘LL~) is bounded by a constant 
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M > 0 . Let (@‘T)T be a decreasing sequence of functions (@T)T on 
A = [0,T]2 x W2, converging towards II, on A, such that for all 
T E N, a, is C1 and w,-Lipschitz. Let eQ(S, t) = I]uQ(s) - Vkq(t)ll 
where (ICQ) is a sequence of strictly increasing integers. Given E > 0, 
let ‘u E DGln satisfying J]u’ - w ]I 5 E and let wS, E X given by 
the stability condition S(a, 1) ; let B, be the continuous function on 
u(I) - (~(1) = [-(u(S2) - a(&)), 45’2) - a(,‘&)] defined by, 

According to the lemma 5.2 (relation (18)) and the definition of B, 
above, we have, 

C limsupQ sup, (eQ((s, Sr) - &(e(s) - e(5))) 5 0 ) and, 
limsupQsup, (eo((Sr,t) - &(a(%) -e(t))) 5 0, 

Let v > 0, then the maximum principle (with a = b, d = 0 , see theorem 5.1) 
implies that there exists Q > N(E, n) such that , 

(23) 

where we have y’(a) = m($, 0, B,)(a,a) . 
Moreover, the function yE satisfies in D’(]u(&), u(S2)[) the inequation 

xoKv4v+ 1 n view of the definition of the strong coherence (see 
definition 2.2) and Lemma 6.3 stated in Appendix, the family (Y’)~>~ 
converges uniformly on [u(Sr ), 4 Sa)] towards the null function as E 1 0. 
Therefore, the relation (23) provides, 

It follows that (Us), is a Cauchy sequence in the set of bounded functions 
on I endowed with the supremum norm. Let us denote by u the uniform 
limit of (2~~)~ , on I. Now, we have to prove the continuity of u (because 
the uniqueness of the F-mas, is now obvious) to obtain that u is the unique 
F-mas of CPz(1, uO) . 

For that, let e(s,t) = ]]u(s) - u(t)]], then the maximum principle (see 
theorem 5.1) allows to write, for all E > 0 and for SO, SO + h E I, 

0 5 e(so + h, SO) I m(G, oa,,, K)(u(so + h),4so)). 
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Therefore, according to the U.S.C. aspect of m(@, 8, DE) , we have, 

Then, as E 1 0, we obtain 

Itilr, e(so + h, so) = 0, 

So the part (i) of the theorem is proved. It remains to prove the second part. 
b) For this purpose let Q = 2 in L”( [0, 2’1, W+) and let 3 = 3,,, = 

(ok, Fk, F) and ? = 3T; = (&, z, @) be stemmed from 8,,, = t?;,;; = 
8 . Let (uQ)~ be a DAF related to (a, 3) and ( WU&)& be a DAF related 

to 
( > 
5, y . Now , we consider a DAF (wQ)~ both related to ((Y, 3) and 

( > 
6, F . By the virtue of Lemma 2.1, such a choice is made possible. Then 

in view of the part (i) of Theorem 3.1 we claim that (wQ)~ converges 
towards a mas w of CP,O (I, u”) . But we have u = w since u and w are 
both 3-strongly coherent mas of CPz(I, u”). In the same way we deduce 
‘u = w and therefore u = 1). Hence the proof is complete. 

5.4. Proof of corollary 3.1 

Let 1, = [0, a(T)] and 1i = [0, 7’1. According to the remark 2.3, we have, 

By theorem 3.1 the mas ‘u of CPz(ll, u’) is coherent for the mas ‘u of 
CPi(I,, u”) . Because of the estimate of Theorem 3.2, we obtain (ma is 
defined on (IV)“), 

llu(s) - w(t)11 I w3M4 t) (24) 

where 23 is the continuous function satisfying, 

a = /~(a-i(d)) - ~‘(1 and 23(-d) = ]]u” - v(d)]], 

for d E [O,a(T)]. Then ya(t) = ma@, t) satisfies x0(<, $, O,O, o, 1) in 
WIO, a(T)[) .Th us, we obtain ye(t) = ms(t,t) = 0 on [0, a(T)]. Then, 
the inequality (24) gives, U(S) = u(u(s)) for all s E [0, T] . 

The last conclusion of this corollary is evident, since with our hypotheses, 
‘u is Cl on [0, T] (see for instance [8]). 

Anna/es dr I’lnstitur Henri Poincart? Analyse non Ii&ire 
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5.5. Proof of Theorem 3.3 

Only the assertion (iii) in the part a) of theorem 3.3 is non trivial. In 
order to show this assertion, put u(t) = S(t, T)U’ for t E [T, T] and some 
u” E II+ and w(t) = S(t, S)U(S) for t E [s, T] ; then define the continuous 
function B on [-(a(T) - a(s)), a(T) - a(s)] by, 

C 
a(0 - u(s)) = llw(u-‘(0)) - u(s)ll for u E [u(s), u(T)] : 
B(a(s) - T) = II-u(s) - u(u-‘(7-))/I for 7 E [u(s),u(T)]. 

It follows from the strong coherence that we have mu(r, 7) = 0 on 
[b(T), 4T)l . H ence, theorem 3.2 applied with ‘u and u]~,,~] yields 

II44 - 4t>II I mf3(u(t),u(t)) = 0 for all t E [s,T] 

Now, turn to the part b) of the theorem 3.3. Let (s,,, t,,, w,,)~~~* be a 
sequence converging towards (s, t: UJ) in the metric space Y. Given E > 0; 
let wE be such that we have, w’ E Of- and ]Jw - w”]( 5 E . Then, let B” 
be the function defined on [-T,T] by, 

.I 
Izl+a(s)+E 

B"(z) = 2E + 11qllxl+ [A4 + llWEll + 2E + l] c(Cl(cr)) no i 
(a(s)-E)VO 

where, 2 is the element of X provided by the stability condition S(a, 1): 
and where M < +cc is an upper bound of (]]S(.,S,,)W,]])~~. For iV, E N*, 
satisfying, 

n 2 N, * (11~ - ww(I I F, and la(s) - a(s,)I I ~1, 

the maximum principle theorem 5.3 yields , 

n 1 NE =+ [IlS(t,, s,)w, - S(t, s)wll L r@a,a, BE)(u(t,): a(t))] . 

Consequently, in view of the U.S.C. aspect of m(H, B”), it follows, for all 
E > 0: 

limsup IlS(t,, .h)w, - S(t, s)wll 5 m(Oa+, Be)(u(t)3 a(t)) = y’(u(t)) 
,L 

Since (y’), decreases uniformly towards the null function on a([~, T]) , 
when E 1 0 (see Lemma 6.3 in Appendix), it results, 

$1 IIS(t,, s,)w,, - S(t, s)wll = 0. 

The proof is now complete. 
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5.6. Proof of Theorem 3.4 

For each n E N U {c~} , let U, be the function uT1 = S,( ., 0) , and let 
Qn = f%,,a,, . 

a> The family ~~~~~~~~~~~ is bounded by some constant C > 0 in 
C”( [0, T], X) , by hypothesis. 

b) We give now a suitable bound for ]/U,(S) - U: I] for ‘II E N . 
Given E > 0, let (w,w^) E A,“_(O), with ]]w - z&I] 5 5. According 
to the definition of the inferior limit, there exists for each ‘II E N, 
(wn,GJ E 4&(O), such as the sequence ((w,,, rrn)), converges towards 
(w, w^). Let us define an integer IV, verifying, 

The condition S(o,,, c, [0, T]) p rovides again, (see inequalities (18) in 
lemma 5.2) 

Recall that we have a,(s) = J;;’ (Y, (cr) do and, (from the change of 
variable lemma 6.1) 

J 

a71 (s) . s 
c(u;‘(u)) da = 

J 
4IM) 4. 

0 0 

Consequently, since (a,,)n converges towards a, in the weak* topology of 
LO”([O, Tl, R>, th ere exist a sequence of positive numbers (nl,.), converging 
towards zero and an integer P, > N, realizing, for all s E [O, T] . ace(s) 

c(u&T)) da+q, 

)) 

, 

(25) 
where, we put for instance, C, = suplL (]]whn]] + C + 1 + ]]w~]]). 

c) Equicontinuity of (u,,), in C’([O, T],X) . For II: E [-T, T] , and 
n > 0, let I32 be defined by , 

c(u&~(u)) da + 7 

Let m2T = m(%, b, fP, a,, a,) for n E N U {cc} , and put rnFL = 
m($, 6’,, Bzn, a,, a,) . The maximum principle (see theorem 5.1) gives, 
for n 2 Pe , 

lip - h(t)11 I mE(a,(s>, h(t)) 5 mF(an(s), a,(t)). (26) 
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The equicontinuity lemma 6.2 ensures that for all n > 0, there exists an 
integer n(~, T, q) such as we have, 

n 2 4~,~,d + (II49 - h(t)11 I e+44, b(t)) + 4. (27) 

Let y” be the maximal continuous solution in D’(]O, a(T)[) of 
x0(=, ti, 0,2E, a). By lemma 4.1-vii), we get that the sequence 
(mx(~, .T)), converges uniformly on [0, am(T)] towards yE . Moreover, 
in view of the lemma 6.3 the generalized sequence (Y’),>~ converges 
uniformly on [0, am(T)], towards zero as E j, 0. Then, from 

mu, ho(t)) Il~Z(a&), %&>> - ~2%&), %cw 
+ I~~~(~co(t),~co(t>)l, 

the relation (27) yields (choosing first a suitable Ed and second a suitable 
r9 ) to the existence of an integer R, = n(eV, T?: n) such that, 

12. L 8, * (lbn(s> - ~n(t>ll 
5 Im~:“~(u,(s), am(t)) - m~aT’+z,(t), u&t))\ + 277). (28) 

Since rnz ‘T? is continuous on [0, u(T)]*, then the announced 
equicontinuity holds. 

d) Convergence of (Us), . Let (~8) Q be an adapted (AQ),-DAF of 
CPZ: ([0, T], I&) . Let Ku be the following compact subset of X, 

x0 = ,4[0> TI) u (u, uQ([O, TI)) ; 
put gn(t, II) = ]]un(t) - ~(1 for (t, w) E [0, T] x X . According to the part 
b) of this proof, it is immediate to verify that (gn), is an equicontinuous 
sequence of continuous functions on [0, T] x X . By the Ascoli-Arzela 
theorem (gn), is relatively compact in C’([O, T] x Ko, W). Then, consider 
a cluster point g = lim gnk ] [O,TI xKO of (gn),. Let E > 0 and Q be an integer. 

set hQ = ( tf, . . . . taQ+l), with nodal points in the set of s E [0, T] such 
that AZ- (s) c lim inf, A:- (s) and, 

uQ(t&) - u.&(&) + s”a(ty)G(ty) = 0) 

with SF = t” - ty-r , and G(t?) E A” (t”)uQ(t”) For i = 1 . . N z ac-2 2 z . , .) Q 
choose, 

lim, 

with, 

(uQ(ty),3(ty)) 

E A” (t”) or, 2 . 
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We can find an integer r(Q, E) verifying, (with i’L’ = SUP,~~~{~) [[an]], ), 

If cp E qo>q> and cp > 0: for Q large enough and n 2 ~(Q,E), it 
follows from a simple computation, 

(I~AQ{(1D(s,t,8,(s,t);.9,( 3, w:(t))) + 3+,(4~n(Q~(s, t)} d&t. 
(29) 

Observe that the sequence of functions %(s, t) = ~(~(s)o~(t) converges 
towards 6(s,t) = ooo(s)ono(t) weakly* in L” ([0, T12; R) . Thus, letting 
n=nk’m, and after Q + ec, in the relation (29), and since E is 
arbitrary, we see that the continuous function h : (s: t) H ~(s, ,~,(t)) = 
h(s,t) is solution in D’(]O.l’[“) of 

Moreover, the inequality (28) shows that limsup, (]~~~(t) - U,,(S)]] = 0 for 
(s,t) E [0,T12 such as a,(s) = am(t). Therefore, h is constant on the set 
values taken by (a&l) u&l). Finally, using lemma 4.1 part ii), we obtain, 

hts, t) I mt$, ‘Jcv,,e, > a>(a,(s), b(t)) for (5, t) E [O, T12, 
where B is the continuous function on [-am(T), u,(T)] defined by, 

{ 
B(a) = llunk(a$(g)) - u!&II for g E [0,6(T)], 
B(g) = IIe2 - th(c&(-~))jl for a E [--fzoo(~), 01. 

Then, since we have B(0) = 0, we claim h(t, t) = 0, for all t E [0, T] , 
that is, 

Vt E [0, T] lip u,, (t) = urn(t) . 

Hence, u, is the unique cluster value of (Us), in C”( [0, T], X). 

Annales de l’hstitut Henri Poincark Analyse non lintaire 
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6. APPENDIX 

Here, we state some useful results and we give summary indications 
about the proof of Lemma 4.1. More details can be found in [ 161 or [6]. 

6.1. Change of variable lemma 

LEMMA 6.1. - All selection s of a-l is measurable. Moreover, for 
f E L1(I, rW), we have, f o 7 E L’(a(l), [w) and, 

.I cu(s)f(s)ds = fo~(cr)do. I s a(I) 
The proof is clear and left to the reader. 

Remark 6.1. - Since the quantity JaCIj f o F(O) da does not depend on 

the choice of (measurable) selections zof a-l we agree on the notation 

6.2. Indications about the proof of the U.S.C. hull lemma 

a) Suppose that z is a continuous solution in D’(]Sr, Sa[ x ]Tr , Tz[) 
of I&,,,(<, a, Ba, 8,1,1). Since x is bounded on I x J, the operator 
cp H R(v) defined by R(P) = s -2(s, Wa,&(s, t11 

IxJ 

+ 4s)P@)%(s, t, e(s, t), +, t))cp(s, t) da& (31) 

can be extended to the space of test functions 2>(: x j) defined below, 

~(;x;)={p:lxJ -+ R, cp continuous with compact support on ? x .?, 

by setting R(q) =’ limk R(cpk), for all sequence ((P~)~ in D(i x j) 
verifying 
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It is clear therefore, that this definition does not depend upon the choice of 
(~pk,)~ converging towards cp. And if we have ‘p 2 0 , we can take vk 2 0 
for all k (by taking for instance, classical regularized functions). Therefore, 
we have for cp E s(T x ,?), (‘p > 0 ~j R(p) 2 0). 

Then let us consider cp(s,t) = <(n(s),b(t)) with [ > 0, < E D(n) 
Then cp E c(i x j) , and ‘p 2 0. It follows R(p) 2 0 ; so using, in 
this last inequality (see relation (31)), the change of variable (Lemma 6.1) 
LT = u(s) and r = b(t), we see that z(a-l, b-l) is a continuous solution of 
Eo( 5, Q’, 19, B, Q, j3) . Therefore, if we prove the existence of the maximal 
solution mu , introduced in the part i) of the lemma, we will have for 
(a,r) E 41) x b(J) 

x+-‘(a), b-l(r)) < m(@, 8, B)(u, r) = ,rrLB(U, r) ) 

or in other words, with (s, t) E I x J , z(s, t) 5 m~(u(s), b(t)) . 
b) Consider y a continuous solution (if it exists) of the fol- 

lowing inequation Eo(l, @‘,, 8,B, a, p) in D’(R). Let cn(fl,r) = 

i‘( F3g+(n(Ep)), where d E a(l) - b(J), C E D(Jd) ,C L 0, 

and p E D(] - 1, 1[) with J”, p(r) dr = 1. The function & has a compact 
support in R for n large enough. Recall that 1, denotes the interval 
& = [(a(&) - d) v b(Ti), b(T2) A (a(&) - d)] . Then, with the change of 
variable, 

a+T--d 
A= 2 > v=n(“-;-“): 

we obtain easily, 

05 
J{( 

y X + f + d, X - ;)<‘(X),,(U) 

+~~~~-1(,,~+d).,-1(A-~),6fu-1(A+~+d),b-1(,_~)) 

y (a-‘(A + ; + d), b-l (A - ~)))~(X)p(v)} dadr . 

No problem of integrability occurs thanks to the hypotheses on @r and 
r9(~ IV) . Since y, GF are continuous, u-l, b-l are a.e. continuous, and 
0 E IV, letting n + 00 , we get, 

05 J Id x [-1 1l {?/(A + 4 4s’(4Pb4 
+ (P,(u-~(X + d), b-l(X),B(u-l(X + d), b-l(X)), 

~(a-~0 + 4, b-‘(4)) CO)} p(vW. 

Annales de l’lnstitut Henri P&c& - Analyse non lintaire 
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And ~~(7) = y(r + d,r) is solution in D’(id) of & = xd(<, ap,, 
0,f3,0Y,P). Notice that we have for a.e. [ E Id ( if we write ]e(s, t)] L: 
J’(s) + G(t), f or a.e. s and a.e. t , with F, G E L1( [0, T], R+) >, 

J%.(a-l(< + d),b- YE), qu-‘K + 4, WE))> Zd(C)) 1 
I py(l + 4, b-l(l), o,o)) 

+ ~(F(a-~(t + 4) + G@-‘(l)) + 49) (32) 

It follows from the Gronwall’s lemma an a priori upper bound for xd . 
Thus, the inequation xi has a maximal continuous solution y; verifying 
the equation Xd,o(‘,@V,o,B) in Z)‘(id) (see [19], [6]). 

c) We will examine now the C1 case. We suppose 23 is C1 on 
[-b(Ta), a(&)], and @ is C1 on [O,T]’ x W2 and w-Lipschitz. Let 0 : 
be C1 on [0, !!‘I2 and o and 0 strictly positive continuous in [0, T] . We 
suppose also that we have, 

then (see [6]) the solution m(@, 8, B, o, p) is C1 on n, and is a classical 
solution of E(=, 0, B, o, /3) . 

d) We suppose here that Cp is Cl w-Lipschitz on [0, T12 x R2 . Let (ok)kr 
(resp. (,&),) be a sequence of strictly positive continuous functions on I 
(resp. J). We (can) suppose that we have for q E { 1,2}, a,(S,) = u(S,) 
and b,(S4) = b(S,). Let (Bk)k be a sequence of functions C1 on 
u(1) x b(J), converging in C’(u(1) x b(J)) towards i3. Let (0, )k be 
a sequence of Cl functions on [0,T12 converging towards 0 in (IV, ]].]I,). 
Let us consider a sequence (Gk), of functions from [0, b(Tz)] to R , such 
that Gk is Cl with compact support included in [0, i [ and 

with Gk bounded by ]Gk(O)] and ]]Gk]]i k -+ cc +O. Let mk = 
n~(@ + Gk, ok, &, ok, &), let Pz be the projection on the interval1 2, 
and rn; be the restriction to u(l) x b(J) of mk(Pus(l), PbkcJ)). Then, 
we claim that the family (m;)l, converges in C’(u(1) x b(J)) towards 
the unique continuous solution of Eo(=, a’, 8, B, Q, /3) . Indeed, this claim 
follows easily from the equicontinuity lemma 6.2 below. 

e) In the general case, where @ is the decreasing pointwise limit 
Q, = lime?, Z? continuous, and 0 E W. In this case, the reader can 
easily verify that the sequence (m(aT, 8,23, (u, ,8)), is pointwise convergent 
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by decreasing towards the maximal (in the required meaning) solution of 
Eo(=, a’, 8, B, a,,@. Indeed, (~d(+~, 0, f?, CE, p)), converges uniformly by 
decreasing towards yd(Q, 8; I?, Q, /3) on Id. 

The U.S.C. hull lemma results clearly from the previous steps a) to e). 

LEMMA 6.2. - We suppose that the sequences (cQ)~ and (fik)k converge 
respectively towards a: and p in the weak*-topology of L’([O, T]. R ) . Let 
Q, be w-Lipschitz on [0, T]* x W*. and let be a bounded sequence 

‘I 
in (W, 11.11,). Put &9 = Q + &. Let (ok), a sequence of W functions, 
converging towards 0 E W, and let (i3k)k be a sequence of continuous 
functions on a(I) - b(J) , converging uniformly towards B. Set (with the 
notations of the above step d)) mz,, = m(Gq, ok, 23k) o (PCLh(‘), PbkcJ)). 
Then the family (m&) ~ I is (bounded and) equicontinuous on n . 
More precisely, writing, $lq(~) = m(@P,,8k,Bk)(r+d,-r), and I” = 
[(a,+(&) - cl) v b(Tl): bk(T2) v (uk(S,) - d)] for d E a,+(l) - bi.(.l)dand 
Q(S) = Jl CYI;((T) da and by. = .r,‘pk(~) dr: we have ; 

1. For r E Ii n I$+* and (ak(S1) - d) < bk(Tl), 

2. For r E Ii II Ii+& and (Q(S) - 4 > &@“I), 
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+lH;,(n,l(5+d+5),b,‘(~))l)dE. (34 

3. For ?- E ~:,(S1)-bk(Tl) ” ci(S1)-bk(~~)+6~ (case MSl) - 4 = 
bk(Tl)), the relation (33) holds if S > 0, and the relation (34) holds 
ifS < 0. 

Proof - Indications are given in [ 161. 

6.3. A differential lemma 

LEMMA 6.3. - We assume that the function Q is U.S.C. on [O: T] x R” . 
Let (yz), be a sequence of real numbers conver@ng towards y& i and 
(gn),, be a sequence offunctions converging towards 9oo in L1 ([0, T], R). 
Furthermore, we suppose that the following inequality holds in [0, T] x R2 
for some positive constant 1, ]@(s, I, x)] 5 I( I<] + 1) . For n E N U {cm} . 

let us denote by yTL the maximal continuous solution in D’(]O,T[) of the 
inequation, 

Then, we have, lirn supn suptE[o,Tl ( yn - yoo)( t) 5 0 . 

Proof of lemma 6.3. - See [16]. 

(35) 
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