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ABSTRACT. — In order to develop a Lebesgue approach for the fully non-
linear non autonomous evolution problem, CP§ = {—dﬁ +a(t)A.(t)u 3 0}

with t € I C [0,T), in an arbitrary Banach space X, we define an
abstract L!- comparison mode (called coherence) between multivalued
time dependent families of operators (A4(s)),c; and (Bs(t)),., defined
on compact subintervals I and J of [0,7] and weighted by functions «
and 3 which belong to L>=([0,T];R*). The solutions of these problems
are limit of discrete schemes and the crucial point is to define these
approximations in a Lebesgue sense. The results about this Cauchy problem
consist in existence of an evolution operator, integral inequalities (extending
Bénilan’s inequalities for integral solutions), and continuous properties ;
they extend the theory of evolution equations initiated at the beginning of the
seventeenth by Crandall, Liggett, Bénilan, Kobayashi, Evans, ([10], [12], ...},
and include more recent generalizations as in [18] and [6]. This general study
motivated by the observation problem of a heat exchanger (see [16]) where
a L°°-control multiplies an unbounded operator, establishes in Theorem 3.4
a suitable continuity property with respect to the weak* topology on the
weights (see applications in [3], [7], [20], ...).
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RESUME. — Ce papier esquisse une approche de type Lebesgue
des problémes d’évolution pleinement non linéaires CP§ = {d_? +

a(t)Aa(t)u 3 0} avec t € I C [0, T dans un espace de Banach quelconque.
Pour cela nous définissons un mode de comparaison (nommé cohérence)
entre familles d’opérateurs multivoques (Aq(s)),¢; et (Bg(t)),o, définies
sur des sous-intervalles compacts I et J de [0,T] et pondérées par des
fonctions « et 3 de L>([0,T];R*). Pour les probleémes d’évolution
considérés les solutions sont des limites de schémas discrets: le point
crucial est alors de définir ces approximations sur un ensemble dénombrable
de nceuds (et donc de mesure nulle) en un sens compatible avec une
infinité de classes de fonctions Lebesgue intégrables générées par notre
approche. Nous mettons ainsi en évidence pour les problemes de Cauchy
CPg un opérateur d’évolution, des inégalités intégrales (généralisant
les inégalités des solutions intégrales de Bénilan) et des propriétés de
continuité: ces résultats étendent des travaux de Crandall, Liggett, Bénilan,
Kobayashi, Evans, ([10], [12], ...), et absorbent des généralisations plus
récentes obtenues dans [18] et [6]. Cette étude motivée par un probleme
d’observabilité pour un échangeur thermique (voir [16]) ol un contrdle
L agit multiplicativement sur un opérateur non borné, contient en outre
(Théoréme 3.4) une propriété de continuité vis-a-vis de la topologie *-faible
des poids dans L (cf. [3], [7], [20], ... pour les applications).

© 1999 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

Mots clés : Probleme de Cauchy, systemes de dimension infinie, cohérence, bonnes
solutions, convergence *-faible.

1. INTRODUCTION

This paper deals with the abstract Cauchy problem CP$(I, %) in a
general Banach framework, for a class of nonlinear systems in which the
control « acts on unbounded operators. These situations could be met, for
instance, in the field of heat transfer applications, transport phenomena or
biochemical processes, for which, so far as we know, the classical theorems
of existence of discrete approximations, uniqueness and continuity with
respect to the parameters of the solutions could not be applied directly
(see [3], [14], [16]). This study unifies in a same approach different classes
of systems as autonomous systems, quasi-autonomous systems, bilinear
systems ...
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We define a comparison mode of multivalued families of operators
(Aa(T)),¢r and (Bs(0)), ., (for subintervals I and J of [0,T7), that is,
forae. s € I, for ae. t € J, V(u,Us) € Au(s), V(v,v3) € Bg(t),

—[u — v, Ua — U] < (s, 0a,6(s, 1), llu—vl]) .

where the bracket [u, w] denotes as usual ,1\1{% (e + Awl| = [|w]])/A) (see

section 2.3 for the assumptions on the functions 1, and 0, ).

In the case (A,); = (Bg)s , and when, the null function is the unique
positive continuous solution in D’(]0, a(T')[) of the inequation

<P(am (1), a7 (1), 00,0 (a7 (1), 07 (1)), 2(7))

with a(t) = fot a(7) dr we have a generalized L' time dependent accretivity
condition, called “strong self-coherence”. In view of these definitions, we
see immediately that our generalization on C' P relates on three directions:
the time dependent framework, the accretivity conditions, the weight «.
This framework contains the cases studied in [18], [5] or [6] and allows to
study, without restriction on the weights (see [20] for instance).

As in the classical accretive case, the solutions of CP§ considered
throughout this paper, called mas are continuous limits of discrete implicit
schemes. More precisely, given a partition A = (sy, ..., s5 ), we approximate
CP% by the discrete system u; — u;—1 + (s; — si—1)a(s;)Aqu; 3 0. One
of the main difficulties lies in the fact that the discrete schemes involve
countable sets, and consequently neglectible subsets of I. According to
our L! time dependence, suitable choices of partitions of I are needed to
give a good approximation of a(s) and A,(s). Since we take 6, , € W
(this space has been introduced by Crandall and Evans in [9]), there exist a
sequence of C" functions (6*) and a sequence (F%), converging towards 0
in LY(1,R*) satisfying |04, (s,¢) — 6%(s,t)| < Fi(s) + Fi(t), ae. s €1,
a.e. t € I. Our choices of partitions A (called adapted partitions) are
those which lead to Lebesgue sums for « and each Fj . We prove in
Proposition 2.1 that such a partition exists. We say that the partition A is an
e-Lebesgue partition for the real function f if each s; is a Lebesgue point
for f and if the step function A(f) built with the nodal values f(s;) satisfies
J;1f = A(f)|(s)ds < e. Discrete schemes associated with a sequence of
adapted partitions with step sizes decreasing towards zero are said adapted.

The theorem 3.1 states that, if the family (A, ), is strongly self-coherent
and if there exists a bounded adapted discrete scheme, the Cauchy problem
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CP% has a unique solution ; moreover this solution does not depend upon
the choice of any “free” parameters used in the construction of the mas.
This theorem gives rise, with a range condition and a stability condition,
to a continuous evolution operator (Theorem 3.3). This evolution operator
is then endowed with a suitable continuity properties with respect to the
weak* topology of L for the weights and the inferior limit of the families
of operators (Theorem 3.4). In fact, all these results are deduced from an
asymptotic maximum principle (Theorem 5.1) for discrete schemes which
gives a fundamental upper bound for limsupg {lug(s) — vo(t)|| where
(ug) o and (vg) o are respectively discrete approximate solution sequences
of CP§(I,u°) and CPL(J,v%).

This paper is organized as follows. In Section 2 we introduce the basic
notations and definitions and we give the time-dependence framework.

The main results are stated in Section 3.

In Section 4, we list in a long lemma (Lemma 4.1) the properties needed
the solutions of our problem.

The proofs of our main results are given in Section 5.

Some technical proofs and considerations are postponed in an appendix 6.

2. NOTATIONS, CONVENTIONS AND BASIC DEFINITIONS

2.1. Definition of CP, (I, u’)

Let X be a real Banach space. The infinite intervals I = [Si, Ss],
J = [Ty, Ts] are compact subintervals of [0,7]. A weighted family on 7,
with weight o € L>([0,T];R"), is a family (A4(7)),,; of multivalued
nonlinear operators (more precisely, a family of classes of operators) from
X to X, and the notation D2~ is used for the domain of A, (7).

Let CP§(I,u%) be the following Cauchy problem

du
oP§ = oPy(1) = | @ T W Au30
uw(S1)=uweDg, tel.

DEFINITION 2.1. — Given a weighted family (A, ),;, we write S(c, I), the

following stability condition: there exist a function ¢ € L*([0,T);R™T), and

a set £, C I with Lebesgue measure equal to S, — Sy, such that for all

so € I, and for all w € D;‘z“, there exists w, € X satisfving for all

s € E,, and for all (u,4,) € Aun(s),

—[u — w,Ua — wa] < e(s)(|lu —w|| +1)
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Remark 2.1. — Of course, the above stability condition holds in the
classical case A,(s) = A — g(s), where A is w-accretive, and where g
belongs to L'([0,T],X), as we see by setting c(s) = w + |lg(s)|| ,and
We € Aw.

2.2. NOTATION. — As in [9], W stands for the closure of the C* functions
on [0, 7% in Ll([o, 1% R) under the norm ||-||, , which is defined by :

[Pll, = f (I, + 1G5 (s, )] < F(s) + G(2) ae. s, aet,
with F,G € L*([0, T);R*)}.

where |||, denotes the L?([0,T];R) norm. By convention, the notations

llll,» IIll., and W used for functions defined on I, or on I x J,
suppose that the functions are extended to [0, 7] or [0,T]?. The sequence
Al = A = (s0,81,-,8n,8n41) is called a partition of I. If we
have sg = 51 < 81 < -+ < sy £ Sy = syy41, we denote by

m(A) = sup;_; . n4q (8i — si—1) the step size of the partition A’. Let
w be a function from I to E (for an arbitrary set F'), we define the step
function A!(w) from I to E by,

{Al(w)(sl) = w(S51)

Al(w)(s) = w(sian if 8 €)s;_1,8;] withi=1,...,N.

Now, let A = AT = (s¢,...,85+1) be a partition of I and A’ = A" =
(to,...,tp4+1) be a partition of J. Then, for any function w : [ x J — E
defined on A x A’ , we denote by AQA’(w) the step function from I x J
to E satisfying

AR (w)(s, t) = w(A(s), A(t)) -
And the notation I)A’(w) stands for the step function defined by :
IQA (w) = w(s, A'()), (s,t) € I x J.

The functions a, o, 8, O, belong to L=([0,T];R*) , and the functions
a, 4y, b, b, are set for the respective integrals of the functions «, a,,, 8, B,
on [0,T] (e. Vt € [0,T], a(t) = [, a(r)dT, an(t) = [ an(r)dr, ...

2.3. Definition of the coherence notion

First, we introduce two functions.
(1) We suppose that 6, s belongs to W.
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(2) The function 1) : [O,T]2 x R? — R*, is assumed to be (u.s.c. and)
such that for each K > 0, there exists a decreasing sequence (),
pointwise convergent on Kx = [0,T])° x R x [-K, K] towards 1) .
Moreover for each r € N, the function X is required to be C' and
wX Lipschitz on Ky .

Remark 2.2. — All the results of this article remain valid if we replace
the condition v > 0 by the following : there exists Ay < 0, such that we
have, ¥(s,t,€,z) € [0,T]" x R?

)\0(|§| + 1) S llp(svtvévm) (1)

Similarly, we can assume that 8, p takes its values in some R™ and then
£ € R

In the case {(s,t,&,x) = p(s,t,x) + £, with ¢ > 0}, the hypothesis 2
on ¢ means simply that ¢ is u.s.c. (see [5]).

DeriNTION 2.2 (Cohence definition).

i} The weighted family (A,); is (¥, 04, 5)-coherent (or 1 -coherent, or
coherent) for (Bg);, if for a.e. s € I and for a.e. t € J we have :
v(uvu/\a) € Aa(s),V(’U,’l/)};) € Bﬁ(t)a

—[u—’u,ﬂ; _{)E] S ¢(3)t790,ﬂ?(37t)7||u_"U”)‘ (2)

ii) The weighted family (An); is (¥,04.0)-self-coherent (or
self-coherent, if it is (v, 0, o )-coherent for itself.

iii) If (Aa); is Y—self-coherent, and if the null function is the unique
positive continuous solution in D’ (|0, a{T)|) of the inequation :

SC(Y,8a.4)

- { %ﬁ—) <@ (7).a7H(7), b0 (a7} (7),a7H(T)) 2(7)) (3
z(0) =0

then (A ); is said strongly (1,0, )-self-coherent.
1

The set where ¢~ is multivalued is at most countable.

Notation. — In the sequel, I, 3 and J, g are respectively neglectible
subsets of I and J such that the relation (2) doesn’t hold for all

(S,t) ¢ Ia’ﬂ X Jaﬁ.

Example 2.1. — Let A be accretive, then (A,); = A and (Ag)y = A are
strongly 0-coherent and (A, ); is strongly O—self-coherent.
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Example 2.2. — The classical w-accretive quasi-autonomous case :
a =1, Ai(t) = A — f(t), gives rise to a strong (1, 8)-self-coherence
with, (s,t,§,7) = wx + & with 6(s,t) = ||f(s) - f(B)]].

Example 2.3. ~ If A,(t) = «(t) A is everywhere defined, the strong self
coherence of appears as a generalized Nagumo’s condition for the ordinary
differential equation CF§ (see [13]).

Remark 2.3. — By convention, when (As); = A and (Bg); = B
(the operators does not depend on time) a function ¥ of the form
(s,t,&, 1) — (x) will be always required for the meaning of {-coherence
between the families (Ay); = A and (Bg); = B.

2.4. AssumpTions. — For all weighted family (A,), we will suppose
realized in the sequel the following conditions, denoted by C, :

(a) Vte[0,T), VA>0, we have R(I+AA,(t)) =T+ A ()N X)=X ;
(b) the nonvoid values operator ¢ — D;* is closed ;

(c) the weighted family (A,); satisfies the stability condition S(a, 1) .
(d) the weighted family (A.); is (4, 64, )-self coherent.

2.5. DErINITION OF MAS AND DAF. — We are ready to give the fundamental
definitions of coherent dicretizations and coherent solutions of C' Py .

According to the hypothesis 0,3 = 6 € W, let us introduce
(6% 5), = (%), a sequence of C' functions on [0,T]* satisfying, for
some F € L*([0,T];R"),

@ |0(s,t) — 6%(s,8)| < F*(s) + F*(t)
(b)y F*e LY([0,T];R™) (4)
and for a.e. s, limy, F*(s) = 0, and F*(s) < F(s),

DErINITION 2.3. — We say that a sequence ' = Fo 5 = (8%, FF, F), is
stemmed from 8 € W, if the above conditions (4) hold.

We recall that it has been said in introduction that A is an e-Lebesgue
partition of I for the real valued function f on I, if n(A) < e, if
J; If = A(f)| < € and if each point of A is a Lebesgue point for f.

DEFINITION 2.4. — Let (A,); be t-coherent with (Bg), and Fo 5 =
(Hk,Fk,F)k be stemmed from 8, 5. We will say that a partition A =
(84 )z‘=1,-~,R+1 of I (resp. J) is e-adapted with respect to F, g, if we have
foralli=1,--- R, s, € E,NI,p(resp. s; € E,NJy ) and if A is
an g-Lebesgue partition of the restrictions to I (resp. J) of a (resp. (), c,
and every F¥ k € N.
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We will see in the next subsection that, for all € > 0, e-adapted partitions
do exist.

DErFINITION  2.5. — An e-adapted solution with respect to Fo g of
CP$(I,u°) is a step function u from I to X, such that there exist, an
e—adapted partition A = (so, ..., sy, sn+1) of I, and (u;,4;) € Aun(s;) for
t = 1,..., N, satisfying :

{A(u) = u, and ||ug — u°|| < &, and (5)

u; — Uit + 0:(s;)i; =0, where §; = s; — s;_1.

Remark 2.4.

(i) Given an e-adapted partition, with the strong range condition (assumption
(a) of C,,), it is possible to find an c—adapted solution of C P .
(ii) We can replace 0 in the second member of (5) by €; , with the condition:

N
2 dilleill < e
i=1

DeriNiTioN 2.6, —  Let (A,); be t-coherent with (Bg),
and F. o (resp.Fop) be stemmed from 0., (resp. 0,3) An
(Fo,or Fap) — (en) -discrete adapted approximating family, denoted by
(Fa,arFa,;6n)- DAF | of CPS(I,u°), is a sequence (u,,) of (&, )-adapted
solutions with respect to both F., . and Fo 3, such that lim,, ¢,, = 0. If each
u,, is associated with an €, -adapted partition A,, , we will say that (u,,) is a
(A,)- DAF . We will say more simply a_DAF when no ambiguity is possible.

Remark 2.5. — Of course, when (Ay); = (Bg), and Fo o = Foy
in the previous definition we ralk about (F, o;€,)- DAF or more simply
Foo-DAF.

Finally, we are in position to give the notion of solutions considered here.

DEFINITION 2.7. — Then a mild adapted solution ( mas ) u of CP§(I,u°)
is a uniform continuous limit on I of a Fo - DAF (un), of CP$(I,u°).
We say that (u,), generates u.

DEFINITION 2.8. — Let us assume that (A ) is coherent for (Bg) ;. Then, a
mas u of CPS(I,u) is coherent for a mas v ofCPg(J, v%) if u and v can
be generated respectively by an (Fo o, Fa g)- DAF and an (Fy 5, F, 3)-
DAF .
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2.6. Existence of DAF

In view of the strong range condition we have just to prove that for each
e > 0, there exist e-adapted partitions.

First, recall that a function f from [0,7] to X is Bochner-integrable
(written f € L*([0, T}; X)) means fOT [|f(®)|| dt < oo and that f is almost
everywhere on [0, T'] limit of a sequence (f,,),, of simple functions (that is
step functions on Borelians of [0,T]) (see [11]).

Second, let us mention without proof (see [2] or [17]) the following
lemma.

LEmMMA 2.1. — Let f € L*(I; X) and N be a subset of I = [S1, 5] of
measure zero. Then, for all € > O there is a partition A = (sg, ..., SN, SN11)
of I, satisfying,

(i) fori = 1,...,N, s, is a Lebesgue point of f, and s; ¢ N .
(ii) the step size of A verifies : m(A) < e.
(i) f3: 1f(0) = A(f)@)lldo < e.

Third, according to this previous lemma, given ¢ > 0 the conditions
of the definition 2.4 can be obviously satisfied if we prove the following
proposition.

ProposITION 2.1. — Let [°(R) be the space of the bounded sequences
on R, equipped with the supremum norm |-| _ . Suppose that the integrable
functions F and F* for k € N* satisfy the relations (b) of (4). Then, the
function s (F’“(s))keN* , from [0,T] to I°°(R) is Bochner integrable.
Therefore if N is a null subset of [0, T}, for all € > O there exists a partition
A of [0, T] with points in [0,T)\ N satisfying,

Vk e N*, /O'T |F¥(s) = A(F*(s))|ds < e.

Proof. — In this proof, for Y C [0, 7], Y is written for Y° = [0,T]\Y .

a) Let F,, be the function s — F. (s) = (F'(s), F?(s), -+, F*(s),-- ).
The relation |Fo(s)|,, < F(s) ae. on I, guarantees the inequality :
fOT |Foo(0)|,, do < oo. Therefore, we have to prove that F,, is limit
almost everywhere of a sequence of simple functions.

b) By Egorov’s theorem (see for instance [11], [4]) for each n € N*, there
exists Ep, 3 C [0,T] with u(E, 1) < 525¢ and N,, € N” such that we have,

N e A (GCEH | T

c) For each n € N*, once more by Egorov’s theorem , and in view of
the integrability of F* for k = 1,...,N,,, we can find E,, C [0,T] with
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(Enz) < 5%5 and simple functions F* from [0,7] to R for k = 1,..., N,
verifying,

(s€(En2), and k€ {1,..,N,}) = (|F,’f(s) - Fk(s)[ < _1_) (7)

d) Then, let us define for all n € N*, the sets F,, = E,; U E, », and
the functions ¢, = (Fl,..., FN= 0,0, ...). Then we deduce the following
statements :

i) for each n € N*, g, is a simple function from [0,T] to I*°(R) ;

i) Let £ be the set £ = [, (U x>k, (Ex)). Then for s ¢ £, there exists
ko € N*satisfying s € ﬂ k>ko Lk - And therefore in view of relatlons
(6) and (7), if s ¢ €, we have : n > ko = |gn(8) — Fu(3)]
Thus, s ¢ £ = lim, g.(s) = Fo(s).

iii) If p stands for the Lebesgue measure on [0, 7], we have (&) = 0.
Indeed, the inequality pu(Er) < p(Er1) + p(Er2) = 5+ implies,
for all k‘g € N*,

&) < /~L<Uk>k ) < Zk>k w(Er) = ?»%

e) Finally, the function F, is therefore, limit almost everywhere of
the sequence of simple functions (g,,) , and consequently Fi. is
Bochner-integrable on [0, 7).

oo—n'

n’

2.7. Boundedness of DAF

Let us end this section by the following proposition which gives from
the stability condition (assumption (c) of C,), an a priori upper bound for
the discrete schemes.

PROPOSITION 2.2. — Fix for instance, w € D§= . Let us suppose that € > 0
realizes, .

1 ote
cloll. < 7 and swvcora [ €€l < 5.
Let u be an e-adapted solution of CP$(I,u®). Then we have, forall s € I ,
la(s)]] < ] + €211 ) ([u® — ]| 4 & + [l (el + )

Hlwall(a(T) +¢)) -

Proof. — Let A = (sg,...,Spy1) With s; € Z4 fori = 1,..., R, u = Au)
and u(t;) = u; . We have fori = 1,.. R, if §; = s; — s;_1,
Ui — Uje1

5 + a(s;)a; 50 with 4; € Ay(s;)w;
i
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Then, the assumption 2.4-(c) of C, leads to, (setting c(s;) = ¢;),
(1 = a(si)eid)|lu; — w|| < |lui—1 — wl + bici + as)||wal| -

And, immediately by iterating, we have,

b= 1 (=g
o =l + [5 (A@0)(r) + AT

According to the following inequalities

0 < a(sende < llall, ( / U ) de + ) <3

Sk_1

and [ Aac)(r)dr < ||a|., (/0 (&) de + e) ,

S

and since we have In(1 — ) > —z — 22 for z €0, 1], we obtain,

Ju(s) - wi] < e3el=(ielhe) (llu“ —ul| +e+ uanm( | eerae+ )
+lialia(s) +¢))

Thus, the required inequality holds.

3. THE MAIN RESULTS

Let us point out that the operator D, 5 = f(t)(0/0s) + a(s)(9/0t)

considered in D’ (]Ox ;) , plays the part of the operator D = 9/0s +
0/0t (= Dy,) introduced at the first time in the classical case by Crandall
- Evans [9].

THEOREM 3.1. — Let (A,); be strongly self-coherent. Then,

(i) If Fo o is stemmed from 8, . , then, all (bounded) F, . - DAF of
the problem CP$(I,u°) is uniformly convergent on I towards its
unique mas . '

(ii) The mas of CP5(I,u") does not depend upon any function o chosen
in its class in L>°, and upon any sequence F. ., stemmed from 8, ,, .
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Really, the part (i) of the theorem 3.1 can be applied in a wider framework
than C,, (which ensures boundedness and existence of a DAF). In particular,
the tangential condition 2.4-C,-a) is not needed.

THEOREM 3.2. — Suppose that v is a mas of C P (I, u") coherent for a mas
v of CPE(.J,v°). Let B be the continuous function on a(I) —b(J) satisfying:

{B(U—b(Tl)) = |lu(a ‘l(d))-voll ifoeall) =l[a(51)a(5:)]
)

(8)
B(a(S1) — 7) = |[u® — w0 (=d)l| i 7 € b(J) = [6(T1), b(T2)] -

Then, B is a single valued continuous function, and we have ¥(s,t)-€ I x J
lu(s) — vl < ms(als),b(t)). (9)

More precisely, the function e(s,t) = ||u(s) — v(t)|| satisfies in D’([ X [)

Dq ple(s,t)] < a(8)B(t)Y(s,t,0a,5(s. ), e(s,1)) - (10)
And for (aA,); = (BBg);. we have in D'(a?])), if z(r) =
e(a(1),a7(7))
E?T_z(f) <p(a (7)1, O (@ (1) 0 (7)) ()

The function mpg defined in the next paragraph (see definition 4.1) denotes
(in some sense) a maximal solution in D’(7 x [), of the inequation (10). A
suitable choice of 3, B3 and J, shows that the mas u is a Benilan’s integral
solution of CP$(I,u") in a generalized but natural way (see [1] or [5]).

CoroLLARY 3.1 (general variable change). — Let (a(t)A)[O,T] where A is
strongly self-coherent on [0, a(T')], then the unique mas u of C P$([0, T}, u")
is given by the variable change u(t) = v(a(t)) , where v is the unique mild
solution of CP1 ([0, a(T)], u®). If furthermore, the operator A is continuous
the mas of CP$(]0,T),u°) is a strong solution.

Let (A,) (o,r) be a strongly i};ielf-coherent family on [0,7]. According
to Theorem 3.1, for all u® € D> the evolution problem CP$([s, T],u")
admits a unique mas u. We will set S(¢,s)u’ = wu(¢) the value taken
by u at £. Now we can state the two last results which concern strongly
¥-self-coherent families.

THEOREM 3.3. — Let (Aa)[()’T] be a strongly -self-coherent family on
[0,T]. Then,
a) the family S = (5(t, 5))g<,<i<r is an evolution operator, that is ;
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(i) For0 < s <t < T, the operator S(t, s) maps D& into D{**
(ii) For all s € [0,T), we have S(s,s) = | (I denotes the identity
operator) ;
(iii) For 0 <r < s <t < T, wehave S(t,s) 0 S(s,7) = S(t,7);
b) the evolution operator S is continuous on

Y:{(s,t,w);ogsgth,weD;?a}.

THEOREM 3.4. — For all n € NU {o0}, ler A, = (flgn)[0 . (satisfying
Ca, ) be a strongly 1-self-coherent family on [0,T], let S, be the evolution
operator generated by A, , and let u® € Da4 o We suppose that (o, ), cn
converges 10 t., in the weak* topology in L>=([0, T, R) and that we have for
almost every s € [0,T], A (s) C lim uelfN A}, (s). Finally, we suppose
that (Ou, o, ),en CONVerges towards o o, in (W, ||-||,) . Then, if (ul)
converges towards ul, , and if the sequence of functions (Sn(.,0)ud), cn

is bounded, then (S,(.,0)u?), . converges uniformly towards So. (., 0)ud,
on [0,T].

neN

Remark 3.1. — This last theorem appears like a Lebesgue dominated
theorem for evolution equations (setting for instance o, = 1 and A}, ()u =

fa() € LYo, 7], X)).

4. THE US.C. HULL LEMMA

Now, we will give a basic lemma called “the u.s.c. hull lemma” which
is proved in the appendix. It summarizes in one proposition the most
important results that we will need in this article on the inequation
D, slz] < ®(s,t,0,2) .

The type of results and the methodology developed in this lemma 4.1
are similar to ones of [6]. But new problems appear here, because of the
time dependence in L', the multi-valued aspect and the lack of regularity
of a7 and 571,

We denote by Eq(<,®,0,B,«,) the following inequation in D'(§)

with © = Q, 5 = a(S1), a(S2)[ x |b(TL), b(T2)] = a(I) x b(J),

EQ(S? @,G,B,a,ﬁ)

— {D{y(a,f)] < @(a™Ho),b=H(1),6(a" (0). b X (1)) (o, 7))
y(o,b(T1)) < B(o — b(T1)) and, y(a(S1),7) < B(a(S1) — 7).
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The function B is continuous on a(l) — b(J) C [~b(T2),a(S2)] and 6
belongs to W . We denote by Eq(=,9,6,B,a 6) the equation in D’(£2)
obtained by replacing the three symbols “<”in Fq(<,®,0,B,a,5) by “=”

A similar notation is used for the characteristic equations. More prec1sely,
we introduce for d € a(I) — b(J), the notation x,40(<,9,0,B,a,8) =

xa(<,®,0,B) for the following inequation in D’(}d) with [; =
[(a(51) = d) V b(T1),b(T2) A (a(S2) — d)],

Xd(g’ (I)y 63 B)

—d;z(T) < @(a‘l(T +d),b7(7), H(a”l(r +d), b_l(T)),Z(T))
z((a(81) — d) Vb(T1)) < B(d)

(12)

and xq,0(=,®,6,B,a,3) will denote the equation in D’( ;d) obtained by
replacing the two symbols “<” in yq0(<,9,0,8,a,8) by “="

In the inequations or equations Egq(-,---) or xaqa( - ) we will
sometimes forget the parameters when no ambiguity arises (for instance,
E(L£,9,0,B) = Eq(<,9,6,B,0,08)). We emphasize that for all
d € a(l) — b(J) there exists a unique (09,79) € (a(l) x {b(T1)}) U
({a(S1)} x b(J)) such that we have og — 79 = d.

About inequation of x4(<,®,4,B8) type, we just recall that for
¢ € LY[a,b];R), a continuous function z on [a,b] is solution in

D'(Ja,b]) of az(t) < (t), is equivalent to, the integrated form

2(t) — 2(s) < [Lp(r)dr with a <5 <t <b.

LEMMa 4.1 (u.s.c. hull lemma). — We suppose that there exists a decreasing
sequence (P..),cn of C* functions on [O,T]2 x R? (pointwise) convergent
towards ® > 0. We assume that for each r € N, the function ®, is w,-
Lipschitz. Let B be a continuous function on a(I) — b(J) C [-b(T3), a(S2)]
and let Qa’g == ]a(Sl),a(Sg)[ X ]b(Tl),b(Tg)[

i) The inequation Eq(<,®,0,B,a,0) in D'(Q), has a unique u.s.c.
solution on 0, denoted by m(®,8,B, «,3) or m(®,6,B) or msp,
which bounds above each continuous solution of Eq(<; ®,6, B) and
satisfies: for all d € a(I) — b(J) the function

Ya = ya(®,0,B) : 7 — mp(t + d,7)

is continuous on I; = [(a(S1) — d) V b(T1),b(T3) A (a(S2) — d)],
and is the maximal continuous solution in D'(I4) of the inequation
Xd,ﬂ(Sy ¢7 97 B, «, /3) .
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ii) For s € [0,T), let By be defined on [-T,T| by, Bo(s) =
B(a(s) — b(T1)) and Bo(—s) = B(a(Sy) —b(s)). Let z be a
continuous (on §,) solution in D'(1S1,S:[x|T1,T2[) of the
inequation Eq, (<, ®,0,8,1,1), constant on each set value taken
by (a=1,b71). Then we have, for (s,t) € I x J,

z(s,t) <m(®,0,B,a, B)(a(s),b(t))

iii) Let the functions ®,,®,, By, By, be defined as at the beginning, then
we have,

(@1 < q)z and Bl < Bg) = m(@l,ﬂ,Bl) < m((I)z,H,BQ).
iv) If ® is C* on [0,T)> x R?, if
(D(SlaTlva(Sl,Tl)7B(a’(S1) - b(Tl))) = 07

if 9 is C* on [0,T), if B is C* on a(I) — b(J), if a and § are
strictly positive and continuous, then mpg is C* on Q and is the
unique classical solution of Fo(=,®,8,B,a,3).

v) If ® is w—Lipschitz, then mp is continuous on Q, and verifies (in
D'(2)) the equation Eq(=,®,0,B,a,).

vi) Let (g, Bo) € Y = (L=([0,T),R*))>. If ® is w-Lipschitz, then
(0,B,a,8) — m(®,0,B,a,8) is sequentially continuous from
W x C%ao(I) = bo(J)) x Lo to C°(Q) where Lo, is the closed
subset of Y equipped with its weak* topology, defined by Ly =
{(a’/@) el an,ﬁo c Qa’ﬁ}'

vii) The sequence of functions (ya(®.,0,B)), converges uniformly on
I, by decreasing towards yq4(®,0,B) (for all d € [-b(T2),a(S2)]),
and particularly (m(®,., 8, B)), converges (pointwise) by decreasing
towards m(®,0,B).

According to the following definition, all the results stated in section 3

remain valid whenever « or 3 are the null function on I or J.

DerINITION 4.1, — The maximal solution mg = m(9,0,B,Q) of
Eq(<L,9,0,B,a,3) given in the part i) of the lemma 4.1 is said u.s.c. hull
of Ea(<,9,8,B,a,8). If a = 0 on I (resp. 3 = 0 on J) we set for
(o,7) € Q,

mg(o,7) = B(a(S;) — 7) (resp. mg(o,7) = B(o — b(T1)) ).

For K > 0, we define the function 7;; on [O,T]2 x R? by, @(s,t,f,x) =
w(s,t,f, PK(:U)) , where, PX denotes the projection on [0, K.
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We denote by L the assumption on @ asked in the lemma 4.1, that is,

AssumpTiON L. — There exists a decreasing sequence (&) . of C*
functions on [0, T]2 x R? convergent (pointwise) towards vk, and, for each
r € N, the function ®X is wg ,-Lipschitz.

LEmMA 4.2, — The function @; satisfies the assumption L.
The proof of this lemma is left to the reader.

LEMMA 4.3. — Let us assume that the condition SC(v,04 ) of the
definition 2.2 iii) holds. Then, for all K > 0, the property SC (121\(,0(1,&)
is also true.

Proof. — Let y > 0 be a continuous solution in [0, a(7")] of
x(x,[0,a(7)])

d T -1 —1 -1 -1
A1) S Pxc(a7 (1), a7 (1) Baa (1) a7 (1) 2(0) 1
z(0)=0, 7 €[0,a(T)]

If we have K > ||yl , clearly, we have y = 0. If we have K < ||y|| , , let
Ty =sup{t € [0,a(T)]; y(r) < K, V7 €[0,¢]}.

Then, the continuous function, y; defined by y;(¢) = y(t) for t € [0, Tk]
and y;(t) = y(Tx) = K for t € [Tk, a(T)], is solution of x(¢, [0, a(T)]).
Consequently, we have y; = 0, and then K = 0, which is a contradiction.

Remark 4.1. — Eventually by changing 1 into 15;( for a suitable constant
K > 0 (derived from the stability condition), in the sequel we will suppose
always that the function ) satisfies the assumption L introduced before the
lemma 4.2. With this convention, the existence of m(1, 8, B) is guaranteed.
According to the remark 2.2, for the same reason, the results of this paper
remain true (see [7]) with,

I/J(S,t,gl,fz,lﬂ) = flx + 62 .

5. PROOFS OF THE MAIN RESULTS

5.1. A discrete maximum principle

All the results stated in the section 3 are corollaries of the discrete
maximum principle given at the end of this section.
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Let us introduce the following notation. Given partitions A =
(s0,81,..,sn41) and A’ = (to,...,tpy1) respectively of I and J, and
given a function w : I x J — X, the symbol AQA’[D, s](w) is the step
function v defined on Sy, S2] x |T1,T2] by the relations,

w(sian,tjap) — W(Sian)—1,tinP)

v(s,t) = a(tjrp)

Sinn
w(siaN, tinp) — W(SiaN, t(iaP)-1)
+B(sian) — " UAP)
YinP
for (s,t) €]si—1,8:]x]Jt;—1,t;)andi=1,..,N+landj=1,..,P+1.

(14)

LemMa 5.1 (discrete lemma). — We suppose 0 < T' < & on [0, T}* xR? and

& w-Lipschitz on [0,T]® x R%. For all Q € N, let Ag = (SOQ, ...,s%w)

Q

tNQ+1

for o (resp. B). Let (yq), and (HQ)Q be sequences of functions on I x J
verifying V@@ € N,

0 < AQ@QAG{=Da.p(ye)(5,1) + al8)B(E)T (s, 4, 8(s, ), yo(s, 1)}

Let ag : [S1,S2] — [S1,852] and l;é 2 11, Ts] — [Th, T3] be integrable
functions such that :

S2
thsup /51 a(s)|Ag(ag(s)) — s|ds =h

(resp. A, = (t(?, e ) ) be an eg-Lebesgue partition of I (resp. J)

T
and 1imsup/ B(t)

Q T,

Mg (ba() - tl dt=H.
Moreover, we suppose that for all Q € N, the functions y<, b, Ho,
satisfy on I x J, 0 € W, Hg € W, and,
0> AgAL{—Das(y°)
+a(s)8(6)® (ag(s), ba (), 0o (s, 1), y%(s,1)) + a()B(t) Ha(s,t) }

li |2e@n5 (s, 0)|| ==
1szups;}tp Q® o(Hg(s,1)) =K

We assume realized the conditions, with yg = yo (3?’15]‘;3) and K? —
y© (8?, t?) :
a(s?) =0= (yf;) < yiQ_lj and Yz? > }/i?lj>
Q Q..,Q Q< 0 (15)
ﬂ(ti):0=>(yijsyij_1 and Y;-j >Y: )’

13—1
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For some b € R* we suppose,
. T) — y9(s, T\ * 1
lim sup sup A Al ve(s, Ty ! <b .
Q P S‘tp Q® Q(yQ(Sht)_yQ(Slvt) A\l

We assume finally that there exist sequences of nonnegative functions ( fg) o
and (9q), such that we have, for (s,t) € I x .J,

Aa@®)o|fa - Ba(5,) < Aofals) + Apgalt)

T

Sa
and let A = lim sgp (/51 Agle(s)fo(s)]ds + /

T

olB()g0(t)] dt) -
Then, we conclude,
lim sup sup A AL (yo — 4@ +s,t
sup sup @5 (vo —y°) (s,0)
< A (sl + 18]0) + A+ wlh+ ) + D)

k3

Proof. - Let YZ? =99 (siQ, t]Q) and yfi = yg (sQ, t?) and so on for the

functions 8¢, 6o, Hg, ... According to the hypothesis Hy € W, pick up
integrable nonnegative functions F; and G realizing,

AL HG [(5,1) < Fo(s) + Go(t) ae. s, ae. t.

Then, we have with the hypotheses on I" and &,

Q Q

+ g~ + g +
Q Q ] Q Q ] Q Q
y;— Yy ) < (yi—y - Y ) + (yi'— - Y
(5 -78) Sjoaim (50 ~¥) 4 gpia (46 -7i)
Y2 - Y2

+af§(w{ <9+ ‘(65(3?)) — @

| (o) o} + (8)7) . 0o
a(s2)82 819 )7

o Q Q_ Q_ @ Q _ 4,0 _,Q
with Uij = W, and 61- = 8; S;1 "}’] = t} t]—l'
With conditions (16), we see that the relation (16) remains valid with the
following conventions :

Ty
a) whenever, a(s®) = 0 and ﬂ(tJiQ) # 0, we take T = 1

Q_ 2@
01',]‘ 91:]'

+
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b) whenever, ﬁ(tQ) = 0 and a(SQ) 7 0, we take Ezﬁ(fa) =1

¢) whenever, a(s®) = 0 and ,B(tQ) =0, we take —Q——ﬁr T—'J—Q— =1,

and or” = 0.
Therefore, it follows

(1) 55 -35)'

-—ZLZ—){(U?—U - Yiglj)+ + “’/SZQ Agla(s) fo(s)] ds

+ / | Aola(9)Fo(s)]ds +w / * Aofale)laa(s) — 5| ds}

UiQ' Q Q + ] th ’
+ W{ (yij—l - Yij—l) + w/t?_lAQ[ﬂ(t)gQ(t)] dt

+ /t:: AL[B(H)Go(t)] dt + w/: Ag [B(t)\l;;(t) - tu dt} .

Then by recurrence on the double suffix ¢, 7, w1th for instance, () sufficient
to ensure w8 a(s?) < 3 and wA; /B(tQ) < 1, we obtain,
i

Q : 1
(o -vs) S[H —§ k>wH —vfﬁ(tf)w}

1
Qa(s
Mg +w (/: Agla(s)(fa(s) + (lag(s) — s]))] ds

Q

N /Ttl] Al [ﬁ(t) (gQ(t) + (l%(t) - tD)] dt)
N /SS?AQ(Q(S)FQ(S)) ds + /Ttl?A/Q(ﬁ(t)GQ(t))dt} ’

where
+
My = sup (sup Ag(yg(s, T1) — yQ(s,Tl)) ;

sup AG (yo(Si,t) — yQ(Sl,t))> -
Therefore the upper bound announced follows easily.
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LEMMA 5.2. — Let us assume (Ay); W-coherent for (Bs);. Let u be
an e—adapted solution of CP$(1,u®) (with respect to F,, ) bounded by a
constant L, with associated partition A and let v be an e-adapted solution of

CPE (J,v°) (with respect to F,, 3) bounded by a constant L', with associated
partition A'. Then , we have,

0 < AQRA{—Da s(llu(s) — v(t)]])
+a()B(E) (8,1, 0a,5(s, 1), [Ju(s) — v(t)])} ; (17)

and for all w € D‘;l“,w’ € fo, sel telJ,

'A(“u(s)—voﬂ) < “uo—wHJr”vO—wH-i-e + (Ala(s)—a(S1))+e)||wal|
A(s)

+ (L4 1+ [wl) (/ Ala(o)e(o)] da)

51

A ([l =o(®)]) < [Ju’ —w'||+[|v* ~w'[|+7+ (A" (b(#) —b(T1)) + €)1

A'(t)
(A1 ) ( /T NB(r)e(r)] df> .
‘ (18)

Proof. — i) Let A = (sg,...,8p41) be the partition associated with the
¢—adapted solution u , and let A’ = (¢, ..., tp+1) be the partition associated
with the n-adapted solution v , and let us write for the sake of simplicity
u; = u(8;) , v; = v(t;) ; then we have with §; = s;—s,_;and¢ =1,..., NV,
and v; = t; —¢;_;and j = 1,..., P,

wi — ui—1 + 6;a(8;)u; 20 | 4 € Aqu; and,

i Ui 19
vj —vj—1+7B(t)0: 20, 05 € Byuj. "

Let d(s,t) = ||u(s) — v(t)|| and d; ; = d(s;,t;). Then we obtain from
the coherence of (A,) with (Bj),

(bia(s:) +7;8(¢5))d: 5
< l(Sieu(si) +7;8(8))(wi — v5) + (i s:)v;8(t;)) (@ — 45)]]
+0ia(8:)vi Bt (s, 85, 0(si,t5), dig) -

With the equations (19) it follows easily from the above inequality, the
required relation,

0 < AQA'[~Da,pd(s, 1) + a(s)B()9(s,1,8(s, t),z)] . (20)
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According to the inequality lying in the stability condition S(A,, ), we
can write,
lus —wll <éialsi)e(si)(|lui—wl|+1)+[lu; + ia(si) i — w ~ b;ex(si)wal|
< bio(si)e(si) (L + 1+ [[w]]) + [|uimy — wll + bia(si) |l wall -
Hence, by iteration, the claim of Lemma 5.2 is easily ended.

Remark 5.1. — The inequality (20) could be rewritten in the following form,

) biods)) G N
i Sia(sy) +1B(t) " Salss) +yB8()
bicr(3:)7;B(t5)

i?t'76 ivt‘7di’ th»
5ia($i)+7jﬁ(tj)_w(s 3080 ti)s dis) Wi

a) dij = di—lj if a(si) =0 N b) dij = dij~1 if ﬁ(t]) = 0',
C) di]' = diﬂlj = dij—l = di—lj—l if Ot(Si) = ﬁ(tj) =0.

Let us state now the maximum principle which remains valid if o = 0
on [ or3=0on.J.

THEOREM 5.1 (maximum principle). — Assume (Ay); Y—coherent for
(Bg)s. Let also the sequence (uQ)QeN be a (Ag)q- DAF of CP5(1,u°)

and let the sequence (vQ)QeN, be a (Ag)q- DAF of CPg(J, v%). Let B
be continuous on a(I) — b(J). We suppose,

limn sup sup (“uQ(s) - UOH — B(a(s) — b(T1))) <0
Q sel

limsup sup (||u® — v(t)|| - B(a(S1) — b(t))) <0
Q  teJ

(21)

Then, for all d € a(I) — b(J) C [-b(T»),a(S2)], we have,

imsu su ASHA [||u®(s) — v° —mg(a(s),b <0.
lmsup sup  AQN[[u(s) = v2(1)] - malals), b0)] <0

Proof of Theorem 5.1. — With the stability condition, it exists a constant
M > 0 such that the sequences of functions (HuQH)Q and (“vQ“)Q
are bounded by M (resp. on I and J). Let (By) be a sequence of C!
functions on the compact interval a(I) — b(J), converging uniformly to
B ; and let F = (9% F* F ) , be the considered sequence stemmed from
b5 - Let (ay), and (8,), respectively, continuous strictly positive on [
(resp. J) converging in L([0, T], R*) respectively towards o and 3. Let us
recall that a,(s) = [ an(€) d€ and b, (t) = fot B3.(€) d€ . We can suppose,
an(‘Sl) = a(Sl), an(Sz) > (I(Sz), and bn(Tl) = b(Tl), bn(Tz) > b(Tg) .
Let (®,), be a decreasing sequence of positive C! functions pointwise
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convergent towards ¢ with ®, w,-Lipschitz on [0,7]> x R?.We also
introduce the following notations, (for d € a(I) — b(J), and 7 € I, =
[(a($1) = d) V b(T1),b(T2) A (a(S2) — d)])

yd’ "(1) “—m(<1> 0% By, e, ﬂ)(T—l-d,T)

Yo (r) =m(®,, 8%, Br. oy, B ) (T + d. 7)

ya(T) =m(%, a,‘mB o ﬁ)(7+d T)=mg(r +d,7),

eq(s,t) :HuQ(s) — % “ yelxJ.

We can suppose without lost of generahty that m(®,, 0%, By, o, B,) =

memm™ is C! on [O,T]27 because of the u.s.c. hull lemma 4.1-iv) and the
proof part c) of this lemma 4.1.

Then, for all d € a(I) — b(J) C [-b(T2),a(S2)], and for (s,t) € I x J,
we have, the following inequality,

sup M@ Ableq(s, ] — mas(a(s), b(t)|

a(s)—b(t)=d

=sup [8a@Noleals. )] - valb()]

a(s)—b(t)=d

k7n
< s Ae@hofealst) g 0| M) @2

+ sup [AAo{us ™" (1)} — v (0(1)] (2)
+ sup [y (b(1)) ~ ualb(1))| (3)

Forall n, k, and Q > @, in order to have a%(I) x b%(J) C a,(I) x b,(J)
define, the following functions for s,¢ € [0,7]

;

Aq(s)VS
a®(s) = a(S1 A s) + / Agla(€)]dE

BR(t) = b(Ty A t) + fTQ“)VT' ALB(©)de,
a? =a7'0a?, and, bQ—blon

ofﬁkw, - o+ (0. <t>)

If 8% is pi-Lipschitz (with p; > 0), we have,

]AQ(X)A’ [e(s,t)—eQ (s,t)”
< AoQAG|6(s,t) — 0%(

< AQF*(s) + A F*(t) + px [

\

(5,) = 02, (s.1)]

Ao(s) — a%(s)| + [AL(0) - b&t)”
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Let us define ug" on I x J by

Mg’"(s, t) = AQ®A’Q [~ Da,s (mFmm (a9(s),b9(t)))

+a(s)80)8, (435,880,861 080 ) et (a0(00.090) )|

Since m*™" is C! and 6i(a;'(0),b, (7)) is continuous (even C') on
I x J, an immediate computation gives
limsup sup

1" (5,8)] < el l1Bll o S0P | = Da.srm™* (as). (1)
Q (s,)eIxJ R

+ @, (a;' 0a(s),b;! ob(s),0(a;" o q(s),b;;l o b(s)),
mr’k’"(a(s),b(t)))( .

By definition of m™*" it follows :

=0.

*

limsup sup
Q (s,\)EIxJ

k,n . k,n
(s, 1 i = 0, and then, lim ”/l, ;
Hq (s,1) 0 Q

Thus, setting,

Ss L
hn:/51 a()]¢ — a;t o a(€)| de andhnz/ﬂ B&)|g — by o b()] dt,

and,
52 T2
t= [ Ca@P @+ [ BOP©&+ pulha+ 1),
1 T
from the discrete lemma 5.1 we obtain,
lim sup sup AQ®A’Q [eq(s,t) —mPm™(a%(s), bQ(t))]+
Q 5,
= i AoRA, 1) — mbmn(a(s), b(t)] T
imsup sup Aq (A0 [eq(s,1) — m*"(a(s),(t)]
e @EITED((|laf|, + |1l Jwr Ak + w,(BF + B3) + bi).
with b, = sup [|1Bi(d) — B(d)|| . Since it is not difficult to show

) de[—b(T2),a(S2)]
the relations,

IA

n—oc

hY = /Ia(s)lagl(a(s)) — s|ds = /(I) la; (o) —a™ (o) do — 0
hy . /Iﬁ(t)|b;1(b(t)) — t|dt = /W) |61 (r) = b7H(7)] dr — 0,
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we obtain, if A stands for A, = [o* a(€)F*(€) € + [ BE)F(€) de,

lim sup lim sup sup AQ®A'Q [eo(s,t) — m*" (a(s), b(t))]Jr
n Q ER

< ederCEIREN (Jla] o + 1Bl A + br),

Therefore clearly now, when () — oo, then n — oo, and then & — oo, and
then finally » — oo, using the u.s.c. hull lemma 4.1 (and according to the
uniform continuity of m*™™ on a(I) x b(J)) all the terms (1) to (3) in the
right side of the inequality (22) vanish and we get, for all d € a(I) —b(.J),

limsup sup (eg(s,t) — m(a(s),b(t))) <O0.
Q a(s)—b(t)=d

5.2. Proof of theorem 3.2

The function B satisfying (8) is single valued continuous since uoa~!and
vob~! are single valued continuous and since for (o,7) € a(I) x b(J),
the equality o — (7)) = a(S;) — 7 is equivalent to ¢ = a(5;) and
7 = b(T1) . Let (ug) be a suitable (Ag),-DAF associated with u, and a
suitable (A’Q) Q—DAF (vg) converging towards v . Let us write eg(s,t) =
llug(s) —vo(t)l], and e(s,t) = |u(s) —v(t)||. The inequality (17)
written with ug and v leads (multiplying by Ag@&Ap[p(s,t)] with

Q€ D((; X j)) and ¢ > 0 and rearranging),

0< /IXJ{—GQ(S,t) (I(X)Ag2 [ﬁ(t)%%] + AT [a(s)%‘fD(s,t)
+AQ@ Al ()B(1 (5, . baa(s, 1), cqls, ) (s, )] bs di

Thus, taking the limit when  — 400, the Lebesgue dominated theorem
(since the DAF are adapted with respect to F, 5) yields in D’ ( Ix J),

Da gle(s,t)] < afs)B(t)1(s,t,0(s, 1), e(s, 1))

Since e(-,-) is continuous on I x .J, and of course constant on each set
values taken by (a~!,b71), thanks to the lemma 4.1 ii), the relation 9 in
the theorem 3.2 is shown.

5.3. Proof of theorem 3.1

Let (un), be a (Faai(en))-DAF. Set Fo = F = (8%, F* F), .
Because of the stability condition S(«. I), (u,) is bounded by a constant
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M > 0. Let (®,), be a decreasing sequence of functions (®,)_ on
A = [O,T]2 x R?, converging towards ¢ on A, such that for all
r € N, @, is C* and w,-Lipschitz. Let eg(s,t) = |lug(s) — vk, ()]
where (kg) is a sequence of strictly increasing integers. Given € > 0,
let w € Dg‘l“ satisfying ||u® —w|| < e and let ws, € X given by
the stability condition S(«,I) ; let B. be the continuous function on
a(I) — a(I) = [—(a(S2) — a(S1)), a(S2) — a(S;)] defined by,

|z +a(S1)
B.(z) = 2 + |wg, |||z] + [M1 + 1+ ||u®]] + €] / c(a™!(o)) do .
a(S1)

According to the lemma 5.2 (relation (18)) and the definition of B,
above, we have,

{lim supg sup, (eQ((s, S1) — Be(a(s) — a($1))) <0, and,
lim supg sup;, (eq((S1,t) — B:(a(S1) —a(t))) <0,

Let > 0, then the maximum principle (with a = b, d = 0, see theorem 5.1)
implies that there exists @ > N(e,n) such that ,

sup (eq(s,s) —y(a(s)) <. (23)

where we have y°(o) = m(y,6,B:)(0,0).

Moreover, the function y¢ satisfies in D’(]a(S1),a(S2)[) the inequation
Xo(<,®,0,e,a). In view of the definition of the strong coherence (see
definition 2.2) and Lemma 6.3 stated in Appendix, the family (y°)..,
converges uniformly on [a(S;), a(S2)] towards the null function as e | 0.
Therefore, the relation (23) provides,

limsupeg(s,s) =0.
Q sel

It follows that (u,,),, is a Cauchy sequence in the set of bounded functions
on I endowed with the supremum norm. Let us denote by u the uniform
limit of (u,), , on I. Now, we have to prove the continuity of u (because
the uniqueness of the F-mas, is now obvious) to obtain that u is the unique
F-mas of CP$(I,u°).

For that, let e(s,t) = ||Ju(s) — u(t)||, then the maximum principle (see
theorem 5.1) allows to write, for all £ > 0 and for sg, sop+ h € 1,

0 <e(so+ h,s0) <m(¥,0a.q,B8:)(a(so + h),a(so)) .
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Therefore, according to the u.s.c. aspect of m(®, 6, B.), we have,

0< lilzlsz)lp e(so + h, s0) <MY, 04,0, B:)(als0), a(so)) = y°(also)) .

Then, as € | 0, we obtain
llimo e(so + h,s0) =0,

So the part (i) of the theorem is proved. It remains to prove the second part.

b) For this purpose let @ = @ in L>([0,T],R*) and let F = F,, =
(O, Fy, F) and F= .7-{;;2 = (é;,ﬁ,ﬁ) be stemmed from 6, , = 0;;’2 =
§. Let (uq), be a DAF related to (o, F) and (vg), be a DAF related
to (Ei,j-:). Now , we consider a DAF (wgq),, both related to (e, ) and

o, F ) . By the virtue of Lemma 2.1, such a choice is made possible. Then
in view of the part (i) of Theorem 3.1 we claim that (wQ)Q converges
towards a mas w of CP§(I,u°). But we have u = w since u and w are
both F-strongly coherent mas of CP§(I,u"). In the same way we deduce
v = w and therefore © = v. Hence the proof is complete.

5.4. Proof of corollary 3.1
Let I, = [0,a(T)] and I, = [0, T]. According to the remark 2.3, we have,

¥(s, 1,6, x) = P().

By theorem 3.1 the mas u of CP$(I;,u%) is coherent for the mas v of
CPi(I,,u°). Because of the estimate of Theorem 3.2, we obtain (mp is
defined on (R*)Z),

lu(s) — v(B)]| < ma(a(s),t) (24)
where B is the continuous function satisfying,
B(d) = “u(a_l(d)) —u°|| and B(—d) = |u® - v(d)” ,

for d € [0,a(T)]. Then yo(t) = mp(t,t) satisfies xo(<,%,6,0,a,1) in
D'(]0, a(T)[) .Thus, we obtain yo(t) = mg(t,t) = 0 on [0,a(T)]. Then,
the inequality (24) gives, u(s) = v(a(s)) for all s € [0,7].

The last conclusion of this corollary is evident, since with our hypotheses,
v is C! on [0,T] (see for instance [8]).
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5.5. Proof of Theorem 3.3

Only the assertion (iii) in the part a) of theorem 3.3 is non trivial. In
order to show this assertion, put u(t) = S(¢,7)u’ for t € [r,T] and some
u® € D= and v(t) = S(t,s)u(s) for t € [s, T] ; then define the continuous
function B on [—(a(T) — a(s)), a(T) — a(s)] by,

{B(a—a( $)) = Jo(a= (o)) — u(s)|| for o € [a(s),a(T)],
Bla(s) — 1) = |lu(s) — u(a™(7))|| for 7 € [a(s),a(T)].

It follows from the strong coherence that we have mg(r,7) = 0 on
[~a(T),a(T)] . Hence, theorem 3.2 applied with v and u|, ; yields

lJo(t) — w(t)|| < mg(a(t),a(t)) =0 forall t € [s,T].

Now, turn to the part b) of the theorem 3.3. Let (sn,tn,wn)neN* be a
sequence converging towards (s, ¢, w) in the metric space Y. Given £ > 0,
let w® be such that we have, w® € D2+ and ||jw — w®|| < e. Then, let B¢
be the function defined on [T, 7] by,

. |z|+a(s)+e
B (z) = 2+ HuﬁHlaLI + [M + ||wf|| + 2e + 1]/ c(a™ (o)) do,
(a(s)—e)VO

where, w® is the element of X provided by the stability condition S(a, I),
and where M < +oo0 is an upper bound of (||S(., s, )ws]|),, . For N. € N*,
satisfying,

n > N. = (lw, —wl|| <&, and |a(s) — a(s,)]| <€),
the maximum principle theorem 5.3 yields ,
n> N, = [Hs(tmsn)wn - S(t’s)w” < 'm(ea,mBs)(a(tn)va(t))] .

Consequently, in view of the u.s.c. aspect of m(6, B°), it follows, for all
e > 0,

limsup ||S(tn, sn)wn — S(E, s)w|| < m(0y.q, B%)(a(t), a(t)) = y*(a(t)).

n

Since (y°), decreases uniformly towards the null function on a([s,77]),
when ¢ | 0 (see Lemma 6.3 in Appendix), it results,

linl ”S(tn7 Sn)wn - S(t’ S)’LU” =0.

The proof is now complete.
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5.6. Proof of Theorem 3.4

For each n € N U {oc}, let u, be the function u, = S,(.,0), and let
b, = Oa, a, -

a) The family (un),eny(0y I8 bounded by some constant ¢ > 0 in
C°([0,7T],X), by hypothesis.

b) We give now a suitable bound for |ju,(s)—ul| for n € N.
Given £ > 0, let (w,@) € A (0), with [jw —ud || < . According
to the definition of the inferior limit, there exists for each n € N,
(wn,wy) € Ay (0), such as the sequence ((w,,w,)), converges towards
(w, ). Let us define an integer N, verifying,

w2 N (o= o] =l + [~ B < ¢).

The condition S(w,,c,[0,7]) provides again, (see inequalities (18) in
lemma 5.2)

an (8)

lfun () =wa < Hwn—US||+an(8)||@||+(0+1+Hwnll)/0 c(a,*(0))do .

Recall that we have a,(s) = [ an(o)do and, (from the change of
variable lemma 6.1)

/OQNV(S) c(ay'(0)) do = /0s con(€)c(€) dE .

Consequently, since (a,),, converges towards ., in the weak* topology of
L>([0,T],R), there exist a sequence of positive numbers (7,,),, converging
towards zero and an integer P. > N, realizing, for all s € [0,77],

oo (8)
n>P, = (Hun(s)—ug” <2e+C. (aoo(s)+/0 c(azl(0) da+7)n>> ,

(25)
where, we put for instance, C: = sup,, {||wn]l + C + 1+ |Jw,||) .
¢) Equicontinuity of (u,), in C°([0,T],X). For z € [-T,T], and
n > 0, let B? be defined by ,

|}
B! (z) = 2 + C. (ISLI + /0 c(az) (o)) do + 77) .

Let m&" = m(®,,0,, B!, an,a,) for n € NU {00}, and put m =
m(%, 6,, B™, a,, a,). The maximum principle (see theorem 5.1) gives,
for n > P,

l[tn(s) = un(B)] < M7, (an(s), an(t)) < m3"(an(s),an(f)).  (26)
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The equicontinuity lemma 6.2 ensures that for all > 0, there exists an
integer n(e,r,n) such as we have,

n 2 n(e,r,n) = (lun(s) — un(Bll < M (aoo(s) aco(t)) + 1) (27)

Let y° be the maximal continuous solution in D'(]0,a(T)[) of
Xo(=,v,0,2¢,a). By lemma 4.1-vii), we get that the sequence
(m&y (7,7)), converges uniformly on [0,a..(1T)] towards y°. Moreover,
in view of the lemma 6.3 the generalized sequence (y°),.., converges
uniformly on [0, ax.(T)], towards zero as € | 0. Then, from

Mg (oo (8), Goo(t)) SImy (Ao (s), aco(t)) — mY] (a00(t), @eo(t))]
+ M (oo (t); @oo ()] 5

the relation (27) yields (choosing first a suitable €,, and second a suitable
Ty ) to the existence of an integer R, = n(e,,r,,n) such that,

n 2 Ry = (|lun(s) — un(D]
< M2 (@oo(8); Goo(t)) — ML ™ (000 (1), aco(t))] + 21) - (28)

Since m&"™ is continuous on [0,a(T))°, then the announced
equicontinuity holds.

d) Convergence of (uy), . Let (u%) o be an adapted (Aq),-DAF of
CP;=([0,T],ul) . Let Ky be the following compact subset of X,

Ko = uso(0, TN (U, wo(l0.7D) :

put g, (¢,v) = ||lun(t) — v|| for (¢,v) € [0,T] x X . According to the part
b) of this proof, it is 1mmed1ate to verify that (g, ), is an equicontinuous
sequence of continuous functions on [0,7] x X . By the Ascoli-Arzela
theorem (g,,),, is relatively compact in C°([0,T] x Ko, R). Then, consider
a cluster point ¢ = lim gn, |o 7yxxc, Of (9n),,- Let € > 0 and Q be an integer.

Set Ag = (to o tQ ), with nodal points in the set of s € [0,7] such
that A (s) C lim 1nf A%~ (s) and,

u?(t?) —ul(t2 ) + 62a(t?)uR(t2) = 0,
with 62 = ¢2 — 2 |, and uQ(t?) € A= (t9)ul(t?). For i = 1,..., Ng
choose,

i, (w9069 w89) ) = (129,220

with, <w§(t?),wf? (t?)) € A7 (t2).
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We can find an integer r(Q), €) verifying, (with M = sup, enuiooy lonllo ),

n>r(Q,e) = (‘

WS(t?)—uQ(t?)”JrM‘

w2(12) &<t?)|

Seinfé;@),

If o € D(]O,T[2), and ¢ > 0, for ) large enough and n > 7(Q,¢), it
follows from a simple computation,

Oy N \

0< /[o,r]zg"(s’w’?(t))[j ® Ag) (an(t)g(s, )+ on(s) 500 ,t))
I® Ag{(¥(s,t.0n(5,1), gn (5, wR (1)) + ) cn(s)an(t)io(s, 1)} ds(dt‘)
29

Observe that the sequence of functions v, (s,t) = an(s)a,(t) converges
towards @(s,t) = @ (8)aeo(t) weakly* in L™ [O,T]Q; R) . Thus, letting
n = ng — oo, and after () — oc, in the relation (29), and since £ is
arbitrary, we see that the continuous function h : (s,t) — (s, u(t)) =

h(s,t) is solution in D’(]O,T[z) of

{Dawaw[x(s,t)] < Qoo (8) oo (1) (8, 8, 000 (8, 1), (s, 1))
x(5,0) = limyg ||un, () — v || and 2(0,t) = [[u’, — uao(t)]] .

Moreover, the inequality (28) shows that lim sup,, ||u,(t) — u,.(s)|| = 0 for
(s.t) € [0, T) such as a.(s) = ao(t). Therefore, h is constant on the set
values taken by (aZ!,aZ!). Finally, using lemma 4.1 part ii), we obtain,

h(s,8) < M, fay o BY oo (8), aeo (1)) for (5,8) € [0,T),
where B is the continuous function on [—ae.(T), ao.(T)] defined by,

{50~ g o) )t 7€ Do)
B(o) = ||ud, — uso(at(~a))| for o € [~an(T).0].

(29}

Then, since we have B(0) = 0, we claim A(¢,t) = 0, for all ¢ € [0,7],
that is,

vVt € [0,7] liin Un, () = use(t) .

Hence, u, is the unique cluster value of (u,), in C°([0,T], X).
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6. APPENDIX

Here, we state some useful results and we give summary indications
about the proof of Lemma 4.1. More details can be found in [16] or [6].

6.1. Change of variable lemma

LEmMMA 6.1. — All selection a~* of a~! is measurable. Moreover, for
f € LYI,R), we have, f oa~! € L'(a(I),R) and,

/a(s)f(s) ds = fo F(U) do . (30)

I a(I)
The proof is clear and left to the reader.

Remark 6.1. — Since the quantity fa( 1 fo a/:/l(or) do does not depend on

the choice of (measurable) selections a~1of a~! we agree on the notation
Jun fo a o)do.

6.2. Indications about the proof of the u.s.c. hull lemma

a) Suppose that z is a continuous solution in D’(]Sy, Sa| % |71, 73()
of Eq, (<,®,B,6,1,1). Since z is bounded on I x J, the operator
¢ — R(p) defined by

R(p)= [ =a(s.)Dasliols 0]
IxJ
+ a(s)B(8)@,(s,1,0(s,1), x(s,1))o(s, 1) dsdt  (31)
can be extended to the space of test functions 5(; X 3) defined below,

5(})(3): {(,0 : IxJ — R, ¢ continuous with compact support on ;x 3,

Oy 1 O 1
5. (5,0) € LY(I x J), 2(s.1) € LNI x ),

9
o(s,1) :(p(Sl,t)—}—/ 9% (6,1) do,
s, 98

t

0
ols.0) = ol + [ Fsoyar ],
T t

by setting R(p) = limy R(yy), for all sequence (y), in D(_cf)xj)
verifying

dp  Opy

dp  Opy *
LY(IxJ) ot ot

Os Js

k Li(IxJ)
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It is clear therefore, that this definition does not depend upon the choice of
(¢r), converging towards ¢. And if we have ¢ > 0, we can take @i > 0
for all £ (by taking for instance, classical regularized functions). Therefore,
we have for ¢ € 5(;xj) (p >0= R(p)>0).

Then let us consider ¢(s,t) = &£(a(s),b(t)) with £ > 0, £ € D(Q) .
Then ¢ € 75(;x j), and ¢ > 0. It follows R(p) > 0 ; so using, in
this last inequality (see relation (31)), the change of variable (Lemma 6.1)
o = a(s) and 7 = b(t) , we see that z(a~!,b71) is a continuous solution of
Eq(<,0,6,B,a,8). Therefore, if we prove the existence of the maximal
solution mpg , introduced in the part i) of the lemma, we will have for
(o,7) € a(I) x b(J)

z(a™(0),b7' (1)) < m(®.0,B)(0,7) = mg(o,7),

or in other words, with (s,t) € I x J , z(s,t) < mg(a(s),b(t)).
b) Consider y a continuous solution (if it exists) of the fol-
lowing inequation FEqo(<,®,,0,B,a,8) in D'(). Let (.(o,7) =
[s)

C(=572) p(n(==5=2)), where d € (D) = b(J). ¢ € D(1.) ¢ 2 0,

and p € D(]-1, 1]) with j_ll p(7)dr = 1. The function (,, has a compact
support in € for n large enough. Recall that I; denotes the interval
I, = [(a(51) — d) V(T1),b(Tz) A (a(Ss) — d)]. Then, with the change of

variable,
c+17—-d (O'—T—d)
A=—— | v=p|—mm ),

2 2

we obtain easily,

0< /B{y(A ¥ % +dA- %)C'(/\)p(l/)

+0, (a7 (A4 Z+d) b (A= 2] 0(a (A4 S+ d) b7 (A=)
y(amt(A+ =+ a),b71 (A= %)))C(A)p(u)} dodr .

No problem of integrability occurs thanks to the hypotheses on &, and
6(e W). Since y, ®, are continuous, a~!, b1 are a.e. continuous, and
8 € W, letting n — oo , we get,

0< / (¥ + ds N (N)p(v)
Izx[—1,1]

+ @, (a7 A +d), 671N, (a7 (N + d), b)),
y(a™H (A +d), 071 (N)) <N } p(v)dr .
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And z4(7) = y(r+d,7) is solution in D’(;d) of x7 = xa(<, 9,
6,8, a, 3). Notice that we have for a.e. £ € I, ( if we write |0(s,t)] <
F(s) + G(t), for ae. s and ae. t, with F,G € L'([0,T],R")),

|, (a7 (& + ), b7(€),8(a (€ + d), b)), 2a(9))]
< |®, (a7 (€ + d),b7(8),0,0)|
+w, (Fla €+ d)) + G(b71(8)) + 24(8)) (32)

It follows from the Gronwall’s lemma an a priori upper bound for z,.
Thus, the inequation X7 has a maximal continuous solution y/, verifying
the equation x4 o(=,®,,0,B) in ’D’(}d) (see [19], [6]).

c) We will examine now the C! case. We suppose B is C! on
[=b(T3),a(S2)], and @ is C' on [0,T}° x R? and w-Lipschitz. Let 6,
be C! on [0,T]* and o and 3 strictly positive continuous in [0,7T]. We
suppose also that we have,

@(Sl,Tl,H(Sl,Tl),B(G;(Sl) - b(Tl))) = O,

then (see [6]) the solution m(®, 8, B,«, 3) is C* on 0, and is a classical
solution of F(=,6,B,a,0).

d) We suppose here that ® is C'! w-Lipschitz on [0,7]° x R?. Let (o) g
(resp. (fBk),) be a sequence of strictly positive continuous functions on [
(resp. J ). We (can) suppose that we have for ¢ € {1,2}, an(S,) = a(S,)
and b,(S;) = b(S,). Let (Bi)r be a sequence of functions C' on
a(I) x b(J), converging in C®(a(I) x b(J)) towards B. Let (6), be
a sequence of C* functions on [0,T]” converging towards 6 in (W, ||-||,).
Let us consider a sequence (G), of functions from [0,b(T3)] to R, such
that Gy, is C' with compact support included in [0, & [ and

Gk(D) = _(p(SlyTlagk(slle)’Bk(a'(Sl) - b(Tl)))a

with G bounded by |Gi(0)| and ||Gill;k — co—0. Let my =
m(® + Gy, 0k, Br, ax, Bi), let PT be the projection on the intervall Z,
and mj} be the restriction to a(I) x b(J) of my (P, Pb()) Then,
we claim that the family (m}), converges in C%(a(I) x b(J)) towards
the unique continuous solution of Fq(=,®, 8, B, o, 8) . Indeed, this claim
follows easily from the equicontinuity lemma 6.2 below.

e) In the general case, where ® is the decreasing pointwise limit
® = lim®,, B continuous, and § € W . In this case, the reader can
easily verify that the sequence (m(®.,,0, B, o, 3)),. is pointwise convergent
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by decreasing towards the maximal (in the required meaning) solution of
Eq(=,9,0,B,a,0). Indeed, (ya(®,, 60, B, «,3)), converges uniformly by
decreasing towards y4(®,0,B8,,5) on I .

The u.s.c. hull lemma results clearly from the previous steps a) to e).

LEMMA 6.2. — We suppose that the sequences (o), and (Py), converge
respectively towards o and 3 in the weak*-topology of L*([0,T],R). Let

® be w-Lipschitz on [0, T) x R2, and let (0 ) be a bounded sequence

q
in (W,||-|l,). Put ®, = ® + 8,. Let (8;), a sequence of W functions,
converging towards 8 € W, and let (By), be a sequence of continuous
Junctions on a(I) — b(J) , converging uniformly towards B. Set (with the
notations of the above step d)) mj , = m(®y, 0, By) o (P peld)),
Then the family (mzq) ks is (bounded and) equicontinuous on €1 .
More precisely, writing, y;%(1) = m(®,, 0k, Br)(T +d.7), and I} =
[(ak(Sl) —dyvV (1), bip(T) v (ak(SQ) —d)] for d € ap(I) — be(J) and
ap(: fo g 0) do and by (t fo Bi(T) dr , we have ;
1 For relknik s and (ak(Sl) d) < bk(Tl),

’yf;f& )= yf’q(f)] < |Bi(d + 6) — Be(d)|
+/,,(T ) (‘q)( HEHd+6), b (), O (ag (€ +d + 6), b,;l(g)),yjfé(@)

=0 (o (€ + d), b (€), O (o (€ + ), 07 (6) 05 7(©))|
(0 (€ +d+ 6),571(8)) = B (ax (€ + ), b7 (©))|)dg - (33)

2. Form € I¥ N1k ¢ and (an(S1) — d) > be(Th),

[ubs(r) = ()| < [Bu(d + 0) ~ Buld)]
w [ (el e arpa0e),
a(S1)—d
0 (0 (€ +d + 8),57(6)) us(©))
~ @ (ag (€ + d), b (€), O (o (€ + ), b))
07 (€ + d + 6).571(O)) — o (0 €+ ), 67 (9)) ) d

IS
Q
N
I
S
N———’

+
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a(S1)—d
+f (|2 (o (€ +d+6),57(6),
a(S1)—(d+6)
O (0 (€ + A+ 6),574(6)), h5(0))|

(o € + d+ 8),074©)|)de. (1)

3. For 1t € I:k(sl)"‘bk(Tl) N Iz]fk(sl)—bk(TlHé’ (case (ax(Sy)—d) =
bi(T1)), the relation (33) holds if 6 > 0, and the relation (34) holds
if 6 < 0.

Proof. — Indications are given in [16].

6.3. A differential lemma

LeMMA 6.3. — We assume that the function ® is u.s.c. on [0,7] x R?.
Let (y2), be a sequence of real numbers converging towards y2. , and
(gn),, be a sequence of functions converging towards g, in L*([0,T],R).
Furthermore, we suppose that the following inequality holds in [0,T] x R?
for some positive constant 1, |®(s,&,z)| < I(|¢]+1). Forn € NU {oo}.
let us denote by vy, the maximal continuous solution in D'(]0,T[) of the

inequation, p
(1) < @, g, (0).2(0) (35)

2(0) < .
Then, we have, lim sup,, sup,c(o 7] (¥n — Yoo )(¢) < 0.

Proof of lemma 6.3. — See [16].
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