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ABSTRACT. - We study the equation ut - Au = up - p\Vu[Y, t > 0 in 
a general (possibly unbounded) domain R c RN. When q > p, tie show a 
close connection between the Poincare inequality and the boundedness of 
the solutions. To be more precise, if q > p (or q = p and p large enough), we 
prove global existence of all solutions for any domain Q where the Poincare 
inequality is valid. When p is large enough, all solutions are bounded and 
decay exponentially to zero. Conversely, if R contains arbitrarily large 
balls (if N 5 2 and R is finitely connected, this means precisely that 
the Poincare inequality does not hold), then there always exist unbounded 
solutions. Moreover, if R = RN, there exist global solutions which blow-up 
at every point in infinite time. Various qualitative properties of the solutions 
are also obtained. 0 Elsevier, Paris 

Key words: nonlinear parabolic equations, gradient term, global existence, bounded 
solutions, Poincare inequality, blow-up, critical exponent, exponential decay. 

Rt%JMl?. - Nous Ctudions l’equation ut - Au = up - pjVu]q, t 2 0 dans 
un domaine Q c RN general, tventuellement non borne. Lorsque q 2 p, 

nous montrons l’existence d’un lien Ctroit entre l’inegalite de Poincare 
et le caractere borne des solutions. Plus precisement, si q > p (ou si 
q = p et p est assez grand), nous prouvons I’existence globale de toutes 
les solutions, dans tout domaine R ou l’inegalite de Poincare est vCrifiCe. 
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Lorsque p est suffisamment grand, toutes les solutions sont born&es et 
tendent exponentiellement vers zero. Inversement, si R contient des boules 
de rayon arbitrairement grand (lorsque N 5 2 et R est finiment connexe, 
cela signifie exactement que l’inegalite de Poincare n’a pas lieu), alors il 
existe toujours des solutions non bornees. De plus, si 0 = RN, il existe 
des solutions globales qui explosent en tout point en temps infini. Diverses 
proprietes qualitatives des solutions globales sont Cgalement obtenues. 
0 Elsevier. Paris 

1. INTRODUCTION AND MAIN RESULTS 

We consider the following parabolic equation: 

ut - au = IL? - ppu~q, t > 0. :c E i-2, (1.1) 
U(t,Z)=O: t>o, XEdR, (1.2) 
u(O,z) = qqz) > 0, x E 0, (1.3) 

where p, 4 > 1, b > 0, and R is a (possibly unbounded) regular domain 
in RN. (By a regular domain, we mean a uniformly regular domain of 
class C2 in the sense of Browder [B] and Amann [Am] .) The problem (l.l)- 
(1.3) admits a unique, local in time solution u 2 0, for any 4 E IV,‘7s(fl), 
$ > 0, with s large enough (max(Np, Nq) < s < co). We refer to the 
Appendix A for a precise definition and local properties of solutions. We 
denote by T* = T*(4), 0 < T* 5 00, the maximal existence time of 
the solution. 

This equation was introduced by Chipot and the second author [CW] 
in order to investigate the effect of a damping term on global existence 
or nonexistence. On the other hand, the first author ([S2]) proposed a 
model in population dynamics, where (l.l)-( 1.3) describes the evolution of 
the population density of a biological species, under the effect of certain 
natural mechanisms. 

Several authors have studied the existence of nonglobal positive solutions 
for the problem (1 .l)-( 1.3) and have given various sufficient conditions for 
blow-up under certain assumptions on p, 4, p, N and 0 ([CW], [AW], [KP], 
[F], [Ql], [Q2], [Sl], [S2], [SIX’]). Unifying and improving these results, 
the authors of the present paper proved the following ([SW, Corollary 31): 
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THEOREM A. - Let p > q 2 1 and p > 0. Let $ E W,‘>” (fI>, II, 2 0, 
y!~ $ 0. Then there exists some ko > 0 (depending on $) such that for all 
k > ko, the solution of (l.l)-(1.3) with initial data 4 = k$ blows-up in 
finite time in W1,” norm. 

This theorem is a consequence of a general result of [SW], valid for a 
wide class of nonlinear parabolic equations of the form: 

Ut + L(u)u = lqu, Vu). 

It relies on a method of blowing-up self-similar subsolutions introduced 
in [SW]. In the case of equation (1. I), both the result and the proof 
provided, as an important advantage, a unified treatment for the general 
case q < p, independent of all the technical restrictions that had to be 
imposed in the previous blow-up studies for this equation. 

On the other hand, when q > p and 0 is bounded, global existence 
for all nonnegative initial data was proved in [F], [Q2]. In particular, this 
combined with Theorem A established the following conjecture, in the case 
of bounded domains: 

The critical blow-up exponent for problem (1 .l)-( 1.3) is q = p, (1.4) 

in the sense that blow-up can occur if and only if q < p (see [Ql, p. 4131). 
The initial motivation of the present paper is to study this conjecture in 

the case of unbounded domains. We shall prove that finite time blow-up 
cannot occur for q > p (or q = p and b large enough), whenever the 
PoincarC inequality is valid in W,‘,“(n), that is: 

Moreover, for ,LL large enough, all solutions are globally bounded and decay 
exponentially to 0, provided the Poincare inequality is also valid in Ht (R). 

Although we are still unable to prove or to exclude blow-up for q 2 p 
in a general unbounded domain, we will see that the assumption on the 
Poincare inequality is not artificial and turns out to play a significant role 
in the problem. To this end, let us first recall that the inradius of R is 
defined as: 

p( 0) = sup{ T > 0; R contains a ball of radius r} . 

For finitely connected domains in dimension N = 2, the finiteness of the 
inradius is known to be equivalent to the validity of the Poincare inequality 
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in H,(0) (Hayman [HI, Osserman [0]), or -in other terms- to the fact 
that -A has a smallest eigenvalue, which is positive, where A is the 
Laplace operator in Hi(R). (This is also obviously true for any interval 
in dimension N = 1.) We shall prove that if p(0) = 00, then there exist 
(possibly global) unbounded solutions for all 4 > p and p > 0. 

By combining these results, in dimension 1 or 2 and under some technical 
assumptions, we obtain a characterization in terms of the Poincare 
inequality of the domains in which all solutions are global and bounded 
(for 4 2 p and h large). 
Let us now state our main results in a more precise form. Recall that the 
exponent s satisfies max(iVp, Nq) < s < 00. 

THEOREM 1 (global existence). - Let R be a uniformly regular domain 
of class C2 in RN, q > p > 1 and p > 0 (with p large enough if 
q = p). Assume that the Poincare inequality holds true in Wllq (a). Let 
4 E w,‘yq, dJ 2 0, and u the solution of (].I)-(1.3). Then: 
(i) T* = 00. 
(ii) If the Poincare inequality holds also in Hi(R), there exists some 

M(0) > 0 such that for all p 2 M(n), u(t, .) is bounded and decays 
exponentially to zero in L” (0) (s 6 r 5 CQ), as t -+ 00. 

THEOREM 2 (unbounded solutions). -Let q 2 p > 1 and ,LL > 0. Let 0 be a 
uniformly regular domain of class C2 in RN, with inradius p(R) = 00. Then 
there exists $ E W,‘>‘(n), 4 > 0, such that the solution u of (1.1)~(1.3) 
satisfies either 

T* < cc and liyTup [(ells- = c-c, 

or 
T* = co and &t Jl~(t)(l~~(~) = 00. 

COROLLARY 3 *. - Let N 5 2, q 2 p > 1, and let R be a uniformly regular 
domain of class C2 in RN. If N = 2, assume that R is finitely connected 
and q 2 2. Then the following are equivalent: 

(i) There exists some M(R) > 0 such that for all p > M(0) and 
4 E W:‘“(R), 4 > 0, the solution of (l.lj41.3) is global and uniformly 
bounded, 
{ii) the Poincare’ inequality holds in Hi(Q), 
(iii) p(0) < 03. 

* Note added in proof: One can show that Corollary 3 is actually true for all N 2 1 and 
without the assumptions R finitely connected and q 2 2; see [S3]. 
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We will also derive various results concerning global existence, 
boundedness or unboundedness of solutions for equation (1.1): 

- If fl contains a cone (in particular RN), and q > p, there exists 
unbounded global solutions. 

- Suppose q 2 p. If R = RN, then some solutions blow-up in infinite 
time at every point of RN. On the contrary, if R # RN, blow-up 
(in finite or infinite time) can occur only at infinity. 

- In any domain R (in particular in RN), for q 2 p, the solution exists 
globally whenever $ has exponential decay in at least one direction. 

- When q > y, if the restriction of 4 to some cone contained in R has 
a slow enough decay at infinity, the solution blows up in finite or 
infinite time (this is known to happen in finite time when 1 < q < p, 
see [SW]). 

- When R is contained in a strip, the solutions are global and uniformly 
bounded for all 4 if q 2 p, and for small 4 if 1 < q < p (with b 
large if 1 < q < 2p/(p + 1)). 

- We provide a qualitative description of the blow-up set when q > p, 
for any unbounded solution (global or not); roughly speaking, the 
blow-up cannot be local. 

Last, we will show that our method for proving the existence of 
unbounded solutions also applies to convection-reaction-diffusion equations 
of generalized Burgers’ type: 

Ut - nu = 7LP + a.V(uq), (1.6) 

which have been previously considered in [LPSS], [AE] and [Fr2]. This 
partially anwers a question raised in [AE]. 

The paper is organized as follows. Theorem 1 and the other boundedness 
properties are proved in Section 2. In Section 3, we prove Theorem 2, 
the other facts concerning unbounded solutions, and present the extensions 
to equation (1.6). 

In order to clearly present the fundamental ideas of our proofs, we have 
relegated a number of unpleasant technicalities to three appendices. We 
have chosen an approach based on Lebesgue and Sobolev spaces, rather 
than C” spaces, since the basic a priori estimate we obtain is in LV(Q). In 
Appendix A, we specify the properties of uniformly regular domains which 
we need, and give a detailed account of the local theory for equation (1.1) 
- via the corresponding integral equation - in Wil’(R), where the domain 
R is not necessarily bounded, and where s < 00 is sufficiently large. Also, 
we show that if the initial datum 4 is sufficiently regular, then the resulting 
“mild” solution is a classical solution of (1 . l)-( 1.3). Appendix B establishes 
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weak comparison principles necessary to our arguments. Indeed, many of 
our proofs use subsolutions and supersolutions, which we need to compare 
with IV,>’ solutions of the integral equation. Finally, in Appendix C, we 
show that gradient blow-up does not occur, i.e. that an a priori bound in 
L”(R) prevents blow-up in W,‘.‘(n). 

Throughout Sections 2 and 3, we freely use results proved in the 
appendices, with appropriate citation. 

2. GLOBAL EXISTENCE AND BOUNDEDNESS 

The key ingredient in our global existence results will be an L” estimate 
that proves that the L” norm of u(t) cannot blow-up in finite time (with ‘1. 
finite in Theorem 2 or 7’ = oc in the results of Section 3). However, 
since the local existence space is W,‘“(R), we will have to make sure that 
nonexplosion in L’ norm prevents explosion in Wil’ norm. This is the 
purpose of the following proposition, which is proved in Appendix C. 

PROPOSITION 2.1. - Let R he any regular domain in R”, p, q > 1 
and p > 0. Let 4 E Wil’(0), $ > 0, and u, the solution of (l.l)-(1.3). 
Assume that T* < 0~;. Then lims~p~,~~ Ilu(t)lll = w for all r’ such that 
s 2 7’ 5 w and 7’ > Np/2. 

An analogous result has been proved by Quittner [Q2, Theorem 5.1 (i)] 
in the bounded domain framework and working with L” and W1+ norms. 
His proof relies on the Bernstein device, and on a careful analysis of the 
tangential derivatives near the boundary, which makes essential use of the 
negative sign in front of the gradient term. The central part of the argument 
can be essentially transposed to the present context (see Lemma C2). 
However, some care is needed when working in an unbounded domain and 
with the Wt,S theory. In particular, as we start from L’ estimates and as fl 
is now unbounded, the passage from L” to L” (see Lemma Cl) and from 
W1+ to W1+ (see Lemma A2) has to be made clear. 

Assuming this proposition, we are able to prove Theorem 1. 

Proof of Theorem 1. - Let us first assume that 4 E C&(n), so that, by 
Propositions A3 and A4, for any finite T 2 s, 

u E C’([O,T*), L’(0)) and V’t E [O,T*), u(t) E W,‘,l’(n)) fl W”,“(n): 

(2.1) 
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and u verifies (1, l)-( 1.3). We multiply equation (1.1) by u’-l and integrate 
over 52, which yields, for t E [O,T*), 

Hence, by Green’s formula 

;JT!+-J J’uP+“-ILj’L”,vu,,%J, (7” - 1)U’-2)vU(2 + 

=- 
J 

(r - l)u’-21Vu12 + J Up+r-l - &+:-JV 
II -9 V(UP . )I 

Applying the PoincarC inequality in IVilq (n), we get 

+ J uP+T-l - '"':"(~)(4,r_I)qJ~q+~-l. (2.2) 

In the case 1 < p < 4, ,u > 0, the inequality 
X p+r-1 5 pJyq+--l + qp, q)t-(P-‘M9-P)z’, x20> t>O (2.3) 

now implies that 

for some C = C(R, p, 4, r) > 0, and the same inequality follows from (2.2) 
when Q = p and p > Cq(0)-i(y)“. Integrating, one then immediately 
obtains 

J,ur(t) I (Jr'(o)) exp(Ct), t E [o,T*). 

In particular, 
Suppose now 
implies that 

Id 

the estimate 2.4 implies that T* = 03 by Proposition 2.1. 
that the Poincare inequality also holds in Hi (fi). Thus 2.2 

-_ J uT < -4(r - 1) 
rdt - r2 J Ivw l2 

+ J uP+T- 1 
-Pcq(fqq+;- l)q I’uq+‘-l 

I -“(y 1)c2(n) J J UT + uP+l-l 

-am(q+;v l)q Juq++ 

(2.4) 

(2.5) 
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When 1 < p 5 q and p > M(fi, T) large enough, (2.5) and (2.3) yield 

for some K = K(Qr) > 0. Hence, 

Jw < (Juw) exp(-Kt), t E [O,T*). (2.6) 

A standard approximation argument (using continuous dependence in 
We’” - Proposition Al) and the embedding Wars c L’(R), since 
T 2 s > N, show that (2.4) and (2.6) are true for all initial data 
45 E w;qn). 

In order to prove exponential decay in L”, we write the variation of 
constants formula between t and t + 1: 

u(t + 1) = eAu(t) + 
I 

’ e(l-‘)“(up(t + T) - pIVU(t + T)j”) CIT. 
. 0 

By the nonnegativeness of u (Lemma Bl), the La estimate for the heat 
kernel and inequality (2.6), we obtain 

where 0 < 8 < 1 (since s > Np - see (A5)). Interpolating between L” and 
L”, this proves in addition that K and M can actually be chosen uniformly 
with respect to T E [s: cc]. This completes the proof. 0 

Remark 2.1. - When 1 < p < 4 < 2, the conclusions of Theorem 1 
remain valid for any $ E L’(R) with r large enough. Indeed the problem is 
well-posed in this space (as indicated in [AW, p. 161) and it is thus sufficient 
to check that the L’ norm of the solution cannot blow-up in finite time. 

Remark 2.2. - a) The largeness assumption on fi for (exponential) 
decay to 0 cannot be relaxed in general. Indeed, if q > 2p/(p + 1) and 
(N - 2)~ < (N + 2), there exist positive stationary solutions when R is 
a ball of large radius, or equivalently for small p when the radius is fixed 
(see [CW, Corollary 5.4 (ii)]). 
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b) Convergence to 0 (in lVil”) for p large is proved in [F, Remark p. 8001 
in the special case when R is a ball, 1 < p 5 Q < 2. However, no 
estimate on the rate of convergence is provided since the result stems 
from a precompactness property of the trajectory and the fact (see [CW, 
Corollary 5.4 (i)]) that no nontrivial nonnegative stationary solution exists. 

We now return to the case of a general unbounded domain with q 2 p. 
The results of Section 3 will prove that there can exist global unbounded 
solutions, in particular in RN. While the question of whether there exist 
(finite time) blow-up solutions when q > p remains open, we are able to 
exclude this possibility for a certain class of initial data, specifically for 4 
having exponential decay in at least one direction. 

THEOREM 2.2. - Let R be any regular domain in RN, q 1 p > 1, h > 0. 
Let t > 0, with E 2 P-~/P if q = p. Assume that C#I E W,‘ls(fl) satisjies the 
following exponential decay condition: 

3c > 0, 3~ E RN, 11~11 = 1, \Jx E R, 0 I cb(x) I Ce+.al. (2.7) 

Then T* = 0;). Moreover, there exists Q > 0 such that 

for all t > 0 and x E R. 

Proof of Theorem 2.2. - Without loss of generality, we may assume that 
a is the unit vector in the xl-direction. We claim that, for the right choice 
of CK, the functions 

v*(t,x) = Cexp(at f a~) 

are (traveling-wave) supersolutions. If q > p and ,0 > 0 or if q = p and 
0 < ,L3 1. 1, we have the elementary inequality 

x:p > p(P--PY(q--l)xP _ px, x > 0. - 

Therefore, 

&I* - Au, + ,LL~VTI+(~ - ~5 
2 dtw+ - Aw, + ,@cn-P)‘(n-l)IVv~I” - /@IVz)*l - u$ 
= Cexp(at f EXTI) (a - c2 - ,&) 

+ Cp exp [p(at f ez,)] (pp(q-p)‘(q-l)tp - 1). 
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It thus suffices to choose p = (@-(q-“)/(q-l) and a = c2 + h,&, if 
q > p, or ,8 = 1, and Q = c2 + ~6 if q = p and t > ,~-i/p. Then we get, 
thanks to the comparison principle (Lemma Bl), 

O<u(t,z)<~u*(t,:c), t>o, XER, 

and so 

O<u(t,z)~Cexp(cut-~Izll) tL0, zER. 

In particular, Proposition 2.1 implies that T* = 00. 0 

Remark 2.3. - The result of Theorem 2.2 shows that the conjecture (1.4) 
holds true for any N > 1, /L > 0 and any domain 0, as long as one 
considers only the class of initial data having exponential decay in at least 
one direction (and in particular in the class of data with compact support). 
Indeed, Theorem A provides blow-up data with compact support for q < p. 

For the next result, we assume that the domain fi is contained in an infinite 
strip (this is a special case of Theorem 1, since the Poincare inequality is 
then of course valid). In this particular case, it is possible to improve the 
result of Theorem 1 (i), by proving that if q 2 p, then the solutions in fact 
remain bounded in L” for any p > 0. In the case 1 < q < p, although 
blow-up solutions always exist by virtue of Theorem A, we can however 
prove boundedness and global existence for all small data in L” norm. 
The various cases are collected in the following result. 

PROPOSITION 2.3. - Let R be a regular domain of R”, contained in a strip, 
and C#I E W;‘“(R), 4 2 0. Assume that one the following conditions is met: 
fi) 1 < p 5 q, p > 0, 
fi4 %/(p + 1) 5 4 < P, in 2 cL0, ll~llm I L(p), 

(iii) 1 < 4 < 2p/(p + 11, CL > 0, 11411m I L(P). 

(Here PO = PO(P, q, fl> and L(p) = L(p, q, R, ,u) are positive constants. 
Moreover L(p) can be chosen so that limlL+a L(p. q, R, p) = M when p, 
q and R are fixed.). Then the solution of (I. I )-( I .3) is global and bounded 
in L”. Moreover the bound on u depends only on ~~$~~oo. 

Remark 2.4. - This proposition yields a slightly stronger version of 
conjecture (1.4) than Theorem 2, in that we do not need to assume p large 
when q = p. 

Remark 2.5. - The cases (ii)-(iii) of Proposition 2.3 can be enlightened 
in the following way. Consider a domain R containing balls of arbitrarily 
large radius (hence not included in a strip), e.g. R = RN. By using standard 
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resealing and maximum principle arguments, along with Theorem A, one 
can construct blow-up initial data of arbitrarily small L” norm. When 
2p/(p + 1) 5 q < p, this is possible for any fixed ~1 > 0. When 
g < 2p/(p + l), this corresponds to ,LL tending to 0. Moreover, when 
q = 2p/(p + l), p is close to 1, and p is small enough, it is possible to 
construct self-similar solutions to (1.1) on RN that blow-up exactly in one 
point, as t increases to 1, and tend uniformly to 0 as t goes to -co (see 
[STW]). This also provides blow-up data of arbitrarily small L” norm. 

The methods we use for proving Proposition 2.3 are completely different 
from those in Theorem 1. We extend an idea of Fila [F] based on 
supersolutions. Proposition 2.3 in fact improves the corresponding result [F, 
Theorem 31 which was restricted to q 2 2p/(p + l), R bounded. Note that 
the point of view of [F] is rather to consider the value of b as depending 
on lld4lcw 

Proof of Proposition 2.3. - Without loss of generality, we can assume 
0 c (0,a) x RN-l. We are seeking a supersolution of the form 
v(t, X) = Ceazl, where z = (zr, . . . , zN), with C 2 ]j$]13o and a > 0 to 
be determined. (Proposition 2.1 will of course imply that T* = cm.) The 
condition to ensure is thus 

-a2 + pa”C q-l(y(q-lh _ cP--lea(P--lh > 0, 0 < x1 < a. - 

This is achieved as soon as 

pcq-l 1 2a2-q 

and 
#Lm!qcq-p > 2 if 4 2 P, 

paq(J4-P > 2e"(P-4)" if q < p. 

In the case q > p, it suffices to choose 

a = (2/,~)l’~ and C > max(1, Ilq61rn, (2cu2-q/~)1’(q-‘)). 

In the case q < p, (2.8) and (2.9) are satisfied if a: and C verify 

2 l/(q-1) 

0 
(-pMq--1) < c < p 

0 

ll(p-q) 

z 

aVl(P--Y)e--n(~ - - 
5 

Such a and C exist if 

(2.8) 

(2.9) 

Vol. 16. no 3-1999 



346 P. SOUPLET AND F. B. WEISSLER 

If q < 2p/(p + l), then (2 - q)/(q - 1) > q/(p - q) and ~7 = 0, so that 
suitable Q and C can be found for any p > 0. If 2p/(p + 1) 5 q < p, 
then CT > 0, and suitable a and C can be found for large enough ,u. In 
both cases, we take L(p) = C. 
Finally, note that for 1 < q < p and b large enough, one can always take 
a = 1 and C = (p/2) ‘/(p-n)ePa. Therefore, L(p) + 30, as p 4 0~. q 

3. UNBOUNDED SOLUTIONS 

The proofs of Theorem 2 and of some of the other results in this section 
depend in a fundamental way on the following lemma. 

LEMMA 3.1. - Let p > 1, q > 2p/(p + 1) and ,u > 0. There exists 7, F, 
R > 0 and a (radial) function v > 0, of class C2 on lRf x RN, satisfying: 

(i) Ppu = vt - Av - IY’ + ~lVv1~ 5 0 on R+ x RN, 

(ii) VJt L 0, Supp(v(t)) c B(0, R + qt), 
(iii) Vt > 0, Ilv(t)ll, = v(t:O) 2 et, 

(iv) Vx E RN, J& T v(t,x) = +m, 

(4 IIWI L=(R+xw) 5 1 and Vt > 0, Vx E RN, vt(t,x) 2 0. 

Intuitively, the idea is to seek an unbounded global subsolution, whose 
gradient remains uniformly bounded, so that the damping effect of the 
gradient term can never become too important even for large q. This 
subsolution will take the form of a spherical “expanding wave”, which 
propagates radially away from the origin with an increasing maximum at 0. 

Proof of Lemma 3.1. - We need two auxiliary functions. Let us first 
define a function f : R ---t R, of class C2, by 

{ 

0, s 5 0, 

f(s) = 4s3(1 - s), 0 5 s 5 l/2, 

s - l/4, s > l/2. 

It is easily seen that f satisfies, for some F > 0, 

0 5 f’ 5 1, f” 2 0, s E R, 

f” + f” > 3Ef’, s < l/2 and fP 2 3~f’, s 2 l/2. 
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Next, we define ,i3 : R+ + R, as 

6 M2s + (M - ~)~/3 
2M 

, ols<M, 

s > M, 

with M = 2N/e. The function ,6 is of class C2 on lR+, with the following 
properties: 

0 5 /3(s) < M, 0 < s 5 M, - 

s 5 P(s), 0 < p’ I 1, 0 5 /3” < E/N, s E R+, 

p(O) = M/3, p’(O) = 0. 

Now we set 

U(t,z) = f(M + ; + et - p(jx/)), t 2 0; z E RN, (3.1) 

which is of class C2 on lR+ x RN. We compute (omitting the argument 
in f, f’, f” for simplicity): 

VU = --;/3’(jzl)f’ (0 if J: = 0), 

Au = P’2(14)f” - f’Wl4), 

AL+l> = P”(I4) + ~@‘(\~I) I NsupP” 5~. 

First taking p = e in equation (1 .l), we have 

PJJ = d’ - P’2(14)f” + Wk4.f - f” + $WW’l” 
5 3ef’ - /3’2( Ixl)f” - j-p. 

If s = l/2 + M + et - ,B( 1x1) 2 l/2, then fJ’ 2 3ef’ hence P,U(t, x) 5 0. 
On the other hand, if s < l/2, then ,B(lzI) 2 M + et 2 M. Hence 
fl’(lzI) = 1 and P,U(t,z) 5 36s’ - f” - fJ’ 5 0. Now, for a general 
p > 0, replacing U by 

U&,4 = a2~(p-‘)U(ck!2t, cm), (3.2) 

we get 

p 
/I 

u, = a2P/(P-1) u, - Au _ UP + ~u,(4(P+1)-2P)/(P-1)lVulg 
[ 1 (“3, az) 

< a2p'(p-1qP,U](a2t, ck!cIT) 5 0, - 
Vol. 16, no 3.1999. 
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for Q: > 0 sufficiently small since (I > 2p/(p + l), which proves (i) with 
w = u,. 
Finally, (ii)-(v) are straightforward consequences of the definition of f 
(take R = (M + 1/2)/a and r/ = F(X). 0 

Proof of Theorem 2. - Let us fix a sequence of positive reals 
R, --f co. From the hypotheses, there is a sequence of disjoint balls 
&I = B(&, Rb) c R, with RL > R,. We are going to construct a suitable 
subsolution w = w(t, z) of (l.l)-( 1.3) on R by taking advantage of the 
resealing properties of the equation. With ‘u as in Lemma 3.1, we set: 

with m(t) = Mnt/(MrL + t), w h ere the constants II& > 0 shall be adjusted 
later. By (ii)-(iii) in Lemma 3.1, we have: 

SuPP(wn(t,.)) c q&t, n(R + qMn/n2)), Vt > 0, 

From (i), it follows that 

pw,, = n--2Pl(P--1) yA(t)q - Au - wp + pn (2P-dP+l))l(P-l) pup] 

( 

“in(t) x - 57, -___ 
n2 ’ n > 

< n--2Pl(P-l) [, - Av - ,up + @vlq] ($, y) 

< 0, (t,x) E 2R+ x R”, 

where we have used the fact that q 2 y > 2p/(p + I), ut > 0 and 

y;(t) = M,“/(Mn + t)” 5 1. We now choose 

Mm = rL1+2Pl(P--1) and R,, = n(R + vM,/n2) 

and define the function w as: 

Note that each w, is supported on B, and that the B, are disjoint. By 
Lemma 3.1, it is clear that w is C2 on R+ x RN, and hence is a classical 
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subsolution of (l.l)-( 1.2). Moreover, by the choice of Y,, , ?u is bounded on 
[O, T] x R” for each T > 0. On the other hand, since 

it follows, by the choice of R,, that ,w(O) E W:;“(0) for all large s. 
Therefore, by the comparison principle (Lemma B l), the solution of (l.l)- 
(1.3) with initial data u)(O) remains above 111(t) as long as it exists, which, 
along with Proposition 2.1, completes the proof. 0 

Proof of Corollary 3. - The equivalence of (ii) and (iii) for domains of 
finite connectivity in dimension 2 is proved by Osserman [0, Theorem (a). 
p. 5461. It is obvious in dimension N = 1, since 62 is necessarily an 
interval. (Note that the implication (ii) + (iii) is clearly true in any domain 
and any dimension. However, it is known that the implication (iii) + (ii) 
is false in dimension N > 3 - see Hayman [HI, and also Lieb [L] for 
further results in this direction.) * 

The implication (i) + (iii) is a consequence of Theorem 2. 
Assume (ii): Then it can be seen by standard arguments that the Poincare 

inequality holds also in W,iS’(0) for q 2 2. The assertion (i) then follows 
from Theorem 1. 0 

Under additional assumptions on $2, one can prove that some unbounded 
global solutions do actually exist. 

PROPOSITION 3.2. - Suppose the regular domain 12 contains a cone, p 2 0, 
q > p > 1. There exists some 4 E C”(a), q5 > 0, with compact support, 
such that the solution u of (l.l)-(1.3) sutisjies TX = x and 

Proof of Proposition 3.2. - To prove this, we seek an unbounded solution 
with compact support at t = 0, so that Theorem 2.2 applies, and supported 
by R at all time t > 0. The idea is to consider a “traveling expanding-wave”, 
obtained by combining a spherical expanding wave such as in Lemma 3.1 
and a translation motion along the axis of the cone. 

Without loss of generality, one may assume that (2 contains a cone 0’ of 
vertex 0 with half-axis along the first unit vector el. It follows that there 
exists some K > 1 such that for all 7’ > 0, f2’ contains the ball 13(KreI, r). 

+ Note added in proof: Actually, one always has (ii) e (iii) when 0 is uniformly regular: 
see [S3]. 

Vol. 16, n” 3.1999 
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Let us consider the function 

with f and /j as in the proof of Lemma 3.1. A slight modification of the 
calculation in the proof of this lemma shows that 

P,z < 0 onR+xlR’Y, 

whenever 0 < 6 5 e/2 and A > 0. By the usual resealing (see 
formula (3.2)), we obtain 

for all 0 < o 5 ao, with cyo small enough (depending on p but not on A, 5). 

From the definition of f and @, we see that 

Supp(z,,(t, .)) c B 
( 

(; + ;-at)cl. hi! y2 +Sat 
> 

Hence, Supp(x,(t, .)) c 0’ c R, for all t > 0, as long as we assume 

il 2 K(M + l/2) and 6 < f/(2K). 

Let us set 4 = ~~(0). Since C#J has compact support, it can be bounded from 
above by some function of the form Cepls.al, so that Theorem 2.2 applies. 
The comparison principle (Lemma B 1) and Proposition 2.1 then imply the 
Proposition. 0 

Remark 3.1. - From the above proof, one can deduce that II, actually 
satisfies the estimate 

Our next result gives a criterion for blow-up in finite or infinite time 
in terms of the growth of 4 as 1~1 + X. In the case of equation (1.1) 
without gradient term (i.e. ,u = 0), when R = RX, a result of this type 
was first proved by Lee and Ni [LN], who obtained finite time blow- 
up for any initial data C$ such that liminfl,l,, ]z12/(P--l)~(:~) is large 
enough. A similar result was proved in [STW] for equation (1.1) in the 
case 4 = 2ppl(p + 1) and 11. > 0 small. The authors then extended these 
results to general nonlinear parabolic equations of the form 

uUt - Au = F(IL; Vu), 
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including equation (1.1) for any 1 < Q < p and h > 0 [SW, Theorem 21. 
Moreover, the growth condition at 00 was weakened, having only to 
be assumed in some smaller region, specifically a cone, so that the result 
remains valid in any unbounded domain R containing a cone. The following 
result is thus the analog of Theorem 2 in [SW] for equation (1.1) in the 
case 4 > p (except that we do not know whether T* < m). 

PROPOSITION 3.3. - Let the regular domain s2 contain a cone W, p > 0, 
q 2 p > 1. There exists some constant C = C(W) > 0 such that for all 
d, E W,‘,‘(0), 4 > 0, satisfying 

(3.3) 

then the solution u of (l.lJ-fl.3) is unbounded (with T* 5 co). 
The idea of the proof is similar to that of Theorem 2 in [SW]. The main 

difference here is that we compare u to a global unbounded subsolution, 
instead of a (self-similar) blowing-up subsolution. We then use the properties 
of the equation under resealing and translation, to “spread” the mass of the 
comparison function out to infinity. 

Proof of Proposition 3.3. - We compare u with the function z, given in 
the proof of Proposition 3.2, for some possibly smaller U, and suitable A. 

Let us set C = Il~(o)ll~((K+ l)(~V+l))~‘(“-l) in formula (3.3). Since 
4 satisfies (3.3), there is some B > 0 such that 

1x1 2 B * $6(x) 2 cIxl-2’(“-1). 

Take (2 = miu(aa, l/B), and A = max(K(IV + l/2), &I + 3/2). For all 
:I: E R such that z,(O, z) # 0, we have Iz - Aella < (M+ 1/2)/n, hence 

B<J<A-(M+l/2) 
CY - (Y 

< Ix\ < A + CM + l/2) < (K + l)(M + 1) - (1 0 

so that (3.4) implies 

z,,(O, 3;) 5 “2’(“-1)I/Z(0)(/,< 
( 
(K + l)(M + 1) 

IX > 
2’~p-1)llz(o)l/m < (gx) 

As a consequence of the comparison principle (Lemma Bl), the solution u 
with initial data ~~(0) remains above z,, as long as it exists, and the result 
follows. 0 

Vol. 16. no 3.1999. 
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Remark 3.2. - With a little more work, it should be possible to prove 
the results of Propositions 3.2 and 3.3 for slightly more general unbounded 
domains, e.g. if (2 contains a paraboloi’d. 

In the case of I?lV, we obtain global solutions that blow-up everywhere 
as t -+ 00. As a consequence of Proposition 3.5, it will turn out that this 
can occur only in Rv. 

PROPOSITION 3.4. - Let <2 = R’, (I 2 ~1 > I and p > 0. There exists 
some 4 E C2(IRh ), 4 > 0, with compact support, such that the solution II 
qf (I.])-(1.3) satisfies T* = z and 

Proof of Proposition 3.4. - Taking d, = <u(O), with ‘u as in Lemma 3.1, it 
is an immediate consequence of this lemma and Theorem 2.2. 0 

We now provide a qualitative description of the blow-up set of all 
unbounded solutions (global or not) when (I > ~1 and R is any (non-Poincare) 
domain. We set 

The situation, which is rather unusual, is described by the following 
alternative. 

PROPOSITION 3.5. - Let 12 be a regular domain in RR;‘, q > 9) > 1 and 
CL > 0. Assume that $ E W,‘,“( 62) IS such that either T* < IX or 11, is 
global unbounded. 
(i) If II # B?‘, then E = {CO}. 
(ii) rf R = J?“, then either E = R” U {co} or E = {w}. 

Remark 3.3. - Propositions 3.2 and 3.4 prove that there indeed exist 
unbounded (global) solutions with blow-up set E of each of the types 
described in Proposition 3.5. However, we do not know whether the case 
E = {XI} can actually occur in RV. 

Proof of Proposition 3.5. - (i) Since 62 is regular, one can assume that 
O(xo,f) C RC for some z:u E R” and some F > 0. By a calculation 
similar to that in the proof of Proposition 2.3 (i), one easily finds that 
o(t, 31) = Ce “l,‘pEOl is a smooth (unbounded) stationary supersolution on 
R+ x 2, for suitable o > 0 and C > I1411rn. By the comparison principle 
(Lemma Bl), the solution u(t, .) must then remain locally bounded in a 
for t E [0, T*), hence E = {w}. 
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(ii) Assume that some x0 E R X is not a blowup point, i.e. 

The function 21 defined in part (i) is now a (smooth) supersolution on 
III+ x (m)” \ L3(X”; t)), p rovided we choose C > max(M, l/411,, ). We 
conclude as above. 0 

To conclude this section, we show that our method for proving the 
existence of unbounded solutions also applies to other equations, namely 
the convection-reaction-diffusion equations of generalized Burgers’ type: 

This partially answers a question raised in [AE] (see the commentary before 
Lemma 4.6 p. 453). However it remains an open question whether blow-up 
can occur in finite time when q > p (as it is for equation (1.1)). 

PROPOSITION 3.6. - Let q > p > 1 and a E I?!, a # 0. There exists 
some 4 E C’(R”), 4 2 0, with compact support, such that the solution 11. 
of (3.5) with initial data (b satisfies 

,lim* Ilu(t, .)llm = cc (T* 5 00). 

Moreover, if T* = W, then we have the estimate 

with y = min(l,l/(q - p)) 

Proof - By [AE, Theorem 2.11, for any 4 E L”(R”) (for 
instance), there exists a unique maximal solution of (3.5), classical on 
(O,T*) x R”, such that u E L”((O,T) x R”) for all T E (O,T*), and 
limt,T* Ilu(t)llm = cc if T* < co. 

We constuct an unbounded subsolution. Let V(t, X) = 2v(t. x), where v 
is given by Lemma 3.1 with q = p and 1-1 to be fixed later. 

First assume p < q < p + 1, hence p/(p + 1 - q) 2 p. Using Young’s 
inequality and IVvl 5 1, we get 

for any E > 0, with some constant C, > 0. 
Next assume q > p + 1 and set rn = q - y > 1. By modifying the 

function f in the proof of Lemma 3.1 in such a way that f(s) = s’/“’ 
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for s large, and by taking cu small in formula (3.1), one can prove that 
the result of Lemma 3.1 remains valid with the additional property that 
lO(~l’~)l E L”(IR+ x J?“), with IV(V~)~~~(~+~~K) arbitrarily small, 
and with 

Ilv(t, .)/lo3 > CP”. t + 32, 

instead of (iii). Then we obtain 

la.V(71~)~ = y -7Fa.V(7P) < CdIV(P)I < d. 
Y - P 

Hence, in both cases, 

;yv = vt - av - 2p-5J - 2”-5LV(zP) 

2 ‘Ut - a7J - (211-l - 2”+97F + 2q-lcp()y. 

Choosing E so small that 2p-1 - 2q-l~ > 1, and p > 2q-1C,, we deduce 
that QV 5 0, and the result follows by choosing 4 = V(0). (To justify 
the application of the comparison principle here, see for instance [AE, 
Lemma 2.2 and Remark 2.31, which apply, since V is C* and V(t) has 
compact support for all t; one can also adapt the proof of Lemma Bl.) 0 

Remark 3.4. - After reading a preliminary version of this article, M. 
Escobedo [E] informed us that the methods in [AE] can be used to show 
that, if q > p > 1, and under the additional assumption p < 1 + 2/N, then 
for all 4 > 0, $ $ 0, the solution u of (3.5) cannot be global and uniformly 
bounded on lli? x IR”. In other words, either T* < DC, or T* = x and 
limsup,,, Iu(~)]~ = oz. 

This remark, in turn, inspired us to refine the original version of 
Proposition 3.6. We point out that our method of proof is completely 
different from those in [AE] (eigenfunction methods). 

APPENDIX A. - LOCAL THEORY 
AND REGULARITY OF SOLUTIONS 

A.l. Introduction and preliminary facts 

Since our main results distinguish the behavior of solutions to 

7Lt - au + p(Vul” = (uIp-lu (Al) 
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depending on whether or not the Poincare inequality holds on R, it is 
essential that we have a local theory of solutions of (Al) on unbounded 
domains with unbounded boundary. 

For this purpose, in all that follows, we will assume that R is a 
uniformly regular domain of class C2, as defined in Amann [Am, 
Chapter III, p. 6421, who refers to Browder [B]. (It seems that this definition 
of uniform regularity is a bit stronger than the definition in Adams [Ad, 
P. 671.1 

Our approach to proving existence of solutions to (Al) is based on the 
(formally) equivalent variation of parameters integral equation: 

‘t u(t) = 2”cp + 
I 

‘t e(t-T)AJl(u(r)) dr + 
J 

e’“-“AJ2(u(r)) dr, (A3 
* 0 0 

where the mappings Jl and J2 are defined by 

J1(u) = alV~1~, 

J2(u) = bluI%~, 

with y > 1, p > 1, and a and b arbitrary real numbers. In this article, we are 
concerned with the case a > 0 (i.e. a = 1) and b = -h < 0. While the local 
theory for equation (A2) does not depend on the signs of a and b, the results 
of Appendix C depend on a crucial way on the fact that b < 0 (p 2 0). 

We use the abstract theory developed earlier by the second author [WI. 
This approach enables us to construct a local theory for equation (A2) 
based essentially on properties of the linear part of the equation, i.e. the 
heat semigroup. It is well known that the heat semigroup etn is well defined 
on an arbitrary open set and has the following properties. 

(SGl) ets is a Cc semigroup on L’(R), 1 < r < oc. 

(SG2) e ta is a contraction on L’(R), 1 5 T < co, i.e. 

Il~ta4117. I 11~11~. 643) 

for all t 2 0 and all 4 E L”(Q). 
(SG3) e ta is a bounded analytic semigroup on L”(12), 1 < r 

particular, there exists Mp such that 
< cc. In 

ll~etA~l(,, L MTt-ll($ll,., 

for all t > 0 and all 4 E L”(Q). 
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(SG4) If 1 5 7’ < s < ec and t > 0, then et1 : L”(b2) --t L”(O) is 
a bounded map and 

See (for example) the forthcoming book by Brezis and Cazenave [BC] for 
detailed proofs of these facts. 

We denote by D,.(A) the domain of the generator of the heat semi- 
group in L”(O). The following additional properties are special cases of 
Theorems 13.3 and 13.4 in Amann [Am]. 

(SG5) or(A), with its graph norm, is a closed subspace of IV’.“(U) n 
Wi.“(f2), with equivalent norms, for all 1 < r’ < X. 

(SG6) et1 restricts to a CO semigroup on Wt;,“( II), for all 1 < I‘ < 0~. 

Moreover, if N < I’ < m, then W1,“(62) is continuously embedded into 
CB(~) (see Adams [Ad, Theorem 5.4, p. 971). and 

q5(:1:) + 0. as 1:~ - 3~. :I: E 2. for all (i, E lVl.“(O). N < v < 3~. 
(Ah) 

(This is a consequence of Theorem 3.18, p. 54, Theorem 5.4, p. 97, and 
paragraph 4.7, p. 67 in [Ad].) By Lemma 11.1 in Amann [Am], Q admits 
a strong 2-extension operator, from which one deduces the following 
interpolation inequalities: 

llWllf 5 ~r.//(b112.r.IId)lI,.. 1 < ‘I’ < 32. (A7) 

IlOcjll~ < cl.~~~~I~~“~~~~~~:-~~. N < 7’ < x. (‘48) 

valid for all d, E W”.“(61). Inequality (A7) follows from [Ad, Theorem 4.7 
p. 791. Inequality (A8) is proved in [Frl, Theorem 9.31 in the case when 12 is 
bounded or R = RAV. The strong extension property implies the inequality 
for an unbounded domain $2. Finally, we also have the following elliptic 
regularity properties (see Amann [Am, Theorem 12.11). 

(ERl) If 4 E W,:,“(62) and A$ E L”(O), then 4 E W’.“(O), and 

~~d~~2.r < ~~(ll~~ll~ + ll4llJ. 

(ER2) If d, E lV,:,“(R) and A4 E Wl~“(O) then 4 E W”~“(12). and 

ll~ll:xr 5 ~(llWl~,r + Ikllr). 
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A.2. Statement of the local results 

Now that the assumptions on R and the semigroup etL have been 
specified. we can state the results of the local theory that that will be 
needed in the present article. The goal is to construct a local theory on 
the spaces WiY7’(C2), where 7’ < x is large. Our purpose here is not to 
find optimal value of ‘r, but rather to choose r’ as large as we need so 
that the technical arguments are as simple as possible. Thus, from now 
on we assume that 

Nq < r < 3~;. (AS) 

PROPOSITION Al. - Let $ E W,t7”(f2), where 7’ verifies (A9). 
(i) There exists u unique maximal solution ‘11 = Ib( .: c/l) E 

c([o.7;.((/,)),w(;~“(q of tl ze integral equation (A2). !f the existence 
time TV($) is~finite, then lim+,T, c(h) II?L(~)J~~;~ = 3c. 

(ii) (Continuous dependence) For all T E (0. Tr($)), there exists some 
neighbourhood V of’4 in W,~“‘(fI), such that T,,($) > Tfi)r all ,Y/) E V, and 
such that fijr all f E (0, T], the mup r/j H u(t: ~4)) is (Lipschit,-) continuous 
,pom IT to w(y(s2). 

The next point is to make sure that if d, belongs to IV,f.“(12) for more 
than one value of r, then the corresponding solutions and their maximal 
existence times T,.(4) do not in fact depend on 1’. We will also derive some 
useful estimates on the W1.” norm of the solution. 

PROPOSITION A2. - Let & E WC;.“(O), w h ere 7’ ver$e.s (A9), and let -u(t) 
be the resulting solution qf (A2) in W: ,“((I). 

(i) <u(t) E W,f”(O), for all t E (O.T,.($)) and cdl s E (7.. m). Also, 
u(f) E Tic’1.“(12) ,for all t E (0, T,.(cl,)). 
(ii) Let R > 0. There exist T > 0 und C > 0 such that T,.(4) > T ,fijr ull 

(71 E C/(,.,n) (the centered ball in W(f”‘(l2) of radius R). and 

for all y’,, ,(i/ E U(,.,X), and all f E [O, T], w h ere ‘11, and II are the corresponding 
solutions qf (A2). 
(iii) Zflilllslll)f,T~,(~,~;,) ll~(t)lll,, < cx7, then T,.(4) = X. 
(ill) If(/) E W:““(Q) n W,f.“(O) with 7’ < s < DJ, then T,.(d)) = T*(4), and 

the corresponding solutions in WC:“‘(Q) und in W(f”‘(12) coincide. 

Notation. - In what follows, we designate by T*(4) the common value 
of all T,.( (il), for all 7’ such that 4 E IVC:“‘( (2). 

Vol. 16. ,I 3lYYY. 
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Next, we turn to regularity properties of solutions of the integral 
equation (A2). By standard parabolic L”-regularity theory (see e.g. [LSU]), 
and Proposition A2 (i), it is easy to see that, for any & E W:“‘(0), the 
solution of (A2) given by Proposition A2 is in fact a classical solution 
of (Al) (that is: (1.1)) in (0. T*(4)) x 12. However, for the developments 
in Appendix C, we will require C* solutions up to the boundary, for 
smooth initial data, for instance for 4 E C:( IL). The basic tool we use 
is the generator of the semi-flow induced by the integral equation. Recall 
that if $ E W:“‘(0) and if ,u(t) is the resulting solution of (Ai), then the 
generator B is defined by 

provided this limit exists. The domain of the generator, or(B), is precisely 
the set of 4 E (2 for which this limit exists. From [W, Theorem 2.21, we 
deduce the following regularity result: 

PROPOSITION A3. - Let q5 E D,(B). Then: 
(i) u(t) E D7.(B) for all t E [O. T,.(4)), 

(ii) u E C’([O, T,.(4)); W$‘(0)), 
(iii) u,‘(t) = Bu(t) for all t E [O, T,(4)). 

Our main task is therefore to identify B and its domain. 

PROPOSITION A4. - D,.(B) is the set qf all 4 E I+‘,‘>“( 0) such that 

Moreover, 

Bq5 = A$ + n(V# + b141”-1$, Vq5 E 07.(B). f-41 1) 

Suppose 4 E D,(B) n W,~~‘y(0)f or some r verifying condition (A9). Then 
each ofA$, Jl($), and Js(q5) is separately in W’>‘(0) C CB(~). Moreover, 
the resulting solution u of(A2) verifies u E C( [O. T(4)). W”>“(n)). 

The following corollary, which is an immediate consequence of 
Propositions A3 and A4, will be useful in the Appendices B and C. 

COROLLARY A5. - Suppose q5 E C,“(Q), and let u(t) be the solution of 
(A2) with initial value 4. It follows that: 
(a) 4 E DT( B) for all T E (Nq, ~2); 
(6) u E C1([O,T*(~));G(W 
(c) d(t) = Au(t) + nlVu(t)lq + b(u(t)lPP1u(t)for al2 t E [0, T*(4)); 
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(d) each term AU(~), IVu(t)Iq, and Iu(~)I~-‘u(~) is continuous into CB(~) 
for t E [0, T*(d)). In particular, u is a classical solution of (Al) on 
Q = [0, T*(4)) x a. 

A.3. Proof of the local results 

We begin work by giving some additional properties concerning the heat 
semi-group. 

LEMMA A6. - Let 1 < T < 00. For all t > 0, eta : L’(R) + W,‘>‘(n) 
is a bounded map. Also, there exists C, > 0 such that 

IIVetA411r 5 G(l + ~-1~2)11411~, (Al4 

for all t > 0 and all q!~ E L’(R). 

Proof. - Since e tA is an analytic semigroup on L’(R), it follows that 
eta : L’( 0) + D,(A) c Wan’ is bounded for all t > 0, where we 
consider DT(A) with its graph norm. In particular, eta4 E l~V,‘~‘(fl) for 
4 E L’(R) and all t > 0. Thus, we may use the interpolation inequality (A7) 
and property (SG5), with 4 replaced by etAd. This gives 

IITJetAc41? I G(IIAetA411r + II~tAdAlr)Il~tA~llr, 

and the proposition now is a consequence of inequalities (A3) and (A4). 0 

LEMMA A7. - Let 1 5 T < s 5 00. For all t > 0, eta : L’(Q) + W:‘“(R) 
is a bounded map [except if s = co, then eta : L’(R) -+ W’>-(0) is a 
bounded map]. Also, there exists C = C(r, s) such that 

IIVetA$(l, 5 C(1 + t-cu-l’z)llqb)lr, where oz = p (i - i), (A131 

for all t > 0 and all 4 E L’(R). 

Proof. - If s < co, the fact that eta : L’(R) --f W,‘>‘(n) is a bounded 
map follows from the previous proposition and property (SG4) of the heat 
semigroup mentioned above. Also, (A13) is an immediate consequence 
of (A5) and (A12). 

If s = co and T > N, we use the Sobolev inequality (A8) and 
property (SG5), with 4 replaced by eta@. This is permitted since 
et”+ E W”>‘(n) n Wt>T(0). We thereby obtain 

IIVetAd41~ I G-(IIAetA~llT + IletA~/lT)T’NIIetA~ll~-~ 

I c(1 + ~-(‘+qI4II,, 
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where we also have used inequalities (A3) and (A4). This proves (A13) 
if s = x and 1’ > N. If s = IX and 1’ < N, then we combine (Al 3) 
with 1’ > N and (A.5) to obtain the general case. The fact that 
ctl : L“(R) + W’.“(Q) is bounded follows from (A13) and (A5) with 
s = oc. This proves the proposition. 17 

To handle the integral equation (A2) via the framework of [WI, we need 
the following property of the mappings .Ii and Jz. 

LEMMA AS. - !fq < I’ < lx, then ,J1 : W(:.“(12) + L”“‘(0) is Lipschit: 
on bounded sets and continuously Frechet diflerentiable. If N < I’ < ‘)(J, 
then 52 : W,1.“(0) 4 L“ ((2) is Lipschit,: on bounded sets and continuously 
Frechet differentiable. 

Pro@ - It is clear that if 1’ > (r, then ./I : W,:“‘(0) + L”“J(12) is 
Lipschitz on bounded sets, and in fact continously Frechet differentiable. If 
7’ > p, the same is true for .JZ : L”(0) + L’/“(0), and therefore also for 
JZ : Wi’7.(0) --f L”lJ’(f2). In both cases, the Frechet derivative of J2 at a 
function 4 applied to another function 71; is given by 

(To simplify the notation, we restrict ourselves to real-valued functions.) 
We can improve this as follows. If I’ > ,V. then VV(:“‘(Q) is continuously 
embedded into CD(~) (Theorem 5.4, Part III, pp. 97-98 in [Ad]). In this 
case, we see that if 4 E IVC:.“(d2), then DJ.,((l)) is a bounded linear map 
on L”(o), and therefore also a map Wi.“(12) + L’(Q). Since 

it follows that .Jz : W(;“‘(fl) + L”( 12) is continuously Frechet differentiable 
(and Lipschitz on bounded sets), for all N < 1’ < x. 0 

We are now ready to prove the local results for (Al) aand (A2). 

Proof of Proposition Al. - For each t > 0, we define the nonlinear 

map Kt by 

K, = e?Jl + e+J,. 

Lemmas A6, A7, A8, and property (SG4) imply that Kt : W,:,“(12) -+ 
W,‘>T(fi) is continuously Frechet differentiable, Lipschitz on bounded sets. 
Furthermore, if UC,,~, is the centered ball in W,‘,l‘(n) of radius R, then 

Lip(K+IUc,,n)) < CV(R)(l + ~--N(rl-1)/2”-1/2) 
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(In fact, C,.(R) 5 C,.(&y-l + BP-l).) Condition (A9) easily implies that 
N(q - 1)/2r + l/2 < 1, and so the integral equation (A2) generates a 
semi-flow on W,‘.“(Q) having the properties described in Theorems 1, 2.2 
and 3.1 of [WI. Note that the integral equation (A2) can be written simply as 

.i 

.t 
‘IL(t) = efA$ + Kt-T(lL(T)) di-. (A14) 

0 

This proves Proposition Al 0 

Proof of Proposition A2. - (i)-(ii) Let 1‘ < s 5 3~. By Lemmas A6, 
A7, A& and property (SG4), we see easily that for all t > 0, Kt maps 
W,f3”(12) into IV,‘,“(Q) [ except if s = Ed, in which case Kt maps Wi37.(62) 
into VV’~~(O)], and that 

Condition (A9) on 1’ implies that if 0 < t < T,.(d), then the integral term 
in (A14) is a convergent Bochner integral in Wi1”(<2) [Wi,“(O) in case 
s = ~1. Also, Lemma A7 implies that the semigroup term is in the desired 
space. Moreover, 

llu(t)lll,,s < C(kS)(l + t--v’2~~-i/~)~~~~~,. 
+ c(,r> s) (” + p-‘~“P” ) ~~;~ll’““““,T + ll44II’,,,,). (A’3 

In particular, if 4 E W{;“‘(O) n Wi’“(b2) with T < s < s, then 

(We emphasize that these calculations do not use the optima1 powers of t. 
Condition (A9) on 7’ enables us to use the same power of t for all s with 
1’ < s I CG.) 

If 4, r/i E w,‘+(n), and if u and ‘II are the corresponding solutions of 
(A14), a calculation similar to (Al 5) gives 

By part (iii) of Theorem 1 in [WI, given R > 0, there exists T > 0 such 
that T,.(4) > T for all b, E UC,..,) and the time-t maps of the semiflow 
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generated by (A14) are uniformly Lipschitz on U(,,,J for t E [0, T]. This 
fact combined with (A17) immediately gives (AlO). 

(iii) Suppose that lim supt,r,(~) j]u(C)]]~,~ < oci. Replacing 4 by U(E), 
for some small E > 0, we may assume that jj~(t)]ji,~ 5 C for all 
t E [O,T,($)). It follows that 

and 

for all t E [0, T,.(4)). The integral equation (A2) now implies that 

from which we see that 

b(t>ll?,v I wdl:., + CG” + t1’2) J t ll4m,T &-. 
0 

It now follows from Gronwall’s lemma that Ilu(t)llf,, stays bounded on 
any bounded subinterval of [0, TT(+)). This proves that TV($) = 00. 

(iv) The fact that the solutions arising from 4 in w,‘>‘(n) and in 
W$T(s2) coincide on [0, TT(4)) is an immediate consequence of (A16), (i), 
and of the local uniqueness in IV,‘>‘(n). In view of (A15), with s = cc 
and T replaced by s, (iv) follows from (iii). 0 

Proof of Proposition A3. - This is an immediate consequence of 
Theorem 2.2 in [WI], using in particular the fact that the maps 
Kt : W,lr -+ W,)’ are Frechet differentiable. 0 

Before beginning the proof of Proposition A4, we note that, by 
Theorem 3.1 in [WI, 

where D,(B) is precisely the set of d, E Wt,T (a) for which this limit 
exists. (There is a technical point here worth mentioning. In Theorem 3.1 
in [W] there is an additional requirement that eta4 E Dl,r(A) for all t > 0, 
where Dl,T(A) is the domain of A as a semigroup generator in Wi’T(s2) . 
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However, since eta . is an analytic semigroup on L’(O), it is also an analytic 
semigroup on Dv(A), with its graph norm. Thus, eta4 E Dr(A”) for all 
t > 0. Since DF(A) is continuously embedded in w,‘lT(n), it follows that 
D7.(A2) c or,,(A). It then follows that etAd E Dl.T(A) for all t > 0 
and for all d E W$“( Q).) 

Proof of Proposition A4. - We note first that if $J E W,‘.l‘(O), where 7’ 
verifies (A9), then J2($) E W1>‘r(0). Indeed, V&(4) = pI$I”-‘V$, 
which is in L”(0) since W,‘>‘(Q) c L”(R). Thus e”“J2($) converges 
to Jz(q5) in W’,“‘(U) for all q!~ E Wi1T(s2). Also, Jl(q5) E L”/q(R), and 
so et4 Jr (4) converges to Ji (4) in L’/q(fl) for all 4 E W,‘,“( 0). Finally, 
A$ E W-1s’(S2), and so Aet4$ = et”A$ converges in W-‘,“(O) for all 
4 E W,‘,7’(fl). In other words, if q5 E W,‘,l’(O), then AetA@ + e”-lJi(d) + 
e”“Ja(4) converges as a distribution to A&+cL~V$~‘J+~)C@-~~, as t + O+. 

Suppose that (b E D,(B). The W,‘>“(Q) limit (Al 8) must be the same 
as the distribution limit. Thus, A$ + alV$Jq + bl$l~-ld, E W,‘97’(fl) and 
B$ is given by (All). 

On the other hand, if A+ + ulVyjlQ + bl#-l$ E W,‘;l’(O) , then 

AetA + et-‘Jl(q5) + etAJ2(d) = etl (A$ + alVq!I” + bl+l”-l$)! 

and so the limit (A18) indeed exists. 

Suppose that q5 E D,(B) rl Wi>‘” (Q). We have already seen that 
J2(4) E wyq. S’ mce $ E W,‘.rq(fl), it follows that Jr(+) E L“(R). 
The hypothesis q5 E D,(B) implies that A$ + Jl($) + Ja (4) E W,‘.7’(Cl), 
and so A$ E L’(R). Elliptic regularity (ERl) enables us to conclude that 
qb E W2y2). 

We claim that Ji (4) must therefore be in Wl>“(Cl). To show this, 
we need to show that VIV$\q E L”( 0). One easily verifies that 
&pf#lp = qpf#$-2vqiv(a,q5). s ince 4 E W2>‘(Q), each component 
of 04 is in W1>T(C2), which is embedded in L” (0). Moreover, each 
component of V(&fj) is in L’(n). This proves the claim. 

Since J,(4), Jz($>, and A$ + Jl (4) + J2( 4) are each separately in 
W1>T(fl), it follows that A$ E W1.T(0). The elliptic regularity condition 
(ER2) allows us to conclude that q5 E W”>‘(O). 

By Proposition A3, Bu( t) is continuous into Wl,‘(R). From the above 
bootstrap argument, applied to u(t), and the elliptic estimates given in (El) 
and (E2), it follows that u(t) is continuous into W3a”(fl). This completes 
the proof. 0 
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APPENDIX B. - COMPARISON LEMMAS 

Although such type of results are well-known, we provide here in precise 
form the comparison lemmas that are adapted to the present context (and in 
particular to the case of unbounded domains, I/c’(:.” solutions, and unbounded 
comparison functions). 

LEMMA B 1. - Let C$ E WC:,” ($I), (i 2 0, and ‘11 he the corresponding 
solution @(A2). Let T E (0, T*(4)), C) = (0. T] x 52. 
(i) Then ~(t. :c) > 0 on [O. T* ( C/I)) x 2. 
(ii) Assume that 11 E C(C)) n C~L.2(C)) satisfies 

und 
lirn sup Il(r, :c) < 0. 031) 

(t..rr)tTj, I.l./iY. 

Then ‘a < u in Q. 

Proof of Letnma Bl. - (ii) Let $,, E C:(12) be a sequence that 
approximates 4 in W,i3’(S2) and IL,, the corresponding solutions. By 
Proposition Al (ii). each u,, exists on [(I. T] for II, large enough. Moreover, 
each u,, is a classical solution by Corollary A5, and is bounded on c) by a 
constant A&. Let 711 = II,, - U. Since u,) E C([O, 7’1: Wi’“(12)) and ‘U 2 0, 
it follows from (A6) and a compactness argument that 

and we have ~(t, z) 5 0 on the parabolic boundary ({0} x 12) U (( 0.1’) x 
X2). Therefore, either 111 5 0 in Q, or the positive supremum of 10 in Q 
is attained at some point of Q. 
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On the other hand, UJ clearly satisfies 

on Q. (Consider separately the cases ~,,(t, :I:) < ~(t. .I:) and 0 < ,o(f. .I:) 5 
u,, (t. x).) Therefore, by the maximum principle, ~1 cannot achieve a positive 
maximum in Q (note that VU,, = VU at a positive maximum). Hence, 
‘IL,, 5 11 in Q. The result follows by letting II, + 00, and using the continuous 
dependence (Proposition Al) and the embedding IV,~.“(~2) c CO(~). 

(iii) The proof is similar to that of (i), by exchanging the roles of v 
and ‘u,, In particular, 2 = 1’ - ‘u,, satisfies (B2), thanks to (Bll and (A6). 
and ,z also satisfies 

with A4 = max(jV,,, M’) and A,1’ = sup ‘cl(t. .I,). which is finite by 
(tJ)Gj 

virtue of (Bl). 
(i) This is a special case of (iii) with II = 0. El 
The following version of the weak maximum principle will be needed 

in the proof of Lemma C2. It relies on the Stampacchia method. A similar 
result (in the case of W(;.“(12) instead of W1.“(R)), proved by M. Chipot. 
can be found in [AW, Lemma 4.21. 

LEMMA B2. - Let N < 7’ < x, 7’ > 2, and T, C > 0. Assume that 
z E C([O.T], W1~“(i2)), z E C1((07 T]; L”(il)), and 

on (0. T] in the W’-‘,“(f2) sense. Then K = mltx SUP, 
fE[O.T]. .rEiK? 

and we have z < K on [O. T] x n. 

Prmf qf Lemma B2. - Since IV’,‘(n) c CD(~), z is uniformly 
bounded on [O.T] x 2, so that, in particular, K is finite. We have 
(z-K)+ E C([O:T]:Wi;“(R)), (z-K)+ E C’((O.T].L”(R)). Moreover. 

.I (Z(t) - K)i;-l%,(t) d1: = g 
’ . 

i’ (Z(t) ; Ir’)k f&r:. 

and 

(A+); (+)-K&-l )I1.m, T,rl.;.” = -(r-l) .I (%(t)-K)‘C-‘jaz(t)l” da:. 
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Therefore 

d J (Z(t) - K)” 

z 7” 
+ dr I -(r - 1) 

J 
‘(z(t) - q-“lVz@)l” dn; 

Writing 

+ c .I ‘(z(t) - K)i;-‘pz(t)l cl?:. 

(z(i) - K)I;-lIv(z(t) - K)+I 5 c@(t) - K)~-;-‘lrw)l’+c,(4~) - vl;. 

and choosing F small enough, we obtain that 

and the results follows by integrating in t. cl 

APPENDIX C. - EXCLUSION OF GRADIENT 
BLOW-UP: PROOF OF PROPOSITION 2.1 

We need two preparatory lemmas. All the constants C, in the statements 
of Lemmas Cl and C2 remain bounded when their arguments remain in a 
bounded set. The first lemma shows that blow-up in any L“ norm (for large 
7’ < c~) implies blow-up in all of these norms. Throughout this section, u(t) 
is the solution of (A2) with initial value q5 E IV,‘.‘(n), as in Appendix A. 
Here, we need to set JI(u) = -/rlVulq, /L > 0, and Jz(u) = I*ulP-r~. 

LEMMA Cl. - Let q5 E W:.“(0), C#I > 0, s 2 7’ < x and 0 < T < 
T* < cxj. Then 

If; in addition, r > max(p, Np/2), we have 

Proof of Lemma C 1. - Let us first assume that d, E C,” (0)) so that (2.1) 
holds. For any finite T > s, multiplying (1.1) by or-‘, integrating on R 
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and using Green’s formula yields 

~~~~~u”hu+~u~+‘-~-/l~uI.-l~vu~. 

= -(r - 1) .I’u1‘-2pL)2 + / up+7’-1 - p. /ur-l/vu~q 

hence, 

Ib(W 5 Il4O>llr ~xP[r’l‘owT II~W] -- 
By density and continuous dependence, using the embedding IV1l” c Lw, 
this inequality holds in fact for any 4 E IV,‘>‘(n) and (Cl) follows. 

Next, it follows from the integral equation 

s t u(t) = eta,(O) + e(t-T)A (u”(r) - ,~lVu(r)l~) dry 
0 

the nonnegativeness of U, property (SG4), and T > max(p, Np/2), that 
for all t E [0, T],: 

11~~~IIcc 5 Il4ulc-= + c osu!T Ilu(s) j)t - s)-NPiz’. ds 
-- 

I 11~(0)11cx2 + C(l +q-Np'2' SUP IIu(s)II:, 
O<t<T 

and the result follows. 0 

Remark Cl. - By an iteration procedure, one can see that the second 
part of Lemma Cl (and hence Proposition 2.1) remains valid in fact for all 
r > s, with T 2 p and T > N(p - 1)/2. 

The next lemma, which is modeled after [Q2, Theorem 5.1 (i)], shows 
that the absence of blow-up of u in L” norm prevents blow-up of the 
gradient of u in L” norm. 

LEMMA C2. - Let q5 E W,‘,‘(n), q5 > 0. There exists some to = 
~o(ll~llw~.~> > 0 such that T* > to, and such that for all T, to < T < T*, 

SUP llV~(~)IIca F G(T, Il4lw~~~, SUP IlWlm). 
to<t<T to<t<T 

fC3) 

Proof of Lemma C2. - We first assume that 4 E C:(0) and define the 
function w(t, X) = i IVu(t, x)1”. By Propositions A3 and A4, it follows that 

w E C’([O,T*), L”(R)) and w E C([O,T*), W2,“(Q)). 
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Moreover, ‘~1 satisfies the equation 

where each term is in C( [O. T”). L”(R)). By Proposition A2 (ii), there 
exists to = ta(jl4l/tt-1,~) > 0 such that T* > to, and such that 

Il~4~OllK 5 G~(llchllw~ s 1. cc41 

Fix T E (to,T*), and set 

A = 2p sup l[u(t)l[:-’ < cx: and B = ~LQ sup IlV~(t)ll~,-” < X. 
tojt<T to IfiT 

Then the function z(2:.1:) = ru(t.:r:) exp(A(to - 1;)) satisfies the parabolic 
inequality 

%t < A% + L3lVzl. 

where each term is in C( [to, T], L”(b2)). Let Cj = (to. T) x (2. Since 2 E 
C( [lo, T], Wl.‘( [I)), it follows from (A6) and a compactness argument that 
the supremum of z in a is attained at some point of G. Applying the weak 
comparison principle (see Proposition B2), we deduce that the maximum 
2 of z is attained on the parabolic boundary ({ fo} x 0) U ((t(,. T) x Sl). 
The end of the argument now proceeds exactly as in [Q2, Theorem 5.1. 
p. 1181. We give the details for the convenience of the reader, 

If the maximum 2 is in fact attained on {to} x 12, then (C4) immediately 
gives 

sup IlV~(l,)ll~ 5 (I,(ljqhllrr-i..)~xl’(.4(T - to)). (C5) 
h <CT 

If 2 = z(t, :I;,,) for some point (t?:co) E (to, 7’) x Xt, then, since II, is a 
classical solution up to the boundary (Corollary A5), it follows that 

0 = ut(Lq) = n?/(t,:r:,)) - ~/pu(f.:r:(])I”. K6) 

By Lemma C3 (see after the end of this proof), we have 

Au - c&)) < NC(i2) “‘“(t ‘. ) = NC(b2)(Vu(t,x”)I. 1 - I,,,, f--1,(l 1 cc71 

Since IVu(t, .)I attains its maximum at (t, x0), we have s(t,z:n) 5 0. 
Therefore, by (C6) and (C7), we obtain jV~(t.c~)J’~-~ 5 NC(O)//6. Both 
this inequality and (C.5) give the desired estimate (C3). Proposition A2 and 
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the embedding IV,‘>‘(n) c L”(R) allow one to extend this by density to 
all 4 E W,L’“(0). 

0 
The previous proof made use of the following geometric lemma. This 

property is stated without proof in the work of Quittner [Q2]. Though it is 
of an elementary nature, we prefer to provide a proof here, both for sake of 
completeness, and because the required assumptions on 62 have to be made 
precise when dealing with an unbounded domain. 

LEMMA C3. - Assume that R is uniformy regular of class C2 (see 
Appendix A). Then for any,function u E G’“(n), vanishing on i)Q, it follows 
that 

for all :I:’ E i)R, where ‘11 is the normal direction and r any tangential 
direction to i)R at :I:‘. 

Proof of Lemma C3. - Let :l:c be a point of X2. By the uniform regularity 
assumption, there is a parametrization of X2 in a neighborhood Ii of :K”. 
of the form .I:N = @(:I:‘) = H(x:~.... . :IJ~,~-~), satisfying IjD”Oll,X 5 C(G). 
Let (c;)~<;<N be the corresponding orthonormal basis of R‘v. 

Without loss of generality (by an orthogonal change of coordinates), 
one can assume that the tangent hyperplane to i)ll at X” is parallel 
to f’l, “. : e:y-1, and that the exterior normal is parallel to e,%-. Let 
1 5 i 5 N - 1. The ith tangent vector to 312 at a point :I: E X1 n I: 
is given by 

Since V(X) = 0 on 3R, it follows that 

OV(X).T, (!I;) = 0. 

for all 3: E i3R n U. In other words, 

On the other hand, 

(W 

$(x0) = lim 
(VU(X) - OU(X")).f2i 

I 
,:1: _ 20, as :I: + :L:‘, 

with :I: E 80, and &.e; + 1. 
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Since E(z”) = 0 and Vv(zO).e; = 0, we infer from (CS) and the 
mean-value theorem that 

and the result follows. 0 

Completion of proof of Proposition 2.1. - Assume that T* < 00 and 

for some T such that s < 7’ 5 cx; and r > max(p, Np/2). Then, by Lemma 
Cl, (C9) actually holds for any T, s 5 T 5 co. By Lemma C2, since C3 
is bounded function of its arguments, we then obtain 

By Proposition A2, this implies that T* = co, a contradiction. 0 
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