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On a free boundary barotropic model 
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ABSTRACT. - We prove stability (or compactness) and existence results 
for a free boundary model of a barotropic compressible fluid. Then, we 
construct weak solutions as asymptotic limits of the isentropic compressible 
Navier-Stokes equations as y goes to co. 0 Elsevier, Paris 

R&JM~. - Nous montrons l’existence de solutions faibles globales pour 
un modele de fluide compressible barotrope. Ces solutions sont construites a 
partir d’une limite asymptotique des solutions de Navier-Stokes isentropique 
compressible. 0 Elsevier, Paris 

1. INTRODUCTION 

We consider the following system of equations, written in (0. x) x 62, 
where f2 = RN or fZ = T’, 

(1) + z + div(pu) = 0 in (0. T) X II, 0 < p < 1 in (0; T) x 51. 
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(2) 2 + div(pu @ U) - PAIL - <Vdix + V71- = of in (0,T) x G. 

(3) div71. = 0 a.e. on 
{ > 

p = 1 . 

(4) 7r = p(p) ax. on 
1 > p<l > 7r 2 p(l) ax. on 

{ > 
p=l 

where T E (0, oo), CL > 0, 1~ + < > 0, I)(/-‘) is a nondecreasing positive 
continuous function and f = f(t. x) is a given function corresponding to the 
volumic force terms (for instance we can assume that f E L1(O. T: L’)“). 

The unknowns (p, U: 7r) correspond respectively to the density of the 
fluid which is a nonnegative function, the velocity which is a vector-valued 
function in IFC” and the pressure. The system must be complemented with 
initial conditions, namely 

(5) p?L = m” ) p = p” 
1 =o t=o 

where 1 2 p” > 0 a.e. , 0” E L1(Q), m” E L’(O), ,rn” = 0 a.e. on 

{PO = o>, PO f 0, and p01~‘12 E L1, denoting by 16’ = $ on {pO > O}. 

~ro=Oon{~o=O}.InthecaseofT~.wealsoimposetha~fp”=M<1. 
otherwise the above system reduces formally to the incompressible Navier- 
Stokes equations in which case we do not know whether the (hydrostatic) 
pressure is bounded from below. 

One of the motivations to study this free boundary problems is the study 
of fluids with imbedded domains (large bubbles) filled with gaz : standard 
models involve a threshold on the pressure beyond which one has the 
incompressible Navier-Stokes equations for the fluid and below which one 
has a compressible model for the gaz. Another motivation is the possibility 
to study a compressible-like system which includes the incompressible case 
as particular case (p - 1). 

Now we are going to define precisely the weak solutions (solutions a la 
Leray) we will use. We look for solutions satisfying 

(6) p E L”“(0, T;L” fl L](Q)) n C(O,T; L”) for any 1 5 1, < x 

(7) Vu E L2(0. T. L2) and 7~ E L’(0. T; Hi(B)), 

where I3 = TK if Q = 7”” and B is any ball in IR’ if Q = IRS, in 
this second case we also impose that u E L*(O, T, L2”/“-2(lR”)), if in 
addition N 2 3. 
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We also require 

(8) plu12 E L”(0, co; L1) and pu E L”(O,oo: L2) 

Finally we impose that 

(CJ) r E M((O,T) x fl>, 

where M((0, T) x R) is the space of bounded measures on (0, T) x R. 
Next, equations (I), (2) must be satisfied in the distributional sense. 

This can be written using a weak formulation, namely we require that 
the following identities hold for all 4 E C”( [0, 0~) x 0) and for all 
@ E C”([O, CQ) x q” compactly supported in [0, OS) x R (i.e. vanishing 
identically for t large enough) 

We want to point out (and we will come back to this issue later on) that the 
weak formulation (10) for p contains the initial condition p( 0) = p” since p 
is assumed to be continous in time with values in L2. However (11) does 
not yield that pu(0) = m”. In fact 7r is a mesure and all we can deduce in 
terms of continuity concerns the divergence-free part of pu, namely P( p’u) , 
where P(w) = 71 - V(A)-lV.~u. Hence if @ is divergence-free diu(Q) = 0 
then (11) becomes 

which yields that P(pu)(O) = P(m’). 

On the other hand equation (3) and the condition 0 5 /, 5 1 must be 
understood in the sense of almost everywhere defined functions. 
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Notice then that condition (4) does not make sense since T is not assumed 
to be a function (defined almost every where). However this condition can 
be rewritten as follows 

(13) p(7r -p(p)) = 7r - p(p) > 0. 

We will show that this condition makes sense under the above requirements 
and equation (4) should be understood in the sense of (13). In fact we will 
show the following regularity theorem 

THEOREM 1.1. - Jf’ (p, ‘u. T) sati& (I), (2) and the above requirements 
hold then condition (13) makes serue and we have 

(14) T E M(0, T; L’(S2)). 

(15) /m E BV([O. 92): L2(52) - 711), 

(1s) P(p) E C( [O. cx2); L2(62) - w). 

In this result, BV( [0, ~0); L” - 1~) and C( [0,03); L’ - ‘~1) are respectively 
the space of bounded variation and continous functions on [O. E) with value 
in a bounded set of L’(R) equipped with the weak topology. 

Now we are able to state our main existence result. As is customary when 
dealing with global weak solutions of partial differential equations (and due 
to the weak convergences in the approximating systems) the global weak 
solution we are going to construct will satisfy in addition the following 
energy inequalities 

I 
.t 

(17) E(t) + D(s)& 5 E” + pu.f a.e. t. 
. 0 

(18) q+DS 
I 

p,u.p in D’(0, oo) 
. L> 

where E(t) = 
.I’ 

Lz ;pl~12(t), D(t) = / pjDu(‘(t) + < (div *u)‘(t) and 
(2 

E” = * 1 
I 

zp”~~u~2. Moreover, K will be bounded in M((O,T) x 12) by a 

constantodepending on the initial data and on f. 

blM((O,T)x62) I w”. m”5 f) 
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THEOREM 1.2. - Besides the conditions on the initial data already given 
above we assume that p(p) = 0 and that f satisjes the,following condition 

f E Ll(0.T: L*(R)) + L2(0,T: L”(0)) if 12 = T’. 

(1’3) f E Ll(O, T: L2 + L”(Q)) + L2(0, T; L”(B)) if R = R2. 

f E Ll(O,T:L* + L”(0)) + L2(0.T:L*(Q)) if N > 3. 

where 1 < r 5 2 and B is a bounded ball in R2, then there exists a solution 
(p, u3 r) ,fur the system (1) - (4) satisfying the above requirement and the 
energy inequality. 

In the next sections, we shall give precise conditions on p(p), and state 
more general results. Besides, the requirements on p can be weakened (in 
the case of lRN), in fact we can take a fluid of infinite mass. For instance 
we can impose the following condition 

(20) p” - p E L”(0; CXI; Ll(R’)). 

for some constant i?, such that 0 < p < 1 (or more generally for some 
reference function p in lR” satisfying 0 5 /, < l), we will come back to 
this issue in details in section 5. 

A priori estimates will be derived in section 2, In section 3 we study the 
compactness of sequences of solutions satisfying the requirement above, 
then the existence results will be proved in section 4, using the convergence 
of solutions of the compressible isentropique Navier-Stokes equations as y 
goes to the infinity (where the pressure is given by p(p) = ~7). Finally 
in section 6, we give two convergence results to the incompressible 
Navier-Stokes system. 

2. A PRIORI ESTIMATES 

We are going to show here that the notion of weak solutions we have 
defined above is a natural one by showing some a priori bounds. First. 
we can notice that the conditions (1) and (3) are compatible, in fact we 
have the following lemma 

LEMMA 2.1. - Let 11 E L2(0, T; H,&) and p E LF,,. satisfying 

g + div(pu) = 0 in (0. T) x R. p(O) = p0 

Vol. 16, Ilo 3.1999. 
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then the following two assertions are equivalent 
I. div u = 0 a.e. on {p > l} and 0 < p0 < 1, 
2. 0 < p < 1. 

Proof. - Let us begin by the first implication ( I) -+ 2) ), using the 
regularization lemma stated in [7] (lemma 2.3 p 43), we get 

(21) 
W(P) 7 + div(P(p)u) = (P(P) - P,@(P)) divu. 

for any C1 function ,0 from IR. to R. such that j/J(t)1 5 C -t C t. Next 
let /3 be defined by 

[j(t) = 0 if t 5 0. 
(22) P(t) = t if 0 5 t < 1, 

P(t) = 1 if 1 5 t. 

then we get 

y + div(,B(p)u) = lf,,>ljdiv(u) = 0, 

in fact taking1 any s;quenc; of C1 furtions /& such that ijjn (t) = P(t) 

on ] - 30, ---[ U 1;) 1 - ;[ U 11 + ;‘+x[ and j@‘(t)1 5 C uniformly 
in 71, we can rewrite (21) with [-l replaced by &, then a,(p) converges 
pointwise and in L2 to [j(p). Moreover (/&(p) - p/j:,(p)) divu (which is 
bounded in L&,) converges pointwise to 0, and we can then recover (23). 
In addition we have /j(p)(t = 0) = /lo ; and setting d = p(p) - p, we see 
that d solves the same equation as p and p(p) and that d(0) = 0. Applying 
the regularization lemma another time, we see that InI also solves the same 
equation and since .L2 IdI = j;, IdI for any t, we get that d = 0 and 
hence p(p) = p which yields 2). 

Now, we turn out to the proof of the second implication. Since 0 5 !, < 1. 
we see that p is bounded and then (21) holds for any C1 function 0. Writing 
it for ,0(p) = p”, for any integer k, we get 

$ + div(#‘u) = (1 - AI)@ divu. 

Since 0 5 pk 5 1, we see that &pk’ is bounded in IV’+((O;T) x 52), 
in addition diu(pku) is bounded in L”(0; T; Hl;:(0)), for [pkul 5 I~‘“L[ E 
L”(L&,). This yields that kp” divu is a bounded distribution (in Hli: for 
instance). Letting ,% go to the infinity, we get 

(25) pk’ divuy0 in D’. 
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so we get 

p’“divu -3 l+ildivu a.e, 

and since Ip” divul < divu E L&.((O:T) x 0), we get that &U u = 0 a.e. 
on {p = 1). This completes the proof of the lemma. 0 

Next, we concentrate on the estimates we can derive from the equations. 
As is often the case when dealing with weak solutions, a priori bounds are 
obtained by making formal computations on the equation. Of course, those 
computations are rigorous if we assume that (p, u. 7r) are smooth enough. 

Since 0 < p 5 1 and J’ p(t) = s p”, we see that /I E L”(0, T;L” n 
Ll(R)). Then, the continuity of p in P(R) - ‘u is deduced from the bound 
on d,p in L”(H-l), using the appendix C of [7]. The continuity of p in 
LP (0) (for 1 5 p < 00) is then a simple consequence of the conservation of 
the mass and of the L” bound. Indeed, taking ,8(p) = fi in (21), we get 

afi 7 + div( Jisu) = i\/i; divu. 

In fact, we must approximate Jj?J by the following C1 functions 
& = &%LE and then observe that 

We deduce then that J7r E C( [0, T]; L2 - ~1) and since 

, p*(t) = I’ s P(t) = A4 
is independent oft we see that fi E C( [0, T]; L2), hence p E C( [0, T]; L1) 
and then we conclude using the L” bound on p. 

Then, multiplying the momentum equation (2) by u, and using (I), we 
get (at least formally), 

(27) af[p$f] +div(,u$+7ru) -ndivu-/LlF + 

-<div(u.divu) + ,u(Du)~ + <(divu)* = pf.u, 

Vol. 16, no 3.1999. 
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integrating over 0 and using the fact that 7&v?/ = 0 (since divll, = 
0 a..c. or1 and K = 0 il..f’. on 1, we get the following 
energy identity 

and then integrating over (0, t), we obtain 

(29) 

I 
. &,) + .’ 

.R 2 ’ II 

. p(Lh~)~ + E(div4r)2 = ’ PM(O) + ” ’ Pf U : . 
.o . I, I . R 2 II 0 . II 

Since /L + < > 0, we obtain (7) integrating by parts and using the 
Cauchy-Schwarz inequality, 

(30) 

Hence, there exists 7) > O(= irj,f(j~. I-/, + E)) such that we 
all t the following inequality where we have assumed 
.f E L1((O. T; L’). 
(31) 

have for almost 
in addition that 

Using Gronwall’s inequality and noticing that I I,,,$llL~ 5 1, we deduce 
the first part of (8) and the bound on Du in L2(0, T: h2( (2)). Then we get 
a bound on p?~ in L”(0.T: L2), since /I E L”. 

Next, we give the necessary changes to handle force terms satisfying 
(force). Let us set f’ = fl + f2 + f3 such that .fI E L1(O. T: L*(il)). 
f2 E L1(O, T: Lm(f2)) and f3 E L”(0, T; S), where X = L”(Q) if 12 = “I”‘, 
X = L”(B) if 12 = IR” and X = L* ($2) if N > 3. Then, we see that .ft 
can be treated as in the case when f = .fr E L1(O, T; L*), the second term 
fz (which can be taken null in the periodic case) is treated as follows, 

And we use to conclude the conservation of the mass, namely II/II IL1 = M. 
For the third term, we need to use the bound on Du in L2. 
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If R = T2, then we have 
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1 1 
where - + - = 1 and hence 7’ ,r/ 

(33) ~/~Pf3.(U-jU)~ I CllPll~~llf3llL~II~~~II~~? 

L pfll:. + EIIDU(I;2. 

On the other hand, we have 

and since ~$4 > 0, we deduce that for almost all 1: 

If 1 i I IlJP4IL~ + CIIPIIL~JIDUIIL~ 
which yields 

and finally we deduce 

Then, taking E small enough (E 5 .~/a), we can absorb the second term 
of the right hand side in VI [Dul I$. Applying Gronwall’s inequality, we 
conclude easily as before. 

If R = R2, then f3 is assumed to be bounded in L2 (0, T; L” (El)) for 
some fixed ball B, hence we have 

where BR is a big enough ball (the radius R will be chosen later on). Next 
we know, using the classical Sobolev inequalities, that a bound on Dh in 
L*(Bi) yields a bound on h - f/b in L*(L”(Bi)) for all 2 5 y < +cc 

Vol. 16. Ilo 3-1999 
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then by a scaling argument we get that 

Ilh - j,, f4WBR, L w2’“IIwLwt)~ 

In fact, let h be defined on Bi and tLR defined on BR by hi = h g 
0 

, 

then we have 

We then get as in the periodic case, 

where -1; + 1 = 1 (in the sequel we shall assume that r.’ > 4, which 
means &at T 2 4/S, this assumption can be made without loss of generality 
since B is bounded). In order to complete the estimates we need a bound 
on fn, U. For this we shall use the fact that the fluid does not flow very 
fast to infinity, indeed arguing as in [6] we can take a cut-off function 
4 E C,“(R”) such that 4 = 0 if ):I:I > 2, 4 = I if l:cI 5 1, 0 < d, 5 1, 

then we multiply (1) by (b g 
0 

and integrate by parts in z to find 

then taking R big enough, we get for all t 
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hence, as long as 

(34) 

we have 

inf 
.I’ O<t<T ~~ 

and we will show that this holds true if R is chosen big enough. In the 
sequel, we assume that (34) holds, hence computing as in the periodic 
case, we get 

where 1 + !. = 1, 4’ > 4 (for instance we can take 4’ = r’). Hence, the 
4’ 4 

second term can be estimated as follows 

Summing up the two estimates, we get 

where C is a constant that does not depend on R and where (35) is true 
as long as (34) holds. Taking E small enough (E < v/2), we can absorb 
the second term of the right hand side in v/lDull$. Then, taking R large 
enough we conclude easily. 

If N > 3 then we have 

ll~~ll,~ I CllWIL~ 

Vol. 16, Ilo 3.1999 
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and hence 

and we conclude easily. q 
Next, in order to deduce the L1 bound on ?r (we assume that 7r E Li 

since 7r will be the weak limit of a bounded sequence in L1), we apply 
the operator (-A)-rdiv to the momentum equation (this idea was used 
by P.-L. Lions in the case of compressible Navier-Stokes equations). We 
begin by the case C? = IRN, 

i 

7r = &(-A)-ldiv(pu) - R,iRj(pu;uj)+ 

(37) 
+(p + <&u(u) + (-A)-‘div(pf), 

where R; is the Riesz transform (Rj = A-‘&) and where we must fulfill 
the summation over 1: and j. Here we have used that A-‘[A(divu)] = divu 
and that A-r[Ax] = 71, since we assume that divu E L*(IR’) a.e. on t and 
that 7r E L1(lRN) a.e. on t. In order to obtain bounds which depend only on 
the initial data, we can integrate this identity and use the fact that K > 0, but 
since we have only an L* bound on div u, we cannot integrate on the whole 
space. To recover this, we use the fact that p7r = 7r and multiply (37) by p, 

7r = &[p(-A)-ldiv(pu)] + div[pu(-A)-‘div(pu)]+ 

(38) 

1 

+pUiRiRj(puj) - pR;Rj(pUiUrj)+ 

+(p + ()pdiw(u) + p( -A)-‘div(pf). 

Integrating (38) over IRN, we get a bound in L1 that depends only on the 
initial data. We are going to explain how we treat the six terms that occur 
in the right hand side of (38). First we have 

(39) 

T 

IJ J &[A-A)-‘div(pu)] I 211p(-A)-1div(pu)II~~(0,T;~~(R)). 
0 RN 

y upg t? pu E Lm(L”/2), we get (-A)-ldiv(pu) E L=(Lq), with 
-- _--- 
y 3- N 

> 0, and then we conclude by using that p E Lm(Lq’), 

where A+L = 1. 
4 4’ 
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Notice that we cannot use the continuity of /,u in L” - 1~1 (1 5 p < 2) at 
this stage (since ?r E M) and that we must explain the meaning of (39). 
Let & be a sequence of CF(O; T) that converges to l[e,T] in L1(lR) (a;d 

in LQ(lEt) for all 1 < 4 < cc) and such that & is nondecreasing on [0, ;I, 

increasing on [T - i, T] and &(t) = 1 on [L.7’- k]. Then we get 
n 

a,[p(-A)-ldiv(pU>]~n(t) [P(-A)-‘div(pu)li)t~, (t) 

L w%w)llLyo.T) l/n 
<C &AZ(t) - &4n (t) 1 = 211p(-A)-1div(pu)lI~~(0.T:~~(~)). 

where c = I~P(-A)-~~~~(P~)(IL-(o,T;L~(~)). 
Next, we explain why the integration over IRN of the second term 

vanishes by using a cut-off function, let 4 E Cc? (IR’), 0 5 4 2 1, 4 = 1 
on B1, 4 = 0 on IRN - B2, then for any R E (1, +oo), we have, setting 
U = pU(-A)-ldiv(pu), 

and we conclude by letting R tend to +oc. We only need to show that 
U E L”(0, T; L1), which can be deduced from the bound we have on pi 

in L”(0, T; LQ), where 1 + (1 - $) = 1 (1 < q 5 2). 

The third and the foirth tzrms are handled similarly if N 2 3. In 

fact, since p]~]’ E Ll(O,T; L”) 
( 

s = & > 1 
> 

and since the 

Riesz transforms are bounded in LP for 1 < p < +m,, we see that 
RiRj(puiuj) E L1(O, T; L”) and then using the fact that p E Li”(O, T; L”‘), 
we see that pRi Rj(puiuj) E L1. The third term is treated in the same way 

Vol. 16, no 3.1999 
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and is in fact simpler. However if N = 2, the fourth term cannot be 
treated by this method since we no longer know that p]u]* E L1(O, T; L”) 
for some s > 1. Nevertheless, since DU E L*(O,T; Et?), we see (as in 
P.-L. Lions [6]) that u E L*(t), T; BMO). In fact for any cube Q in lR*, 
we have 

5 C,Q, . ,. ,D7L12 dx. I 
Hence using the Coifman-Rochberg-Weiss commutator theorem [3], we 
get that [u, RiRj] is bounded in L” for 1 < p < +x, so we have the 
following estimate 

IIRiR,~(pu;uj) - Ir;R,R,(puj)I(L’(O,T:L”) 

I: CIIUIIL’(O.T;BAIO)IIP’uIIL~(O,T;L’). 

Next, we use that p E L*(O, T: L*) to deduce the desired L1 bound. 

For the fifth, we have the following straightforward computation 

Finally, for the sixth term we have merely 

where $ + : - jj = 1 since of E Ll(L’) and (IIP~IIL~(L~) < 
C]]~[[L~(LZ)+LL(L~.) with 1’ < 2). 

Next, we explain the changes in the above argument we must perform 
in the periodic case. Now, (37) is replaced by 

(42) 
K - frr = &-A)-‘div(pu) - RzRJ(puiuJ)+ 

+(I” + <)diu(u) + (-A)-‘div(pf). 

Before integrating over T”, we multiply (as in the case of IR’) by p. Notice 
however that we do so for different reasons than in the whole space case. 
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In fact, since TN is a bounded domain &v(u) E L1((O, 7’) x R) and we can 
integrate (37) without any problem, but this integration gives no estimates 
on a-, since the integral of 7r - f rr vanishes. This is why we multiply by p, 

1 

rr - p fz- = &[p(--a)-ldiv(pu)] + div[pu(-a)-‘div(pu)]+ 

(43) +pUiR;Rj(pUj) - pRiRj(/lU~Uj)+ 

+p(p + t)div(u) + p(-a)-‘div(pf). 

And integrating (43) over TN, we get 

.T . 

(44) (1-M) 
.!/ 

T 5 C(p":mO) 
0 . T” 

in fact the estimates here are simpler than in the whole space case, and 
since M < 1, we get the desired bound. 

Now, we are going to prove theorem 1.1. From the bounds on p, pu, U, 
r and in the case N 1 3 or R = T2 we deduce that, 

i 

p E C([O, T]; LP) n Cl([O, T]; H-l), 
(45) 

7r E W-l,” (Hl) + L1(L”I(N-2) f-l L”(L”) + L2(L2) + Ll(LY): 

where we have used (37) to deduce the bounds on rr and where 

I<~,,(i<~and~=~~+(l-~),7.=~ _ N - 2 if N > 3 and 

Then, rr can be rewritten as rr = &h + TZ + 7r3 + TTT~ where h E L” ( H1). 
The terms p7r2, p7r3, prrh are well-defined. To give a meaning to p&h, we 
use that p = &w,g where g E C1(O, T; L2)N. Hence, we can write (and 
define /77r1 as follows) 

pnl = d&g&h 

= div,&[gh] - div,[h&g] - G’,[gdiv,&] + &diu,h 

Next, in order to show that rr E M(0, T; Ll(R)), we only need to 
prove that 

.T . 

lim .!.I Iwl+O 0 
7r = 0, 

w 

which can be deduced easily from (45). 

Vol. 16. Ilo 3.1999. 
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Since YT E M, it is easy to see that pu E BV(0.T; IF”‘) for 
VL large enough. Then, since CM E L”(O,T: L2), we deduce that 
p’u E BV(0, T: L’ - ,u). We recall here that the values taken by pu 
on [O: T] belong to a fixed ball RR of L”(0) and that we can equip LSD 
with a “weak topology” distance d. Then $ E BV([O, T]: (Bn, d)) if and 
only if the following supremum is finite 

Finally to deduce the continuity of P(~‘IL), we apply the operator P to 
the momentum equation and get 

P(iJplL) 
at + P(div(pu, @ 7~)) - pAP(u) = P(pf) 

Then, the continuity in the weak topology is deduced from the following 

bound on T and the Appendix C of [7]. In deed, we have 

dP(PU) 
at 

E L”(0; T: W1,‘)+L2(0. T; H-l)+Ll(O. T; L’)+L’(O. T: L”). 

3. COMPACTNESS 

In this section, we are concerned with a sequence of weak solutions 
(Pll ~ ‘u,, , x,,) of (l)-(4), with f = 0 for simplicity. This sequence is assumed 
to exist even though we have not proved yet existence results for (1) - (4). 
The sequence (prL, u,, nrL) satisfies, uniformly in n, the a priori estimates 
derived in the previous section and the following initial conditions 

(46) Pn’~6,, = rr1; > Pr, 0 = P,, . 
t=o t=o 

where 0 < pfL < 1 a.e. , pyL is bounded in L1(12), rrt,f is bounded in L2(f2), 
rn: = 0 a.e. on {p, ’ = 0} p f 0 and P~~Iu~~]’ is bounded in L1, denoting , 

by U: = 2 on {pf > 0}, 91l.f = 0 on {pfl = O}. In the case of TK, we 

also assumi’that f pyz = M, for some fixed M (or some n/l,,, , 0 < M,, < 1 
such that Mr, -+ M), with 0 < M < 1. 

Without loss of generality, extracting subsequences if necessary also 
denoted by (pTL, u,, , rrrL), we can assume that (pn: u,, 7r,) converge to 
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some (p, ?L, 7r) in the sense of distributions. More precisely, we can 
assume that /I,, - p weakly in D’((O,T) x 0) for any 1 < p < +cx, 
p E L”(O,T,Ll n L”(Q)) and 0 5 0 < 1, TL,~ - ‘u weakly in 
L’(O. T: Hi(B)), h w ere B = T’ if R = TN and B is any ball in IRK if 
C2=I!dK Du - D 1~ weakly in L2(0, T: L’(0)). Finally, we may assume 
that 7r,, 1~ ieakly in M((O,T) x 12), where 7r is a positive measure. 

THEOREM 3.1. - Under the above assumptions, we have 

p,, ‘ll,r, - (Ill weakly star in L”(0, T: L’(R)) 

p,, ‘?I,,, 1% 71,, - pu @ 71, weakly in L”(C). T: L”(i2)): 

N - 2 
where 1 < IY. /3 < cc and j = ir + (1 - i), 7’ = 7 if N 2 3 and 

1 < 1’ < 3~ [j’N = 2, (if 12 = IR2, the convergence holds locally in space) 

Remark. - In general (0: YL, K) is not a solution of (l)-(4), in fact condition 
(4) does not hold in all times. The homogeneisation example given in [6] 
for the case of the compressible Navier-Stokes equations can be adapted to 
our system. In the following theorem, we give a sufficient condition on the 
initial data, for (p. TL, K) to be a solution. 

THEOREM 3.2. - [f we assume in addition that pi converges to p0 in 
L1( fl), then (p; 7~; T) is a solution of (l)-(4) and in addition the following 
strong convergences hold 

pr, --j P in C(0.T: L”(C2))for any 1 < 11 < +x. 

p,,‘url + p’u in L”(0, T; L”(62))for any 1 2 p < +x, 1 < 7’ < 2, 

p,,71,,~ &S S/L,, + ~PL @ *u in L”(0, T; L1(R)) for any 1 5 p < +x. 

this last convergence holds locally if $2 = IIt’. 
Remark. - Using the bound on Du, in L2, we see that the strong 

convergent; ;fNp,!;,{ also holds in L”(O, T; L”(0)) for any y > 2 and 

1<7.< 
pN-4 

if 12 # lR2. If 12 = R2 then this convergence is local 

in space. 

For p13~~,, 8 ‘LL,, the convergence also holds in L”(O. T; Lq(i2)) (locally if 
P N 12 = lR2) for any p 2 2 and 1 < q < - 

pN-2’ 

ProojY - The proof of the two theorems is very close to the proof given 
in [6]. In fact theorem 3.1 is deduced from the following compensated- 
compactness lemma, 
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LEMMA 3.3. - Let g’“, h,” converge weakly to ,y, h respectively in 

Lp’(O, t; LP’), Lyl(O, t; Lqn), where 1 < yl. p2 < +cq k + i = 

+ + 1 = 1. We assume in addition that 
P2 q2 

dg” 
__ is bounded in 
at 

M(0, T; W-“‘,‘(Q)) 

I ,for some ~1 2 0 independent qf n 

(4s) Il~~~7LIIL’(llT;H”) is bounded,for some s > 0. 

Then, g’“h” converges to gh in ‘D’. 

Next, let us observe that Q,,~ is bounded in Li”((O, 7’) x 62) and converges 
weakly to p in LPI (0, T: L”* (0)) f or any 1 5 yr. y2 < +oc and that u,, 

N 
converges weakly to 71, in L2(0, T; L”) where /l’ = - 

N-2 
if N > 3 and 

2 5 p < +oc if N = 2 (this holds locally in space if R = R’). We can 

take pr = 2 and ~2 such that L + 1 = 1. In order to apply the lemma 3.3 
P2 B 

(gTi = pn, 11” = url), we need some compactness in time and in space which 

are straightforward since we know that $ is bounded in L”(0, T; H-l) 

and that ‘uu,, is bounded in L”(0, T; HI) (locally if 0 = IR”). Hence, using 
the preceding lemma we obtain the weak convergence of olr~,, to ~TL (in 
the sense of distributions). 

Then, we apply the lemma to the following couple (9” = P,~ u,, . /I” = IL,, ). 
In order to do so, we observe that p7L~~ll converges weakly to pu, in 
L”’ (0, T; L”” bL) f or any 1 < p1 < +oo, 1 < pz 5 2 (in fact convergence 
in the sense of distribution is equivalent to weak convergence in these 

1 1 
spaces). We can take pl = 2 and y:! such that - + - = 1. Next we have 

P2 B 
in view of (2) the following bound 

dPr&n 
dt bounded in L”(O,T: W-‘,‘)+L2(0. T; H-l)+M(O, T; T/t’-‘-‘.‘). 

for any E > 0. Hence, applying lemma 3.3 once more, we deduce the weak 
convergence of P~u,, @ ~1,~ to pu @ u in the sense of distributions and hence 
in the spaces L”(O! T: L”(0)). 

In conclusion, these weak convergences show that the limit (p, u. z-) 
satisfy the equation (l), (2), (3). In fact, it is obvious for the first 
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and the second equation, for the third one we apply lemma 2.1 since 
IL E L2(0, T; H,‘,,) and that 0 5 p 5 1. However in general (4) does not 
hold and we will see below that if the pi converges to p” then (4) holds 
and (0: u, z) is a solution of the initial system. 

Now, we turn to the proof of theorem 3.2. The idea of the proof relies 
on the use of some compactifying commutators. This idea was used by 
P.-L. Lions in [6]. In what follows we will give a sketch of the proof and 
omit the problems related to the justification of the computation. We refer 
to [6] for the missing justifications. 

Taking /3(p) = p logp in (21), we get 

(49) iJP WP) 
at 

+ div(p log(p)u) = -p divu. 

This equality follows from approximating p log(p) by the following C1 
functions /$ = p Zog(p + E) and observing that 

A(P) - P/J:(P) = -P~(P + &>-’ -+ P in L2. 
Next, we observe that this equality also holds for prl and that extracting 
subsequences if necessary we can assume that pn logpn converges weakly 
to S in LP((0, T) x a) for 1 < p < $00. In fact, since 0 < pn 2 1, we 
see that for any p > 1, there exists a constant C, (independent of n) such 
that for all n, we have ]pn Zogp,]” 5 C&p,. Then, passing to the limit in 
the equation satisfied by pn logp,, we obtain 

(50) 
as 
z + div(su) = -p divu, 

where p divu denotes the weak limit of prc divu,. In fact we can apply 
lemma 3.3 to the pair (g” = pn logp,, h’” = urL), which yields the weak 
convergence of pn logp,u,, to Su. We see then that -pn divu,, converges 
weakly to the first hand side of (50). Let s denote p log(p), then we get 

$(s - .s) + div[(s - s)u] = -p divu + p divu. 

Next, using the momentum equation we shall show that the second hand 
side of (51) is actually equal to pn - X. Hence, integrating in 2, we deduce 

$ / (s - s) dx < 0. - 
R 
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Let us then notice that, by standard convexity considerations, we obtain 
that 3 > s a.e., and since s - s]~=,, = 0 we conclude that s = s for almost 
all 1’ in (0, T). We also deduce at the same time that /‘7r = 7r. 

Now, we should only compute the right hand side of (51). We begin 
by the case of the whole space IR”, with N 2 3 and then explain the 
changes that must be done in the other cases. Taking the divergence of (2). 
applying (-A)-’ and multiplying by p, we get the equation (38) written 
for (P,~. PL,,,?~,~). Next passing to the limit and taking subsequences if 
necessary we get 

(52) 
= &[/,(-A)-ltliv(p*u)] 
+tiiv[pu(-n)~ldiv(f~)] 
+/“‘iRiR,,([)*lLj) - /~RiR,(/)?l,jl/,,) 

where the 3 denotes the weak limit of A,,. Next, we apply the same 
computations for (p. II.. 5~) and we deduce 

Let us notice that we cannot use the equation /)n = 7r. Next arguing as 
in 161, we show that the second terms in the right hand side of (52) and 
(53) coincide. In fact, using lemma 3.3, we see that f,,,(-A)-*(liv(/),l IL,,) 
weakly converges to /I( -A)-rtliv(/~~r) and that /I,;//,,(-~)-‘tliv(p,, (I,,,) 
weakly converges to /)y/,( -A)--‘tliv(p,/s). The last term can be written 
as /‘[‘h;. R, n,~]/),/Lj. (where [VI,, iZ;lt.,] denotes the commutator of /li and 
XiR,,). Using the general results on commutator of this type of Bajanski 
and R. Coifman II] and R. Coifman and Y. Meyer 121. we deduce that 

[,/L,,,;. R;h’j]f)%l,,,,, is bounded in L,‘(t), T; 11’r.“). where i = 1 $- i < I. 

since 11 E L’(t). 7’: H’ ) (locally if 12 = Ill’) and (J/I E I,‘(t). T; Ii ‘). where 

/,’ xz & > 2 if N > 3 and 2 < :j < +x; if h’ = 2 (locally if 12 = II<‘). 

Lemma 3.3 applies to this case too and yields the weak convergence of 
/),<[,G.;. RiR,,lw,.., to /I[‘IL;, R;RJ]p(~,,. Hence we obtain 

Now, we concentrate on the proof (see also [6]) of the strong 
convergences stated in theorem 3.2. From the equality s = S and the 
fact that Q logp is strictly convex, we deduce easily the strong convergence 
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of pVL to /-, in P((O,T) x 0), using Young measures. Hence, to get the 
convergence of pn to p in C([O, T]; D(n)) for 1 5 y < +co, we only 
need to show this for p = 1. Then using appendix C of [7], we see that pl, 
and Jf)n are relatively compact in C( [0, T]; L* - ‘~1) and converge in this 
space respectively to JiT and to /,. In particular we have p(O) = /lo. Next 
to get the strong convergence of fi to Jis in C([O, T]; L2) we notice that 
for any sequence t,, of [O.T] converging to t we have 

I . sl &*(t,$) = / P: --+ I’ PO = ,k vQ”(Q 
Sl * 11 

Hence pII converges in C( [O. T]; L1) to p. 
Next, to get the convergence of I)~~u,~ to p’u in LJ’(O, T; L”). We use the 

bound of l)rL~u,, in L”(0. T; L2) as well as the following strong convergences 

fi + fi in L”((0.T) x 12). 

fiat’ n i &IL in L”((0, T) x 62). 

For this last convergence we use that 1)7LI~1L]2 converges weakly to plu12 and 
that &u,, converges weakly to flu, (this can be deduced from lemma 
camp in the same way as the weak convergence of p,, IL,,). 

Moreover, using the bound on DIL,, in L2 we deduce a bound on /XL 

in L”(0.T: L”) for any y > 2 and 2 5 9~ 5 ____ ~PN if1v>3 
- 

1 
(2 < I’ < s 

p N - 3 

if N = 2 and the bound is local in space if R = lR2). 

This yields the convergence stated in the remark. 

The convergence of /I,, II,,, @ u,, to /X @ ‘11, is deduced easily from the 
convergence of \/i;j;r~i.,, to Jisl/, in L”( 0. T: L”) for some couple (p, 1.) with 
p > 2 and I’ > 2. 

4. EXISTENCE RESULTS 

In this section we are going to prove the existence of weak solutions 
(0. UL 7r). It is classical (see for instance [6]) to deduce the existence of 
solutions, using the compactness results already shown, via a regularization 
(or some layers of regularization) of the equations or via a time discreti- 
zation, which uses stationary problems. Nevertheless we are not going 
to use this classical method but we are going to show a more general 
convergence result and deduce the existence of solutions to our system as 
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a consequence of that result. Besides, one of our motivations to study the 
system (l)-(4) is the following convergence result concerning solutions of 
the compressible Navier-Stokes equations as y tend to the infinity. 

Let 7n be a sequence of nonnegative real numbers that goes to infinity. 
Let (p,, un) be a sequence of solutions of the isentropic compressible 
Navier-Stokes equations 

(54) 
z + div(pu) = 0 , p 2 0, 

8PU dt + div(pu @ u) - IL,,A*u - <,,Vdivu + aVp’” = 0 

where brL > 0 and ~1, + tT1 > 0, pIL and &, tend respectively to p and 4 
as 7~ goes to the infinity, with p > 0 and IL + t > 0 (in the sequel, we 
assume for simplicity that LL,~ = /I and tl, = 0. Global weak solutions of 
the above system have been shown to exist by P.-L. Lions ([8], [9]), if 

we assume in addition that yn > g if N 2 4, yTL 2 i if N = 2 and 

7n 2 p if N = 3. These assumptions are true for n large enough. The 
sequence (pll, u,) satisfies in addition the following initial conditions and 
the following bounds, 

(55) A1 UT, = my, ? Pn 0 = P,,. 
I=0 t=o 

where 0 < & a.e., pz, is bounded in L’(0) and pz E L’n with 

/ 
(pi)‘” 5 Cy,, for some fixed C, rnz E L2?~~l(~~~+1)(0), and p”,ju~/’ is 

bounded in L1, denoting by IL: = 2 on {pyL > 0}, IL: = 0 on {pf = 0). 

In the case of T&‘, we also assume ‘ihat f pi = MrL, for some M,, such 
that 0 < Mn < M < 1 and M,, + M. Furthermore, we assume that &ui 
converges weakly in L2 to some m” and that pi converges weakly in L1 
to some p”. Our last requirement concerns the following energy bounds we 
impose on the sequence of solutions we consider, 

.I 

t 

(56) En(t) + D,(s)& 5 E: a.e. t, 
d-G, 

0 
dt+D,, 2 0 in D’(O:oc) 

where E,(t) = . $lu,,12(t)+- 
I’ 

a 

+ E (divu,)2(t) and EE = 
I 

1 Yn - 1 
(,,)Y~~ (i), II,(t) = 

/ 
* JL(D’IL,t I”(t) 

- Pa I4i I 2 + 
. 2 
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We recall that the results in [6] yield the existence of solutions (pl,., u,,) 

satisfying the above requirements if we have yrl > z if N 2 4, yn 2 i 

if N = 2 and yTL 2 i if N = 3. We wish to mention an additional 
estimate which is available but that, however, we shall not use in this 
proof. Indeed, the proof made in P.-L. Lions [6] (Chapter 7, section 7.1) 
yields the following bound for all T E (0, m) 

.T . 

(57) 
I I 

dt 
.o . 

p;y,“+871 5 C-y,, where 8, = $ yn - 1 . 

Unfortunately, this estimate is not uniform in n. Instead, we shall use 
another estimate which can be derived as (57) was in [6] and which is 
uniform in n, namely an L’ bound for (p,)ufl. 

Without loss of generality, extracting subsequences if necessary, we can 
assume that (pn, TL,,) converges weakly to (p, *u). More precisely we can 
assume that pn - p weakly in Lp( (0, T) x Q) for any 1 2 y 5 30 and that 
p E L”(0, T; LP) (in fact we will show that p actually satisfies 0 5 p 5 I), 
u,> - TL weakly in L2(0, T;H,&). 

THEOREM 4.1. - Under the above conditions, we have 0 5 p 5 1 and 

(P,l - 11, + 0 in L”(0, T; L”),for any 1 5 p < +oc. 

Moreover, (pll)yll is bounded in L1 (for n such that y7, _> N). Then 
extracting subsequences again, there exists x E M((0, T) x 0) such that 

(58) (PII) ,( -I,, ix 

Ifin addition p”, converges in L1 to p” then (p, u, r) is a solution of (l)-(4) 
and the following strong convergences hold 

Pm + P in C(0, T; L”(R)) for any 1 5 p < +cz 

Pn~Ln --f p’u in Lp(O, T; Lq(R)) for any 1 < p < foe, 1 < (1 < 2 

pnulL 8 u,~ -+ pu ~3 u in Lp(O,T; L1(R)) for any 1 5 ?, < SCC. 

Remark 1. - The limit (p, u, X) satisfies in addition the following energy 
bounds which is to be compared with (17) 

(59) s t E(t) + D(s)ds 5 E” + liminf (P:Jr2 a. e f . . I. 
0 71 Yll 

g + D < 0 in D’(O,oo) 
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where E and D are defined as in (17). 

Remark 2. - Theorem 4.1 yields immediately the existence theorem 

existence. In fact we can take, for instance, for any II > s&F. 2). 

Yr, = 71. Y,, ” = /lo and UL:), = ,rrl,“, we see then that 

lilll i*lf !T!YLt = () 
,I Yll 

and hence (17) is satisfied. 

Proof. - The proof is divided in three steps. 

Step 1. - From the energy conservation and the mass conservation. we 
deduce that for any I < p < CCJ. we have for II such that y,, > ~1. 

where we have used Holder’s inequality and where t),, is given for any 
1 1 - H,, 

r/> by - = H,, + p. Then, letting 71 go to infinity, we deduce that 
P YU 1 

O,, + t and that 
P 

Hence, letting p go to infinity, we obtain 

We next introduce &, = (p,, - I)+. We are going to show that 4’,,) goes 
to 0 uniformly in t in all LP spaces. In fact, from the energy conservation 
that we have for any t, we deduce 

I . r1 (1 + 4r,)?” l{,,,>O} 5 . I p-‘, 5 CY,,. 

Next, for any p > 1, there exists a constant CL (for instance we can take 
1 

(L[] = c if p is an integer) such that for any A large enough the following 

inequalzy holds, 

(1 + :I:) k > 1 + UJ, PX”. 
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for any nonnegative X. To see that we can consider the case where JJ is an 
integer and then make an “interpolation”. In fact if p E J’V, we can take 
f(x) = (1 + X)” - up IcpzP and notice that a sufficient condition for f to 
be nonnegative on IR+ is that f(“)(z) = Jz(IL- l)...(~-?,+l)(l+n:)k’-” - 
u,, JJ!!? is nonnegative in m.+ and we can see that this holds true for h: large 

1 . 
enough if a = - for Instance. Next, if p < q < p+ 1 with p E m, we have 

2p! 
(1+:1:)” > l+n,, (~x;)P and (l+:~;)~ > l+n,+i (/u)“+’ for /G large enough. 
Then, we notice that for all IC E IR’ we have (k:c)q < s~p( (,$:r)1’: (k::c)“+l). 
hence we can take a,, = ir~f(a,. (~,+r) = ap+i. 

Hence, we have for 71 large enough 

which yields the convergence of (pIL - l)+ to 0. Let us notice that this 
convergence is obviously “very fast”, 

Stq 2. - Now, we turn to the proof of the L1 bound on (/,,l)Y~~. We 
begin by treating the whole space case and then explain the necessary 
modifications we in the periodic case. Applying as in [6], the operator 
(-A)-’ div to (54), we obtain 

(69) 

Then multiplying (60) by P,~, we deduce (we omit the indices n in the right 
hand side for the sake of clarity), 

(Pn) ?“+’ = &[p(-A)-‘div(fju)] + div[pu(-A)-‘div(pu,)] 
+P"i,niRj(puj) - PRiRj(pWUj) + (p + <)pdiZJ(U), 

This manipulation and essentially the multiplication of /-),] by 
&(-A)-‘div(p,TL,,) should b e justified. This can be justified in the 
same way as for the product of p by 7r. Then, integrating (61) over 
(0,T) x IIt”, we see that (Q,~),~~+~ is bounded in L1((O: T) x IR”), 
uniformly in n. In fact, the proof is the same as the proof of the bound 
of 7r in M((O, T) x IR,“), so we are only going to mention the changes 
that must be performed. We also refer to [6] (Chapter 7, section 7.1) for 
the proof of (57). First, we notice that we do not have a L” bound on 
/jr,. However, since .f(~,~)T~l (t) 5 Cy,, for a.e. t, we see that there exists 
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a constant Cr for instance Cr = eq 

have IIc)~~~L=(~.T;L-,,~ 1 5 Cr, since 

, such that for any IL, we 

S”l-‘( cy )l’? = fxp ; . 
-, >n 0 

Next, we remark that the norm of ,07,r~, in L”(o; T; ,TJ*7tz/(1,1+1) n Ll) 

is independent of 71 (we use here the fact that the norm of 6 in 
L”(L*Y” n L*) is bounded independently of 71 and that JI)nu,, is bounded 
in Lm(L2)). Hence, we may write 

and 1 < q’ I: yT1 (such a choice 

For the second term, we only need to show that U = 
p,u,,(-a)-‘div(p,, u,) belongs to L”(L1) for all r~, which can be 
deduced from the following bound 

2N 
with q = ~ 

2-h ~ 
NSl < r,,+l’ 

since y,, > N 

For the third and the fourth term, we must distinguish two cases, namely 
;” > $yd2 N 1 2. In the first case, we have plul” E Ll(L”), with 
- - 
3 

- 7 + K < 1. Therefore R;R, (~71,~~~) E L1 (L”) and hence 

N-2 1 
pRiRj(puiuj) E L1(L1). since 7 + 2- 5 1. For the third term 

Yn 
we re;! y fact that /I~~u,,, R,Rj(P(U7,);(?l,,))j) E L*(L” n L’), where 
1 1 
- = 2~ + c 2 2. The case N = 2 is treated using the bound on ‘u,, 
‘I’ 
in L*(C), T; SMO) and on prLql in L2( L”/*) (if Y,, > 3), which yield 

and, multiplying by p, we deduce 
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Finally for the fifth term, we have the following straightforward 
computation 

(61) in dl:v 'k 5 IIp~~II~~(o,T:~~)lld~v %~~L'(O,T:L")~ 

where we use the fact that prL is bounded in L’(O, T; L’) since “171 > N > 2. 
Using this bound on (pIL)Y”+l and the fact that p E L”(0, T; L1), we 

deduce the desired bound 

(PTL) Tn+l + pn. 

Hence extracting subsequences again, there exists K E M((0, T) x 0) 
such that 

(62) (P7L)yn ; K 

Step 3. - Finally, we show that (p, u, T) is actually a solution of the initial 
%L system and that the strong convergences hold. First, we observe that ~ is 

bounded in L”(0, T; W-‘,‘) and that u, is bounded in L’(O, T; H1). %en, 
using the compactness lemma 3.3, we get that /I~u, converges weakly to 
7; F the other hand, using the bound on (p,)Yqz in L1, we deduce that 

71’ n 

B 
t 

1s bounded in L1 (0, T; W-1,1) and hence plLuR @zL,, - ~IL@X The 
on y point that should be proved is the relation pr = a-. Using the same 
notations as in the previous section (s = p log(p) and s = C, log(p)), we get 

(63) $(3 - S) + div[(s - s)u] = -p divu. + p divu. 

Then applying the operator (-A)-‘div to the momentum equation, 
multiplying by p.rL and passing to the limit (extracting subsequences if 
necessary), we obtain 

(p,,)~~~fl - (p + [)pdiv(u) = &[p(-A)-ldiv(pu)] 

(64) 
I 

+div[pu(-A)-ldiv(pu)] 

I +pu;R;Rj(puj) - pR;Rj(pwiuj) 

Changing the order of the multiplication by p and the passage to the 
weak limit, we obtain 

(65) 
pr - (P + t)pdiw(u) = &[p(-A)-ldiv(pu)] 

+div[pu(-A)-ldiv(pu)] 
+pUiRiRj(puj) - pR;Rj(p~i~j). 
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The same computations as in the last section show that the second hand 
sides of (64) and (65) are equal. Hence, we get 

-/d%li(lL) + pdiu(,u) = 

Reporting this in (63), we get 

(66) $3 - s) + &v[(” - s),,] = & [pa - (il,,)T’~+q. 
Next, we notice that /77r = [)(/I,~)^.” < (f~~~)?~~+r. Indeed we have 

where we have used that 

(P)-” - 1{,,=1} 

almost everywhere and in LP( (0.7’) x 62) for 1 5 p < IX, which yields 
the following weak convergence 

(/))“a (h - P) - (1 

Next. integrating (66) in .I:, we get 

Then, since Z - sltzo = 0 and s < S, we see that s = S. Therefore, we 
obtain that 

pr = (p,,pJ~+’ 

Next, we see that for any E > 0 there exists ‘Us) such that for II > /I,~) 
and :L 2 0, we have 

Applying this inequality to /I,, and passing to the weak limit, we get 

(/I,,)?~~+1 > 7r - E. 
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Then, letting E go to 0, we get 

Next, using that 0 < p < 1, we obtain 

However, since the product p7r is not defined almost everywhere, we must 
explain the above inequality. We denote by wk = k?+‘w(k.) a smooothing 
sequence in both variables t and .c, where w E C”(IR”+l). w > 0, 

hRN+l w = 1, Supp(w) E Bi(IR”+‘). Then, we denote by ~1, = p * wk 
(resp 71-k. = x * WA,) a sequence of nonnegatif smooth functions converging 
to (1 (resp n) 

{ 

Pk + P in C([O,T];P) flC1([O.T]:HP1). 

(671 
7rk + 7r in IV1,“(H1) + Ll(L”), 

for some q > 1 and p such that 1 + 1 = 1. Hence writing (/I - 1)~ as 
1’ (r 

(P - 1)r = (/Q - 1)X,< + (/J - /&)7rA. + (p - 1)(7r - 7Q) 

we conclude by letting X: go to the infinity. 
Finally, we deduce that 

Therefore, (p, U. X) is a solution of (l)-(4). The strong convergences stated 
in the theorem are then deduced easily as in the proof of the compactness 
theorem. 

5. GENERAL PRESSURE LAW AND INFINITE MASS 

In this section, we discuss two related issues. The first one is the case 
where we include a pressure (7r = p(p) on {p < l} ), the fluid is assumed 
to behave as a general barotropic fluid as long as its density is smaller than 
1. We also study the case where we no longer assume that the total mass 
is finite in the case of IR.“. 
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We begin with the case of a general pressure law fluid. The pressure 
law p is assumed to be a continuous nondecreasing function on [0, S) 
vanishing at 0. For instance, we can take p(p) = npY. Next, let (I be defined 

(up to a linear function) by dt = t2 for t > 0. Notice then that 

multiplying the moment equation by U, the term 7r &vu does not vanish 
and is equal to p(p) I ( iv?L, since divt/, = 0 on {p = 1). Then, using (1). 
we get taking /j(p) = q(p) in (21) 

&l(P) 
i~t + div(q(/))TL) = -p(p) divu, 

since q(p) - ~q’(p) = -p(p). This equation need some justifications if q(t) 

is not C1 ((1 E C’( [0, a)) if and only if 
/’ 

l P(t) t” < +co) and we only 

have to approximate 4 by y&(p) = p 
Y4 ;(q 

I 
’ ’ 

t2... Now, integrating (27), 

we obtain (at least formally) 

(69) $ / [p$ + q(p)] + J’ am + <(divlL)2 = / pu.f. 
’ . R I? I2 

Next since 4 is bounded from below, we see that we deduce the same a 
priori bounds in the periodic case. We also notice that, in this case, we 
can make the computations directly on the term p(p)divu, since p(p) is 

bounded and that IIp(P)divuIILl 5 c + ElldivuIIL~, for any E > 0. 

In the whole space case, this bound from below is not sufficient to derive 
the desired bounds. We thus begin by the case when we can take q such 

that 4 > 0. In fact if 
.I’ 

p(t) t2 < +X then we can take q(p) = p 
I 

lJ p(t) t” 
-0 ’ 

and hence q(p) 2 0. We then obtain (we omit here the force term f) 

(70) / Y$ + 1’ l2 p(Du)* + <(&vu)* = 
I 

* Id2 
. 0 .R 

I-‘,L(O) + Y(#) 

and the same bounds follow. However if 
.I’ 

P(t) = +CG, we can no longer 
t2 

take q such that 9 > 0 and hence we cannot obtain such bounds directly. 
For instance, if p(p) = up7 with 0 < y < 1, then q(p) = -&p’ + Cp 
and we can check easily that 

sup p? = +oo. 
.I’ p=AI 
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One idea to recover some bounds is to introduce (as in P.-L. Lions [6]) 
a reference function p, such that 0 < p < 1, p E L1 and V(q’(7j)) E 
L” + L2(RN). Another case, where we can recover bounds is the case 
when the force f is potential, namely f = -VV for some V. In fact if the 
force is attractive enough we see that the fluid cannot disperse widely. We 
study below a case where we can recover some bounds, we assume that 
V = V+ - V-, with V+, V- 2 0 and 

I 

Y(P) = UP’ with 0 < y < 1: 
v- E L1 + L”. 

(71) 
J’ 

(V+ + 1)-i+ < +x 

flR”-VV+f( where f’ satisfies (19). 

In this case the energy estimates yield 

To recover some bounds, we must show that 

inf 
Jp=nr, Kp<l / 

a pv + q(p) > -cc. 
. 

In fact, we have 

s 
PV- F (1+ WIIV-IIL~+L~ 

and the infimum of pV+ - &p’ under the constraint .\ /, = M is reached 
for 

p’ 
( 

1-Y 
> 

-& 
-v++c ’ 

IL 

where C is such that /is = M. Hence, for almost all t, we have 

.I PV+ + Q(P) 2 .I r,v+ + 4(P) 2 --x 

and we recover the desired bounds as above. 
We next turn to the study of another topic, namely the case of infinite mass 

in the whole space case. We require p” to satisfy the following conditions 

(73) 
p -p E L2(lEP) where p satisfies 
O<P<L ,eus{, = l} is finite, 
V(g’(p)) E L” + L2(R”) and q”(p) > c: 
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for some constant c > 0. Notice that we impose no integrability conditions 
on ,. In this case the energy estimates are the same as in the case where we 
only include a pressure. In fact, since p and I, are bounded and (I”(F) > C. 
we can find two constants ~1 and cz, such that we have 

Cl(/) - /1)2 2 q(p) - (I(,) - (I’(,)((/ - /-l) > C2(/) - /))2. 

We begin our investigations by the followin g simpler case (I, is a constant 
such that 0 < /, < I). The energy estimates then yields the following 
inequality 

(74) 

Next in order to deduce a bound for 7r in Lr, we multiply (37) by 0 ~ I,. 
and we obtain 
(I - p)7r = &[(p - p)( -A)-rtliv(/j71)] + diV[,,,,,,(--l)~l~liv(,,11,)] 

+ /l’J/~X,Rj(/)ll,j) - (/) - p)n;R,(I)1L,Il,,) + (/I + <)(/I - /))lii’1!(71). 

Then we deduce a bound on 7r in Lr integrating this equality. In fact, all the 
terms in the right-hand side are treated as in section 2, replacing p by 1’ - f, 
(recall that /, - /I E L”(t). 7’: L’(IRN))). The case M = 2 does not create 
further difficulty and we treat the term (0 - P)R;X,j(/,l/,,,/lJ) as follows 

(/) - y)X,R,j(plL;‘“,jj = (1) - /I)[R;n,j. tLi](/YtL,j) + ((1 - p)l/,,X;R,,(I)‘o,j). 

In the general case, namely when I, is no longer assumed to be a constant, 
the energy estimates yield the same bounds as above. In fact, for the extra 
term, we have 

p~~~(pi)~ I Ill,~~llLl~L’Il~((lro))//L”+L’. 

Next, in order to obtain the estimate on 7r’, we use the existence of an cv > 0 
such that ‘IMYLR{P > 1 - CJ} is finite. In fact 

Using this (y, we seen;;iii> 1 -(YI = IT= 11. 

f, - 171f(/). 1 - 0) E L2. 

then multiplying (37) by /) - anf(/l. 1 - IY) instead of /, - p, we deduce 

(‘&/ 
[l - crl.f(/,. 1 - 0)]7r. 

which yields the same L1 bound since p - irlf(l). 1 - o) E L”,(L”). 
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6. CONVERGENCE TO THE 
INCOMPRESSIBLE NAVIER-STOKES SYSTEM 

In this section, we discuss two results concerning the convergence to the 
incompressible Navier-Stokes system in the case of two space dimensions 
(N=2). These two results are still true, for N 2 3, on any interval of time 
(0. T) for which we know that there exists a strong solution u (which is 
unique) for the incompressible Navier-Stokes equation. 

The first issue concerns the limit A!1 -+ 1 (in the periodic case). Let 
M,, be a sequence of real numbers (0 < M,, < 1) converging to 1 and 
(Pn > un, r,,) a sequence of solutions of (I) - (4) in T2 satisfying the energy 
inequality. Let us explain the heuristics which lead to the incompressible 
Navier-Stokes equation. Indeed since pr2 5 1 and f ~,~(t) = M,, 4 1 we 
deduce that p -+ 1. Next, we conclude from (1) that the weak limit of vu,, 
satisfies the divergence-free condition : &U IL = 0. Hence, we expect that 
(PIL’ ?I,,, . VI-,,) converges, in some sense, to (1, U, 7r), where (u, 7r) is the weak 
solution of the incompressible Navier-Stokes equations 

(75) 

We shall show that this heuristic derivation is basically correct if we 
impose in addition some extra conditions on the initial data. We assume 
that (p,?, u,, K,,) satisfy the following initial conditions 

(76) Pn’~Ln = ‘IIL1), 3 PI! 
0 

= P,,, 
t=o t=o 

where 0 < pi 5 1 a.e., f 1111 = A&,, and mu:& converges strongly in L2 
to a divergence-free vector uO. 

THEOREM 6.1. - Under the above assumptions, pIL converges to 1 
in C([O, T]; L”(Q)) for 1 < p < tcxj, 6 u,, converges to ‘u in 
L”(0, T; L’(R)) and Du, converges to Du in L’(O, T; L2 (Q)) for all 
T E (0, KI) where u is the unique solution of the incompressible Navier- 
Stokes equations corresponding to the initial condition 7~‘. 

Proof. - The proof of this theorem is similar to a proof introduced in 
[ll]. First it is easy to see that pn converges to 1 in C([O, T]; LP) (for 
1 5 p < +m). Next, we can assume, extracting subsequences if necessary, 
that ?L,, converges weakly in L2(0, T: H1 (0)) to some U. Then, applying 
lemma 3.3, we deduce that Jp,u” and pnu, converge weakly-star to v in 
L”(0. T; L2(R)) and h ence v is divergence free. At this point, we cannot 
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deduce, as before, the weak convergence of p1Lu7L@u,L to 9163~ since we have 
not a uniform bound on n,, and hence no compactness in time for P,~YL,,. 

Let ut E C’r (0) be such that : divT& = 0 in 12, 2~; + 71,~’ in L2(0) 
as 6 goes to 0,. We denote by %I, ’ the solution of the incompressible 
Navier-Stokes equations corresponding to the initial condition ut. As is 
well-known, 7~’ is smooth on ([O, 30) x 62) and ?L* converges to 71, in 
L2(0,T; H1(f2)) n C([O.T]; L’(S2)) (and thus in L4(12 x (0.T)) for all 
T E (0, m). The energy inequality for ~6,~ yields for almost all t 

Then using the conservation of energy for I?, we get for all f 

In addition, since TL* is divergence-free and P(p,,q~,,) is continuous in 
we get for all t 

{I), u,, .d+d + /I,$ u,, u,, .vd + 

(79) 

Combining (77), (78) and (79). we get 

time, 

i l l :1\//11;11,? - 7~F12(r)+/‘/ ILID(‘u.,, - ~~,0)12+Eldiv(~L,,--Lti)12<: 
0 Sl 

+ (pi - 1)&m.~~~*(~)+ .! t - JJ 
.t * 

p7JL7J&lL~ + TL6.VtLb - /LhL6] - /L Ji (/& - l)u.,,.AuO+ 

0 62 0 * R 
.t * 

+ 
I/[ 30 .R 

(u, - 1L6) + uUh + (pn - l)u,,] [(% - 71,“).V2]+ 

Using the Gagliardo-Nirenberg inequality, we get for almost all t 

IJ (UT& - d)[(u,, - ZL~).Vd] 5 
< ,17in - ?L~~~~4pU*jj~2 

I II% - u*IIL’Ip(% - ‘Uh)llL+h& 

- ‘u%’ + li(JKI - l)U,LlIL’] (I~(%, - ‘U6)lIL”((WlLJ 
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and then, by the Cauchy-Schwarz inequality, we get 

IIJiG% - 4lL4l~(% - ~S)IIL~ll~~hlIL~ I 
I ;1/qn, - ,&I;2 + &G&L - U61j~~~IV7L611~, 

where 11 = i,l~f(p, p + I). 
Next, let A:,(t) be defined by 

\ +ll& ~)~,LllL~ll~(~TL -~u~,llLllv~611L”~ 

Then, we see easily that for all S, A:&(t) converges to 0 for almost all t, 
uniformly in t and that s Ag(t) dt goes to 0 when n goes to W. In deed 
for the terms containing the factor (pn - 1) or (Jp,, - l), we use that 

III/z - 1IIP(O;T;L~) 5 IlPn - 1lIL=(“.T;Lq ;;‘o 

and for the two others, we use the weak convergence of pnu, to ‘u which 
is divergence-free and the weak convergence of u,, - *IL’ to %I - 18 and 
then notice that 

,~[a,,” + u6.Vu6 - ,uAu’] = ,ll.V7r = 0 

u’[(u - u”).Vu*] = - ‘t 
.!.I 

flddju(u - u”) = 0. 
0 R 2 

The fact that the convergence is uniform in time for these two terms can 
be deduced from the following elementray lemma 

LEMMA 6.2. - Zf fit is bounded in L”(0, T) with N > 1 and fn converges 
weakly to 0, then 

uniformly in t. 
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Hence, (80) yields for almost all t 

i 

I 
a &g& - w”(2(t) + .’ 

. 62 2 II 
- lLh) 1 2 5 

(82) . 0 . I1 

4(t)+ b ;lfiu:: - u;1*+c i’ I’ /I~UII - ~u611’z2(pu6(~~2. 
. 0 1 12 

By Griinwall’s inequality, we deduce that we have for almost all t E (0, cc) 

(83) 

Then, letting n go to infinity, we obtain 

Then, letting 6 go to infinity, we recover the uniform convergence in t 
of Jp,,% to U, since 

F llfi”,, - ~LllLIo*;L’) 

2 liF[ +” - $,) + !/IL* - ~~~~~L~(o,T;L2,1 = (1 

Going back to (82), we get that Du, converges in L2 to DU and that u,, 
converges to u in L2(0, T; H1(R). Finally, we also get that VT,~ converges 
weakly to VT in H-l((O, T) x a) for instance. 

Remark. - It is worth noticing that the above proof shows that, for N > 2, 
the result is still true on any interval of time (0, T) for which we know that 
there exists a solution ‘u (which is in fact unique) of the incompressible 
Navier-Stokes equations corresponding to U’ which satisfies : 

Du E L1(O, T; L=-(R)) + L2(O; T; L”(R)). 
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The second issue, we are going to study concerns the convergence of 
solutions of the compressible Navier-Stokes system (54) as yTL goes to 
infinity in the case where f p, ’ = M > 1. Let (p,, ,uu,,) be a sequence _ 
of solutions of (54) satisfying in addition (5.5) and (56) and such that 
5~:~ = M > 1, f(pyL)Y7z 5 MY11 + C,,y, for some constant C,,, such that 
C,, converges to 0 and fl ’ ,u, converges strongly in L* to a divergence-free 
vector 7~‘. 

THEOREM 6.3. - Under the above assumptions, pll converges to M 
in C([O, T]; LP(R)) for 1 5 p < +co, Jp, u,, converges to 71 in 
L”(0, T; L*(R)) and Du, converges to DU in L*(O,T; L*(R)) for all 
T E (0, W) where u is the unique solution of the incompressible Navier- 
Stokes equations corresponding to the initial condition u” and where the 
viscosity 11, is replaced by p/M. 

Proof. - The proof of this theorem is the same as the previous one. The 
only point we must show is how we obtain uniform bounds. In fact the 
energy inequality (56) reads for almost all t 

Hence, to get uniform bounds, we notice that we deduce from Jensen’s 
inequality that we have for almost all t 

Arguing as above, we can extract subsequences that converge weakly. Next, 
to see that p = M and that pn converges strongly to M we use that for all 
p (1 < p < +oo) and for n large enough (Tag > p), we have 

where tr,, is given for any n by 1 = 8,, + -. 1 - 8, 
Then, letting n go to 

P 771 
infinity, we deduce that 
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Then, since f p(t) = M for all t, we get, using the Jensen inequality (or 
letting p go to infinity) that p 3 &I. We also deduce the convergence of 
P,, to A4 in P(0, T; LP). Next, to get the convergence in L”(0, T; LP), 
we write that 

and deduce easily from the bounds we have on p;;ll that (f),, - M)+ 
converges to 0 in L”(O!T; L2) and then in L”(0. T;L1). Using that 
f/-),& = M, we get that (p - M)- goes to 0 in L”(0, T; L1). Finally, 
to conclude we remark that we can use the expansion of p;” up to the 
order p as in (85) and deduce that (pn - M)+ tends to 0 in L”(0, T: LI’). 
Then, we see that 

(86) .! IPn - Ml” 5 .I ‘(pn - M)“, + M”-l(M - /I,,)+. 
And letting TL go to infinity, we conclude easily. 

Eventually, we see that the proof of the previous theorem can be adapted 
to this case. The study of more general initial data will be considered in 
a forthcoming paper. 
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