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ABSTRACT. - The purpose of this work is the study of the existence and 
of a priori properties of solutions (c, u) of the following reaction-diffusion 
equations in infinite cylinders C = R x w with outward unit normal V: 

{ 

A?L - /3(2zl) y, C)dlU + f(m, u) = 0 in c 

(PI &U = 0 on dC 
u(--oc), .) = 0, u(+aJ, .) = 1 

The functions -,i3 and f are given and are non decreasing in ~1. The 
results on the existence and on the necessary conditions are related to two 
“limit problems” as x1 -+ fee. 

Key words: Nonlinear PDE’s, Monotonicity properties, Sub- and Supersolutions, Sliding 
method, Asymptotic behaviours. 

R&SUM& - Ce travail Porte sur l’etude de l’existence et d’estimations 
a priori de solutions (c, U) d’equations de reaction-diffusion dans des 
cylindres intinis C = R x w de normale exterieure unitaire v : 

(PI 
au - p (x 1 , ‘YJ, I:) a, ‘U + f ( ,rt,u) = 0 dans C 

i&u = 0 sur dC 
u( -x5 .) = 0: u(+ca, *) = 1 
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Les fonctions -,0 et f sont donnees et sont croissantes par rapport a :I’~. 
Les resultats d’existence et les conditions necessaires sont relies a deux 
G problemes limites >> quand z1 + foe. 

1. INTRODUCTION AND MAIN RESULTS 

The goal of this paper is to investigate some problems which are set in 
infinite cylinders C = {(x1, y), z1 E R,y E w}, where w is a bounded 
domain in RN-’ with smooth boundary; one denotes by v the outward unit 
normal to dw or XC. We study semilinear elliptic equations 

(E) AU - @(Xl, y, c)d1u + f(Q, 7L) = 0 in c 

with boundary conditions 

(B-C) { 
d,u = 0 on dC 

u-cc, .), u(+cq .) = 1 

the unknowns are the real c and the function ZL. Let us denote by (P) the 
problem which includes the equation (E) and the boundary conditions 
(B.C). 

One denotes by dIu and d,u the derivatives of TJ, with respect to :1:1 
and Y respectively. The given function j? is continuous in all parameters, 
lipschitz-continuous and bounded in (x1, y) for any c E R. This function 
/3 is systematically assumed to be non increasing in x1 and to have limits 
&(y, c) as x1 + foe, uniformly in y and c. Moreover, one assumes that 
Ye < c’ 3~ > 0 such that Vy E W ]&(y,c) - ,&(y,c’)] > E. Lastly, [j is 
increasing in c and /3(x1, y, c) -+ fco as c + fee uniformly in 1~‘~ and 
y. For instance, a natural situation is to consider functions ,0 of the form 
P(xl, Y, c) = c + 4~) + 4.~1 w h ere LY is a given function on W and 3 
is decreasing on W. 

The nonlinear given term f(zl, U) is lipschitz-continuous in z1 and U, and 
is defined on R’ x [0, 11. Moreover, f is non decreasing in x1, has derivatives 
with respect to x1 and U, and there exist derivable functions fi: on [0, I] 
such that lim 1, -&m ~(Q,u) = f*(u) and fh(~c~,u) -+ f:(u) as ~1 + fee 

(uniform limits). Besides, one assumes that f(zt, 0) = f(zl, 1) = 0 for 
all z1 E R. 
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Let us first state the motivation and some results for the case where the 
terms 10(x1, Y, c) and f( x1, u) actually do not depend on ~1. Problem (P) 
reduces to an invariant by al-translation problem 

(Pi,,,.) 
AU - ~(Y,c)&u+ f(u) = 0 in c 

&u = 0 on dC 
u(--co, .) = 0, u(+cq -) = 1 

In short, this problem can be motivated by deflagration curved flame 
propagation models in the theory of combustion and by biological situations. 
The first works in this multidimensional case were in particular made by 
Berestycki, Larrouturou, Lions and Nirenberg (c$ [4], [5], [7]). These 
authors have especially generalized some known results on the ordinary 
differential equation u” - cu’ + f(u) = 0 with the boundary conditions 
u( -cc) = 0 and U(+CQ) = 1. This last situation corresponds to the 
propagation of planar waves and the works about it were initiated by 
Kolmogorov-Petrovskii-Piskunov, Zeldovic-Frank-Kamenetskii, Kanel’ and 
Fife-McLeod (cJ [9], [12], [13], [25]). 

In the literature, one usually has to distinguish three main cases: 
- case A: 38 E (0,l) such that f = 0 on [0,0], f > 0 on (r9,l) (6’ is an 

“ignition temperature”, see the explanations below), f(1) = 0. 
- case B: 38 E (0,l) such that f < 0 on (0,8), f(0) = 0 and f > 0 on 

(8, l), f(0) = f(0) = f(1) = 0 (“bistable case”). 
- case C: f > 0 on (0, l), f(0) = f(1) = 0 (Fisher, or “KPP” type). 
Case A (“ignition temperature”) is motivated by the theory of combustion. 

Roughly speaking, the starting point is the thermo-diffusive model for 
wrinkled deflagration flame propagation in an infinite tube where a simple 
chemical reaction A + B takes place between two premixed gases. The 
function u is the renormalized temperature of the mixture and 1 - u is the 
renormalized concentration of the reactant A (see the synthetic works 
of Berestycki, Larrouturou, Sivashinsky and Williams [3], [16], [20]). 
Explicitely, in models of combustion, the real 8 represents an ignition 
temperature below which no reaction happens. The source term f takes 
into account the mass action law and Arrhenius’s law. The convection term 
/.?(y, c)&u is often of the form (c + ~(y))&u (or sometimes ca(y)diu, 
(1 > 0 on W). The function Q is a mass flow distribution given on W and 
is uniform along the principal direction of the cylinder. If the coefficient of 
the convection term is of the form /?(y, c) = c + CX( y), then the functions u 
solutions of (Pi,,) are travelling front solutions for the following evolution 
problem of reaction-diffusion &U = AU - a(y)& U + f(U). In other 
words, c represents the speed of a front of the flame and u its profile. 
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Case B (“bistable”) mainly occurs in biological situations: the function 
u represents for instance the concentration of some species (cj [2], [9]). 

Case C (“KPP”) corresponds as well to biological phenomena as 
combustion models when the ignition temperature vanishes (cf. [ 131, [25]). 

Anyway, the boundary condition 8,~ = 0 on dC means that there is 
no flow across the walls of the cylinder. The limits ~~(---3ci, .) = 0 and 
U(+OC. .) = 1 mean that the flame moves with speed c from the burnt 
gases in +cxj to the fresh zone in --3o. 

If one moreover assumes that f’(1) exists and is < 0, and f is of class 
Cl.” near 0 to the right and 1 to the left for some 0 < 6 < 1, the main 
results for problem (Pi,,(l) can be summarized as follows: 

THEOREM 0 ([7]). - In case A (“ignition temperature “), there exists a pair 
(c, U) solution of (Pint,). Th e real c is unique and the function IL is unique 
up to translation with respect to ~1. 

In case B (“bistable case”), if f’(0) < 0, w is convex and if f is of class 
C’,‘( [0, 11) for some d > 0, the same result holds. 

In case C (“KPP” case), if f ‘( 0) > 0, there exists a minimal speed C* 
and solutions (c, u,) of (Pi!;,,,) if and only if c 2 c*; for any c 2 c*, these 
solutions u are unique up to translation in the XI-direction. 

Similar problems were studied by Xin (~1: [21]) in periodic media 
R x T, where T is the unit torus in IF!“. In [21] and [22], Xin proved 
existence, uniqueness and monotonicity results, using fixed point theorem, 
continuation and sliding methods. In the case where f is of “bistable” type, 
Xin also studied, in periodic media, some non homogeneous problems for 
which the diffusion term AU, is replaced by an approximated expression 
diu((1 + A)V >) II w ere A(X) is a matrix defined in a periodic box of h 
RN. Xin proved the existence of solutions for small il (c$ 1231) and non 
existence for A with large enough variation ([ 241). 

Volpert and Volpert also studied a dependence on .l’l in the source term 
f(zl, U) for systems of ordinary differential equations. u representing a 
vector of functions. They proved the existence of monotone solutions and 
a priori estimates for such solutions. In this paper, we actually generalize 
in the multidimensional case some results given in [ 191. and we even show 
that the solutions of (P) are increasing in .I’, 

We now come back to problem (P) (constituted of the equation (C:) 
and the boundary conditions (D.C)). Many question\ rcmaincd opt~l dwut 

problems set in unhomogeneous media. The difl‘erencc he~wcc~l the cast: 
of a velocity field p = /j(:l,~. c) and the situation untlc~~ c\;lmiu;l(ion u,ith 

.\,i,i~il~~~ s/c, i lii~i!li,, /iv II) I i’s,,,‘* ,, \I, ,I\\< 11~‘!1 lllli~.lllL 
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an additional dependence on ~1 in this velocity field and in the source 
term means that the medium is fully non homogeneous along the principal 
direction of the cylinder. For the thermodiffusive model, this can mean 
that we do not assume the constant density approximation; physically, the 
hydrodynamical effects due to the heat expansion have a non negligible 
function with respect to the reaction phenomena (see [14]). 

Some perturbations in the medium may occur in a localized zone around 
the front of the wave in the frame which moves with speed c to the left. 
We refer to [lo] for the case of a non homogeneous convection term of 
the form (c + o(y))&u + y’. Vu where 4’ is a small perturbation of the 
velocity distribution which is in L”(R); this can be interpreted as a first 
step in the introduction of turbulence. 

The physical problem of a non constant velocity field [)(x1, 3, c) can 
remind us of the flow in a plane engine, where the velocities of the gases 
in the entrance and in the exit are different. 

In all what follows, according to the brief physical explanations above, we 
will assume to simplify that /3 is non increasing in z1 and f is non decreasing 
in x1. The function f may for instance be of the type f(xl, U) = f”(~)$(~r) 
where f is a positive function and li, is an increasing function bounded from 
below by a positive constant on R. The mathematical stake is to understand 
the difference between the invariant by translation problem (Pi,“) and the 
non invariant one (P). Indeed, the first important remark is the following: 
if ica E W and (c, U) is a solution of (P), then the translated function 
(ICY, y) +-+ ~(2~ + .ro; y) is not necessarly solution of (P) with this speed 
c. This is in sharp contrast with the solutions of problem (PiTLV). 

In the theory of ordinary differential equations, we know the difference 
between the equations with constant coefficients and the equations with non 
constant coefficients. In a similar way, the aim of this article is to describe 
some results for problem (P) when the coefficients /? and f depend on 
~1, but only in the monotone case indicated above. These results will 
explicitely clarify the qualitative difference with respect to the invariant by 
translation situation (Pi,,,). 

Main results 

Shortly, we study the structure of the set of solutions of problem (P), 
and we establish the connection with two asymptotic problems, which 
correspond to the limits ~1 + &co, which we note (P*), the “limit 
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problems” in &co, and which are invariant by zi-translation, 

i 

AU - ,&(IJ, C)&U + f*(u) = 0 in C 
(Pi=) &IL = 0 on dC 

u(--cx), .) = 0, u(+q .) = 1 

Apart the general assumptions made on the functions ,/3 and f, we will 
consider that f+ and f- satisfy one of the three main cases indicated 
above: “ignition case” A, “bistable” case B and “ZFK” case C. We 
mention that in all cases f- < f+ because f is non decreasing in x1, 
and p- (y, c) 2 p+(y, c) because p is non increasing in x1. More precisely, 
one will investigate three situations concerning the profiles of the functions 
f- and f+: 

Case I: f- and f+ satisfy the “ignition temperature” case A, with 
respective ignition temperatures 8- and B+ such that 0 < B+ < Q- < 1. It 
is furthermore assumed that f- and f+ are of class Cl>” near 1, for some 
6 > 0, and f:(l), f;(l) < 0, f;(8+) > 0. 

Case II: f- and f+ satisfy the “bistable” case B, with respective zeros 
8- and 8, such that 0 < 0+ < 19- < 1. It is assumed that f’(O), f:(O), 
f:(l), f;(l) < 0. M oreover, one assumes that the section w is convex. 
The functions f-, f+ are of class C116 with respect to u for some 6 > 0 
and fL(r3-) > 0, f:(6)+) > 0. 

Case III: f- and f+ satisfy “KPP” case C and fl_ (0), f; (0) > 0, f’ (l), 
f:(l) < 0. 

From the results recalled above in theorem 0, in both cases I and II, 
there exist some unique pairs (c-, u-) and (c+, u+) solutions of the limit 
problems (P-) and (P+) ( u* are unique up to translation in the XI- 
direction). In case III, there exist two minimal speeds CT and c; and 
solutions (c, u) for problems (P-) and (P+) if and only if c > c”; and 
c 2 c;. 

We can now state the different results for the existence of solutions 
of the initial non invariant problem (P), which are summarized in the 
following theorem: 

THEOREM I (Existence) 
a) In cases I and II (f* are of “ignition temperature ” or “bistable ” types), 

f being non decreasing in x1 and /3 non increasing in x1, then CL < c+. 
Moreover, in each of the folEowing cases, we have c- < c+: 

- b(.>C) $ P+(.,c) vc E R 
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- in case ZZ, f:(O) < f;(O) < 0 and f;(l) < f:(l) < 0. 
- f- yak f+ and If-(1 - s) - f+(l - s)l = O(s’+“) as s + 0, for 

some S > 0. 
- in case I, @(I) < f’(l) < 0. 
Furthermore, if CL < c+, then for any c- < c < c+, there exists a 

solution (c, *u) of (P) such that dl’u > 0 in c. 
If c- = c+, then there exists a solution u such that dlu 2 0 in c with 

the speed c = c- = c+. 
b) In case III (f* are of “KPP” type), f being non decreasing in z1 

and 0 non increasing in x1, then c? 5 CF. For any c 2 c; and for any 
h E (0, l), there exists a solution (c, U) of (P) such that 8,~ 2 0 in C 
and m;j”x ~(0, .) = h. 

Remarks. - Since f- and f+ are of class Cl,’ near 1, if fL( 1) = f:(l), 
then the assumption If- (1 - s) - f+ (1 - s) 1 = 0( s~+~) is automatically 
satisfied. 

In the case of a velocity field /3(x1, y, c) = c + a(y) + r(zi) where y is 
a non increasing function on R, then the case c- = c+ only occurs if and 
only if y and f are invariant in x1; otherwise c- < c+. 

The second main part of this article is devoted to the precise study of 
the set of the solutions of problem (P) in the different cases I, II and III, 
and to state some a priori properties of such solutions. We begin to state 
some a priori conditions on the speeds c solutions. 

THEOREM 2. - The function f being as usual non decreasing in x1 and /3 
non increasing in x1, in cases I and II (f* being of “ignition temperature” 
or “bistuble” types), if (c, u) is a solution of (P) such that &u > 0, then 
c- < c 5 c+. In case III (f* are of “KPP” type), if dlu > 0, then c 2 CT. 

The next two theorems concern the properties of the eventual functions 
u solutions of (P). For that purpose, we will assume some technical 
hypotheses on the regularity of the functions f and p and on their behaviours 
as x1 + fez At first, f and p are assumed to be of class C1 with respect 
to x1. Besides, they tend exponentially to f* and p+ as x1 -+ fm: 

C V’tr > 0 If(xl,U) - f+(u)/ = O(e--nxl) as x1 -+ +oc 
Va > 0 If(xl,U) - f-(u)1 = O(e-e1211) as 51 --+ --cc uniform1y in U 

and 3C*, Sk > 0 such that 

C 

I~(xl,y,c) - (z-(y,c)l < C-e6-x1 Vxl < 0,y E W,c E R 
Mc,Y,c) - P+(y,c)l I C+e -*tzl VXl 2 0, y E 15, c E w 
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(if P(zi7 y, c) = c + o(y) + r(zi), th ese assertions mean that Iy - y& 1 tend 
faster than some exponential as z1 + kxz). Moreover, these assertions are 
satisfied if &., p = 0 for lzij large enough. 

We split the results on the structure of the solutions of problem (P) 
into two main theorems: 

THEOREM 3. - With the assumptions above on the behaviour off and /j 
as x1 + foe, f being as usual non decreasing in x1 and 0 non increasing 
in x1, if (c, 1~) is a solution of(P) m cases I, II and III, then i&‘u > 0 in c. 

Remark 1. - Under the above hypotheses, it follows from theorems 2 
and 3 that one has c- < c 5 c+ in cases I and 11, and c 2 CT in case III. 

Remark 2. - Theorems 2 and 3 yield that the existence results given in 
theorem 1 in cases I and II are quite optimal, up to the existence in the 
limit cases c = c- or c = f:&. 

THEOREM 4. - With the assumptions above on the behaviour of f and ,8 as 
x1 + foe, f being as usual non decreasing in x1 and p non increasing in 
.x1; in both cases I and II (f* are of “ignition temperature” or “bistable ” 
types), we have 

a) if (c, U) and (c’, u’) are solutions of (I’) such that c < c’, then II. > U’ 
in E. 

bj if one moreover assumes that p(xl,y,c) = /J+(IJ,c) for x:1 large 
enough, uniformly in (y, c), let c- < c 5 c+ and fix 0 < h < 1, then 
there exists at most one solution of (I’) which satisfies the normalization 
condition rri:x ~~(0: .) = h. 

In a few words, the existence theorem can be proved by a passage to the 
limit in finite cylinders, for which the existence of solutions is given by a 
result on sub and super-solutions. The comparison with auxiliary functions 
is needed to obtain the limit conditions as z1 + fzo. The main tools for the 
necessary conditions are based on the study of the exponential behaviours 
of the different solutions, some results given in the appendix are useful. 

2. EXISTENCE RESULTS, PROOF OF THEOREM 1 

2.1. Cases I and II 
(“ignition temperature” and “bistable” cases) 

2.1.1. Comparison between c- and c+ 

The demonstration of the inequality c- < c+ can be made by 
contradiction and is based on the study of the exponential decays of 



REACTION-DIFFUSIONPROBLEMS INCYLINDERS: MONOTONEPERTURBATIONS 563 

solutions. This allows to begin a sliding method. Similar proofs were made 
in [7]. 

Let us first suppose that c- > c+ and argue by contradiction. Let us 
study the exponential behaviours of U- and U+ near foe and for that 
purpose apply the results of [7] (§2,3,4). 

We first consider case I. Since @-(., c-) > ,8+(., c+) (because c- > c+ 
and /?I is non increasing in xi), near -00, the functions U- and U+ satisfy 

u*(z~, y) = c++~&(~J) + o(eX*zC’) as z1 -+ --co uniformly in y E W 

with two reals 0 < A+ < X- and two functions & > 0 on Z solutions of 

-i 
A& + (A$ - LPdy, Q)>& = 0 in w 

++h* = 0 on dw 

It comes that 0 < U- < U+ near -CX. 
On the other side, one necessarly has f;( 1) < f!. (1) < 0 and 

P-(a) > P+(.,c+). Th us , f rom the results of [7], one can write 

Kk(~~i, Y) = I- ep*zl&(y) + O(eP*X1) as 21 -+ +cc uniformly in y E G 

with cc+ < p- < 0 and Qq > 0 solutions of 

{ 
A$+ + Cd - a&(~, 4 + Ml>)~+ = 0 in w 

a,$* = 0 on dw 

Indeed, in order to explain this, let us recall that p+ < 0 are solutions of 

,ul( -L) denoting the principal eigenvalue of the elliptic operator L 
with Neumann boundary conditions. The functions gh : t H ,u~ (-A + 
tP+(Y,c+) - f;(l)) are strictly decreasing with ,0 (considered as a 
variable) for each t < 0, and g+(O) = -f;(l) > --f:(l) = g-(O). 
Hence, since c+ < c-, which yields p+(., c+) < ,B- (., c-), we have 
g+(t) > g-(t) for any t < 0, and thus 

It comes then that U- < U+ < 1 in the neighbourhood of +CX. 
We now use a sliding method: at first there exists R > 0 such that 

U- < U+ if (zi] > R , y E W. As U- is increasing with zrl and u.+ is 
greater than some CL > 0 on the compact set [-R, R] x W, we can translate 

Vol. 14. no 5.1997 



564 F. HAMEL 

71,~ to the left enough such that U-(51 - s, y) < ~I,+(LG~, y) for some s > 0 
and for any (51, y) E c. As the behaviours of U+ and ‘u- are exponentially 
different in foe, we can actually translate 71,-(z1 - s. y) to the right in 
such a way that for some t 5 s 

u-(x1 - t,?j) I ~~+(Q;YI in C 

with equality somewhere in c. Thus, the function z = U+ (zi: y) - 71~ (x1 - 

t, y) is 2 0 and = 0 somewhere, it satisfies 

i 

AZ - p-(y, c-p1z + (f+(u+(c, Y)) - f+(=(Q - t! Y))) 
= (-P-(Y! C-J + B+(Y, (:+))h+ 

+(~-(u-(x~ - t, y)) - .f+(u-(21 - t. ~1)) in C 

3,~ = 0 on 3C 

We have already infered that ,K (. , c- ) > [j+ (. , c+). Moreover, 8, U+ 2 0 
and f- s-f+. Lastly, as f+ is lipschitz-continuous, there exists a function 
c E L”(C) such that 

{ 

AZ - pL(y, c-)&z + c(z)z < 0 in C 
3,,2 = 0 on dC 

Finally, the maximum principle and Hopf lemma yield that z 7 0 in ??, 
which is a contradiction with the exponential behaviours of ‘II,- or I/,+ near 
&cc. That proves the first assertion in theorem 1, in case I. 

In case II, in order to obtain c_ < c+, the proof is similar, the estimates 
in --3o can be treated in the same way as in +cc. 

In cases I and II, if we add the following hypothesis: [I- (y: c)$ jj+(:y, c) 

for all c, applying the results of [7], then we can prove exactly in the same 
way that the assumption c- 5 c+ would yield a contradiction. One can 
remark that this situation occurs if ,jj(zi. y, c) = c + N(Y) + y(n:r) with a 
function y non increasing and non constant. 

In case II, the hypotheses f’ (0) < f: (0) < 0 and fi (1) < f’ (1) < 0 
allow to obtain a contradiction if c- = c+, with the same arguments: 
indeed, even if c- = c+. the exponential behaviours of II,- and II.+ can 
be compared near f oo. 

If f- $ f+ and If-(1 - s) - f+(l - s)I = O(s’+*) as s + 0, for some 
h‘ > 0, then we also have c- < c+. The proof is quite technical and will be 
given in section 3.3.3. Indeed, it corresponds to a similar situation as the one 
developped in section 3.3.3. Case I, with f; (1) < f’( 1) < 0, is similar. 
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Remark. - To sum up, since f- and f+ are of class C1)6 near 1, 
then c- = c+ only if f- G f+, i.e. f(x1,~) = f(u) and 3 c such that 
P-(.,/z) E P+(.,c). 

2.1.2. Existence of a solution for any c- < c < c+ 

We proved in the previous section that c- 5 c+ and explicited sufficient 
conditions to have c- < c+ In this part, we assume that c- < c+. Our 
purpose is to adapt the methods of Volpert and Volpert (c$ [ 191). The basic 
idea is to use an argument of sub and super-solutions. At first, we will 
construct some auxiliary solutions in semi-infinite cylinders. 

a) Construction of auxiliary solutions in semi-injinite cylinders 
We recall that we consider the cases of functions f* which are of “ignition 

temperature” or “bistable” types. Following the ideas of [9], for any fixed 
c < c+, we will construct a function w defined in R+ x w solution of 

A*w - P+(y,c)&w + f+(w) = 0 in C+ = R+ x w 

i _ 

w(0, .) = 0 
w(+oo, .) = 1 

d,w = 0 on IF!+ x dw 

and di20 2 0 in C+. 
We will at first solve the problem in finite cylinders R, = (0,2a) x w. 

The method of sub- and super-solutions developped in [8] (Th. 7.2) yields 
that there exists a function u, such that 

{ 

Au, - P+(Y) c)&u, + f+(~) = 0 in R, 
d,u, = 0 on (0,2a) x dw 
u,(O, .) = 0. u,(2a, .) = 1 

This solution u, also satisfies &u, > 0 in R,. Using standard local 
estimates up to the boundary and the Sobolev injections, we deduce that 
for a subsequence a --+ +CQ, the functions u, tend to a function w in 
C:;r (C+) (p > 0). The limit function w satisfies: 

{ 

Aw - /3+(y, c)dlw + f+(w) = 0 in C+ 
d,,w = 0 on E3; x dw 

,w(O, .) = 0: w(+cq y) = 7)(y) 

where $I E W2,P( w 1s a solution of the stationnary problem ) . 

(2.1) 
A$ + f+(G) = 0 in w 

&7J = 0 on dw 

Vol. 14, Ilo 5-1997 
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We want to prove that 4) E 1. Arguing by contradiction, let us suppose 
that II, $ 1. Since 0 5 ,JJ < 1, it follows from the maximum principle and 
Hopf lemma that 0 5 li, < 1 in W. 

Let us fix a real number d < 1 such that max(H+ i rn$x $) < d < 1. 

Since U, is increasing in :E~, there exists a real r, E (O? 2~) such that 
m$ ~,(r~, .) = d. As U, + 111 locally and ru 5 $, it comes that r,, ---i +‘x 
as (L + +c0. 

Let us now shift the origin to l);‘l = 7, by setting o,,(:ci, ‘y) = 
u,(x~ + ra,, 7~) in the cylinder [--r,, 2a - rn] x 55. For a sub-sequence 
(I, + ee, we have 2a - 7rL -+ b E [0, +oc], and the family (v~) converges 
to a function v, locally in C1.f”(] - SC, [I] x W), which satisfies the same 
equation as %u. Moreover, min u,(O. .) = d and II, has a limit in -X w 
(v(-00,~) = $1(y)) h li w ere ~1 is a solution of (2.1) such that $1 > ,I/] 
since TV + +oc and u, is increasing in ~1. Two cases may a priori occur: 
i) b E [0, +oc[ and ii) b = +oc. In each of these cases, we will obtain a 
contradiction by a sliding method: 

in case i), u,(b, .) = 1. If $i E 0, as in the previous sections, one can 
compare the exponential behaviours of 11, and U+ in -cc and, using the 
hypothesis c < c+, one would obtain a contradiction after a sliding method. 
Otherwise, from the maximum principle and Hopf lemma, one has & > 0, 
and one actually concludes in the same way. 

In case ii), vJ+cx;,w) = &(r~). The function $2 satisifes (2.1) and 
min $2 > d > 8, since II, is increasing in ILL and from the normalization 
condition on (0) x W. By integration of (2.1) in w, and since f+ > 0 on 
(6’+, l), we conclude that ljla G 1. As above, we would finally obtain a 
contradiction by a sliding method. 

For any fixed c > c-, in case II, we can argue exactly in the same way 
to prove the existence of a function w such that 

1 

Aw - B-(y; c)&w + f-(w) = 0 in C- = W- x w 
L),w = 0 on R*_ x dw 

w-x, .) = 0 , w(0, .) = 1 

and dlw > 0 in C-. 
In case I, there is just a new argument to add because f- G 0 on [0,0-l. 

One constructs functions TL, in [-au, 0] x W solutions of 

Au, - p-(y, c)&u, + f-(ua) = 0 in (-au, 0) x w 
u,(-2a, .) = 0 ) u,(O, -) = 1 
d,u, = 0 on (-au, 0) x Bw 
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and then pass to the limit for a sequence (I -+ +oc. The limit function 
‘w satisfies the equations 

i 

Aw - o-(y, c)dlw + f-(w) = 0 in C- 
d,w = 0 on IV x dw 

w(-co, y) = T/(y) ) W(O> .) = 1 

One wants to prove that ,$ E 0 on W. In the other case, $ > 0 on is and 
one introduces a real d > 0 such that d < min (min $J, K) and Q-~ such that 
rnzx ‘u,,(-To,.) = d. Since diw > 0 and %o(---00.~) = G(y), one obtains 

that 7u -+ $00. One defines the translated functions v, = U, (-TV fzi ( y) in 
[ -2n + TV, ~~1 x Z. They converge to a function %I, in [b! +oo[ x w in suitable 
spaces. Since c > c-, it comes that J, p-(y, c-) > 0 (by integration of the 
equation satisfied by U-). From the results of [7], there exists an exponential 
function z = exX1$(y) with X > 0 and C$ > 0 on W solutions of 

i 
AZ - /3-(y, c)diz = 0 in C 

d,z = 0 on dC 

One can even assume that min ~+4 2 0.- > d. Since U, 5 d 2 Q- in 
[-2n, + ~~,0] x W, f-(v,) = 0 in [-au + ~~~01 x W. From the maximum 
principle and Hopf lemma, it comes that U, 5 z in [-2a + r,, 0] x W. 
Hence, by a passage to the limit a + +co, one obtains 

v,(--03, .) = 0 if h = --oo 

One can then compare in the same way this function v, to ‘LL- and obtain a 
contradiction. Obviously, the last step is similar if b > -co. This achieves 
the construction of these auxiliary functions w defined in C- or C+. 

b) Construction of a solution of (P) for any c- < c < c+ 
In this part, one supposes that c- < c+ and fix any c in (c- , c+). The 

proof of existence is devided in several main steps. Firstly, one constructs 
solutions in finite cylinders [-a,, u] x W, and secondly one passes to the limit 
and concludes by comparison with the auxiliary solutions in semi-infinite 
cylinders. 

STEP I: Construction in finite cylinders and passage to the limit in injinite 
cylinders 

Let a > 0. We use the general results of [8] on sub- and super-solutions; 
there exists a solution U, defined in [-a, u] x L? of the following problem: 

Au, - P(zI, y, c)dlu, + f(xl,~) = 0 in (-a, a) x w 
d,u, = 0 on (-a, a) x dw 

u,(-a,.) = 0 ) u,(u;) = 1 
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because the constants 0 and 1 are respectively sub- and super-solutions for 
this problem. As f is non decreasing in X:~ and @ non increasing in :cl, we 
can add that this solution is unique and such that &v,, > 0 in (-(I, CL) x 2. 
From the a priori elliptic estimates up to the boundary and the Sobolev 
injections, for some subsequence CL. + +oo, the functions u,, tend to II, in 
C:;:(c). The function u is solution of 

and is such that dr u 2 0 in c. 

STEP 2: Comparison with the auxiliary solutions as x1 -+ f~ 
In cause I, let xi two lipschitz-continuous functions defined on [0, I] 

such that 

,yk E 0 on [0,19,] 
xh > 0 on IO*, l] 

and the restrictions of xk are assumed to be derivable on [ok, l] and 
xi > Sk > 0 on [oh, 11. One introduces then the functions 

For e small enough, from the choice of the functions xi and since 
&(l) < OI f;(B+) > 0, these functions fg satisfy the hypotheses of 
theorem 0 in case A (“ignition temperature” case). Hence, there exist two 
unique pairs (c;, u;) solutions of 

i 

AU; - p+(y, c~)&u$ + f$(u$J = 0 in C 

w 
&u& = 0 on dC 

u&x+ .) = 0, u~(+cxl, .) = 1 
““;j”” ZL; (0, .) = .Q* 

Moreover, since fz are close to f*, one can prove as in section 2.1.1 
(comparison between c- and c+) that the speeds c$ are bounded. By a 
compactness argument, we obtain that the pairs (cz, u$) converge as E + 0 
to a pair (~2, I&). As in [7] (§5), one can prove that the pairs (c> , &) are 
actually solutions of the limit problems (P*) (one can identify the limits of 
the functions r& as being 0 and 1 in foe by comparison with exponential 
functions). By uniqueness, one concludes that (cg . PC*) = (c+ , ‘IL&). 

In case ZZ, we define f:(u) = f*(u) F EU(~ - u). For E small enough, 
the functions fg satisfy the hypotheses of theorem 0 in case B (we use 
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here the assumptions f’(O), f:(l) < 0 and fl(&),f;(e+) > 0). In the 
same way, there exist unique pairs (cl, u$J solutions of problems (Pi), 
and (c$, z&) + (c*, u+) as E + 0 (the demonstration is this of [7] 55-6 
and uses the hypotheses of regularity of f* and the convexity of w). 

One can now begin the main part of the demonstration. Since c- < c < 
c+, there exist two reals c’ and c” and E small enough such that 

c” < c’ < c < c” < c; 

From the results above, one introduces two functions WA solutions of 

Aw+ - p+(y, d’)&w+ + f;(w+) = 0 in c+ 
w+(O, .) = 0, w+(+q .) = 1 

d,w+ = 0 on RF x dw 

and 
Aw- - p-(y, c’)dlw- + fF(w-) = 0 in C- 

w+xl, .) = 0, w-(0, .) = 1 
a,~- = 0 on W: x aw 

Moreover, we recall that drw-, drw+ > 0. We will compare the solutions 
u, (given by step 1) to some translated of w- and w+, for -x1 and x1 
large enough respectively, in order to determine the limits of u near foe. 

In case II, one can write that 

Aw, - P(a, Y, c)&w+ + f(zl,w+) 

= f(m, w+) - f+(w+) + EW+(l - w+) 

+ (P+(Y, c”) - P(c, Yt c)b%w+ 

Let us show that the second member is 2 0 for x1 2 N large enough. 
Indeed, we can write 

A = f(q, w+ ) - f+(w+) + tw+(l - ‘(II+) 

= 
J’ 

w+(f:,(2J1, u) - f$#Iu + tw+(l - UI+) 
0 

Let us now fix Nr such that ] fL( xl, u)--f;(u)1 5 t/4 V:rl > N1 ‘du E [O,l]. 
It is possible because we have assumed that f; + f; as z1 -+ +CX 
uniformly in u E [0, 11. If z1 > Nr and 0 < ru+ 2 l/2, then 
A 2 --E/~w+ + E/~w+ > 0. We can argue in the same way that A > 0 if 
l/2 I w+ I 1, writing A = ~,“‘(f~(xlTu) - fi(u))du + ew+(l - w+). 
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In order to show that the second term B = (p+(y, c”) -P(z:~, y. c))&w+ 
is 2 0 for x1 large enough, since &w+ 2 0, it suffices to prove that 
I?’ = b+(y,c”) - b(xl,y,c) is 2 0. We write 

B’ = (P+(Y, c”) - P+(Y, c)) + (P+(Y, c) - P(Q> y, <:)I 

From the hypothesis made on ,0+ in the introduction, and since c” > c, there 
exists S > 0 such that p+ (y, c”) - 0, (y, c) > 6 for all y E W. There exists 
now N2 such that ]/?+(y,c) - ilj(.~~,y,c)] 2 S if x1 2 N2, k’y E W. Hence, 
B’ > 0 for x1 2 N2 and y E W. Let us now define N = max (Ni, N2) and 
translate w+ of N to the right (we rename w+ this translated). The function 
w+ is now defined in [N. +30[ xw and satisfies w+(N, .) = 0. Hence, 

(2.2) Aw, - fl(xl; y: c)&w+ + f(x~, w+) 2 0 in [N. +~[xw 

For any a > N, we will show that the functions U, constructed in the 
step 1 are > ru+ in [N, a] x G. 

Otherwise, since 0 < u, < 1 in (-a, a) x W and w+ < 1, there 
exists a real 0 _< r < a - N such that U, (xi, y) 2 ru+ ($1 - ‘T, y) in 
[N + 7, a] x w with equality somewhere in [N + T, a] x W. Let us now 
define z = U, - w+(x i - 7, y) in 2 = [N + 7, a] x W. Thus, in 2, the 
function z satisfies 

AZ - @(xi, y, c)diz + f( Xl, u,,) - f(Xl. w+(x1 - TT: y)) 
z -Aw+(zl - 7; y) + {3(x1, y. c)&w+(x~ - r> Y) 

- f(x:1,w+(x1 - 7-5 y)) 

since ,D is non increasing in ~1, &w+ 2 0 and f is non decreasing in XI. 
The last expression is < 0 from (2.2) (since x1 - r > N). Hence, as f is 
lipschitz-continuous in TL, there exists a bounded function c such that 

AZ - /3(x1, y, c)diz + c(x)2 < 0 in Z? 
3,2=Oon(N+r,a)xdw 

2 2 0 in 3 with equality somewhere in (N + 7, a) x W 

From the maximum principle and the Hopf lemma, we infer that z s 0 in 
3 which is impossible for instance on {a} x W since w+ < 1. 

Hence, U, > w+ in [N, a] x W. By passage to the limit a -+ +CD, we 
conclude that u > w+ in [N, +cc[xis, and lastly U(+OO, .) = 1. 
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Similarly, one can prove that u 2 w- (for a translated of the function 
w-) in ] - W, -N’] x Z, for N’ large enough. Thus, u(-co, .) = 0, this 
achieves the proof of theorem 1 in case II. 

In case I, the arguments are the same up to technical details due to the 
different definition of the functions f$. Indeed, with the same notations, 
we have 

Aw, - /‘J(zi, y, c)&w+ + f(~>w+) 
= f(Xl, w+) - f+(w+) + EX+(W+)(l - W+) 

+ (P+(y, c’) - P(Sl> Y> c))&w+ 

It only remains tom show that the term A = -f+(w+) + f(zl, w+) + 
EX+(W+)(l - w+> is 2 0 for z1 large enough. If w+ < r3+, then A = 0. 
If 0+ < mu+ 5 (1 + @+)/a, we write 

For x1 > Ni large enough, we have ]fA(zi,u) - f:(u)] I cS+(l - 0+)/2 
(see the definition of 6, in the beginning of the step 2). Besides, 
x+(w+) = x+(w+) - x+(6+) L S+(U)+ - 0,). Hence* 

il > -t(w+ - 8+)6+(1- 0+)/a + ES+(W+ - Q+)(l - l9+)/2 > 0 

If (I+ 8+)/2 < w+ 5 1, we write A = J,"'(f;(~~,u) - f;(u))& + 
CX+(W+)( 1 - w+) and conclude in the same way since x+(w+) > 

min 
[(l+e+)P,ll 

x+(4 > 0. 
Hence, U, is greater than some fixed translated of w+ near +oc. This 

yields that u(+co, .) = 1. Similarly, u(--00, .) = 0. This achieves the proof 
of theorem 1 in case I. 

2.1.3. Case c- = c+, existence result 

From the results of $2.1.1, this yields that ~(xI,u) = f-(u) = 
f+(u) Vxi E R , Vu E [0, I]. Let us note c = c- = c+ and f(n) = f(xi, u). 
The functions U& are solutions of 

Au, - &(y, c)&wt + f(u) = o in c 
avu+ = 0 on ax 

u*(-m, .) = 0, u*(+cq .I = 1 
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Moreover, let us show that ‘u+ and U- are respectively super and 
subsolutions for problem (P). Indeed 

alL+ - P(Zl> Y> CP lu+ + f(u+) = (@+(y:c) - ~~(xl~y,c))dlu+ < 0 in C 

since /? is non increasing in x1 and iJ‘ 1 II ,+ > 0. In the same way, we have 

AL - @(xl, y, e)i3lu- + f(~) 2 0 in C 

In both cases I and II, for the existence of a solution u of (P) such that 
dlu 2 0, it remains to prove that U_ < U+ in C (up to translation) and to 
apply the results of [8] on the theory of sub- and supersolutions. 

The behaviours of U+ near --cc can be written as 

where Xi > 0, & > 0 on W are solutions of 

From the results of [7] used in $2.1.1, since /3+(., c) 5 /- (.: c), we 
have 0 < X+ < X-. 

If p+(.; c) E ,LL(.:c), then ,D(zi; y; c) E ,0+(y,c) E /X(y,c). From 
theorem 0, the functions U& are equal up to translation, and all their 
translated are solutions of (P). 

Otherwise, 0 < X+ < X- and U- < IL+ as :cl + -cc. In the same 
way, we could prove that the exponents jr* of the exponential behaviours 
of 1 - U* near +ix are such that IL+ < ,L- < 0. Hence, IL- _< u+ as 
:cl + fcx, and in % after translation; this achieves the proof of the existence 
of a solution II. of (P) from the remarks above. 

2.2. Case III (“KPP” case) 

2.2.1. Proof of the inequality c? 5 (2; 

To prove this inequality, it only suffices to recall some results given 
in [7]. For a non-linearity f of “KPP” type C, the minimal speed c* is 
namely obtained as the increasing limit as B \ 0 of the unique speeds co 
corresponding to the function fe of “ignition temperature” type A defined 
by fo = fx~ where ~0 is a smooth and non negative function such that 
xfj =: 0 on [O,Q] and xH - 1 on [20,1]. 

In the situation of case III, since 0 5 f- 5 f+ < 1, it comes that 
f! = f-ye 5 fft = .f+xe. Hence, from 52.1.1, the unique speeds cz 
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corresponding to the functions J$ are such that c! 5 ct. By passage to 
the limit 0 \ 0, we conclude that c*_ 5 c:. 

2.2.2. Existence of solutions for any c > c; 

In case III, we have f* > 0 on (0,l). For each non-linearity f- and f+, 
there exist minimal speeds CT and c; such that CT 2 c; (from 32.2.1.). 

Let h be fixed in (0; 1) and c 2 c;. Let a > 0 and R, = (-a, u) x w 
the finite cylinder. By a method of sub- and super-solutions, we will first 
show the existence of solutions (Us) of the problems 

(Pa) 
{ 

Au,, - a(~:,, y, c)&u, + f(z1,u,) = 0 in R, 
d,u, = 0 on (-a, a) x i3w 

rnp u&(0, .) = h 

Indeed, we know that there exists U; such that diu; > 0 in C solution of 

Au; - ,B+(y, cQ)&u; + f+(u;) = 0 in C 
t&u; = 0 on dC 

uQ(-co, .) = 0, u;(+my .) = 1 

Since c > c; and /3 is non increasing in 21, we have /3+(y, CT) 5 
P+(y,c) I P(zI,Y, c). Moreover, &UT+ > 0, and f(~,u;) I f+(u;) 
because f is non decreasing in 51. Hence, it comes that 

C 
Au; - /3(x1, y, c)d~u$ + ~(zI, u;) I 0 in R, 

&AL; = 0 on (-a, u) x dw 

Hence, U; is a super-solution of problem (Pa) (without the normalization 
condition on (0) x W) such that diu; > 0. Besides, each constant 
h, = min 

{-a}xs 
U; is a subsolution of this problem because f(zi, h,) > 

f-(ha) 2 0. Since ,D is non increasing in ~1 and f is non decreasing in 
zl, all the hypotheses required for the application of general theorem 7.2 
of [8] are satisfied. There exists thus a unique solution II, of the problem 

{ 

Aw, - p(zl, y, c)dlu, + f(xl, 11,) = 0 in R, 
&v, = 0 on (-a,~) x dw 

,~~(-a, .) = h,, ~/,(+a, .) = u;(+u, .) 

with div, > 0 in (-~,a) x W. 
Of course, we can do this work for any translated function of u;, i.e. 

for the functions u$.~ : (xi, y) H ‘LL;(z~ + r, y) for any r E R. We would 
obtain functions vu,,, by the same way. From the uniqueness results above, 
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from the classical a priori elliptic estimates and by a compactness argument, 
the functions II,,, are continuous in r. Since h,,, = rain ,I/,;,, 4 1 as 

{-n}xB 
T + +cc, and vl;gu:I: ,~,(a, .) + 0 as 7 + -cc, it comes that there exists 

r E R such that uu, := u,,, is solution of the initial problem (P,), with the 
normalization condition n-mz uu, (0:) = h. 

As usual, one passes to The limit n + +oo. For some subsequence, one 
has ua -+ u in C,l,‘F(c) such that 

i 

Au - jY(xl, y, c)~)~u + f(:cl, u) = 0 in C 
&II, = 0 on dC 
my ‘U (0. .) = I/, 

and dlu 2 0 in c. There exist functions ,c’/* defined on W such that 
u(fco: w) = *(i/+(y) Vy E W, and $5 satisfy the limit problems 

{ 

A$, + f+($*) = 0 in w 
i),& = 0 on 3w 

By integration of these equations and since u is increasing in x1, it comes 
immediately that $- E 0 and $+ E 1. 

Remark. - The methods developped in 52.1.2. in cases I and II do not 
work in case III. One could answer whether there exists a solution of (P) 
for any c > c? or even only for c > CT. This question is still open. 

3. NECESSARY CONDITIONS, 
PROOFS OF THEOREMS 2,3,4 

3.1. Bounds on the eventual speeds c solutions: 
proof of theorem 2 

3.1.1. Cases I and II 
(“ignition temperature” or “bistable” cases), 

proof of inequality c- < c 5 c- 

Let us suppose that there exists a solution (c, u) of(P) such that &u > 0 
and c > c+. Since f(a,u) I f+(u), P(Q,Y,c) 2 P+(y,c) and 81~ 2 0, 
it comes that 

(3.1) Au - p+(y; c)&fu + f+(u) 2 0 in C 

Let us remark that 

Au+ - P+(y,c)&u+ + f+(u+) 5 0 

Amales de l’lnstirut Henri Poincare’ Analyse non h&ire 



REACTION-DIFFUSION PROBLEMS IN CYLINDERS: MONOTONE PERTURBATlONS 575 

because we have supposed that c > c+, and since &u+ 2 0. In order 
to obtain a contradiction, we will firstly compare u and U+ in foe and 
secondly we will use a sliding method. This approach is general and is 
available in both cases I and II. Other proofs are given in [ 1 l] and 1171. 

Study of u and u+ near --00 
Case Z: the non-linearity f+ is of type A and f+ E 0 on [0, @+I. Berestycki 

and Nirenberg proved in [7] that the behaviour of the function U+ solution 
of (P+) is given by 

(3.2) u+(zl, y) = eX+x14+(y) + o(e’+“l) as z1 + --x 

where the real X+ is > 0, the function $+ > 0 on 5. The function 
w+ = e x+X1$+(y) is solution of 

1 
Aw, - ,D+(y, c+)dlfw+ = 0 in C 

d,w+ = 0 on dC 

From (3.1) and the profile of f+, we have 

Au - ,L?+(y, c)diu 2 0 in ] - co, -N] x w 

for N large enough. On the other side, as c > c+, we have s, ,D+(y, c)dy > 
J1, P+(Y> c+)~Y > 0 (b y integration of the equation satisfied by u+). Hence, 
from the results of [7], there exists a function w of the form w = exx14(y) 
with X > X+ > 0 and C$ > 0 on W solution of 

1 
Aw - ,L?+(y, C)&UJ = 0 in c 

i3,w = 0 on dC 

Thus, the function z = u - w satisfies 

{ 

AZ - p+(y, c)dlz 2 0 in ] - 03, -N] x w 
&.z = 0 on (-cc, -N) x dw 

and after multiplication of w by a positive constant large enough, one 
can suppose that u 5 w on {-N} x W. The maximum principle and Hopf 
lemma yield 

(34 uswin]--cc,-N]xZ 

On the other side, we have recalled that U+ - e’tzl$+(y) as z1 -+ -cc, 
with $+ > 0 on is and X > X+ > 0. Thus, it results from (3.2) and (3.3) 
that for N’ large enough, we have 

u < u+ in ] - 00, -N’] x LJ 
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Case ZZ: at first, the function U+ solution of (P+) has the same behaviour 
in --3o as in case I. 

The source term f+ is now of type B, hence f:(O) < 0, and from 
the results of [7], for all 0 < F < -f:(O), there exists a function 
W, = e:XCT1$F(y) with X, > 0 and (is, > 0 on W solution of 

C 

Afw, - /j+(y, f:)dlw, + (f:(O) + t)w, = 0 in C 
d,,w, = 0 on dC 

The real X, is the unique positive solution of the equation 

x,z = ,L1(-A + x,g+(y,c) - f;(o) - c) 

where in a general way, ,UI( -L) designates the principal eigenvalue of 
the elliptic operator L with Neumann boundary conditions. Thus, X, 
is continuous in t and for t = 0, we have X0 = X > 0 such that 
x2 = /Q-A + xp+(yJ:) - f;(o)). 

On the other hand, since c > c + (which implies [j+(w, c) < ijj+(y! (:+)), 
we have already remarked that X > X+ (like in case I). Hence, for 
0 < 60 < -f;(o) small enough, we infer X,, > X+. 

As IL 3 0 uniformly in y E W and Au - ,0+ (y, c)&u + f+(~) > 0, 
.C?*-CC 

there exists N large enough such that 

AU - y+(y, r:)iJi~ + (f:(O) + ~O)U > 0 in ] - 3~;. -N] x w 

Thus, 

A(u - w,,) - p+(y, c)&(u - W”) + (f;(o) + fo)(,U - P&,,) 2 0 
in]-oo,-N]xw 

&(,u - ,w,,,) = 0 on (-30, -N) x dw 

Since f!+ (0) + to < 0, multiplying w,, by a positive constant in order that 
u < w,, on {-N} x G, it follows from the maximum principle and Hopf 
lemma that u 5 w,, = excclX1d,, (y) in ] - oc, -N] x W. But, X,, > X+ and 
‘U+ -q’-CO e x+zl 4+ (y). Hence, as in the first case, one concludes that 

u < U+ in ] - 00, -IV’] x w for N’ large enough 

Study of u and u+ near +m 
In both cases I and II, from the results of [7], the asymptotic behaviour 

of the function u + solution of problem (Pi) as x1 -+ +cc is given by 

7b+ = 1 - efL+cl$+(y) + ~(e~+~~) as :zl -+ +oo 
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where b+ < 0, $J+ > 0 on W and W+ = epfzl li,+ (y) are solutions of 

C 
AW+ - /3+(y, c+)&W+ + fi(l)W+ = 0 in C 

&IV+ = 0 on dC 

In both cases I and II, we systematically have fi( 1) < 0. As above, for 
any e > 0, there exists a function ~1: = e”c”l $)F (y), where the real ,LL, is 
< 0 and the function tiC > 0 on W, solution of 

AWL - /3+(y, c)drzu: + (f;(l) - E)W: = 0 in C 
8,~: = 0 on XC 

where the real /I,~ is the unique negative solution of 

,L: = AC-A + ~leP+(~>c) - (f;(l) - 6)) 

The eigenvalue pL, depends thus continuously on t > 0. But, for E = 0 we 
have ho = b such that ,u~ = pr(-A + ,@+(y,c) - f;(l)). Since c > c+ 
(which yields /3+(y, c) > p+(y, c+)), if follows from theorem 2.1 e) of [7] 
that p+ < 1~ < 0 and then for tl > 0 close enough to 0, we have 

On the other side, from (3.1), the function u satisfies 

A(1 - U) - /3+(y:c)&(l - U) - f+(u) 5 0 in C 

and (f:(l) - er)(l - U) < -f+(u) in th e neighbourhood of u = 1 that is 
to say if :1:1 is large enough. Hence, for N large enough, we have 

1 
A(l-u)-iilr+(y,c)%(l-u) + (f;(l)-er)(l--U) 5 0 in [N! +co[xw 

&(1-u) = 0 on 3C 

This implies that the function 1 - ?L - W:~ satisfies 

1 

A(l-?~-w:,)-P+(~,c)dl(l-%1--ui:~) + (f;(l)-tr)(l-v-w:J 
< 0 in [N, +co[xw 

3,(1 - u-wLl) = 0 on dC 

From the maximum principle and Hopf lemma, since f:(l) - f1 < 0, 
we can conclude as above that 

It follows that ?L < U+ in the neighbourhood of +CG. 
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As a consequence of the arguments above, in each case I and II, there 
exists R > 0 such that 

u < u+ on (1 - CO, -R] U [R, +co[) x W 

Since U+ is increasing in CC~ and u is bounded by a constant /3 < 1 on the 
compact set [-R, +R] x W, there exists 7 > 0 such that 

- 
u < u+(z1 + 7. y) V(Zl, y) E c 

As the behaviours of u and U+ are exponentially different in fno, one 
can translate the graph of U+ (. + 7, ‘) to the right in such a way that 

u 5 u+(zl + s, y) in C 

with equality somewhere in c. Thus, the function z = u - u+(. + s. .) 
satisfies 

i 

AZ - P(a, Y> c)&z + f( 21, u) - f+(u+(21 + s, Y)) 
= (P(n. Y, c) - P+(Y. ~+>H~J+(Q + s, Y) in C 

3,,2 = 0 on i‘JC 

Since /3(z1,y, c) > p+(y,c) > /3+(y, c+) (/J is non increasing in 
IC~ and c > c+) and since diu+ > 0, f+(u) > f(~i,,u) and f+ 
is lipschitz-continuous, there exists a bounded function c such that 
f+(u) - f+(u+(.xl + s,y)) = c(z)z, and 

- 
AZ - p(zi, y, c&z + C(X)Z > 0 in C 

Since .z 5 0 with equality somewhere in 2, it results from the maximum 
principle and Hopf lemma that z z 0. That is a contradiction with the 
behaviours of u and U+ as x1 + foe. 

Remark. - We would obtain a similar contradiction if we supposed that 
c < c-. 

3.1.2. Case III: proof of inequality c _> c*_ 

The proof is identical to this of [7](58). One supposes the contrary, that 
is to say c < c”_. Thus, with the notations of §2.2.1., for E < 0 and 0 > 0 
close to 0, we have c < c$ where (c;, u;) is the unique pair solution of 

Au; - ,B-(y, ci)diu$ + (f-xs)(u;) = 0 in C 
3,~; = 0 on dC 

uZ(-03, .) = - E < u; < u;(+m; .) = 1 
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where xs is a smooth function, 1 0, such that xe E 0 on [O,e] and x0 f 1 
on [20,1]. The function f- is extended on R- by f- G 0 on R-. 

As in the proofs of $3.1.1.) up to translation, one has U; 5 u with 
equality somewhere in c. But, 

i 

A(4 - u) - P(m, y, c)%& - u) + (XfL-)&) - (xef-l(u) 

= (a- (Y, c;> - P(a 1 y/, c))wj 

+(f(zl, u) )~sf-(u)) 2Yin C 
20 

d”(u; - u) = 0 on XC 

Thus, ug E U. This is impossible from the behaviours of these functions 
as z1 -+ -cc. 

3.2. The solutions are increasing in z 1 : 
proof of theorem 3 

With the assumptions on the behaviours of the functions p and 9 near 
foe, and f as u + 0 and 1, assumptions which we assume in all what 
follows, some of the properties of monotonicity and partial uniqueness 
enounced in theorem 0 for problem ( PinV) are preserved in the non invariant 
by translation case. We will use the results of the appendix on the asymptotic 
behaviour of solutions, which are a little stronger than what we actually 
need in this section. 

Let (c, U) a solution of (P). From the maximum principle and the Hopf 
lemma, it immediately comes that 0 < u < 1 in C. All the hypotheses 
of theorems 1 and 2 of the appendix are required (behaviours of 0 and f 
as I(:~ + ~XC and f- and f+ near 0 and 1 respectively). The principal 
eigenvalue of the elliptic operator - Ar, - f[ (0) with Neumann boundary 
conditions is 1~1 = -f:(O) with principal eigenfunction CJ 3 1. In cases II 
and III, we respectively have /~1 > 0 and ,u~ < 0. 

In case I, pl = 0 and h(zi, s) := f(~:i, s) - f’(O)s E 0 for 0 5 s 1. 19,. 
In case I, in order to apply theorem 1 of the appendix for the behaviour of 
u as z1 -+ -00, it only remains to prove s ,k-(y, c) > 0 (a z 1 is the first 
eigenfunction of -A). Let us integrate the equation satisfied by IL in !?. 
Since &U -9 0 as ]zi] + +cc (from the classical a priori estimates) and 
since &,u = 0, the integral ,[= AU exists and = 0. Hence, 
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By integration by parts, it comes 

/i” 
[j(IL.,, y, c)i31v(:c,,y)dz,dy 

* u‘. --n 

From the uniform convergences of p to & and ‘u to 0 and 1 as g;l + foe, 
it comes that the first term converges to J, p+(y, c)dy. In the second term, 
we have -ps.(z~,y, c) > 0, and 0 5 u < 1. Hence, 

a 05 
JJ 

-&, (Xl, y, C)U(Icl) y)dzldy 
w -a 

a 
< - 

J/’ 
-is, (21, Y, c)dmdy 

W. -a 

= 
J 

u-q-% Y? <:I - P(% Y, C))dY -+ W(Y/, c) - P+(Y, c))dy 
w / * iu 

Lastly, it follows that 

Hence, from theorem I of the appendix applied in cases I, II or III, the 
behaviour of ‘(1 near -cc is 

C 
U(“l,Y) = eAy5(y) + o(eA”‘) 

Ou(zl, y) = O(f?‘qS(y)) + o(e”‘) 
as x1 i -oc 

or may be in case III, 

{ 
u(cr1,y) = f+-z1~(y) +$0(y)) + @“‘) 

Vu(z1,y) = o(eAy-z,q5(y) + $0(y))) + o(eX”‘) as %’ + -m 

with anyway A > 0, 6, > 0 on W solutions of 

C 
f&p + (X2 - X&(y, C) + f:(O))+ = 0 in w 

13~4 = 0 on i3w 

In order to study the behaviour as x1 -+ +cc, we investigate the operator 
-A, - f!+( 1). Its principal eigenvalue is -fi( 1) > 0 in each case I, II 
and III. From theorem 2 of the appendix, it comes that 

1 
‘U(“c.l,Y) = 1 - epL.c’$J(y) + o(ef”“) 

Ou(.xl~y) = -O(efLzl$(y)) + o(P1) 
as ,~* i +i~~ 

” 
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with anyway b < 0, II, > 0 on W solutions of 

C 
All + (P” - PP+(Y, c> + f;(l))lcl = 0 in w 

&ll, = 0 on dw 

We can thus see that for R large enough, we have i)iu > 0 if lzil 2 R, 
for all y E Z. Since 0 < u < 1 in C and from the growth of u near &cc, 
we can even say that there exists some R. 2 R such that 

u(-Ro, Y) < ~(a, Y) < u(Ro, Y) v(a YY) E (FRO, Ro) x 5 

As fi is decreasing in z1 and f is increasing in ~1, we can apply general 
theorem 2.1 of [S] on the sliding method and obtain directly that u is 
increasing in ~1 in (-Ro, Ro) x ij and finally that &U > 0 in c. 

Moreover, since f and /3 are derivable and lipschitz-continuous with 
respect to x1, one can derivate the equation satisfied by U. From the strong 
maximum principle and Hopf lemma, we infer that diu > 0 in c. That 
ends the proof of theorem 3. 

3.3. Structure of the solutions in cases I and II: 
proof of theorem 4 

3.3.1. Comparison between solutions with different speeds 

Let us only consider in this section the cases I and II (“ignition 
temperature” or “bistable” cases). Let us suppose that (c, U) and (c’, u’) 
are solutions of (P) with speeds c < c’. As in $3.2, the behaviours of u 
and U’ as x1 --+ *too can be explicited 

71(x1, y) = eAzl$(y) + o(e’“‘) as x1 -+ --oo 

u/(x1, y) = e”“‘#(y) + o(eXfzC’) as ~1 --f --M 

with constants X, X’ > 0 and functions +,c$’ > 0 on W. The functions 
71) = exZ14(y) and w’ = eX’“‘#(y) are solutions of the linearized limit 
problems 

i 

Aw - /!-(y, c)&w + f’(O)w = 0 in C 
Aw’ - &(y,c’)&w + f[(O)w = 0 in C 

d,w = d,w’ = 0 on dC 

From theorem 2.le) of [7], since c < c’, we have 0 < X < X’. 
Hence, u’ < u as x1 + -m. Similarly, we could obtain the same 

comparaison as 51 t +oo. 
We actually want to prove that u’ < u in c. If this does not occur, as the 

behaviours of II, and u’ are exponentially different in fm, one can translate 
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the function u, to the left such that its graph touches this of %I,‘. In other 
words, there exists a real 7 > 0 such that u,(:I:~, y) = ~(:ci + 7. g) > II’ 
in c with equality somewhere. Hence, the function z = U, - 1~’ is > 0 
with equality somewhere, and satisfies 

Since r 2 0, ,6 is non increasing in x1, c < c’ and &u, > 0 (from 
theorem 3), it comes that the second term of the above equation is < 0. 
Moreover, f(zi + 7, u,) > f(,. it, u,) (f is non decreasing in ~1). Hence, 
there exists a function c in L” such that 

1 

AZ - /j(:~:i: y; c’)i;)iz + C(X)Z < 0 in C 
a,,2 = 0 on i3C 

From the strong maximum principle and Hopf lemma, it comes that 
z E 0. That is impossible from the behaviours of IL and U’ near fx. 

That achieves the proof of part a) of theorem 4. 

Remark. - From this result, it follows that if (c; U) and (c/, u’) are 
solutions of (P) such that my ~(0. .) = ~rr~~n: ~‘(0, .), then c = CI. In both 

z 
cases I and II, for the invariant problem by translation (Pi,,), the speed 
c solution was unique, and the function 11, was unique up to translation. 
The result proved in the next section is the analogous for the non-invariant 
problem (P) . 

3.3.2. Results of partial uniqueness: 
proof of theorem 4 h) 

In assertion b) of theorem 4, arguing by contradiction, it suffices 
to prove that if (c: U) and (c. u’) are solutions of (P) such that 
UKLIC ~(0, .) = mm ~‘(0. .) = /L E (0, l), then II, =: u’. From the hypotheses 
mide for theorem 4, we can apply theorems 1 and 2 of the appendix for 
the asymptotic behaviours of u and U’ near 5%: we have already seen in 
53.3.1 that the behaviours of 9th and U’ in -cc are given by 

{ 

u(zl: y) = e’“‘+(y) + o(e’““) 
u’(zl,y) = C&$qy) + o(&“I) as TL1 + --Oc 

where C > 0. The eigenvalue X > 0 and the eigenfunction 4 > 0 in w are 
the unique solutions (up to multiplication of 4 by a positive constant) of 

A$ + (X2 - X/L(y, c) + fi_(O))4 = 0 in w 
a,$ = 0 on aw 
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In the same way, since pl(-A - f:(l)) = -f:(l) > 0, we can write 

I 
U(IC~, y) = 1 - e+‘+(y) + O(ekLZ1) 

~‘(5~~ y) = 1 - C’ePZ1$(y) + o(e@“l) 
as x1 + +CX 

with C’ > 0, /L < 0 and 4 > 0 on W solutions of 

A$ + (p’ - pP+(y, c) + f;(l))+ = 0 in w 
if&~) = 0 on dw 

The pair (1~~ $) is the unique solution with 11 < 0 of this problem, up to 
multiplication by a constant for 111. 

Let us recall that m;j”~ ~(0, .) = rr~,~ ~‘(0, .). We will now translate 
the function II, to the left. For any s” > 0, let us define the function 
u,(Ic~, y) = U(Z~ + s, y) in c. The function U, clearly satisfies 

u,(x1, y) = eA”eA.“‘Cgy) + 0(&y as z1 -+ ---~xj 

Hence, since U’ is continuous and 0 < u’ < 1 in c, it comes that for 
some t’ > 0, we have IL~/ > TL’ in c. Let us now decrease t’ such that, for 
a real t 2 t’, one of the following situations occurs: 

i) 16~ > U’ in c with equality somewhere in c 
ii) rlt > U’ in C and t# = C’ 

iii) ‘ILL > u’ in C and ext = C 
With the normalization condition on u and u’ on (0) x W , one of the 
previous situations must occur for a real t 2 0. 

Zf case i) OCCUP-S, then let us note z = rbt - u’. The function z > 0 satisfies 

a2 - /?(:q, y, C)dlZ + (f(x1, ut) - f(x1. u’)) 
= (P(Xl + t, y, c) - a(% Y; c))&ut 

+(f(xl, ut) - f(xl + t, ut)) in C 
a,,z = 0 on dC 

Since f is lipschitz-continuous in u uniformly in ~1, there exists a 
function c in L”(C) such that f( x1, ut) - f(~r, u’) = C(IC)Z. On the other 
hand, from the monotonicity properties of /j and f and theorem 3, we have 
([1(~r + t,y, c) - ,B(~r,y:c))dru~ < 0 and f(zr,~~) - f(:~r + t,ut) 5 0. 
Hence the function z satisfies 

AZ - /3(x1, y, c)&z + c(x)z < 0 in C 
d,z = 0 on i3C 
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As z 2 0 and z = 0 somewhere in C, we conclude from the strong 
maximum principle and Hopf lemma that z E 0 in c. Since &u, &u’ > 0 
in c, and from the normalization condition on (0) x W, it comes that 
necessarly t = 0 and thus 11. E IL’. 

In case ii), since /? is independant of x1 near +oc, for N large enough, 
the function z = ut - U’ satisfies, 

AZ - p+(y, c)&z + f:(l)2 = A + B in [IV, +CO[XU 

where we define A = f+(~~) - f(~r + t,ut) + f(zr,~‘) - f+(~‘) and 
B = (.f;(wt - 1) - f+(d) + (f+(u’) - f;(u~’ - 1)).- 

In case ii), we have implicitely supposed that ,Z > 0 in C (otherwise, 
case i) occurs). From the definition of Z, we can write that z < C”epsl 
near +oc. On the other side, from the hypotheses on f near +CQ, the 
term A satisfies 

V’cy > 0 IAl = O(epnsl) as x1 + +cc 

Furthermore, from the assumptions on f+ as u + 1 (f+ is of class Cl.” 
near l), it follows that 

B < M(1 - TL~ + 1 - u’)~z < M’e*PZ1~ near + 0~: 

Since hl(-aY - f;(l)) > 0, we can argue as in the proof of theorem 2 
of the appendix and conclude that there exist p 2 0 and E > 0 such that 

(3.4) z = pe @““lq!i(y) + O(e(p’-‘)“l) as x1 i +cc 

We recall that the eigenvalue 1~ < 0 and the eigenfunction $ > 0 satisfy 
the eigenvalue problem 

i 
A$ + (P’ - PLP+(Y, c) + f:(l))+ = 0 in w 

a,$ = 0 on dw 

From the construction of ,LL < 0 in [7], we can add that for t’ > 0 small 
enough, there exists some pair (pE,, Get) solution of 

{ 
Ah + (P,~J - p.,,@+(y, c) + fi(l) - ~‘)li,~~ = 0 in w 

a,+b,, = 0 on aw 
with pcL,l < p < 0 and I,!I~I > 0 on W. By an argument of compactness 
and uniqueness, we can say that IQ + 11, as 8 --+ 0. Hence, there exists 
t’ > 0 small enough such that 

P - E < ,LL~~ < ,LL < 0 and ~(5 + 1) < ,LQ < /L 

Let us now call w = e~~‘cl$c,(y). This function w satisfies 

I 
Aw - [~+(y,c)a,u~ + (f;(l) - 8)~ = 0 in C 

a,,7u = 0 on ac 
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Let us now note II = z - w. We want to prove that ‘U 2 0 near +CXX. 
This function v satisfies 

AU - p+(y,c)dlv + f:(l)v = A + B - ~‘d~~‘~‘$+(y) in C 

From the study above, near +cc, we have A < e--n.rl for all QI > 0 and 
B 5 M~e141+% As ~(1 + 6) < ,uFr < 0 from the choice of t’, it follows 
that for N’ > N large enough, 

A + B - de~~‘zl$El(y) < 0 in [N’, +cc[xw 

Since z > 0 on {N’} x W, we can multiply w by a positive constant such 
that v = .z - w > 0 on {N’} x W. From the maximum principle and Hopf 
lemma, and since fi( 1) < 0, we conclude that v > 0, that is to say 

2 > (yePdZl ajar in [N’,+cc[xSS with C” > 0 

On the other side, P-E < ,uLE/ < 0. From the behaviour of z as z1 --+ +CG 
(3.4), that implies that p > 0, but that contradicts the hypothesis made for 
this case ii). In conclusion, this case can not occur. 

Z’ case iii) OCCZU-s, then we now come back to the starting point and 
translate this time u to the right and then to the left such that one of the 
threee situations analogous to cases i), ii) or iii) occur, but this time for 
7~~’ and U’ where t’ 5 0. We conclude as above that u E ‘1~’ in case i), 
and that case ii) is impossible. If case iii) occurs then we have ext = C 
and eXt’ = C with t’ < 0 5 t. This clearly implies that t = t’ = 0. As - 
‘ulLt > U’ in c, that leads to a contradiction with the normalization condition 
on (0) x i2. Thus, case iii) can not occur. Hence, only case i) is possible, 
that is to say u E u’. That achieves the proof of theorem 4 b). 

Remark. - We can not a priori show that if u and u’ are solutions of (P) 
with the same speed c, then u G U’ up to translation. Indeed, in order to 
apply the strong maximum principle to conclude such a conclusion, we can 
not translate the functions in any way (to the left and to the right) because 
of the monotonicity properties of /? and f. 

3.3.3. Proof of the last two conditions of theorem 1 a) 

We first consider the two cases I and II (“ignition temperature” or 
“bistable” cases), and the functions U+ solutions of 

Au, - &(Y, c*)~w + f&(w) = 0 in C 
(PiI i&u+ = 0 on dC 

u*(-cm, .) = 0, u*(+cm: .) = 1 
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We proved in 52.1.1 that c- < c+. It only remains to show that c’- < c+ 
if f- $ f+ and If- (1 - s) - f+( 1 - s) 1 = O(sl+‘) as s + 0 for some 
6 > 0. Let us suppose that c- = c+, which we call c, and show that 
f- G f+. Like in 52.1.1, the hypothesis /j- (., c) $ p+( . . c) would yield 
a contradiction. Hence, we have /3- (., c) = Ijj+(., c), which we rename 
/j(., c). The functions U+ satisfy the following equations: 

In each case I and II, the behaviours of U+ as :x1 + foe are given by 

u+(z~,Y) = C-&*“‘&(y) + o(e’*““) as 1~1 + --x 

~~(:r~~, y) = 1 - C;?*“‘@*(y) + o(~‘“*~I) as x1 + +m 

where Xi > 0, jr& < 0, &. ‘$1 > 0 on w are solutions of 

1 A& + (A", - X,P(y, c) + f$(O))& = 0 in w 
a,,& = 0 on i3w 

Like in $2.1.1, we have X- 2 X+ > 0 and CL+ 2 IL- < 0 with equality 
if and only if f’(O) = fi (0) and f’ (1) = f; (1) respectively. 

We can now argue exactly as above in tj3.3.2. Up to translation, we can 
suppose that rn,z u,+(O. .) = muIl: ?L- (0, .). Translating the function *u+ 
to the left enough to be greater ban YL- in C, and then to the right, we 
would necessarly be led to consider the three cases i), ii), and iii) of 53.3.2. 
Case i) where u+ 2 ?L- with equality somewhere is treated as in $2.1.1 by 
the maximum principle and Hopf lemma. To conclude in case ii) (which 
occurs if and only if ,fL(l) = f;(l), i.e. /L := LL- = /A+), we introduce 
the function z = ‘!L+ - L. and write 

AZ - [9(y, C)C+Z + f;(l)2 
= (f-(L) - f+(K)) 

+ ((f+(,lL-) - f:(h) - (f+(7J+) - f$b+) 

From the assumptions on j+(s) and f- (s) as s + 1, the second member 
is O(eP(1+6)“l) as :cl + +eo. That allows to apply the arguments of the 
end of the proof of theorem 4 b). 

Case iii) is treated in the same way as in $3.3.2. 
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In short, we conclude that U- E U+ up to translation. Since U- takes its 
values on (0, I), it follows that f- 5 f+. 

In case I (“ignition temperature”), when f;(l) < f’(l) < 0, then we 
have c- < c+. Indeed, since f-(s) E f+(s) G 0 in a neighbourhood of 
s = 0, we can argue as above by a change of variables :I:: = -:I;~ (let us 
remark that the equality of the asymptotic behaviours as :K: + -oc, i.e. 
case iii, can not occur because we assumed that fi( 1) < f’ (1) < 0). 
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APPENDIX: 
EXPONENTIAL BEHAVIOURS 

1. Main results 

In this appendix, one studies the properties of any solution u of the 
following elliptic semilinear problem 

(P’) 
i 

AU - @(zt, y, c)dr~ + f(~~, ‘y; U) = 0 in C 
i?,,u = 0 on dC 

u-m .) = 0, %I, > 0 

We first mention the works [ 11, [6], [7], [15] and [ 181 on the solutions 
of similar equations, but with no dependance on x:1. Problem (P’) is more 
general that problem (P) since the non-linearity f may depend this time 
on the transversal variable y. The same assumptions of regularity as in 
the introduction are made on f and p. Moreover, f is lipschitz-continuous 
with respect to all variables, and f(~:1! y, 0) = f(~r. y. 1) = 0 for all 
(:I:~: u) E C. One systematically assumes that f is non decreasing in :x:~ 
and /j is non increasing in ~1. 

Moreover, one introduces additional assumptions on the behaviours of 
/j and f as :cl + foe. Some of these hypotheses correspond to those of 
theorems 3 and 4 given in the general introduction. 

Firstly, V’ru > 0, 

uniformly in (y. II) E W x [O: l] 
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Secondly, the functions i3,f- ( y , 0) and L)I&f+(y. 1) exist. Let us note 
d(y, s) = f+(y, 1 - Cs) + a,,f+(y, 1)s. We assume that there exist constants 
1!4,6 and sg > 0 such that 

{ 

If-(y, s) - i&f-(y, 0)sl < Md+” vy E w vo 5 s < S() 

If+(y. 1 - s) + $,f+(?/, 1)sj 5 lVs’+b RJ E w VU < s < so 

Id(y, s) - d(y, R’)I < MIS - s’I(s + s’)* vy E w vo 5 s, s’ 5 S() 

Thirdly, @ decays faster than some exponential near &cc. More precisely, 
there exist reals 6, > 0 such that 

uniformly in (y, c) E W x IR. 
In order to study the exponential behaviour of II, near -x, let us note 

1~1 the principal eigenvalue of the elliptic limit operator - AY - d,f- (v, 0) 
with Neumann boundary conditions and G the principal eigenfunction, i.e. 
(T > 0 on W and satisfies 

THEOREM 1. - Assume thclt ,!j is non increasing in x1, f is non decreasing 
in 3~1 and the hypotheses above are satisjed. In each qf the,following cmes, 

4 ~1 > 0 
b) ~1 < 0 
c) p1 = 0, f(x:l,y,s) - &,f-(y,O)s < 0 v 0 < s < so \d(z,,y) E c 

and s P-(yy, ~)a(y)~ > 0, 
if IL is a positive solution of (P’) then 

or ii) 
?I,(2Tl, y) = eA~“(-xlq!l(y) + q&(y)) + 0(&I) 

Vu(zl:y) = V(e xsl (-x:1$!!(y) + 4()(y))) + 0(&q as 1111 + --x 
with X > 0, 4 > 0 on z;T solution of 

1 

A,c)I + (A” - X/j-(y, c) + tluf_(y, 0))q!1 = 0 in iu’ 
;J,,g5 = 0 on 3w 

The real X > 0 is unique in cases a) and c). Besides, case ii) may only occur 
if p1 < 0 (but this is not sufficient, see [7]). 
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For the study of the functions near +CO, let us note (P”) the following 
problem 

(P”) 

{ 

Au - [j(:cl, y, c)&u + f(xl, y; u) = 0 in C 

3,,u = 0 on dC 

u(+cc, .) = 1, 11, < 1 

Let us now note & the principal eigenvalue of the elliptic operator 
-AY - &J+(y; 1) with Neumann boundary conditions and O’ its principal 
eigenfunction. The behaviour near +KI is given by the similar theorem 

THEOREM 2. -Assume that 0 is non increasing in ~1, f non decreasing in 
x1 and the hypotheses above are satisjed. In each of the following cases 

a) pi > 0 
b) ,I>; < 0 
c) 11,: = 0, f(lCl,lj,S) - &J+(y, l)(s - 1) > 0 Vl - S() 5 s 5 1, 

V(xl: y) E !? and .f /?+(y, c)~‘(y)’ < 0, 

if ~1, is a solution < 1 of (P”) then 

Or 4 
%1,(x1, y) = 1 - el: (21$(y) + &J(y)) + o(efLX’) 

y7f(,,(TIJl, y) zx -V( efLrp (x1,$(y) + $0(y))) + o(cfLsi) 
as ,~1 

’ 
i +~ 

with p, < 0, 4) > 0 on W solution of 

The real 1-1 < 0 is unique in cases a) and c). Besides, case ii} may only 
occur if 1-c; < 0. 

2. Proofs of theorems 1 and 2 

For the proof of theorem 1, let us note C- = R? x w. Let us consider a 
positive function u of problem (P’). In other words, u is a positive solution 
in lic;“,‘,“(C-) of the elliptic problem 

{ 

LU = 0 in C- 
(P’) i),u = 0 on R* x 8w 

u-m, .) = 0. ?L > 0 

where L is the elliptic operator L = A + ,B(x~, y, c)& + C(X) and the 

functions z H ,P(zl, y, C) and z I-+ c(z) = f(n > y> <IL) I, are in L”(X) 
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from the assumptions on /3 and f. From theorem 3.2 of [7], which is a 
consequence of the Harnack inequalities up to the boundary for positive 
functions, it follows that there exist constants (I > 0, cl > 0 and Q > 0 
only depending on dyVc Ip(n:r, y. c)I, SUP Ic(:z:)I and w such that 

.rtx- 

Hence, u can not decay faster than any exponential. Let us now show 
that u actually decays faster than some exponentially decreasing function 
in C-. At first, we need the following intermediate lemma 

LEMMA 1. - If there exists a function 00 defined in W which satisfies one 
of the following assertions: 

Case I: f(zl; y:s) 5 q(y)s for 0 < s < SO(SO > 0) and -:rl large 
enough, and the first eigenvalue p.1 (-A - a~) is > 0. 

Case I’: f(zl, y, s) 2 no(y)s for 0 5 s 5 so(so > 0) andfor -51 large 
enough, the jrst eigenvalue pl(-A - a~) = 0 and .I ,K(y, c)a2(y) > 0 
where a is the principal eigenfunction of -A - no. 

Case 2: f(z1, y, s) 2 uo(y)s for 0 5 s 2 so(so > 0) andfor -XI large 
enough, and the first eigenvalue 1~1 (-A - aa) is < 0, 

then there exist t > 0, Cl > 0 such that 

Proof of lemma 1 in cases 1 and 1’: 
From the results of [7], there exist an eigenvalue X- > 0 and an 

eigenfunction f& > 0 on W solutions of 

(-A - crZo(y) - X2 + X-/j-(,. c))$- = 0 in w 
&$- = 0 on dw 

We can solve the same eigenvalue problem with PSI (y, c) := /S(zI, y, c) 
for any 5‘1 in case 1 and for -x1 large enough in case 1’ in such a way 
that J/~(xI, y, c)a(~)~ > 0 (this is allowed since J/~(xJ~, y, c)g(y)” -+ 
J’[j-(y, ~)a(y)~ as ~1 -+ -CKI). There exist thus eigenvalues X,,, > 0 and 
eigenfunctions fjZc, > 0 on W such that 

C 

(-A - Q(Y) - Xz, + X,.,/j,., (y; c))$,~, = O in w 
&41,r, = 0 on aw 

If we suppose that the functions c#+~ are normalized in L*(w) 
(II& llr,~ = 1) and c$~, > 0, then the pairs (X,Z,,&.,) are unique. By 
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an argument of compactness and uniqueness, and using the results of [7], 
we can even add that X,, -+ X- and +Zc, -+ +- in W2,2(w) as x1 -+ ---co. 

Let us call Lo the elliptic operator Lo = A - /3(:~~, y, c)di + so(y). 
In cases 1 and l’, since u + 0 as ~1 -+ -cc, we have for x1 2 -A 
(A large enough), 

Let us note X = X-A, 4 = 4-A and II = exZ1$(y). Since /3 is non 
increasing in x1 and from the equation satisfied by X and 4, we have 

Lo(v) = (/3(-A, y, c) - @(xl, Y, c))&v I 0 in I - o=, -Al x w 

and moreover w = u - CeXxl 4(y) 5 0 on {-A} x W if C > 0 is large 
enough. We have thus Lu( w) 2 0 and we want to prove that w 5 0 in 
] - co, -A] x w. But the zero-order term aa is not negative. Let us recall 
that the first eigenvalue (T > 0 on W is such that 

{ 
(-A - ao(y))a = bla in w 

&a = 0 on 8w 

Let us define a function z such that w = [TZ, we can then write 

i 

Low OS---- 
0 

= AZ + ~VIJ. V,Z - ,/3(x1, y, c)diz - pl.z in ] - co, -A] x w 

it&z = 0 on ] - cc, -A] x dw 

Since -pl 5 0 and z 5 0 at -cc and on {-A} x W, the maximum 
principle and Hopf lemma imply that z 5 0 in ] - cc, -A] x W. Hence, 

u 5 CeXz1q5(y) in ] - co, -A] x w 

Since IL satisfies an elliptic equation and &,u = 0, the classical a priori 
estimates up to the boundary yield 

The proof of formula (2) is thus ended if we just change C and C’. 

Proof of lemma I in case 2. - This time, for A large, the function u 
satisfies 

C 
Lo(u) = Au - ,8(zi, y, c)diu + no(y)u 2 0 in ] - CG, -A] x w 

d,u = 0 on ] - 00, -A] x dw 
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Since the functions ,/-1 and u0 are bounded and since /Lo < 0, we can 
apply lemma 3.1 of [7] and write that there exist constants f > 0 and 
C > 0 such that 

Next, from the classical u priori estimates up to the boundary, we have: 

This achieves the proof of lemma 1 in case 2. 
Let us recall that we have introduced ~~~ the first eigenvalue of the 

elliptic operator -A - & f- (y , 0) and (T the principal eigenfunction of this 
operator. We can now precise the exponential decay of the solutions u of 
(P’) from the following lemma : 

LEMMA 2. - There exist constants C1, C, o,, 11 > 0 such that 

(3) C,en.r' 5 'U(:J:,, y) 5 Ccb~rl in c 

(3’) ]V~(:ri,y)j < Creh.‘l in C- 

in each of the following cases 
- case I: p1 > 0 
- case I’: pl = 0, h(zl, y> s) = f( 21; y, s) - &f-(y, O)s<O VO~S~S,,, 

V(zl. y) and J, /3-(yy; c)cr2(y) > 0 
- case 2: p1 < 0 

Proof. - The left part of inequality (3) corresponds to the left part of (I). 
In order to prove the right part of (3) and (3’), we will come down to 
lemma 1. 

In case l’, we apply directly case 1’ of lemma 1. 
In case 1, let F > 0 such that i~i(-A - &fP(gli 0) - F) > 0 and define 

au(y) = iJUp-(y, 0) + f. It only remains to prove that f(zi: y, U) 5 n,~(:y)u 
in the neighbourhood of --00. We can write, 

f(:JT1, y, u)-ao(y)'u = (.f(q, y, ?6)--f_(Y) u))+(f-(y> u)-t&f-(y, O)u-f1L) 

From now on, A denotes a positive constant large enough. Let us recall that 
u 2 Cleasl (from (1)) and ]f(zi. y.~) - f-(y, u)] 5 e(“+‘)“l if XI < -A, 
‘v’(y. U) (by the hypothesis made on f, with Q = u + 1). Hence, 
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On the other hand, since u + 0 as x1 ---f -cc, we have 

If-(y, u) - t3uf-(yTO)uI 5 A4u1+* < f/2 u if x1 5 -A 

Hence, 
f(xlr y,u) - ao(y)u 5 0 if 21 < -A 

Case 2 can be treated in the same way. 

End of the proof of theorem 1 
Here, we will make use of several results on the asymptotic behaviour 

of solutions of elliptic equations in cylinders, in the linear and non linear 
cases. These results were proved in more general situations in [l] and [15], 
and were recalled in [7] and [6]. 

At first, from theorem 4.2 of [7] and from [I], if 1~’ is a solution of 
the linearized problem 

(PI 
I 

Au0 - jY-(yl, c)dluo + auf-(y, 0)~’ = 0 in C- 
O,u” = 0 on R” x 3w 

and if UO satisfies Iu”(~r;y)l < Caebxl in C- for some C2,h > 0, then 
there exist an exponential solution w = exZ1ljl(zl, y) of the linearized 
problem (P!) and t > 0 such that 

(4) 
1 

uO(z1, y) = ex.cl~~(:cl, y) + O(e(X+‘)S1) 
Vu”(xl,y) = O(ex”l$(~l,y)) + O(e(X+‘)“l) as 51 + -cc 

where X 2 b and $(zr,y) = (-~r)~&(y) + ... + $0(y) $ 0. 
Next, let us remark that 11, actually satisfies the unhomogeneous problem 

(P’): 

(P’) 

1 

Au - @-(y, c)&u + ?I&((?/, 0)~. 
= r(x) := (P(a, Y> c) - P-(Y, C))i-)lU 

-(f(al YI u) - s-(Yl4) 
+(&J-(Y, 0)~ - f-(Y, ~1) in C- 

3,~ = 0 on R* x 3w 

From theorem 4.3 of [7], if there is constants Q, C > 0 such that 

then u = u” + u* where u” is a solution of (PA) and U* solution of (Pl). 
Besides, for all t > 0, there exists a constant C, > 0 such that 

Iu*(a,y)I + l~u*(a;~)l I Cd (a-t?zl in C 
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We will now argue as in [7]. Let 

From the inequalities (3), we have 0 < b < r. < (I,. For any 7 < TV), we 
have 0 < ~(21, y) 5 CTeTS’ and even /VU] < C:c7s1 from the classical 
elliptic estimates. From the hypotheses on the behaviours of /l and ,f as 
Xl -+ --co, and f- as ‘u + 0, it follows that 

p+.)I < c-e~-yy(;~~I + ce(‘+l)“’ + ~c~+~e:Tu+~).rl 

< Cy+)“’ as x1 + -a 

where m(r) = rnin (T + S-, T + 1. T( 1 + 6)) > 7. 
Hence, from the results above, we have for some D, > 0, 

When r / ro, we have 
7 + m(7) 70 + ‘rrl(Q) 

exist constants j3 > 0 and C >20 such that 
2 > 70. Hence, there 

/u*(:c,,y)I + Iv?L*(.c1,y)I < Ce (TU+i’),rl in C 

As a consequence, for any r < ro, 

From the first result recalled above, we can write 

with X > 0 and SW = c’“‘~Y/J(.~:~, y) solution of the linearized problem (FL). 
The definition of 7. and the remarks above imply that X = TV. Hence, 

Let us note that we can even change o(eXJC’ ) in the behaviours of ,u” and 
thus of u by O(t. ,(X+t)xl) for some .E > 0. Since ‘u > 0, we kave ,(ljk > 0 
and from theorem 2.4 of [7] on the exponential solutions of linear elliptic 
problems, it comes that 

i> $J(Q~Y) = 4:~) 
or ii> 1cl(a, w) = -a&~) + (bob) 
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with a function 4 > 0 on W solution of 

A+ + (X2 - X/X(y,c) + &f-(y,O))$ = 0 in w 
a,q!~ = 0 on dw 

Moreover, case ii) can only occur if p1 < 0, but this is not sufficient, and 
this corresponds to the only case where the pair (X > O! 4 > 0) solution of 
the previous problem is not unique (see [7]). 

This achieves the proof of theorem 1. 
Obviously, the proof of theorem 2 is similar. It only suffices to make 

the change of variables x1 + --x1 and TL + 1 - IL to come down to a 
study of a behaviour near --oo. 
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