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the superconducting film, we present in this article new estimates for the 
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with our previous results) the De Gennes formula 
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598 C. BOLLEY AND B. HELFFER 

RBSUML - Poursuivant notre etude precedente [3] sur les films 
supraconducteurs, nous presentons dans cet article de nouvelles estimations 
sur le champ de surchauffe lorsque n tend vers 0. Le resultat principal est 
la demonstration, dans le cas d’un intervalle semi-infini, de l’existence d’un 
champ de surchauffe fini h,sh,f (6) (obtenue en restreignant la definition 
usuelle du champ de surchauffe aux solutions (f, A) du systeme de 
Ginzburg-Landau telles que f soit positive). La majoration est optimale 
a la limite 6 + 0 et pet-met de montrer (en regroupant avec nos resultats 
precedents) la formule de De Gennes 

La demonstration est obtenue en ameliorant Egbrement les estimations de 
l’article [3] dans lequel nous donnions une majoration, mais en supposant 
la fonction f minoree par une constante /I > 0 fixee. 

1. INTRODUCTION 

This paper is devoted to the analysis of the local minima of the Ginzburg- 
Landau functional in a superconducting film. When the Ginzburg-Landau 
parameter 6 is small and when the width of the film d is large (in the sense 
that r;d is large), a natural approximation (cf. [ 111) consists in reducing the 
problem to the study of local minima of the functional 

cx(P: A; h,) 
+oO 

ZX 
I [ 

;(f2 - 1)2 + ~-~f’~ + f2A2 + A'2 dz + ahA(O), 1 (1.1) 

defined dn’the set of pairs (f. A) such that (1-f) E Hl(R+), A E H'(R+). 
The corresponding Ginzburg-Landau equations expressing the necessary 
conditions to have minima are then: 

-c2f" -f + f" + A2f = 0 or1 IO, +m[ 

-A"+f2A = 0 on IO, +m[ 

f’(0) = 0; .,.&lf(“) = 1. 

A'(0) = h; lim A(z) = 0. S’+CC 

with A E H2(]0, +cm[), (1 - f) E H2(]0, +m[). 

(1.2) 

(1.3) 

(1.4) 

(1.5) 
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This system (1.2)-( 1 S) will be denoted by (GL)oc in the following 
sections. 

The main result of this article concerns the asymptotic behavior of the 
superheating field as K tends to 0 in this context. 

We recall that it was defined as 

hsh(/c, co) = sup A’(O), 

where the sup was considered over all the solutions (f, A) of the above 
Ginzburg-Landau system (1.2)-( 1.5). Of course, it would have been more 
suitable to define it as the sup over local minima of the functional introduced 
before in (1.1). It might be smaller but we were unable to attack this point, 
which in any case does not affect the results which are presented in this 
article. 

We have considered in [3] the problem of proving the following 
asymptotic formula given by De Gennes and the Orsay group [8]: 

liio K qpy/6; co) zx ‘pl”. (1.6) 

This asymptotic limit was obtained by De Gennes by looking for an 
approximate model, only valid in the region f(0) > p > 0, giving the 
following relation between f(0) and h = A’(0) for a local minimum of 
the GL-functional: 

Kh2 - Jz f(Q2(1 - f(O)“>, (1.7) 

from which (1.6) was deduced. 
This approximate model was analyzed in [4] and an approximate model 

valid for any value of f(0) was also proposed. 
On the other hand, we have proved in [3] that 

lim inf fs1/*hsh(6, m) = 2T3/’ 
K-0 (1.8) 

Our aim is to prove here the corresponding result for the lim sup and for a 
slightly modified but natural version of the superheating field. 

Here we define /~~~l+(l~, CQ) in the following way. 
We first consider the set IFI+ = XSh~+(&) in R+ of the h’s such that 

there exist superconducting solutions with f > 0. We have seen in [3] that 
this is an interval [0, h+) and we then introduce the definition: 

DEFINITION 1.1. - The superheating jield h+ := hsh,+ ( K) is de$ned as the 
supremum of the interval ‘FtShl+(~). 

vol. 14, Ilo 5-1997. 



600 CBOLLEY AND B.HELFFER 

We shall indeed prove the analogous of (1.6) for the lim sup for this 
restricted definition. 

This will be obtained by establishing first in Section 2 fine inequalities 
on the solutions as a consequence of the maximum principle and the energy 
conservation. 

The main results will be established in Section 3. 
In Section 4, we shall prove the “main proposition”. This corresponds 

to an improvement of previous results obtained in [3]. It seems rather 
optimal and exhibits the approximate formula (1.7) relating f (0) and h in 
the form of an upper bound for tch2 but with a remainder term which is 
asymptotically good only under the restrictive condition that f(0) 2 p > 0. 

This still leaves the question of a general upper bound for the superheating 
field open, unless we find a control of the h’s such that f(0) is small. 

In Section 5, we use the same idea in order to get this time a lower 
bound for tch2. The formula given by De Gennes appears here very simply 
and no condition on f(0) is involved. 

It remains to eliminate the unfortunate condition on f(0) for the upper 
bound. Here our idea will be that, modulo a controlled error, one can 
replace f(0) by f(o) f or a suitable o > 0. This idea will be developed in 
Section 6 where we essentially prove that in the case when tch2 is bounded 
from below, one can get a corresponding lower bound for f(o) - f(O), and 
consequently for f(a), which will be independent of f(0). 

This permits the proof of the main theorem which will be given in 
Section 7. 

2. GENERAL PROPERTIES OF THE 
GINZBURG-LANDAU EQUATIONS 

We first recall one useful version of the maximum principle: 

LEMMA 2.1. - Let C be a bounded function on IO, +co[ such that: 

vx E]O, +ca[ : C(x) > co > 0 

and '1~ E C,",,([O, +co[) n H1(]O,+m[) afunction such that: 

u'(z) -+ 0 as x -+ +cos: 

- 11” + C(x) u < 0 in 10, +m[, 
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then: 

Let us also recall: 

u 5 0 in IO, +m[. 

PROPOSITION 2.2. - Let (f, A) be a solution of (GL),; then we have: 
(a> 

If(x)1 I 1, v’z E [0,+4 (2.1) 

(b) The function A is strictly increasing on the interval. Moreover we 
have the inequality: 

0 2 A’(x) 5 h, (2.2) 

(c) If f is positive, then f is strictly increasing on [0, +oo[. 
Let us also recall the energy conservation for a solution (f, A) satisfying 

(G&c: 

~-~f’(x)~ + A’(x)~ = f(x)” . Am + ;(l - f(z)“)“. (2.3) 

As a side remark we observe in particular that at 0 

h2 = f(0)2.A(0)2 + ;(I - f(O)“)“, (2.4 

which will be interesting to compare with (2.12). 
It can also be useful to get estimates on f’ and this will be the object of: 

LEMMA 2.3. - Zf f is a solution of (GL),, then we have: 

(2.5) 

Using again the conservation of the energy and the preceding lemma, 
we get the estimate: 

f(x)” Am < h2 + ;, (2.6) 

which will be improved soon under the additional condition f > 0. 
We now give one important improvement: 

PROPOSITION 2.4. - If (f,A) is a solution of (CL), and if f is positive 
then we have 

Vol. 14, Ilo 5-1997. 



602 C. BOLLEY AND B. HELFFER 

l (6) 

0 < -A(:c)f(z) 5 A’(z) 5 -A(.r). (2.7) 

0 < K-‘p’(:E) < -$(l - f(:Ig2). 

0 (c) when f $ 1: 

0 < f(x) 5 tanh(z + XI,& 

with ~‘f = argtanh f(O), 

l (4 

(2.8) 

(2.9) 

Proof. 

/’ 

.I 

0 < -A(z) < -A(O) exp - f (t)dt. (2.10) 
. 0 

Proof of (a). - Let (f, A) b e our solution. For any cl > 0, we compare 
in [a, +co[ the solution A(X) which satisfies 

-A”(X) + f(:~)~A(z) = 0 for :I: E [a> +CQ[ 
A’(a) := h, 

lim A’(X) = 0 
Z-00 

with the solution Am(z) of 

-A:(X) + f(c~)~A,(c~) = 0 for :I: E [CY, +cc[ 
A;(N) := h, 

lim AL(z) = 0. 
.r130 

which can be explicitely computed as 

Applying Lemma 2.1 with C(X) = (f(a))’ and U(X) = A,(z) - A(z) in 
the interval [a, +w[, we get, for any ((v, X) satisfying z 2 (1 > 0, 

-A(z) 5 # exp (-f(a)(:r - a)) (2.11) 
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and in particular when x = (L: 

We have consequently (‘) proved (a) (the other inequality was already 
obtained in [3]). Combining with an already given estimate on A’(z), we 
note as a byproduct that 

h 
0 I -A(x) < m for z E [o, +cx)[. (2.12) 

Pvoofof (6). - inspired by similar arguments given by J. Chapman [6], 
we write the conservation of the energy (2.3) in the form 

(A’-fA)(A’+fA) = -$(l -f”) -K-I/‘) (+(I - f2) +df/). 

(2.13) 
The statement (b) is then an immediate consequence of (a) if we think of 
the properties A’ > 0, f > 0, A < 0, f < 1 and f’ > 0. We observe that 
this is an improvement of (2.5). 

Proof of(c). - This is an immediate consequence of (b) by integration 
of this inequation. 

Proof of (4. - This is an immediate consequence of (a) by integration 
of this inequation. We observe that it is slightly better than what we have 
stated previously. 

3. MAIN RESULTS 

The following proposition will be a small improvement of a similar 
proposition given in [3]: 

PROPOSITION 3.1. Main Proposition - For any pair (f, A) solution of 
(GLLc with f > 0, the following estimate is true: 

A’(0)2 5 d [(l - f(0)2)f(O)“~-1 + 5 A’(O)f(O)-‘1. (3.1) 

(‘) We met quite recently in a preprint by S. P. Hastings, M. K. Kwong and W. C. Troy [ 121 
a similar inequality in the case of a finite interval. 

Vol. 14, n" s-1997 



604 C. BOLLEY AND B. HELFFER 

COROLLARY 3.2. - In particular, as K + 0, and if f (0) 2 p > 0, one has 

&x2 < s + O,(K~/~). 
- 4 (3.2) 

REMARK 3.3. - This is interesting to compare with the De Gennes formula. 
We recall that for the critical h, we found p2 N i (corresponding here to 
the value off(O) for which f(0)2(1 - f(0)‘) is maximal) and so, ifwe can 
relax the condition f (0) 2 p, the result is optimal. 

We shall actually relax the restriction f 2 p > 0 and shall get 

THEOREM 3.4. - There exists IQ such that for all PC in IO, ~1, for all 
h E I++, h f 11 t e 0 owing estimate is true as K + 0, 

K;h2 < ?@ + O(&). 
- 4 (3.3) 

Combining (2) with the results obtained in 133, we get 

COROLLARY 3.5. - De Gennes Formula: 

lim I J 
K-0 

,q h”“,f(K)2 = Jz 
4 . 

(3.4) 

4. PROOF OF THE MAIN PROPOSITION 

Our starting point will be the identity 

h2 = A’(0)2 = -2 /=.= A’(t) A”(t)dt. (4.1) 
Jo 

Using (1.3), we get 

h2 = A’(0)2 = 2 
I 

O3 m ( 
. 0 

We now use (2.7) and obtain 

h2 < 2 cxz f(t) A’( 

-A(t)) f(t)2dt. (4.2) 

:t)” dt. (4.3) 

(*) We observe here that our construction of subsolutions leads actually, to the existence of 
solutions with f > 0 permitting us to replace h sh b h”h,+ in the statement. y 

Anmirs de l’lnstitur Henri PoincarP Analyse non linkire 
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We remark here that, in ([3]), we only used the weaker 

h2 5 2 lrn A’(t)’ dt. (4.4) 
Jo 

We have consequently gained some f 
avoid the i appearing in the proof in 
above. 

which will be decisive in order to 
([3]) and in the proposition stated 

Using now the energy conservation, we get for any Ic E N 

~“f(x)‘” f’(x)’ + f(x)kA’(x)2 = f(x)“+’ A(x)’ + f(x)” (I- f(x)‘)‘/2, 
(4.5) 

and integrating over [0, cc[ 

J om f(x)“A’(x)’ dx = 1” o f(x)“+” A(x)2 dx 

(4.6) 

We now multiply by f Ic+’ the first GL equation (1.2) 

s 

+C= 

-6 
-2 f”(x) f(x)“+’ dx 

+ 
s 

+-;-1 + f(x)” + A(x)‘] f(x)“+” dx = 0. 
0 

or, using the boundary conditions (1.4) on f: 

s 

+=J 

A(x)’ f(x)“+‘dx = + 
0 .I 

o+m f(x)“+“(l - f(x)“) dx 

- (k + 1). K-2 J +O” f”(x)f’(x)‘dx. (4.7) 
0 

We now use (4.6) and (4.7) in order to obtain 

f(x)“A’(x)2 dx = f 
.I 

om f(4” Cl- f(x)“) dx 

- (k + 2) . K2 J +03 f”(x)f’(x)’ dx. (4.8) 
0 

Vol. 14. no 5.1997. 



606 C. BOLLEY AND B. HELFFER 

Finally, we obtain with /C = 1 (‘) using (4.3) 

h2 < 
J 

u+I f(x)(l - f(q) dx - 6 . c2 
I 

+O” f(.2)f’(:C)2 die. (4.9) 
. 0 

In order to get the control of the r.h.s., we come back again to the identity 
expressing the conservation of the energy and we deduce (using also the 
monotonicity of f proved in Section 2) the following inequality: 

df’(x) + A’(s) > +(l - f(x)“). 

We first use (4.10) in order to get 

(4.10) 

J 
+Ca 

0 

f(2)(1 - f(x)") dz 2 & . K.-y1 - f(q2)(3 + f(O)") 

and finally 

+Jz r f(z)(l + f(rc)2)A’(:~)dz, (4.11) 
. 0 

. 
I 
o+m fM1 - f(4”) f&r 

1 
I ~ . ~‘(1 - f(0)2)(3 + f(0)“) + 2&(-A(O)). 

‘h4 
(4.12) 

We shall now use again (4.10) and (2.5) in order to find a lower bound 
for s:” f(z)f’(~)~ dz by 

‘+c= J .f(z)f’(x)2 dz 
0 

- f(x)2)f(z)f’(z) dz - IF i’x A’(x)f(x)f’(x) dz 
.o 

> _ $(I - f(0)“)” + $A(O). (4.13) 

Here we have used the simplest upper bounds for f and f’. We finally get 

h2 5 v%-‘(1 - f(0)2)f(O)2 - hhA(O) (4.14) 

and finally (3.1). 
This ends the proof of the proposition. 

(3) In [3], we were only playing with k = 0. 
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5. ABOUT THE LOWER BOUND 

We follow the same idea as in the preceding section, but look now for 
an inequality for h going in the opposite direction. We shall prove 

PROPOSITION 5.1. - For any pair (f, A) solution of (CL), with f > 0, 
the ,following estimate is true: 

K A’(0)’ 2 Ji [(l - f(0)2)f(O)2]. (5.1) 

The proof is in the same vein but finally simpler than the main proposition. 
We emphasize that no condition on a lower bound for S(O) is present. 

Starting from (4.2), we first get using (2.7) 

J 

cc 

A’(0)2 = 2 A’(t) (-A(t)) f(t)2dt 
0 

22 
s 

O3 f(t)3 A(t)2 dt. 
0 

We then use (4.7) and get 

(1 - f(t)2) dt - 4~,-~ 
I’ 

co f(t)f’(t)2dt 
* 0 

f(t)3f’Wt - 
s 

m f(t>(l - f(t)“)f’(wt 
0 1 

(5.2) 

(5.3) 

Here we have used two times the inequality (2.8). 
We remark that this proposition does not replace what was proved in [3] 

concerning lim infn+a hsh3+(K) but gives a complementary information. We 
have indeed proved in [3] by using suitable constructions of subsolutions 
that if h satisfies 

h2 < d? ,-l - C 
- 4 

for a suitably large constant C > 0 and for sufficiently small K, then one 
can find a solution of the above Ginzburg-Landau system for a suitable 
f(0) > 5 - c/L 

As a corollary of the proposition, we know that this solution satisfies 
necessarily 

6 h2 L Jz. [(I - f(0)‘) f(tq2] (5.4) 

Vol. 14. Ilo 5.1997. 



608 C. BOLLEY AND B. HELFFER 

and combining with the theorem 3.4 we obtain moreover 

JKh2 - Jz. [(l - f(o)2)f(o)2]1 < c/c+. (5.5) 

This strongly supports the idea that in the region 

there exists a unique solution (f, A) such that A’(0) = h, f(0) = fo. 
Moreover, this solution satisfies (5.5). What is missing here is a proof of 
the uniqueness. 

This strongly supports also the heuristic curve produced by De Gennes 
(except near f(0) = 0). 

6. LOWER BOUND FOR f(x) 

In order to control this function, we want to estimate from below f(o!), 
for some suitable Q > 0. This estimate is needed only in the case when 
f(0) is small. 

What is of course important is to get a f(O)-independent lower bound 
for f(a). 

On the other hand, because we want to estimate the superheating field, 
there is no restriction to assume that we are in the case when 

K.h2 > p > 0, (‘34 

for some /3 small enough. The choice of @ will be given later. 
Starting from the first (GL)-equation, we obtain the following estimate 

from below for f” 

f”(z) > Oxfam - tc2. (6.2) 

We shall now find a lower bound for fan. Using (2.3), we have 

f(x)’ Am _> A’(x)~ - ; (6.3) 

which will imply 

for z E [0, cr] 
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We now control the variation of A’(z) in [0, o]. We recall that 
A’ is monotonically decreasing and that we have, using the second 
(GL) -equation: 

A’(0) - A’(Q) = 
J 

a f(t)” . (-A(t)) dt 5 crf(cx)h. (6.5) 
0 

If we find consequently QI such that 

(6.6) 

we shall have the property 

h 2 A’(x) 2 A’(a) > i for x E [0, o]. (6.7) 

We then have, under the conditions (6.6) (6.7), 

P and, using also (6.1), we get, for 6 < lo 

f(x) Am 2 h2 3 
X 

h2 

> 5f(a)' 
- for x E [O,a]. 

Coming back to (6.2), we obtain the following lower bound for f in [0, a] 

f(x) 2 rt$$ f”(t)] ; 
2 > [ K2h2 l 2 1 X 

z------K -. 

- 5.f (4 2 (64 

Using again the lower bound (6.1) for nh2, we get, when n _< -$ and 

af(a) c f: 

f(x) 2 -CL . $, [ 1 lOf (a> 
for x E [0, a]. (6.9) 

Vol. 14, no 5-1997. 
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7. PROOF OF THEOREM 

We start from 

3.4 

(7.1) 

and from 

I . 0 
mf(t)A'(f)2dl =;.l+y/(i)(l - f(x)')d:l: 

I 

*+cU 
- 3. K-2 f(x)f’(2y dx. (7.2) . 0 

We then use (4.10) and get 

$03 

I 
Jz -1 

. 0 
f(t)A’(t)2dt < -y Ic, 

I 
= f’(x)f(x) (1 + f(x)2) dx: 

. 0 .+!X 
- 3.6-P 

I 
f(x)f'(x)' d:x + v'?i 

I 
'+% f'(x) A'(x) dx. (7.3) 

* 0 . 0 
A variant of our preceding lower bound for j;T% f(:~)f’(x)~ rkt: then gives 

mf(t)A'(t)2df 5 $-,(1 - f(0)2)f(O)' + $<l+" f(+4'(:c)dz. 

(7.4) 
In the proof of Proposition 3.1, we were estimating from above f by I and 
we got the proposition, but this leads to an upper bound with -L- which is 
bad for our purpose. We now concentrate our efforts on an es$late of 

I 
'3o f(x) A'(x) $:I:. 

. 0 

By cutting the integral in two parts we obtain for any o 2 0 

. ia f(x) A'(x) dx 5 (a. f(n))f . I 
$ 
--A(n). (7.5) 

We were using before the case 0 = 0. We now deduce 

.I’ o- f(x) A’(z) dx 5 $0 . f(a)) + $ (.I”y f(t)A’(t)2 dt) -A(n). 
0 

(7.6) 
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We now choose 
1 

ff=yrc 4: 

and we deduce from (6.9): 

This implies that: 

(7.7) 

On the other hand, we also need a weak control of f from above. We 
recall that we can assume that 

f(0) < ,d (7.9) 

We then immediately get 

for 6 small enough. 
For y small enough, we obtain that of 5 i. 
We finally get when pi is small: 

f(s)A’*(z)dn: < k:-l (1 - f(0)2)f(O)2 

!iz /.-&f(a) + -it-- 
+2 ( ) f(n) . 

We now choose 

p = 2-3, 

and finally get, for some suitable constants C1 and C2 

h2 5 di/c-‘(1 - f”(O)). f”(0) + Clhd + C&-t 

Then this gives 

(7.11) 

h 5 24 6-3 (1 - f(O)")+ . f(0) +0(d). (7.12) 

We have finally obtained the theorem with a slightly worse remainder term 
than announced. 
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There was indeed three cases. 
l The case ~h,~ 5 p, which is precisely the estimate announced by the 

theorem. 
l The case 6h2 2 [j and f(0) > ,~a, where we can apply the main 

proposition, 
l The case 6.h2 2 p and f(0) 5 7~: which we just treated. 
In order to get the theorem with the best remainder term, we observe that 

the coefficient f(O)‘(l - f(0)“) of 6-l is maximum for f(0) = 5, and 
we can consequently use the main proposition in order to get a remainder 
in 0(&h) in (3.3). The formula given by H. Parr [15] and confirmed by 
our numerical computations in [4] suggest a second term of order K for 
the superheating field. 

8. CONCLUSION 

We have consequently proved a rather satisfactory version of the De 
Gennes formula. Two points remain to be analyzed in the future in order 
to be complete. The first point is to analyze possibly vanishing solutions. 
The second point will be to prove that the solutions whose existence was 
obtained in [3] correspond actually to local minima. 

Here we have especially paid attention to the case K; + 0. But the 
techniques developed here permit also to treat other asymptotic regims as 
we shall explain in another paper [5]. 

We hope also to analyze more precisely the situation near f(0) = 0 
where h is hoped to approach 5. 

Another open problem is the analysis of the problem in an interval 
j-d, +d] in the regime Ed large and the proof that, as d + CYS and K + 0, 
the formula given here for the semi-infinite case is a good asymptotic value, 
at least if one considers solutions (f; A) with f > 0. 
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