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ABSTRACT. - Nonlinear modulation of gravity-capillary waves travelling 
principally in one direction at the surface of a three-dimensional fluid leads 
to the Davey-Stewartson system for the wave amplitude and the induced 
mean flow. In this paper, we present a rigorous derivation of the system 
and show that the resulting wavepacket satisfies the water wave equations 
at leading order with precise bounds for the remainder. 

Key steps in the analysis are the analyticity of the Dirichlet-Neumann 
operator with respect to the surface elevation that defines the fluid domain, 
precise bounds for the Taylor remainders and the description of individual 
terms in the Taylor series as pseudo-differential operators and their estimates 
under multiple scale expansions. 
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RBsuMB. - La modulation nonlineaire d’ondes se propageant principale- 
ment dans une direction a la surface d’un canal tridimensionnel conduit 
au systeme de Davey-Stewartson pour l’amplitude de l’onde et le champ 
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moyen induit. Dans cet article, nous presentons une derivation rigoureuse 
du systeme et nous montrons que l’approximation modulationnelle satisfait 
les equations des ondes de surface a l’ordre dominant. 

Les &apes importantes dans l’analyse sont l’analyticite de I’operateur de 
Dirichlet-Neumann par rapport a l’interface qui definit le domaine du fluide, 
des estimations du reste dans le developpement de Taylor de l’operateur, 
ainsi que la description des differents termes de la serie comme operateurs 
pseudo-differentiels et leurs developpements multi-Cchelles. 

1. INTRODUCTION 

This paper is a contribution to the mathematical theory of the water wave 
problem, and the methods of modulational analysis. Our goal is a rigorous 
understanding of the Davey-Stewartson system as an approximation to 
the three-dimensional gravity-capillary wave problem, in the modulational 
scaling regime. This paper extends the previous work of W. Craig, C. Sulem 
and P.L. Sulem [8] on the two-dimensional water wave in the modulational 
regime, where the asymptotic description of solutions is given by the cubic 
Schrodinger equation. The main mathematical contribution for the three (or 
higher) dimensional problem is the analysis the boundary integral operators 
of potential theory, which is more intricate than in two dimensions. The 
description of singular operators and pseudo-differential operators under 
multiple scale expansions is similar to the analysis of [8]. 

The water wave problem describes the evolution of an Euler fluid that 
is inviscid, incompressible and additionally irrotational, with a free surface 
and under the influence of the gravity and of surface tension. This is a 
potential flow, which is described in Eulerian coordinates by the velocity 
field u = Vv, where 

Ap=O (1.1) 

for x = (zr1,z2,zs) E {-h < 23 < q(zI,z2), (zzl,zz) = z’ E R*} the 
fluid domain. The bottom boundary condition is that &~(p(z’, -/l) = 0, 
and the c&ssicaI free surface conditions are that 

atlp+;(vv)2 + 9r! - @H(v) = 0, 
(1.2) 

a,rj+a,lcp~ a,q - az,cp = 0, 

hnoles de I’lnstitut Henri PoincarP Analyst non h&k 
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on the surface x3 = n(z’), where H(q) is the mean curvature of the free 
surface. 

In the modulational regime, one derives that solutions to (l.l)-( 1.2) are 
described formally to lowest order in E << 1 by the expressions: 

(1.3) 
< = 2t Re(c(Z1,Z2,7)ei(lc121--wt)) +td(z~,~,~) + O(t2). 

with z1 = ~(51 - w’t), z2 = cx2, 7 = c2t, w2 = (g+,Ok$)kr tanh(hkr) and 
w’ = dw/dkl. The potential function Cp(x, t) is the harmonic extension 
of the boundary values ,$(x’, t) into the fluid domain defined by the 
upper boundary Fj’. The two functions (~(2, T), d(z, T)) satisfy the Davey- 
Stewartson system: 

with constants X, p, 2, x1, ~11, y that depend upon g; k, h and /3 as specified 
below. 

A fundamental question is in which precise sense does the solution 
prescribed by the modulational approximation (1.3)-( 1.4) approximate the 
full Euler equations (l.l)-( 1.2) which give the fluid evolution. In this paper, 
we give a rigorous derivation of the Davey-Stewartson system (1.4), together 
with an estimate of the error of the approximation (1.3), which is in the 
same spirit as the paper [S] on the two-dimensional water wave problem. 
The modulational regime is derived with the method of multiple scales (both 
spatial and temporal), using the basic assumption that the solutions behave 
independently on asymptotic separated scales. In general, the method of 
multiple scales involves singular pertubations, as the description of slow 
time and/or spatial scales ultimately results in the replacement of higher 
derivative operators with lower. Justifying this formal analysis gives rise to 
a number of basic mathematical questions, as in general the critical analytic 
issues involve the highest order differential operators and the behavior of 
solutions at high wavenumbers. A further consideration for the water wave 
problem is that the integral operators of potential theory for the fluid domain 
play a central role: under multiple scales analysis these are approximated 
by differential operators, and the nature of this approximation must be 
understood. A general theory of pseudo-differential operators and multiple 
scale expansions is developed for this purpose in [8], and this with several 
modifications will be used in this paper. 

Vol. 14, no 5.1997. 
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The original derivations of the modulation equations for three- 
dimensional water waves appeared in Benney and Roskes [2] and in 
Davey-Stewartson [IO] in the case of pure gravity waves. The effect of 
surface tension was analysed by Djordjevic and Redekopp [ 1 l] as well as 
in Ablowitz and Segur [ 11. The derivation of the nonlinear Schrodinger 
equation from the two-dimensional water wave problem was first obtained 
by Zakharov [27] in the case of infinitely deep water, and in finite depth 
water by Hasimoto and Ono 1151. As opposed to our analysis in [8] in 
which Lagrangian variables were used, we adopt in the present paper an 
Eulerian approach, using dependent variables defined on the free surface 
alone which are described in Craig and Sulem [9]. Formal aspects of the 
modulational analysis are thus quite similar to that of Hasimoto and Ono 
[ 151 for the two dimensional problem. This choice of coordinates is not 
necessarily optimal for the initial value problem for water waves, but they 
do allow a relatively clean and systematic treatment of the multiple scales 
analysis and an estimate of remainder terms. 

Asymptotic approximations of the water wave problem have been the 
origin of many of the nonlinear partial differential equations of mathematical 
physics [22]. Because of this, there has been an effort over a number of 
years to understand in a rigorous way the validity of these approximations 
and to justify if possible the use of the asymptotic limits. Kano and Nishida 
[ 171 proved an existence theorem for the initial value problem for two 
dimensional water waves for analytic initial data and gave a rigorous 
analysis of the shallow water scaling limit. In subsequent papers, both 
Craig [6] and Kano and Nishida [ 181 addressed the dispersive long wave 
scaling regimes for two-dimensional water waves, giving an analysis of the 
Boussinesq and KdV approximations. The modulational scaling regimes are 
somehow harder to study, as the solution is approximated through an ansatz 
of a multiple scale analysis, which involves in particular the assumption of 
the independence of several scaling regimes, and this independence must 
be justified with rigorous errors estimates in the full Euler equations (I. 1) 
(1.2). For the two-dimensional problem, a rigorous result on the derivation 
of the nonlinear Schrodinger equation is given in IS]. The results in the 
three-dimensional modulational regime of this paper are close in spirit 
to [S]. 

There are a number of recent papers on rigorous justification of 
modulational analysis in several settings other than the water wave problem. 
The work of Collet and Eckmann [S] gives a comparison of solutions of the 
Swift-Hohenberg equation with a modulational approximation in the form of 
a Ginzburg-Landau equation. Both of these are parabolic equations. Mielke 
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and Schneider have also studied parabolic problems whose modulational 
limit gives the Ginzburg-Landau equation, and additionally to these, 
Kirrmann, Mielke and Schneider [ 191 have results for modulational regimes 
of nonlinear hyperbolic systems. More recently, Pierce and Wayne [25] 
studied the modulational regime for a one-dimensional wave equation which 
involves the interaction of left and right moving periodic wave trains. The 
modulational regime and the method of multiple scales are widespread in 
applied mathematics, and we think that a rigorous mathematical study of 
this approximation procedure is important to understand the nature of the 
asymptotic solution. 

The organization of the paper is as follows. In Section 2, we describe 
the water wave problem in terms of the variables on the free surface 
(T/(X’, t), E(z’, t) = (P(x’, rj(~‘, t), t)), the Dirichlet-Neumann operator G(r/) 
for the fluid domain and its formal Taylor series expansion with respect to 
~(2:‘). Section 3 is devoted to the formal derivation of the Davey-Stewartson 
system. The analysis starts in Section 4, where we give the rigorous 
analysis of the Dirichlet-Neumann operator and its Taylor approximation. 
In concise terms, we show that, for surface variations 7(:x’) in a 
neighborhood of zero in the C’(R2)-topology such that ]al+‘rl]~~ < cc, 
the operator G(n) is analytic as a mapping between the Sobolev spaces 
G(q) : W”+l,4(R2) -+ W”,‘1(R2) f or any 1 < q < ec. This work on the 
regularity of operators of potential theory under pertubation of the domain 
is related to early work of Garabedian and Schiffer [ 121, and to work of 
Coifman and Meyer [4] on Cauchy integrals. Our analysis of the analyticity 
of G(rj) is fundamentally based on the multiple commutator estimates 
that appear in the paper of Christ and JournC [3]. Section 5 gives an 
estimate in WR>q(R2) of a class of singular integral operators that make 
up the Dirichlet-Neumann operator, its Taylor approximates and its Taylor 
remainders. Section 6 is focussed on the mathematical justification of the 
formal expansion for the water wave problem given in Section 3. In part, 
this uses an analysis of pseudo-differential operators in a multiple scale 
regime, which is along the lines of [8]. As we work here in general 
Lq(R*)-spaces, the required additional estimates are provided. 

We now conclude this introduction by discussing the form of justification 
of the modulational limit that we can provide. In both the two-dimensional 
and three-dimensional water wave problem, the modulational approximation 
involves solutions in the form of wavepackets of amplitude O(F), whose 
envelopes simply translate with the group velocity over time intervals of 
length O(F-I), and evolve on time intervals of length O(e-?) according 
to a modulational equation (nonlinear Schrodinger or Davey-Stewartson 
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equations). In order to compare a solution to the water wave problem to 
its modulational approximation, it is thus necessary to have an existence 
theorem for solutions of (1 l)-( 1.2) for initial data of amplitude 0 (F) which 
have time intervals of existence of 0(te2), corresponding to times O(1) 
in the modulated time scale. At present, there are no existence theorems 
for the full water wave problem, so that we are as yet unable to make 
the statement that true solutions (71, <) of (1. I)-( 1.2) and their modulational 
approximations (q, <) of (1.3)-(1.4) remain close in an appropriate norm 
over modulational time scales: sup o<t<q-2) II - c;rm < 4f3). 
In this paper, we make the alternative, and weaker statement that the 
approximations (6, F) constructed from the Davey-Stewartson system (1.4) 
result in an I error when acted upon by the nonlinear water wave 
operator given by the r.h.s of (1.2). If the implicit function theorem were 
available, these two statements would be equivalent but as it is not. the 
second is weaker than the first. The statement that we make is sufficient to 
guarantee that over time scales of interest (0 5 t < O(E-‘)), the dominant 
evolution of the modulational regime is described through (1.3) and the 
Davey-Stewartson system (1.4), and accumulated errors cannot grow to 
significance. 

The construction of approximate solutions in the modulational regime 
also depends upon the well-posedness of the initial value problem for 
the Davey-Stewartson system (1.4). There are two choices of sign for 
each of the quantities a and X/p which affect this (although N < 0, 
X/p < 0 does not occur in the water wave problem). All of these 
cases have been addressed in the literature, see Ghidalia and Saut [ 131, 
Linares and Ponce [20], Guzman-Gomez [14] and Hayashi and Saut [16]. 
The nature of the solution depends importantly upon the sign of c). For 
a > 0, one can take co(z) E ,‘,(R’) an essentially one has solutions d 
(c(z,~), d(z,r)) E H”(R2) x H”+l(R2). When however cy < 0, one 
cannot impose zero boundary conditions for d(z, r) at spatial infinity. 
The solution essentially has a “wake” of infinite extent backwards along 
the characteristics z1 f 6~2 = Con& and d(z,r) E WTn-1.cu(R2) 
and not better. A local representation of the solutions of the nonlocal 
equations (1.2) is then problematic. Our results on the justification of the 
modulational approximation reflect this fact: we have results in the case 
(IY < 0 only for the approximate solutions of (1.3) when cutoff smoothly 
near (arbitrarily close to) the modulational variables x at spatial infinity. 
These results on the initial value problem are reviewed in Section 6, 
which then finishes with the proof of our main results and rigorous error 
estimates. 
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2. EQUATIONS OF MOTION 

2.1. The water wave problem 

We consider the movement of the free surface x = (z’, I), 
XI = (x1,x2) E R2, of a three-dimensional fluid with surface tension 
p, under the influence of gravity g. The domain is a channel which is 
infinite in the horizontal directions and has a fixed bottom at 2s = -1~. 
The fluid is taken to be incompressible, inviscid and h-rotational, so that 
the fluid motion is described by a velocity potential cp which satisfies: 

Acp=O for - h < 23 < T/(x’, t). (2.1) 

The boundary conditions are 

&,(p = 0 on x3 = -h (2.2) 

and on x3 = q(x’, t), which is the free surface over the fluid domain, 

where 

is the mean curvature of the free surface. The aim of this section is to reduce 
the system (2.1)-(2.3) to a system where all the functions are evaluated 
at the free surface only and cp and its derivatives in the interior are not 
used. For this purpose, we introduce the trace of the velocity potential cp 
at the surface 

and the Dirichlet-Neumann operator acting on 1(x’), which is defined by 

where d,cp is the normal derivative of ‘p on the surface. The linear operator 
G(v) relates (up to a normalization factor) the boundary values of cp on 
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the surface to its normal derivative. On the free surface :x3 = q(x’. f) we 
additionally have that 

and 

&,cp = 

Using expressions (2.4)-(2.6), 
system 

&7l - G(q)< = 0 

1 

G(v)1 + i3,~. a,/< 
1+ pzI# . 

(2.6) 

equations (2.1)-(2.3) are equivalent to the 

(2.7) 

which is an evolution equation for the elevation of the free surface 7~(:1:‘, t) 

and the trace of the velocity potential on the free surface e(~:‘. t). It is this 
system that we will use in this paper on the rigorous modulational analysis 
of the three-dimensional water wave problem. 

2.2. The Taylor expansion of G 

We briefly outline the formal derivation of the Taylor expansion of G 
in powers of the surface elevation rl. Details can be found in [8] for the 
two-dimensional case and in [7] for the three-dimensional case. We look 
for an expansion of the form 

G(V) = fJ Gj(V) 
j=O 

where Gj (71) is a pseudo-differential operator homogeneous in 71 of degree j. 
For this, we consider the particular family of harmonic functions: 

(p&d) 11:s) = eip,r’ cosh(lpl(z:~ + h)) (2.9) 

where p = (pI,p2) E R2 and Ipl = dm. These are harmonic 
functions in {x3 > -II} which satisfy azs, ‘pr, = 0 on the bottom boundary 
x;:3 = -/L By definition, 

G(7$pp = i&(pp - &I(P, . a,~rjls~. (2.10) 

A~mdrs & l’htirrrr ffrwi Poiwo~-r; Analyse non h&ire 
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We substitute (2.9) into (2.10), expand the hyperbolic functions near 23 = 0, 
and replace the r.h.s. of (2.10) by its expansion C,“=, Gj(rl)‘pr. We obtain 
thus an identity, and by identifying the terms of degree j in q we get the 
expansion of G from a recursion formula. Using the usual notation that 
D4 = -i&, and IDI = (-A) I/2 the result is as follows. For j even: , 

Gj(q) = $(JlDl j+‘tanh(hlDI) - i&(#) . DIDf-‘tanh(hlDI)) 

- c (<J i r”e*l - c (<J ( “‘id 
For j odd: 

WV) = 

- 

- 

(2.11) 

@D[j+’ - i&&f). DIDI+) 

! eYen 

c i<j &Wii)vi’lDl’-‘. (2.13) 

1 odd 

In the analysis of this paper, we need the explicit form of the first three 
terms of the expansion, namely 

Go = IDI tanh(hlDI) (2.14) 

G,(rj) = D T/D - GoqGo (2.15) 

%(7/l) = -f (Goq2/D12 + ID12r12G~ - 2Gorr%rlGo). (2.16) 

This form of analysis of the Dirichlet-Neumann operator is useful in a 
variety of settings. For example, we have used it in a method for numerical 
computations of time dependent free surface flows [9], and de la Llave and 
Panayotaros [21] in a similar context have derived the Taylor expansion 
of the Dirichlet-Neumann operator in the context of water waves on the 
surface of a fluid layer surrounding a gravitating sphere. 

Vol. 14, no 5-1997. 
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3. FORMAL DERIVATION OF MODULATED SOLUTIONS 

This section is devoted to the formal modulation expansion, leading to the 
Davey-Stewartson system. This derivation starts with the form (2.7)-(2.8) of 
the water wave problem, but in other respects follows the general method 
of multiple scales. The modulational regime considers small amplitude 
solutions of (2.7)-(2.8); the linearized system around water at rest is 

L; =o 
0 

(3.1) 

with 

The system (3.1) admits solutions of the form: 

c eiv + cc, < = c e+ + c.c + d (3.3) 

where cp = k . Z’ - wt. We use c.c to denote the complex conjugate of the 
preceding terms. The constants c and d are arbitrary, while the wave vector 
k = (ICI, 52) is related to w by the dispersion relation; 

w2(k) = (g + ~lk12)11cI tanh(hjkl). (3.4) 

We study a scaling regime suitable to observe a packet of nearly one- 
dimensional waves ( Ik2 1 < llcr I) t ravelling in the zr-direction. We suppose 
that the waves have small amplitudes and that the effect of the nonlinearity 
will be to modulate the amplitude c which becomes a slowly varying 
function of space and time. To this end, we introduce a multiple scale 
expansion, with a large scale spatial variable X’ = (X,, X2) = TV’ = 
e(zr,za) and two slow times T = Et and r = c2t, and we expand the 
solution in the form 

7 I.= q(l) + ,242) + . . . 

(3.5) 
( = ,p + ,2p + . . . 

and 
G = G(O) + &J(l) + . . . 

Annoles de I’lnsfitut Hrnri Poincard Analyse non Ii&ire 
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At leading order, we have 

,,(l) = iw 
O-Pkf 

c(X, T, T)e+ + c.c 

t(l) = c(X, T, 7-)e+ + c.c + d(X, T, T). 
(3.6) 

From the preceding paragraph, 

p = klxl - wt and w2 = (g + ,f?kf) ICI tanh(hkl). 

For concise notation we will use the notations in the following calculations: 
x = hkl, g = tanhx. Furthermore, Dj = Dy) + ED:‘) where derivatives 
me D!‘) = &a,. and Dj’) = iady, (j = 
of ]D[ and t”,ni(hjDl) 

1,2). We first write the expression 
using results of [8] on pseudo-differential operators 

in a multiple scale regime, obtaining 

IDI = 10$O)f + E~~)I~~“)l-lD$l) + $D$O)I-~D!~)~ + o(2), (3.7) 

tanh(hlDI) = tanh(hlDp)I) 

+ thD~)ID$“)l-l(l - tanh2(D$“)))D$‘) 

+ E2 
( 

$D$“)lp’(l - tanh2(hDp)))DL’)’ 

- h2(1 - tanh2(hDy))) tanh(hlDp)I) Di’)” 
> 

+ O(E3) . (3.8) 

To obtain the coefficients G(“), we first write the expansion of G in 
terms of powers of v (see section 2.2) and then use the expansion of v in 
t together with (3.7)-(3.8). At leading order, we recover 

G(O) = Dp) tanh(hDy)). (3.9) 

The terms of order E and t2 are respectively 

G(l) = D~“)71(1)Djo) - G(‘)v(l)G(‘) + tanh(hDp))Dil) 

+ hD$‘) (1 - tanh2( hDy))) D{l) (3.10) 

Vol. 14, Ilo 5-1997. 
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and 

(3.11) 

+ @4rl(2)@“) - @),rl(*)G(0) + Df$,(l)~i~) + @q!‘)@“’ 

- G(“)v(l) ( titnh(hDiO))Dil) + hDp) (1 - tal~h2(hD10)))D~‘)) 

- ( tanh(h,D~))D{l) + hII{‘) (1 - tanh2(hD10)))Dr’))~(1)G((1) 

G(o)7/(1)“Df’)2 + D, (“)2,1(1)2G(0) - 2G(0)7/(1)G(“)11(1)G(“)), 

We now expand equations (2.7)-(2.8) in powers of t, which at order n for 
11, > 1 gives the inhomogeneous linear system; 

(3.12) 

The solvability condition requires that the r.h.s. of (3.12) is orthogonal to 
the kernel of the adjoint operator 

The kernel of L* is spanned by 

(3.13) 

(3.14) 

thus the solvability conditions are equivalent to the following two con- 
ditions: 
(Sl) A, does not contain terms independent of p 
(S2) The coefficients I’, and Q,, of e ‘9 in A, and B,, respectively satisfy 

At order 2, we have 

A2 = -,$’ + @E(l) 
(3.16) 
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Using the expressions of 17 (l) E(l) and G(l) given in (3.6) and (3.10) we get: , 

AZ =i - (cr + X(1 - CJ2))C~& eiP 

(1 - (T tanh(2X)) eziP + CC 

+ ~kfc’(l + cr2)e2i9 + c.c 

At this order, the solvability condition is that 

a+X(l-a’)+- 0 (3.17) 

or equivalently, 

CT + ‘d’c<& = 0 (3.18) 

where w’ = &,w(/~r,O). Thus c = c(zl, ~2, Q-) with zr = X1 - w’T, and 
z2 = X2. This expresses that the wave packet travels with its linear group 
velocity w’. The system (3.12) at order 2 is solved in the form 

rjc2) = pleip + y2e2+ + c.c + p3 

tc2) = qle@ + q2e2ip + c.c + q3 
(3.19) 

with 

1 1 
Pl = -CT + -(a + X(1 - (T2))Q, 

g+m: 
(CT” - 3):; 

pz = a(pkf(a2 - 3) + a2g) c 
2 

41 = 0 

q2 = 
iwkl(z*(l - CT”) + 3(1+ ,z,,) 2 

4a(/%~(c72 - 3) + Sg) 
c 

py = i(k:(c’ - l)lc12 -d*). 

The dependent variable q3 can be chosen equal to 0, and c and d, 
are slowly varying functions which are not determined at this stage of 

Vol. 14, n” 5.1997 
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the expansion. Note that the denominator of p2 and q2 vanishes when 
/3rq(ff2 - 3) + n2g) = 0. This is known as the second harmonic resonance 
[Ill. At wavenumbers satisfying this condition, the analysis breaks down 
and a new scaling is required. A formal analysis of this regime can be 
found in the article of McGoldrick [23] and we do not discuss it in the 
present paper. 

For wavenumbers such that Plct( a2 - 3) + m2g) # 0, we have at order 6:‘: 

The elimination of the p-independent term in A3 leads to: 

--PST - hdx,s, - hdxs, 
2Wki 

- -Iclf, = 0 
9 + PG 

or equivalently 

(3.20) 

(3.21) 

(3.22) 

with 
2wglq 

01 = 
g+Pk-T 

+ w’(1 - g2)kf. 

Using (3.18), we see that U = dT + w’dX, satisfies the homogeneous 
wave equation 

In the limit T large, or equivalently 7- = O(1) (which is the regime that 
interests us), U = 0, therefore we might as well assume that d, similarly to 
c, is a function of zl: z2 and r only. Equation (3.22) thus reduces to 

(gh - J2)dzm + ghd,,., + NIIcI:~ = 0 (3.23) 

For wave numbers such that w’~ = gh, (3.23) is singular and a different 
scaling has to be used [ 111. In the following, we assume that this coefficient 
does not vanish. 
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To express the solvability condition (S2) we write P3 and Q3 in the form 

p3 = -PIT - 

- h(l - a2)(1 - XCT)C,,,~ + k:(l - a2)p3 c 

- f$$ (1 - f7 tanh(2x))c*q2 - k::(l+ a2)c*p2 

+ wkl -cd,, + k’aw2 9 + Pk: (9 + /Jkf)2 
(-1 + 2g tanh(2x)(c(2c) 

Q3 = - c, - iklcd,, - 2kF (1 - g tanh(2x))c*q2 

-t- %(I - 2atanh(2x))/c12c 

Solvability conditions (SI)(S2) read 

2ic, + xc,,,I + 1uczzz2 = xlc12c + x14, 
ch,z, + A,,, = -rlcl:, (3.24) 

where, using notation similar to Ablowitz and Segur [I], the constants are 
given in the following list: 

X = d;lw(kl,O) z w” 

11, = w//k1 

k; 
x=z 

( 

(1 - (r2)(9 - a2) + /5(3 - a2)(7 - 0”) 

CT2 - &3 - CT”) 

+ 8~~ - 2(1 - a2)2(1 + 3) - % 
1+P > 

x1 = -kl 2 + 
( 

%(l - a2)(1 + li,) 

Q = gh - w12 

gh 
kl 

‘-Y = gh ( 

2w9 

g+/?kt 
+ ~‘(1 - g2)k1 

> 
/y - k’:fi 

9 
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Equation (3.24) is the Davey-Stewartson system for the modulation of a 
solution to the water wave problem, with underlying spatial wavenumber 
h:. Finally, the system (3.12) at order 3 can be solved in the form 

with coefficients Sj, 6:. j = 1 . . .7 depending on w, k, h and y. 
This establishes on a formal level that at leading order the interface 

deformation and the potential velocity on the surface have the form 

with cp = krrcl - wt and w* = (9 + pI$)k, tanh(hkr). The amplitude c of 
the wave packet and the potential d satisfy the Davey-Stewartson equations 
(3.24) in the slow variables r = r2t, z1 = e(zr - w’t) and z2 = ~2~. The 
coefficients X, p, x1, x, 0 and y depend on the gravity y, the depth h, the 
surface tension /3 and the wave number ICI r, as described in the above list. 

4. ANALYSIS OF THE DIRICHLET-NEUMANN 
OPERATOR IN THREE DIMENSIONS 

The purpose of this paper is to supply a rigorous basis for understanding 
the above formal procedure, which consists of several modulational scalings 
and the formal derivation of the Davey-Stewartson system (3.24). As posed 
in equations (2.7)(2.8), the water wave equations form a nonlinear system of 
integro-differential equations in the free-surface variables (x:‘, t). In contrast, 
the Davey-Stewartson system is a nonlinear system of partial differential 
equations, and it is evident that the modulational approximations consist 
in part in approximating integral operators by partial differential operators. 
The central integral operator for the water wave problem is the Dirichlet- 
Neumann operator G(*q). The analysis of this section is focused on the 
description of G(q) and its dependence upon the fluid domain, through the 
function n(z’). The three basic facets of the analysis are (i) the analyticity 
of G(q) in I, and approximation of it by its Taylor series, (ii) the 
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description of the Taylor remainder terms and their estimates, and (iii) the 
description of the individual terms in the Taylor series for G(q) as pseudo- 
differential expressions, and estimates of their behavior under multiple scale 
expansions. The latter topic was addressed in a general setting in a previous 
paper [8]. We set about now to describe the former two. 

4.1. An exact implicit formula for G 

The fundamental solution of the Laplace equation in the domain 
{x E R3 : z3 > -/l} which satisfies Neumann boundary condition at 
z3 = -h is given by the method of images; 

T(x:y)=-1 ~ ~ 4T ,xly, + ,x’y*, ’ xJER3 
( > 

(4.1) 

where y* = (Y’; -(2h + ~3)) is the reflection of y with respect to the 
bottom plane 23 = -h. For x = (z’, r/(x’)) at the surface (with X’ E R2) 
we denote the unit normal by 

N(z’) Ix (1 + (az,g)-1’2 -7’” . 
( > 

Write the boundary values of a harmonic function p(x) as ((2’) = 
(p(z’, r~(z’)), and use Green’s identity for a point (x’, rl(z’)) at the surface, 
to find 

- s (W/K) (Y’)~(x, Y) dy’, (4.2) 
R” 

where we are using the notation that x = (z’, 7(x’)), Y = (y’, v(Y’)). At 
the surface, we rewrite the Green’s functions 

1 

+ (Id - y’12 + (2h + q(d) + ~,(y’))~)‘i~ > 
(4.3) 
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and the double layer potential 

which can be written as 

-r(z,Y) = & 
( lx/ T y/~ + (lx;/ _ yt[21+ 4h,2)1/2 

> 
+ ;p. y’) (4.5) 

and 

We denote the quotients in the above two expressions by 

Q(v) = VW) - ‘l(Y’) 
lx’ - Y'I 

rl(x') + rl(Y') 
Ql(V) = (Ix:’ -ytl2 + 4fL2)1/2: 

(4.7a) 

(4.76) 

obtaining the following expressions: 

e(x’, y’) 1 1 
=G p _ yIJ 

( 1 
(1 + Q2) l/2 

-1 

> 

+kT 1 

(lx’ - y’)2 -+- 4h2) 1’2 

x ( (1 + &l ,,;.,.,::,,.)l,2 + Qfy2 - l . > (4.8) 
Using the fact that 

(x, _ y,) . a,,62 = v(x’) -  77CY’) - (2;’ - Y’> . %4y’) 

Ix' - Y'I 
(4.9) 
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and 

(x’ - y’) . b)y,Q1 + 
4h2Q1 

Id - y’/2 + 4/L* 
= 7(d) + q(y’) + (d - y’) &~7j(‘y’) 

(Id - y’12 + 4h2)‘i2 
(4.10) 

the term m(z’, y’) can be written in the following form. 

+., y,) = _ _f_ (x’ - Y’) .a,, Q ' ', 27r 15’ - y’l2 (1 + &2 

4h2Q1 
(Id - y’12 + 4h2)2 

’ (1 + &I ,;;,;:;:,,;, + Q;))"'") 
1 2h 

+ %(I z’ - y’l* + 4h2)3/2 
(4.11) 

’ (1 + &I I.;,;:;4h>,:1 + &?I):"* - 1 > 

This will be used in the analysis of Section 4.2. We substitute these 
expressions in (4.2), obtaining 

1 2h 
cb’) =G (142 + 4h2)3/2 * E 

+ ii m + (/x/l2 + 4h2)lj2 ( 

1 1 

> 
*G(v)< 

+ M(v)< + L(v)G(rlK. (4.12) 

with the two operators given by the above kernels, 

W71)/44 = J DEW, YMY%Yl, 

I/(7/)&‘) = 1 qd, y’)p(y’)dy’. 

Denoting by 3 the Fourier transform operator, the convolution operators 
in the above expression are given explicitly by 

F ( > & = 27w’ (4.14) 
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and 

3 
211, 

(142 + &2)3/2 
> 

= 2Te-2’L’p’ (4.16) 

(For completeness, we give a thesaurus in Appendix A.) 
Equation (4.12) takes the form. 

(1 - e-2h’D’)t-M(rl)l = lDl-l(l + t~-2”‘D’)G(~$oL(~)G(~)~ (4.17) 

or equivalently: 

(4.18) 

and 

B(Q)< = -(l + e -2h’D’)-‘pp(T/)C (4.19u) 

A(q)< = -(I + e -“h’D’)-lplM(,f-l)< . (4.190) 

Identity (4.18) is the implicit form of the operator G(r)) that we will use. 
Since both M(r/) and L(q) start at least linearly in q, (4.18) gives directly 
that GO = IDI tanh(hlDI). 

4.2. Error terms in the Taylor expansion of G 

Starting from the implicit formulation of G obtained in the previous 
section, we rederive the first three terms in the expansion of G together with 
the explicit form of the error. Although this derivation is more complicated 
that the one presented in Section 2.2, it allows us to write precise estimates 
on the error terms. 

The Taylor expansion of the kernel lj(:z’; T/‘) defined in (4.8) is given by: 

1 Py+‘,,K?) + L &+dQl, (,,hy’,LL)‘iL 1. +- 
27r 12 - y’l 27r (Ix’ - T/l2 + 4h2)1/2 

(4,20) 
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Using the relations (4.9)-(4.10), the Taylor expansion of the kernel m takes 
the form 
‘m(3:‘: y’) =& c 

_ ( 

(x’ - y’) . +mj(Q) 

lCj<J 
Ix’ - y’l2 

+ (x1-y’)+Q1 + 

( 

4h,2Q1 

lx’ - y/y + 4h2 (Ix’ - y’l2 + 4h2)2 > 

’ ‘+l 
( 

4h 
Q13 (lx/ _ y/~2 + &2)1/2 

> 

1 2h 

+ %(I x’ - y’12 + 4h2)3/2 nj Q1, (lx/ _ ,,I:“+ &2)1,2 
( >> 

+ L (x’ - Y’) . %,4+,(Q) 
27r Ix’ - y’l2 

+2- ( 
( 

x’ - y’) . i&Q1 + 4h2Q1 
27r Ix’ - y’12 + 4hz2 (Ix’ - y/l2 + 4h2)2 1 

’ $--1 
( 
Ql, (lx/ _ ,!I:“+ &2)1,2 

1 
(4.21) 

1 2h 

+ !G(I x’ - ?/‘I2 + 4h2)3/2 ny ( ‘I’ (lx1 _ ,!,i”, &2)1,2 ’ > 
The functions pj, qj, mj and nj are homogeneous polynomials of degree 

j in v(x’) and q(y’). The expressions py, q:, m:, ny are Taylor remainders 
that come from Taylor expansions of (1 + n)-l12 and similar expressions, 
so that p:(g) N 0(&) f or small cr, and analogous estimates hold for the 
other quantities in their arguments. 

Using (4.20) and (4.21), we write 

-4~) = A,(v) + . . . + -41(v) + A: 
B(77) = h(v) + ‘. + BJ(rl) + @, 

(4.22) 

with 

4(v)< = - MC1 + e -29-i; (I( W -l~~~%~~Q))Codyr 

+kJ( 
(5’ - Y’) . QQ1 2 

Ix’ - y’12 + 4h2 + (lx’ -;t,2Q; 4h2)* > 

x nj-l(Ql, (lx, _ ,,,r’: &2)1/2 )<(?l’)‘Y 

+ 217i. /’ 
2h 

(Ix’ - y/p + 4h2)3/2 

’ ?Lj(Ql, (lx1 _ ,,I?+ 4h,2)l12)E(Y')dd > (4.23) 
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and 

Bj(rg = - p/(1 + p-2fllyl (4.24) 

P.7 (Q) 4.,(621> 
ih 

(~&y’l’f4~‘)‘i’ 1 

IX’ - ?J’I + (ICC’ - y/12 + qh,2)1/2 ~(Y’)‘Y’. 

We denote by A: and BT the terms which describe the Taylor remainder. 
For our purposes, we need to study the third order expansion. From (4.18), 
we get 

G(v)E = GE + (BIGI + A,)< 

+ (&Go + &Al + A2 + B;Go)< + R,(q)<. (4.25) 

where the remainder R3(7~) has the form 

fi3(71) = (B;‘+ BlB2 + BzBl + BlB,X + B:B1 + BzB;’ 

+ @B2 + (Bf)2 + B;)Gcl + (By + B;)A, 

+ (1 - B)-l(Af + BA2 + B2Al + B3Go). (4.26) 

THEOREM 4.1. - The Dirichlet-Neumann operator can be nv-itten in the 
form: 

with 

G(r)) = G,-j + Gl(rj) + Gz(r/) + R,(q) (4.27) 

G,, = IDI tanh(hlDI) 

G1 = D .7jD - Gor/Go 

G2 = -;lD12q2G,, + GovG,rlGo - +,i?lD12 (4.28) 

with the remainder R,(r)) dejned in (4.26). 

Proof of Theorem 4.1. - We will derive the explicit form of the operators 
AI, A2, BI, B2, in order to express G1, G2 

A,(r))< = - ID/(1 + c:-- ‘h/D -1 ) 

1 
x%r, 

(X - y’) . 3,f7/(y’) - (7jf:x’) - 7/(y’)) 

IT;’ - yJ’13 

+ (cc’ - y’) . i)yq(y’) + 7/(d) + rj(y’) 

((21’ - y’/2 + 4/x2)3/2 

12h’ f& 
(1%’ - y’l2 + 4h2)2 1 dy’ 

(4.29) 
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We can write these expressions in terms of Fourier multipliers (see 
Appendix A) 

A,(Q)< = D. rlD[ - lDl(l + e-2h’D’)-1qlDI(1 - e~‘~‘~‘)< 

= D . ,rlDE - lDl(l + e-2hlDI)-1q(1 + e-2hioi)G0<. 
(4.30) 

Similarly, 
&(q)( = -lDl(l + e-2h’DI)-1 

1 
( >/ 

2h 
X -- 

2r ’ (Id - y’12 + 4h2) 
3,2 (M) + dY’))<(Y’WY 

= ID/(1 + e -2w-1 (Ile-2wlJ + e-2hlDlrl[). (4.31) 

Thus, combining (4.30) and (4.31), we get 

G(rl)t = (&Go + A,)I 
= (D . rlD - Go~Go)<. 

For G2, we have 

(4.32) 

with 
G2(rl)E = (&Go + &AI + A2 + @o)E (4.33) 

Am< = -jDj(l + e-2hlDI)-1 
1 

X- 
2n 

(-6h,) (z’ - Y’) . +rl(Y’) + VW) + rl(Y’) & 
(Ix’ - y/p + 4h2)2 1 

3hQf 
2 

- 
( 12’ - y’l2 + 4h2)3/2 1 - 12’ - ;I! + 4h2 >> 

E(Y%Y 

= -ID/(1 + e-2hlDI -’ qiD. e-2hlDi((dy,q)[) 
) ( 

+ iD. ~~~~~‘((d,~rl)rp$) - &(q”(l + 2hjD))e-2hlDI 

+ 2q(l+ 2hlDl)e-2hiDiq + (1 + 2hlDl)e-2hlo1q2)< 

+g v2 (( -$(l + 2hlDI) + ~h2/D12)e-2hiD~< 

+ 211 
( 

$(l+ 2hlDI) + &h21D12)rjep2”i~~[ 

+ ;(l + 2hlDI) + $h2jDj2 

= -/D/(1 + e -2h,D,)--1 (,D e-2h1D177D 

+ .!D . e-2hlDIr12D + ~~21D12e~2h~n~ 
2 (4.34) 
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1 
+ 2(1 d - 11’12 + My2 (71(x’) + ,7(1/l))’ 

G/i2 
(Ix’ - :(/‘I2 + 4h,2)5/2 (7/(x’) + r,(yl;)z [dy’ 

> 

= +)I(1 + e--2hIUI)l;(T,2,~,(~ + f~-‘w) 

+ ‘&]lDI(-1 + CahlDl )7] + p/(1 + “-2’+-yT,2)E (4.35) 

The expressions that we seek are given by 

= lDl(l + e-2’“10i)-l(7,e-2h1L)1 + e-2/41,Il) 

x (D . r/D - Gor/Go)[ (4.37) 
and A,( is given in (4.34). 

Now we combine these 3 expressions and get 

(B2Go + A2 + &Al + @GO)< 

= -Go;rlalDI’< - lDl(l + ~-2ii1~1)1C-2irD1~02,nl’~ 

+ pq(1+ e- 2hiDi)-17,Go(l + e- 2hlDl)~GO~ - lD12;r/2Gil< 

- pIq1+ c- WDI)--1 (T,e- 2hlDID. +$ + c- 2’b1D1D. A7”D< 
2’ > 

+ lDl(l + e --2hlDI)-l(~,e-2hlDI + e-w4 

x (D 7/D - G07/G0)(. (4.38) 
A simple commutator identity gives that 

-;7j21D12< + 7/D. (7/D<) - D. ;r;lD< = 0; 

so that we obtain the desired expression; 

G& = -G&Dj2[ - ID12;q2G,,< + GorjGor/Go. (4.39) 

The next section gives precise estimates on the error term &(7/) defined 
in (4.27). 
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4.3. Analyticity of the Dirichlet-Neumann operator 

In this section, we prove the analyticity of G as an operator between 
appropriate Sobolev spaces, for v in a neighborhood ]r/lcl < Ro. A related 
result was proved by Coifman and Meyer [4] in one space dimension for 
q with bounded Lipschitz norm j~Y,tql, (that is, for (x’, Q(x’)) a Lipschitz 
graph in R2). Here (x’,Q(x’)) is a surface in R3, and the absence of the 
use of complex variables makes the theorem more complicated. The main 
consequence of the present result is an estimate for the Taylor remainder 
term R3(q) resulting from the expansion of G(q) to second order (see 
(eq. (4.28)). 

We use the notation Ws,q(R1’) for the Sobolev space with the norm 
ll43,, = c,n,,<s Ilmll:~ where 11 . /I4 denotes the usual norm on Lq(R”). 
We also use the space CS(Rn) for the continuous functions whose 
derivative functions up to order s are also continuous, with the usual 
norm MC- = Clplss IGrlb. 

THEOREM 4.2. - Let 1 < q < foe. There is a constant Ro such that 
the operator G(q) is analytic in v in the neighborhood {rl : Jrl(cl < R,, 
I’I~IC:~+I < CQ}, as a mapping G(q) : Wsfl,q + W’,q. 

We first focus on the operators A and B expressed in (4.22) and (4.23)- 
(4.24), as the theorem will follow from a series of results for them. The 
effort in this section is to reduce these operators to a standard form as 
singular integral operators. The conclusions of this section will then follow 
from the LY and Ws’q mapping properties of these operators, which is the 
focus of the analysis of Section 5 of this paper. The general form of these 
singular integral operators is 

Cp(q)((d) = I’k(d - y’)c,(Q)<(y’)dy’. (4.40) 

where k is a convolution operator of Calderon-Zygmund type and cP (a) 
is an analytic function in a neighborhood of the origin which satisfies 
CP (0) - O(#). It is also necessary to study related smoothing operators 
of the form 

ZZ 
.I 

. k&x’ - Y’)Cp,h 01, CIx, _ y,lf’: 4h2)1,2 t(Y’)dY’: (4.41) 
( > 

where k.h is in a particular class of smoothing kernels and ~~,!~(g, 7) 
is an analytic function in a neighborhood of the origin that satisfies 
Cp,h N O(CT%‘), with T > 1. 
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THEOREM 4.3. - Let 1 < y < +oo, and 0 2 s E Z. The operators B,J and 
BT dejined in (4.22)-(4.24) satisfy the estimate: 

(i> llB~(~)~ll~,~ I: I4$‘(C(~)ldc~+~ lllllq + l40 IIdls,q) (3.42) 
(ii> IlfT(~Mls,, L I7&‘(~(~)l7~l0+~ 11111, + Mc~ Illlls,s) (4.43) 

COROLLARY 4.4 
(i) The powers of B satisfy 

IIBj(q)tlls,, I Iv&? (hb Il~lls,p+C(~)(l+co)j~~l~lc~+l ll~lh) (4.44) 

(ii) For 17/lc1 small enough, the operator (1 -B) is invertible and satisfies 

IIP - W’EIL 5 1 + (CC5I7b+l IIEII, + lrllcl ll~lls,q) (4.45) 

Proof of Theorem 4.3. - First of all, we notice that the operator 
(1 + ~‘~loI)-~ is bounded in W”‘Q for all 1 < q < +CX and all s > 0, 
and furthermore 

IDI = - 2 iD,jlDI-1 . iDj = -2 Rj(D)iJ,,I (4.46) 
j=l j=l 

where Rj(D) are the standard Riesz potentials which are also Lq-bounded. 
Thus, to find a bound for Bj defined in (4.24), we are led to consider two 
types of integral operators Pj and Qj,h defined by 

P,(rlK = &: , I' Iz, 1 y,l~~(Q(dKt~'~dyl (4.47) 

where pj(Q) = UjQ’ 

(4.48) 

x qj Ql(v)> o2, _ y,lf: 4h2J1,2 
( 1 

~(Y%Y 

We rewrite Pj in the form: 

+ QI(~‘) 
J 

,z, J y,12 Q”-1 IVY’ 
> 

(4.49) 
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which is a sum of operators Cj(q) defined in (4.40) with kernel 

and az:V(x')cj-l(V) 

which involves the kernel k(z’ - y’) = (l/lx’ - y/I”). 
Similarly, and less delicately, we may write 

- (4h)yz: - y:> 
Qjth)l= c by’ / (Ix/ _ y,12 + 4h2J71 Q:(v) E(Y’)~Y’ 

+ c b$?‘&: 7/(d) 
.I 

(4h)- 

(Ix’ - y’12 + 4h2)r? 

x Q;-‘(v) E(Y’)~Y’ (4.50) 

with coefficients derived from the binomial expansion. These are clearly in 
the form of operators of type C,,, (77) with smoothing kernels Ich (x’ - y’) = 
(l/(/z - y/j2 + 4h2)“f’) or kh(l~ - y) = ((x: - yg)/(lz’ - y’12 + 4h2)r”). 

We have achieved the form for which the L’J and IV’,4 transformation 
properties of singular integral operators may be used. Applying Theorem 5.7 
to the operators I’3 (v) and Theorem 5.8 to Qj,fL (17) of Bj (7)) we see that 
the estimates (4.42) hold. The operators B:(n) do not have kernel which 
are homogeneous polynomials in Q, Q1, but rather analytic functions of 
Q and Q1, and the corresponding result (4.43) follows from Theorems 5.1 
and 5.2 respectively. 

Pvoc?fof Corollary 4.4. - Noting that B = Bf, we have the estimate that 

IIw7Klls,rl I ~m/lc~+~ 11111, + IVlCl IllllS,~I (4.51) 

To prove estimate (4.44), we will proceed by induction. Suppose that 

Ii@(d<lls,q I: k&l ~~<~\s,q + C(s)(l + ~o)j-lk~&l lvlc~+~~~lllq (4.52) 

and let us prove that the same estimate holds for EP+l (7). Applying (4.5 1) 
to B(q)<, we have: 

lI~j+1(77m,q I Irll~~1(1171c~ IIwIKllb.q 
+ cl+ ~~~~-‘~~~~l77lc~+~II~~17>111~~ 

5 l77ljc;‘~l~lc~~l~/lc~IIIIIY,~ + ~~~~~lrllC”+‘l77lC~ll1lln~ 
+ (1 + ~“~~-l~~~~~lrllc~+~~~l~l~~ Kllg) 

5 l&1 (Ivlc ll5lls,q + C(s)(l + G)%Ilcs+~ 11111,) 
and estimate (4.44) on Bj is complete. 
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Within the region of convergence of the geometric series Cj 1,q/$, and 
C,(l+ CO)J-llql$l, that is for /~]cI < l/(1 +CO), we have convergence 
of the Neumann series for (1 - II-l. This is our first condition on I?/Ic.l, 
that R0 < l/(1 + CO). We now turn to the family of operators A,(Y]). To 
obtain the correct dependence on the smoothness of r](x), we will use the 
following general lemma. 

LEMMA 4.5. - For :I: E R”, X(Q) un odd continuous function qf Q and 
r/ E Cl(R”), we huve 

Proof of Lemma 4.5. - Denote B,(z) a ball in R’” of radius t and center 
:I; and S,(x) its boundary. Then, for any ri.< E Cl(R”), 

The second term of the r.h.s of (4.54) vanishes, as the vector held is 
divergence free in R’” - I?,. Consider now the third term in (4.54). For < 
continuous the difference between this term and 

I 
1 

, ,$, (x) I:I. - :!pl 
Rods, 

is of order O(t), hence it suffices to consider the latter. By the mean 
value theorem, 

~SY (4.55) 

for some z = TX + (1 - ~)y , 0 < 7 < 1. Assuming that 8,~ is continuous, 
it suffices to consider the following integral 
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as the difference between (4.55) and (4.56) is again O(E). However the 
integral in (4.56) vanishes, as R(.) is odd, as is its argument. 

Remark. - This argument uses the fact that q E Cl(R) is an essential 
way, and will not extend directly to q E Lip(R). However by an 
approximation argument it is easy to see that we may take [ E VVSJ(R”). 

THEOREM 4.6. - The operators A.1 and AT dejined in (4.23) and (4.25) 
sati$y the estimates: 

(9 llA~(~)~lls,, I C(~)lvl$~( lvb+~ Il~~~Elln + l7b ll&~~EII.s.n) (4.57) 

(ii) llA~(rl)lll.s,q 5 C(s~)lvl$l ( lrjlCs+l Il&~ElL, + I7h~ Il~J~~Ells,p) (4.58) 
Proof of Theorem 4.6. - Using Lemma 4.5, the problem is transformed 

to a situation very similar to that of Theorem 4.3. We have 

A,j(q)<(z’) = - &(I + c~“‘~‘)-~ CL!,(D) 
1 

a x d,!r 
( .! 

2;’ - y’ 
Id - y’l2 . f%!?i(Q)E(Y’)dY’ 

+ &I, 
.i( 

(x' - Y') . q/d21 + 4h2Q1 

Ix' - y'l2 + 4h>2 (Ix’ - y/j* + 4h*)* 

’ nj-l(Ql; (lx, _ yf/:t 4h,2)1/2 )I(Y’)dY’ 

+ 3,rz 
J’ (lx’ - ,qf h, 4h2)3/2 

’ nj(Q1, (I,y _ ,,I?+ qh,2)1/2 )‘t(Y’)dY’ 
> 

(4.59) 

We use Lemma 4.5 to rewrite the relevant part as a sum of operators of the 
two forms. The most sensitive terms are the singular integrals 

=- 7nj(Q)dy:I(Y')dY' 

+ 

J 

(xi - y;)(d - y') 
ICE' - y'l4 . (2mj(Q) + m$(&)&)~y~E(~‘)d~’ 

- iJz; v(2) 
.I’ 

z’ - y’ 
Ix’ - y’l” 

.7n;(Q) i3,r((y’)dy’, (4.ciO) 

which are of the form of the operators Cj(7l)8~~( defined in (4.40). The 
second and third terms of (4.59) consist of smoothing operators. The issue 
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Terms which do not involve derivatives of Ql(rj) are safe already. The 
terms which involve derivatives of QI(q) give rise to the following four 
possible integrands; 

where 

aJd)l = 
q/~V(Y’) 

(Ix’ - y’,2 + 4P)W + 
(7/(X) + q(y’)) (d - y’) 

(,:I:’ - y’,2 + 4P)“P ’ 
&.; r)(d) 

‘3X:” = ( l2/ - ?/‘I2 + 4/$)1/z - 
(7)(:L-) + q(y’)) (xi - y;) 

( [:I;’ - f,” + 4h,2)“/2 ’ 
dyr](y’)(:I:: - yg 

3y’3r:Q1 = - ( IJI;/ __ !,‘I2 + &2)“/2 

_ 3 (7/(x’) + ‘II(y’))(:d - y’)(x( - y;) 

( ,:I? - ?/‘I2 + 4h2)5/2 
+ 8,1;7)(.d)(d - y’) + (q(d) + T)(tJ’))e; 

(,:r’ - yq2 + 4@)3/2 j 

where et is the %I” unit vector. These smoothing operators are of the form 
CP,fL(n)< studied in Section 5, that have already appeared in the analysis 
of Bj. 
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The operators A: resulting from the Taylor series remainders of the 
expansion of A behave similarly. These kernels contain functions of Q and 
Q1 which are analytic in their arguments and the results of Section 5 are 
designed for this situation. 

We conclude this section by stating the result that gives an estimate of 
the remainders RI, Rz and 123(q), which are defined in (4.26) and (4.27). 
from the Taylor expansion of G(q) to the first several orders. 

THEOREM 4.7. - Consider 1 < q < +oo and 0 2 s E N. Let jrll~~ < R, 
and I&+I < +cc The Taylor remainders R3(71) from the expansion of 
G(r/) .j = 1,2,3 satisfy 

llWMs,s 5 Wl&;1 (lrllcl Illlls+~p + lrllc~+~ lItIll>,) (4.62) 

5. ESTIMATES OF SINGULAR INTEGRALS 

This section is focused on the analysis of the singular integral operators 
that are described in Section 4, and which make up the components of the 
Dirichlet-Neumann operator. Although the majority of this paper concerns 
two-dimensional surfaces of fluid regions in three dimensions, here we will 
give general results for n-dimensional singular integrals. The two basic 
operators are 

WrlN4 = .I’ k(x - Y)c,(Q(~/))~(Y)~Y> (5.1) 
R” 

where k(z) is a convolution kernel of Calderon-Zygmund class satisfying 
the so-called standard estimates for 6 > 0: 

(5.2)(i) 

(ii) 
‘dx,y E R”, with IX - yI 5 $rl. 

The expression Q(q) = (q(z) - v(y))/lz - yl is the ubiquitous difference 
quotient. The kernel is specified by the function cP(z), which is assumed 
to be analytic in the ball Iz I < RO and to satisfy cp(z) - 0( Iz IP), and we 
might as well take it to the real for z real. Notice that IQ(r)) IL- 2 l&~l,~, 
the Lipschitz norm of V(X), so that for I&& < Ro the kernel is well 
defined. 
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In addition to operators of type (5.1) it is necessary to study related 
smoothing operators, which were introduced through the Neumann boundary 
conditions on the bottom of the fluid region. These have the form 

where Qr(v) = (r~(~~)+r~(y))/(l3.-y/2+4h2)“~ and the function ~~,~(z,wj 
is analytic over the set 1x1 < Ro. ITUI < 2, with Ic~~,~~(z,uI)I N O(IZIP~*UI~I’). 
The convolution kernel is a smoothing kernel of the form 

IZ 
kh(Z - Y, = (I:[; - ?!I2 !t. 4fl,2)p/2 p=, (I:rI - :,,I2 + 4/,,2)1/2 n( 

(.I. - Y)c 
> 

!‘I 
(5.4) 

Again notice that for IQr(rl)/L- < /rllL-//~ < RO, the integrand of (5.3) 
is well defined. We will prove in this section the following two principal 
results. 

THEOREM 5.1. - For lrll~ < R. and Ir~lc~+ L < +x then C,(,r/) is a 
bounded operator on Ws.q(R1’), and 

llcp(7/m,q I l7$2(lvlc~ ll;?“,Ell, + c(s)l7k-+l Ilrll,). (5.5) 

Furthermore, the operator CP(<) 1s analytic as a mapping on IJV~‘.~(R’~), 
for 71 in the set 

and thus its Taylor series representation is convergent in operator norm. 

THEOREM 5.2. - Let p + 1’ + 0 > 71, and suppose that jrlL- < hR0, 
17/lcs < +x. Then 

Furthermore the operator Cp,h(7j) is analytic as a mapping of W”‘q to Lq, for 
r/(z) in the set (7 : IrllL- < hR.0, IqlcS < +oo}, and is thus represented 
by its Taylor series approximation. 

The proofs of these two results use an L’J estimate on operators of 
type (5.1), combined with control on the order s of the Sobolev space in 
question, with attention to the growth of the constants in both p and s. 
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Clearly the more sensitive of the two theorems is Theorem 5.1. The form 
of result that we need is the following. 

THEOREM 5.3. - Considerfunctions r/l(z), . . , T/~(X) E C’(RR) and k(z) 
a singular integral kernel satisfying the standard estimates (5.2). Then the 
homogeneous operator qf degree p, 

qJv1 i . . . 1%)~(4 = / k(z - Y) fi Q(?iK(Y)dY (5.7) 
j=l 

is bounded on Lq(R”), and satisfies the estimate 

with exponent M = 3 + 6. 
The proof is fundamentally based on the following theorem of M. Christ 

and J.L. JournC, [3] on Lq bounds for Calderon Zygmund commutators. 

THEOREM 5.4 ([3], Theorem 4). - Consider the singular integral operator 
L with kernel 

L(~.~~)=K(~-y)iiI(j’biiii+(l-i)li)rii). (5.9) 
j=l 0 

where each bj E L”(R”), and K(z) satisfies the standard estimates (5.2). 
Then 

II / L(z, YHY)dYII, 5 cc4 dGPN (fi lbb) lllllq. 
j=l 

(5.10) 

In fact one may take N = 2 + S, where 6 appears in the standard 
estimates (5.2), as does the constant Cl. 

Proof of Theorem 5.3. - The integral kernel is 

k(:r-y)fiy(7,j)=k(:I~-Y) c fifrl;I;z 
j=l permutations I, j=l 

s 

1 

X &, 7)j(kE + (1 - t)y)dt (5.11) 
0 

Vol. 14. n” 5-1997. 



648 W. CRAIG, U. SCHANZ AND C. SULEM 

since 

The sum is taken over all possible L1, !2, . . . . L, between 1 and 71 (giving 
71,P many terms). For each summand the result is an integral operator with 
a convolution kernel of the form 

and whose remaining factor is 

(5.12) 

with b,,j(z) = &,,,rl,j(:rz). Such operators are the subject of the paper of 
Christ and JournC, which gives the Lq(R”) bounds. 

We would like to remark that we are using K(z) = k(z)JI~=‘=,z~~ /ID:~, so 
that it itself depends upon the power p, and the constant Cr in the standard 
estimate (5.2) will be affected. This changes the ultimate power of p that 
appears in Theorem 5 3. 

LEMMA 5.5. - If k(z) satisfies the standard estimate (5.2) with constants 
Cl and 0 < (5 5 1, then the kernels 

sati& the standard estimates, with constants C(p) = O(pC1). 

Proof. - Clearly the product does not change (5.2)(i), for we have 

The estimate (5.2)(ii) is 
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Using this lemma and Theorem 5.4, we have essentially completed the 
proof of Theorem 5.3. Each of the terms in (5.11) is estimated in the L” 
bound of (5.9), 

Since 

c fi Ia.Z,z71jIL-= < fi lqJlcl 

permutations I’, j=l j=l 

and the constant C(p) = pCI is linear in p, we have the estimate 

with M = N + 1 = 3 + 6. 
To continue the section we move to estimates of these singular integral 

operators in higher Sobolev norms. For this we use the following lemma 
on the commutation of differentiation with singular integral operators 
E~',(71~:. .q,) defined in (5.7). 

LEMMA 5.6. - Assume that k(x) is smooth away from :I: = 0, and that 
c$,l, . . , Q,) is a smooth function of the difference quotients Qj = Q(71,j). 

&(k(x - y)cp(Q1,~ . . &,)I 

= -d,(k:(x - y)c,(Q,, . . Q,)) 

+ k(x - y) 2 a~,~p(Ql.. Qp) Q(8.cII.j). (5.14) 
j=l 

Proolf. - We simply check the calculation that 

a Q(71-) = a.cVj(x) 71i(z) - 7/j(!/) 
s 3 In:- 

/x _ y/I" (2: - u) 

a 

?f 

Q(v,) = -ax%(Yl) + %cx) -  %(y) ( : I :  _ ?,) 

J 
Ix - yl Ix - yl" c - 
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From Lemma 5.6 the commutator of operators (5.1) or (5.7) with partial 
derivatives is given by the expression 

where 5’; is of the same form as (5.7), with integrand 

(5.16) 

Using Lemma 5.6 recursively, we have that 

Notice that there are p”-I”- many terms in the summand, in the case that 
/r/-many derivatives fall on the function E(z). From Theorem 5.3 we can 
bound the resulting operator; 

- c cd” (fi lmlc’) I18xlILY. (5.18) < 

/CI+TJ=S .j=l 

Standard interpolation gives that I~:~/cI 5 I~~I:‘l~‘~~/ij:r,l~!“~, thus our 
operator estimate becomes 

Using the second interpolation that l8,“~lcl Ij8~<[/,, I ( IV[CI II8~<ll, + 
~WW1l~~ll5ll~)~ for Id + m, = s, we have shown that the Ly-norm of 
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(5.17) is bounded, in fact we have proved the following, since there are at 
most @-many terms on the r.h.s. of (5.19). 

THEOREM 5.7. - Suppose that 1 < q < +cc, and that rl E Cs+‘(R1’), 
and consider the mapping properties of the operator S,(q, . . , q). We have 
the estimate 

Proofs of Theorems 5.1 and 5.2. - The aim is to address the general case 
of an integral kernel which is a general analytic function of the quotient 
Q(r)), in the form of the operators (5.1). Using Taylor series to describe 
cP( 2) = C,,, zp(c,/rrzj!).zn’ gives us the definition 

(5.21) 

Considered as an operator on Lq(R”), this series converges in operator 
norm for lqlc* 5 R < Ra. Indeed, because of estimate (5.8), the Taylor 
coefficients of C,(Q) grow no faster than C~Ic,,lrnnl~~~~, , which is bounded 
by some Crrr,!Rn’ by comparison with the Taylor series for the function 
&B~‘c~(z) which is also analytic on the ball IzI < Ro, of course. 

This behavior is not drastically modified when considering CP(rj) on 
W”+Z(Rn); we work with the estimates of Theorem 5.7 to obtain 

< c l&lAf+s 
‘rrt,! I$7’(l4? Ilall, + wl~4c~+~ llrll,). (5.22) 

rn>p 

This is again seen to be convergent in operator norm, as the Taylor 
coefficients are again controlled by Crn!R” when 1711~1 < R < RO, by 
comparison with the Taylor series of the analytic function ~?‘~+~i)~‘+“c,(z) 
which has the same radius of convergence as cP. When we recognize that 
qs-4 - O(lzl”) th’ g’ is Ives the result stated in Theorem 5.1. 

The remaining subject of this section is the proof of Theorem 5.2, 
concerning the smoothing operators Cp,h(v). These are of the form (5.3) 
with smoothing kernels described in (5.4). The number of factors Cy=‘=, 1’1 

Vol. 14. no s-1997 



652 W.CRAIG,U.SCHANZ AND CSULEM 

in the product (5.4) need not grow in p. Using the analyticity of cII(z. ‘w) 
we can represent the smoothing operators in Taylor series, 

c,., (7/)&r:) = c * 
.i.c 

The conclusion of Theorem 5.2 will follow from an estimate in Lq(R’“) 
of the smoothing operators 

and their derivatives. In order that the integrand be absolutely integrable, 
we ask that p + P + ~1 > 11. 

THEOREM 5.8. - In case p + ci + y > r~ and both Irjl~- < hRo, 

If%& < +oc, then the estimates hold; 

Using this estimate in a manner similar to the proof of Theorem 5.1, the 
results of Theorem 5.2 will also follow. 

Proof. - The simple LY-bounds on S,,,(v) come from the expression 

Since 

Ql(7) = 
2h ,r/(:c) + q(y) 

(Ix - y/12 + 4vy 2h % 

then 
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which is what is needed. The derivative estimate follows from the Leibnitz 
rule: 

x %?Q?r(rl))E(~)d~. (5.27) 

This is of course similar to (5.26), once we count the number of derivatives 
which have fallen on q(s). This is bounded by 

There are s-many terms in the sum (5.27) as well. Counting them all, we 
have finished the proof of Theorem 5.8, and thus also Theorem 5.2, ending 
the section on Sobolev bounds for the relevant integral operators. 

6. JUSTIFICATION OF THE MODULATION APPROXIMATION 

6.1. Preliminaries 

We denote by W(q, I) the water wave operator defined by 

(6.1) 

where IV1 and IV2 are defined as the 1.h.s of equations (2.7) and 
respectively (2.8); 

WI = &I- G(rl)l (6.2) 
w, = a,< + gq + 2(l + I’a,,,2, wdl12 - Kw9* 

A solution of the water wave problem satisfies W(r), I) = 0. In fact this is 
an initial value problem for the functions (r7(~‘,t),<(~‘.t)). 

In Section 3 we have constructed a formal approximation of the solution 
of the water-wave problem (2.7)-(2.8), based on a description of the 
modulational regime given through the functions c( ~1: 22,~) and d( zi . z2,r) 
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which satisfy the Davey-Stewartson system (3.24). In the physical variables 
given by z1 = F(:L~ - w’t). x2 = F:L~, and 7 = ~‘1, the approximate solution 
is given by 

+j = ,,/(I) + ,242) + ,:y) 

[ XI fp + f2((2) + &$3), 
(6.4) 

where (v(l). c(l)) is defined by the expressions 

The formal procedure also gives the higher order components of this 
expression, (q(‘), [(2)) and (r](s). $“) ), which are respectively (see (3.19) 
and (3.25)) 

with coefficients (rL, rv:, n,, “(, depending on w, h:, /A, jj and ~1 and 
$0 = k;lZl - wt. 

The basic question that we are to address in this article is the extent 
to which the above formal solution deviates from being a true solution 
of the full Euler equation description of the evolution of the free surface, 
given by a solution of the system W(7), [) = 0. More precisely, consider 
the initial condition (*Q, lo) = (,;I, F) 1 = t e, and let (71, <) be the solution of 
the initial value problem W(q, <) = 0 with the initial condition (71” T [a). 
The strongest possible result would be to compare the exact solution (,r], <) 
of (6.1) with the modulation approximation (v; I) in an appropriate norm, 
with an estimate of the form 
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over an interval of time 1 = [0, to] with to = O(F-~). Such a result 
would require an existence theory for the water wave in three space 
dimensions for solutions which do not develop singularities over long 
time intervals, given initial conditions of size O(E). This is currently an 
open mathematically problem, whose resolution is not given in this paper. 
We limit ourselves instead to presenting a weaker result, evaluating the 
accuracy to which the modulational solution (f, <) satisfies the water wave 
problem. Equivalently, we give an estimate of W(,v, F) in a Sobolev 
norm, and show that it is o(E~) uniformly in the time interval I. This is 
already a challenge, due to the singular nature of the formal derivation, in 
which integral operators of potential theory (with coefficients depending on 
multiple scales) are approximated by differential operators, and error terms 
contain high derivatives of the basic dependent variables. 

Before we proceed with the analysis, we need to introduce some tools 
concerning the mathematical theory of the Davey-Stewartson system and 
the analysis of pseudo-differential operators with their action on multiple- 
scale functions. This is the object of the two following sections. Finally, in 
the last section (Section 6.4), we establish an estimate for W(ij, F). 

6.2. The Davey-Stewartson system 

In this paragraph, we recall some mathematical results for the initial value 
problem for the Davey-Stewartson system (3.24). After simple resealing, 
one can reduce the system to 

ic, + &LIZ, + czzz2 = Xl& + bed,, 

&,3, + rrld,2,2 = Iclf, 
(6.8) 

with the initial condition c(zl, z2,O) = CO(Z~! ~2). The coefficients 0 and 
X can be normalized to be of absolute value 1. The character of the 
solutions depends strongly on the sign of the parameters 5 and m. Indeed, 
the system is classified as elliptic-elliptic, elliptic-hyperbolic, hyperbolic- 
elliptic and hyperbolic-hyperbolic according to the respective signs of b 
and m. However, the hyperbolic-hyperbolic case is not encountered in 
physical situations. 

Boundary conditions depend on the sign of no as discussed in [l]. For 
rn > 0, they reduce to c --+ 0 and d 4 0 when ~1” + ~22 + cc. For rn < 0, 
they are of radiation type, that is, c -+ 0 when Z; + Z; + cc and d + 0 
when the characteristic variables z1 f fizz 4 foe, with no condition 
when z1 f ~5%~ + --x. 

We report below the main results concerning strong solutions. Detailed 
study of strong and weak solutions, together with long time behavior can 
be found in [13], [14], [16] and [20] and [26]. 
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THEOREM 6.1. - Suppose rr/, > 0. Given an initial condition c0 in H”(R2), 
there exists a unique solution (c. d) during a jinite interval of time [O, rl) 
such that c E C([O, T-I), H”(R2)) and d E C([O, ~1). H’+l(R2)). 

In the elliptic-elliptic case, the situation is similar to that of the cubic 
Schrijdinger equation: if X > ma:r:( -h, 0), smooth solutions can be extended 
for all time, while if X < ma:r:( -b, O), solutions may focus in a finite time 
[13]. The structure of the singular solutions is critical as in the two- 
dimensional cubic SchrBdinger equation [24]. In the hyperbolic-elliptic 
case, smooth solutions can be extended for all time if the L”-norm of the 
initial conditions is small enough [ 131. 

The elliptic-hyperbolic and hyperbolic-hyperbolic cases are more 
complex. Existence of smooth solutions has been proved first by Linareh 
and Ponce for small initial data in weighted Sobolev spaces [20]. In ;I 
recent work, Hayashi and Saut [16] proved local existence of sulutions 
in some analytic function spaces without a smallness condition on data. 
They also proved global existence of small solutions. We state below 
a recent result by GuzmAn-G6mez [ 141 in usual Sobolev spaces that 
gives a bound on the L2-norm of the initial condition to ensure local 
existence. 

THEOREM 6.2. - Suppose S > 0 and 711 < 0. For initial condition 
co E H3(R2) satisfying Ico~$ < e, there exists a unique solution 
(c, d) during a finite interval of time [O: ~22) with c E C([O, TZ), H”(R2)) 
and d E C([O, 72), W2+(R2)). 

6.3. Multiple scales and pseudo-differential operators 

We first define the analytic framework in which we will work. Consider 
a function u(z’, z’), with Z’ E R” and Z’ E T” = RyL/I’, where l? is the 
lattice with respect to which u is periodic in IC’. For 2’ E R” and 0 < t, 
we define a multiple scale function as a function u(:c’, z’), evaluated on 
the subspace {z’ = FX’} C R2”. We will use the notation ~(2’. ~2’) or 
u(x’, z’)(,,,,,, for such functions. For functions u = u(x’) (which may 
depend upon t as well), the usual Sobolev W”,q-norm is written IIu(I~.~. 
When a multiple scale function c depends upon the slow variables alone, 
that is, c = c(Fx’), it is measured in a Sobolev norm in that variable, 

I&y = c,,,,<, (.I’ li);“.r:Iq’q. Scaling by f provides a relationship 

between these two norms; [Ic/~,,~ 5 t-“‘Y[~l,,~ for any F < 1. For the 
expected modulational form of approximate solutions to the water wave 
problem, a third norm is used for estimating multiple scale functions. For 
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u = u(x’; a’), we define 

The analysis of the modulational regime of the water wave problem involves 
classes of functions of the form u(x’, z’)[~,=~~~ = ~xp(‘I:~s’)c(~‘)~~‘=~~,, for 
z’ E R2, and the above discussion implies that 

A norm related to (6.9) is used in [SJ for the analysis of pseudo-differential 
operators and their actions on multiple scale functions. Here we give an 
analogous result on the bounds for pseudo-differential operators, using the 
IV”14 norms as our reference point. 

A Fourier multiplier operator is defined as 

(6.10) 

where ?I is the Fourier transform m of U. For u a multiple scale function of 
:I:’ E T” > z’ E R”, M(D)u depends upon E and z’, but is not in general 
a multiple scale function, However it does have an asymptotic expansion 
in terms of them. 

THEOREM 6.3. -Assume that the Fourier multiplier M(D) has the property 
that l@h/l(lc)l < cj(l + 1k12)(m-j)/2, 0 5 j < m. Then its operation on a 
multiple scale function has an asymptotic expansion 

+ RN+IU . (6.11) 

The remainder has the estimate 

where the subscripts are &I = m - (N + 1) + s + (T, !, = s + 0 + 
max(rrL, N + 1) for any (T > 71. 

Given the analysis of reference [8], the proof of this result is relatively 
standard. For sake of completeness however, we give it in Appendix B. 
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6.4. Estimates on the water-wave operator 
acting on the modulational approximation 

As noted before, the character of the solutions of the Davey-Stewartson 
system is different whether the equation for (i is of elliptic (7~ > 0) or 
hyperbolic type (sn < 0). Thus, we will divide the analysis into these two 
cases referred to as case I and case II respectively. 

In case I, starting with an initial condition co E H”(R’), there exists a 
unique solution (c, d), with c’ and d being continuous functions of 7- E [O; ~~1 
with values in H”(R”) and H”+l (R2) (TV may be finite or infinite) and 
by Sobolev embedding in T/I/“,” and lV’-‘-q for s = I’ - $($ - f). From 
this solution, we construct a functional of the modulation approximation 
Gj = q( c, d) and c = f( I:. IQ using the expressions (6.4-7) in the time interval 
I = [0,C2 ~~1. We will establish an upper bound for W(;i, r) in the interval 
I in a Sobolev norm in terms of powers of c and Sobolev norms of c and d. 

In case II, we start again with an initial condition in H“(R2). There exists 
a unique solution (c. d) with c being continuous function of 7 in [0, ~11 
with values in H’(R2) and thus in IV’.q(R2) and tl a continuous function 
of T with values only in Ws-l.r and thus not integrable. To overcome 
this difficulty, we introduce a cut-off function )i infinitely differentiable 
with compact support and we construct q = ,;T(c. u/i) and < = C(C. x(i). An 
upper bound will be established for W(sq, 0. 

In both cases, an important point is the amount of derivative loss. 
To quantify these amounts. we introduce the notion of estimating factors 
which are functions F(sl. s2) that are non-negative, continuous, and satisfy 
F(O,O) = 0, with polynomial growth in (s, . s2), (and depending on li: 
and w). 

LEMMA 6.4. - Set ;i and < as in (6.4-7), the approximations to the 
operator G(r/) of Section 4 sati;fi 
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Proof. - An application of Theorem 4.7 gives: 

IIwiEllw 2 m$m7lc~ IIFlls+l,q + C(.s)l71b+1 Il~lLq, (6.16) 

for j = 1,2,3. We have furthermore from the approximate solutions and 
Gagliardo-Nirenberg inequalities: 

IIFI s+l,q 5 ‘F’(w$ IcIc~)(ll4s+2,~ + Il4s+l,,) (6.17) 

lfjllc”+l i FF2(SUP IcIcs+3, sup ldlcs+2). (6.18) 
tEI tEI 

THEOREM 6.5. - Consider the case m > 0. Let (c, d) be a solu$on of 
the Davey-Stewartson system (3.24). The approximate solution (;i, [)(c, d) 
satisfies the estimate: 

;l$ IIWK m,q 

< ~~-~‘~F(sup I&“+. - 37 ;iF ldlcs+2)(ICls+6,q + Idls+6,q) (6.19) 
tcI 

Proof. - We start with 

We have shown that the last term can be estimated by 

IIR3eiIkl 

I ~4F(s~~ lclc 
tEI s+3> 27 IdIc~+4II4+z,q + Ildlls+d 

5 ~“-~‘~F(sup I+“+. 
tcI we I4c~+4(I4~+2,q + l&+l,q) (6.21) 

Since we consider the expression as a multiple scale function, we replace 
i& by i% - cw’d,, + t2& . The computation of &t;i is similar to the one 
performed in [8 , eq.(5.7)]. We obtain an expression at order c3 with a 
remainder of the form 

R4 = ~4(-w’dz,~(3) + a~+~)) + ~~d,q(~). (6.22) 

Using the expressions of ~(~1 and ~(~1 in terms of c and d given in (6.6) 
and (6.7) and the fact that, when m > 0, we have the estimate [13] 

IPd4lq 5 cIIIc1211q: 
Vol. 14. no 5.1997. 
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the IV’14 norm of R4 is bounded by 

Next, we use the multiple scale approximations for the integral operators 
(GO + Gr (q) + G2(r7))c When applied to $l), we expand GO up to order c2: 

GoJ(l) = &lmeiy - if2 (D + I& (1 - CT”)) c,, eiip 

- c3 (( 2 + $1 - cT2))c,,,2 
+ (h(l - CT”) - h%~a(l - 2))c,,,, e&Y + c. c 

> 
- f3qL,z, + dz2z2) + R4 (6.23) 

A direct application of Theorem 6.3 gives 

11R411s,n 5 cF4(IIcIIs+6,q + 1k%+6,,) 

When applied to E~J(~) (resp. e3t(“)), we expand GO to order E (resp. zeroth 
order). We next address G,(;il).$ We recall that 

G1 (if)? = D . ;ijDf - GoiJGof. (6.24) 

To expand G1(5j)l, we first write 

D . ;rDc= (Dp) + cD$‘))sj(D~) + ED!‘))?+ e2D;%jD;)F. (6.25) 

Substituting ?j and c by their expressions (6.4), D . tjDf has an expansion 
in c up to order three and a remainder R4 bounded in W’%q-norm by: 

“4F’“,FT l”l“>;~p I4c4(114+3,q + lldlls+2,q). 

For the second term of G1, we use Theorem 4.2 of [8] on composition 
of operators and get: 

Go;;ico& -,2G(0)rl(l)G(O)((1) _ t3 ($O)rl@)G(0)((l) 

+ ($0)77(1)G(0)$2) + ($o)rl(l) ( tanh(/@))Dil) 

+ hDiO)(l - tanh’(hDIO’))Dl”)~(‘) + ( tanh(hDp))D$l) 

+ hDp) (1 - tanh2(hDy))) D~l))r/(l)G(o)<(l)) +R4. (6.26) 
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Again, the remainder R* is bounded in W”‘J-norm by 

A similar computation is done for Gz(?j)c Combining all these results,it 
follows that, by the construction of Section 3, in the expansion of WI@, 0, 
the terms up to order e3 cancel and the remainder has a Ws’4-norm 
bounded from above by the r.h.s of (6.19). 

The same computation (although a little heavier) is performed for 
Wz(?j, F). This completes the proof of Theorem 6.5 devoted to the case 
m > 0. We turn ‘now to the case m < 0. 

As mentioned before, the function d is in lVs+(R2) without being 
in any q-integrable spaces. This is due to the hyperbolic nature of the 
second equation of the Davey-Stewartson system. In this case, we have a 
local result. Let x(2’) E Cr ( R2) a cutoff function such that ~(2’) = 1 
for [?‘I < R. Consider the approximate solutions ?j = ?j(c, xd) and 
c = [(c, xd), where (c, d) satisfies the Davey-Stewartson system. 

THEOREM 6.6. - Let (c, d) solve the Davey-Stewartson system in the case 
m < 0. The truncated approximate solution (fj [) satisfies the estimate: 

;:‘l Ilx1wvL IIls,q 

-=c F~-~‘~F(su~ I& - s+3r “,Ey ldb+d(kds+6,q + /X&+6,,) (6.27) 
tEI 

for aEl x1 E Cr(R2) with supp(xl) C: BR(0). 

Proof. - It follows the steps of the proof of Theorem 6.5: Again, we 
separate G(q) in the form 

G(v) = (Go + G(ii) + G2(rl)) + R3(71) 

and apply Lemma 6.4 to estimate the remainder. When computing W(fl, I), 
we use the multiple scale approximations and get that W(q, c) is equal 
to a functional of the Davey-Stewartson operator applied to (c, xd) plus a 
remainder of the order of O(E~). When the support of x1 is included in a 
set on which xd = d, xi W(?j, [) reduces to a remainder of order O(e4). 
A localized version of the same conclusion then follows. 

Vol. 14, Ilo 5-1997 
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APPENDIX A 

This appendix is devoted to the computation of the Fourier transforms 
of various kernels arising in the derivation of the Taylor expansion of G. 
Let F denote the Fourier transform. In the following, k E R2 will be the 
variable in the Fourier space and x E R2 the variable in the physical space. 

PROWSITION A.1 

COROLLARY A.1 

3 
(1x12 +&’ > 

= ~2~T&$e-‘“l”l (j = 1,2) 

COROLLARY A.2 

3 
( 1 

& = -2Tlk 

3 
( 

(IcE,2 t2h;h2)3,2 = 27re-2h,‘“’ 
> 

3 
24h” 

([xl2 + 4h2)5/2 > 
= 27r( 1 + 2hlkl)e-2h’k’ 

COROLLARY A.3 

3 
16h5 

( )cc12 + 4h2)7/2 
&l + 2h(k() + ;h’[k[‘),‘““1 

(A.11 

(A.2) 

(A.3) 

(A.41 

(A.5) 

(AX) 

(A.71 

(A.81 

(A.91 
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Let us first obtain the Corollaries from proposition A.l: 

ProofofCoro2Zm-y A. 1. - Equality (A.2) is obtained from (A.l) by taking 
the limit h -+ 0. Equality (A.3) is obtained from (A.l) by differentiation 
and (A.4) as the limit of (A.3) when h -+ 0. 

Proof of Corollary A.2. - To get (AS), we notice that I = -A 
1x13 

and to get (A.6) we rewrite (A.l) as 

(Ix12 +l;lh2)3,2 = &&e-2h’k” 
> 

Finally, (A.7) is obtained from the identity 

A 
( [xl2 +:h2)‘i2 = > ([xl" +:bZ)3/2 - 

12h2 
([xl” + 4h2)5/2. 

and (A.l) and (A.6). 

Proof of Corollary A.3. - Equality (A.@ is a direct consequence of (A.6) 

and (A.9) results from the computation of A 
( (1x1” +ih2j3i2 ’ > 

Proof of Proposition A.1. - Let us compute 3-l (A,-WI): 

After some elementary computations, we get 

1 
1x1” cos2 $0 + 4h2 dv 

Using the change of variable 8 = tancp, we get 

3-1 ( he-2h’k’) = & (lx12 +:h2)1,2 

Vol. 14, Ilo 5-1997. 
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APPENDIX B 

This appendix is devoted to the proof of Theorem 6.3. The Fourier 
multiplier operator M(D) is defined as 

and has the property that l8Fm(<)l 5 cj(l + 1<]2)(‘rL--/(yl)/2, 0 2 n < m. 
Let U(Z, EZ) = U(Z, z)Izztz be a multiple scale function with IC E T” and 
z E R”. When applied to U(Z, EX) Fourier multipliers have the asymptotic 
expansion in multiscale functions 

(M(D)u) (CT; E) = (2 $3$qD,)(-ia,)iu) (cc, EZ)+RN+lu (B.2) 
J=o . 

(see eq (4.8) of ref. [8] for details), with the remainder term RN+~u given by 

(J 

1 N 
La”+’ 

o N! c 
rn(< + dr))f& 

> 
D,N+l u(z’, z’)da’dz’d(d~. (B.3) 

The order of 8:” m(.) is m - (N + 1). To estimate RN+~u, we separate 
the domain of spatial integration in four parts: 

(i) IIC - 5’1 > l/2 and IEZ - z’] > l/2, 
(ii) 1~ - 2’1 5 3/2 and IEZ - z’] < 3/2, 

(iii) 12 - z’l > l/2 and IFD: - z’l 5 3/2, 
(iv) 1~ - z’/ < 3/2 and ICC - z’l > l/2, 

focussing on the individual regions using a smooth partition of unity 
{x(~)(x, x’, z’)} adapted to this decomposition. We denote by Rg’+lu, 
Rcii) N+lu . . . their corresponding contribution to RN+~u. 

Over the first region, the contribution to the error term is 

x Ly+5L(z’, z’)p(~, d, z’)drc’dz’d<dq. (8.4) 

Anna/es de I’lmtrtut Henri Poincnrh Analyse non lindaire 
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We estimate the oscillatory integrand to be 

pp;a;+l m(( + +)I < c,(d)7(1 + I< + drj12)m-(N++2T 

Now, we separate the contributions 171 < 31[1/2 and 1~1 > Ill/a, with 
similar smooth cutoff functions j$l)(<, q), J$~)(<, 7). When 1~1 < 31[1/2, 
the oscillatory integral is absolutely convergent as soon as y > (m - (N + 
1))/2 + n/2. Furthermore, the integrand 

is integrable in (x’, z’), uniformly in 5, and is also integrable in z, uniformly 
over (x’, 2’). Note that no additional derivatives act on the function U. 

When Iv1 > IlIP we rewrite the contribution in the form 

x (1 + I[I”)-“““(l f lr$)-62’2 

x (1 - a,pq 1 - a,+Q’“D,N+‘u(S’, z’)dx’dz’d@7& (B.5) 

To have an absolute convergent integral, we choose S1 > n and & > n. 
This places & derivatives with respect to x’ and N + 1 + S2 derivatives 
with respect to z’ on U. 

Now we turn to Rcii) N+l~, paying less heed than we should to the 
smoothness of U. We rewrite it in a form where all derivatives act on 
u(2’, 2’): 

R@) 
N+l 

‘LL = p+1 J ei(E+t17)"e-i(E1'+172))(1 + 1<12)-‘l/2(1 + J11)2)-7z/2 

(/ 

1 N 

X Li)“+l 

*(J N! E 
m([ + ct~)dt 

> 

(1 - n,r)6q1 - .*p2p+1 z u(2’, z’)dz’dz’d<d~. (B.6) 

Notice that the spatial domain is uniformly finite in z for each (x’, z’). 
Choosing yl,y2 > n + m - (A’ + l), the oscillatory integrals are absolutely 
convergent. In this term, we have at most n + rn - (N + 1) derivatives 

Vol. 14, no 5-1997. 
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with respect to z’ and n, + m - (N + 1) + (N + 1) derivatives with respect 
to z’ on u. 

We rewrite RE?ru. as 

R(G) 
N+l 

u = p+1 

.I 

x D,N+lu(x’, .z’)dx’dz’d<dr/ (B.7) 

Here we separate the contributions where jr/l < 31<1/2 and 1711 > ]4/2 and 
proceed as in case (i). We thus choose y > n and y > m - (N + 1). The 
count of derivatives gives at least n + m - (N + 1) derivatives with respect 
to x’ and n + (N + 1) derivatives with respect to z’ on U. 

The last term to estimate is R$“‘,u. 

x Dc’T+lu(x’, z’)dx’dz’d<dq 

Take y > n and y > m - (N + 1). Then, i3;li8ri+‘m will be bounded and 
the power y of l/l EX - ~‘17 will be integrable in z’, uniformly over IC. Note 
that for given 5, z’ varies over a uniformly bounded cube. Furthermore, 
for fixed (x’, z’), the z-integral also varies over a uniformly bounded cube. 
To bound the oscillatory integral, we separate the contributions where 
14 < 3lElP and Iv > IlIP g a ain by smooth cutoff functions. When 
InI < [<l/2, we choose y > ‘IL. When 171 > Icl/2, we follow the procedure 
above and write this contribution as: 

x (1 + 1<~2)-“‘“(1 + )7/12)-y”‘2 
(1 _ &)d2(1 _ Az,)~~/2~“+1 2 ~(2’. z’)dx’dz’dfdq. (B.9) 

Here we choose yl, y2 > r~ and we have the same count as case (iii) above. 
This completes the proof of Theorem 6.3. 
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