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of the singularity is one. 
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168 B. BONNARD AND I. KUPKA 

RIWJMB. - Soit M une variete C”, a base denombrable et un systeme 
mono-entree sur A4 : 2(t) = Fu(:c(t)) + */l,(t) F,(:c(t)), oti Fn et Fl sont 
des champs de vecteurs Coo, la classe des controles admissibles M &ant 
l’ensemble des applications ‘U : [O. T(U)] H R. 7’(~) > 0. mesurables et 
borntes. L’objet de cette note est de montrer que pour un ensemble ouvert 
et dense de couples de champs de vecteurs ( FO, E;) , pour la topologie C” 
de Whitney, toutes les trajectoires singulit?res sont d’ordre minimal et la 
singularite’ est de codimension un. 

0. INTRODUCTION AND NOTATIONS 

We shall denote by h4 a n-compact manifold of dimension (6 > 3. 
Smooth means either Cm or C”. We shall use the following notations : 

TM : tangent space of M: T,,, M : tangent space at ~1 E M. 
T* M : cotangent space of M, T?T, M : cotangent space at ‘~1, E M. 
The null section of T* M is denoted by 0 and (T” M). = T*M\{O}. 

PT* M : projectivized cotangent space (PT*M = T*M/R*). 
[z] : class of z in PT*M. 

For any integer N > 1. J”TM : space of all N-jets of vector fields 
(i.e. : smooth sections of TM over open subsets of M). 

II$ : J”TM - M : canonical projection. 
VF(M) : vector space of all vector fields defined on M endowed with 

the Whitney topology. 
F : fiber product of two fibers spaces (E, IIE. A4) and 

(F!IIz:‘M) on M. 

T? : given any smooth function H defined on an open subset 0 c T*M. 

?? will denote the Hamiltonian vector field defined by H on It. 
{HI ? Hg} : given any two smooth functions on 0, {HI. Hz} will denote 

their Poisson bracket : {Hr. HP} = dHl( 32). 
Span A : if A is a subset of a vector space V. it is the vector subspace 

generated by A. 
To each couple (F”. F,) of vector fields on M we associate the control 

system : 

(0) g(t) = F,,(x(t)) + u(t) Fl(z(t)), ‘u(t) E R. 

.\~mdr.\ dry I ‘lnsrirr~r Hcrzri I’oim WC; Analwe mm lin&m! 



GENERIC PROPERTIES OF SINGULAR TRAJECTORIES 169 

The study of time-minimal trajectories of (0) leads to the consideration 
of extremal trajectories : (z, u) : J +-+ T*M x R, ,7 interval [Tl, Tz], 
TI < T2, is an extremal curve of system (0) if : 

1) z is absolutely continuous, IL is measurable and bounded; 

2) z(t) # 0 (0 = null section) for all t E .I and; 

3) g(t) = ?fo (z(t)) + u(t) ?fil, (z(t)) for a.e. t E 1, where 
H, : T*M - R> 1: = 1,2, Hi(z) = (F~,(&ql(z)),z); 

4) for a.e f E ,I, Ho@(t)) + U(L) Hl(z(t)) = my{Ho(z(t)) + 
II Hl(.z(t))}. 

More precisely 4) is equivalent to H,(z(t)) = 0 for a.e. t E .I But since 
H,(z) is continuous this is equivalent to 

4’) Hl(z(t)) = 0 ‘d’t E J. 

DEFINITION 0. - A curve (z, U) : J +--+ T*M x R satisfying the conditions 
l-2-3-4’) above will be called a singular extremal and (IIIT* ncr(z), IL) a 
singular trajectory. 

MOTIVATION. - Our study is motivated by the following facts. The singular 
trajectories play an important role in system theory. First of all they 
are solutions of Pontryagin’s maximum principle, for the time-optimal 
control problem, see [BKl] and are the so-called abnormal extremals 
in subriemannian geometry (and more generally in classical calculus of 
variations). Secondly, they are invariants for the feedback classification 
problem, see [B2]. Hence they have to be computed and their properties 
and singularities deeply analyzed. Also similar constrained hamiltonian 
systems appear in quantum theory, see [HT]. 

1. DETERMINATION OF THE SINGULAR EXTREMALS 

Let (z, 1~) : J - T*M x R be such a curve. Using the chain rule 
and condition 4’) we get: 

0 = &z(t))) = dHI(z(t))&(z(t)) + *u(t) dH1 (z(t)) $ (x(t)) 
/ I 

for ae. t E J. 

Vol. 14. n" z-191)7 



170 B. BONNARD AND 1. KUPKA 

This implies: 0 = {HI) Ho}(z) since the function {HI, Ho} (2) is 
continuous. Using the chain rule again we get 

0 = gL Ho) (4t1) 
= {{HI, Ho}, Ho} (z(t)) + u(t) {{fL HO)? Hll (dt1). 

for a.e. t E .I. 

This last relation enables us to compute u(t) in many cases and justifies 
the following definition. 

DEFINITION 1. - For any singular extremal (z, U) : J t---+ T*M x R, 
R(z, U) will denote the set {t/t E J, {{Ho, HI}, HI} (z(t)) # O}. The set 
R(z, u), possibly empty, is always an open subset of J. 

DEFINITION 2. - A singular extremal (z, u) : J - TX M x R is called 
of minimal order if R(z, u) is dense in J. 

The following Proposition is an immediate consequence of Definition 1 
and the considerations above. 

PROPOSITION 0. - Zf (2; u) : J I---+ T* M x R is a singular extremal and 
R(z,u) is not empty 

1) x restricted to R(z, u) is smooth; 

2) +$ = ii0 (z(t))+ {l~$~: Ey{ i:i:i{ 3, (z(t))forallt E R(z,u); 

3) u(t) = ~~~$~$: 21 (z(t)) for a.;. t E R(z,u). 
The minimal order singular extremals are the easiest to compute and 

there are usually a lot of them as follows from the Proposition: 

PROPOSITION 1. - (i) Let (Fo, PI) E VF( M) x VF(M) be a pair such that 
the open subset 0 of all z E (T*M) o, such that {{Ho,&), f&)(4 # 0, 
is not empty. Zf H : St +--+ R is the function Ho + ~{~~‘~~~: 21 HI, then 

any trajectory of 3, starting at t = 0 from the set HI = {HI, HO} = 0 is 
a minimal order singular extremal of (Fo, Fl). 

(ii) There is an open subset of VF( M) x V F( M) such that for any couple 
(Fo, F,) in that subset the set R is open dense in T* M. 

Remark 0. - The set of all z E Q such that HI(z) = {HI, HO}(Z) = 0, 
is a codimension 2 symplectic submanifold of 0. 

Ann&s de l’lnstitut Henri Poincarc! - Analyse non h&ire 



GENERIC PROPERTIES OF SINGULAR TRAJECTORIES 171 

Our first main result says that for most systems, the only singular 
extremals are the minimal order ones: 

2. MAIN RESULTS 

THEOREM 0. - There exists an open dense subset G of VF(M) x VF(M) 
such that for any couple (F,, F,) E G, the associated control system (0) 
has only minimal order singular extremals. 

Our second result shows that these singular extremals are uniquely 
determined by their projections on M. 

THEOREM 1. - There exists an open dense subset G1 in G such that for 
any couple (Fo, Fl) E G1 if z; : J + (T*M)o, i = 1,2 are two extremals 
ofthe system (0) associated to (Fo, Fl) and ifII,*~~(zl) = IIT*M(z~), then 
there exists a X E R* such that z2 = Xzl. 

3. THE AD-CONDITIONS AND THE “BAD” SETS 

To prove Theorem 0, we are going to define, for each integer N 
sufficiently large a “bad” set B(N) in JNTM x&f JNTM having the 
following property: any couple (Fo, FI) E VF(M) x VF(M) such that 
(j,” Fo,jd’l> G B(N) v’o E M, h as only minimal order singular extremals. 
Then we shall show using transversality theory that the set G of all couples 
(Fo,FI) E VF(M) x VF(M) such that (j,” Fo, j: FI) @ B(N) for all 
x E M is open dense in VF(M) x VF(M). 

To construct the bad set we have to analyze two cases. First, we consider 
the points z where FO and Fl are linearly dependent. This situation can 
be studied straightforwardly and we show that the bad set has finite 
codimension. When FO and Fl are linearly independent the situation is 
more complicated. The bad set is constructed using the following idea. If 
there exist singular trajectories which are not of minimal order, they are 
solutions of a smooth vector field tangent to a surface of codimension one. 
Differentiating along trajectories we get an infinite number of equations. 
This defines a bad set of injinite codimension. 

Now let us define the bad sets. 

DEFINITION 3. - For N 2 2d - 1, let B,(N) be the subset oj 
.JNTM x&f JNTM of all couples (j:Fo, jcFI) such that 

dim Span {adi Fo (Fl)(x)/O 5 i 5 2d - 1) < d. 

Vol. 14, no 2-1997 



172 B. BoNNARD AND 1. KUPKA 

Here adi Fo(Fl) = [ad’-’ Fo(Fl), F,,]. o,d” F,,(E;) = F,. 

DEFINITION 4. - (i) For N > 1. !I:( N) is the subset of 
.J”TM x,,[ J”TM of ull couples (3,;’ J+;,. j? I;;) such thut 
dim Span {FO(:c)+ Fr(a:). [E;,. F,](X)} < 1. 

(ii) For N > 2, let &‘(N) be the subset of .JavTM x nI ,JvTM x R 
of ull triples (j,” Fo: j,: Fl , (1,) such that: 

1) F,(z) # 0; 
2) F,,(x) = r~F,(x); 

3) dim Span {CM? G, (Fl)(x). 0 5 % 2 d - 1, [[F,). Fl]: Fl](x)} < d, 
where G,, = Fo - nF1. 

(iii) Denote by By(N) th e canonical projection qf @(N) onto 
.J”TM xl\1 .J”TM. 

(iv) BP(N) = B;(N) u By(N). 

For the next definition we need some notations. 

Notation. - For any multi-index o E (0. l}“, o = (cY,, . . . .cY,,). 
If21 = 71. IcvI() = card {i/tr; = O}, IfVI1 = card {%/cY, = 1). The function 
H, : T*M t--i R is defined inductively by: H, = {HcTY, ,..., n,, ,I, H,,,, }. 

Remark 1. - 1) If (11 = (12: H, = 0. 

2) H(o,l,,.j,....~,,,) = -H(l,o,ns ,..., en). 

DEFINITION 5. - (i) For any integers c 2 0, any CY E (0: l}“. II 2 3. 
fl = (a,, . ” .CI~~)~ cl1 = l! such that o # lo”-1 (resp. N # 101”-“), any 
integer N > n + c - 1. let g(N, N: c, 0) (resp. s(N. (2, f:. 1)) be the subset 
of .J”TM x .JNTM x .I, PT*M of all triples (,j,F’ F,,, j,: FIT [z]) such that: 

(1) F”(x), F,(x) are linearly independent; 

(2) &o(z) # 0. H,l(z) # 0; 
(3) H(Z,)” HIor,- I (2) = 0 (resp. t9(Zm)k HIO1,,~~(z) = 0) for 0 5 k; < f’. 

where 2, is the vector field HCyl r?,, - HnO d, on T*M. (Observe that 
in general 2, is not Hamiltonian). 

(ii) B(N, CY. c: IT)(IT = 0, 1) will denote the canonical projection of 
g(N, CU; c. a) onto .J”TM xnr .JNTM. 

DEFINITION 6. - B(N) = B,(N) U BP(N) u U{l3(N,n,M.rr)/j31 5 
ICYI < 2fL, 0 E (0; I}}. 

Now we check that D(N) has the first property stated at the beginning 
of the present paragraph: 

Fundamental Lemma 0. - Let a couple (F,, F,) E VF(M)” which 
satisties the condition: there exists an integer N such that for all :I: E M. 
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(j,“Fa? j:Fr) $ D(N). Then the control system associated to (F,, Fr) has 
only minimal order singular extremals. 

Before proving this basic lemma we shall prove an auxiliary result which 
would also be useful later. 

LEMMA 1. - Let (PO, F,) E VF(M)2 such thatfor all x E M, (j,” Fo. 
j;” FI) $ L?p(iV). 

1) Ler (Z,G) : .J t--+ TX M x R be a singular extremal such that for all 
t E .I, dim Span {FO(:17(t)), F,(z(t))} 5 1 where :I: = IIT~-~,I(Z). Then 
Z(t) is constant. 

2) Let :I;~) E M. If Ts*, M contains a singular extremal, then there 
exist a X E R and a line e E TX&M, such that every singular extremal 
(z’, 1~‘) : .I’ + T&M x R is of the form z’(t) = ext 20, zo E C and u’ is 
constant a.e. All these extremals are of minimal order. 

Proofof Lemma 1. - 1) Call S the set of all t E .I such that Fl(?E(t)) = 0. 
S is closed and has empty interior: otherwise there exists an open non empty 
interval J1 c J such that FI(Z(t)) = 0 for all t E JI. Then i(t) = Fo(3(t)) 
for all t E Jl. This implies that [Fl, Fo] (z(t)) = 0 for all t E Jr. 
Then dim Span {Fo(%(t)), Fl(~(t)), [FIT Fo] (z(t))} < 1 for t E Jr. 
This contradicts the assumption of Lemma 1. Since dim Span { F”(?E(~)). 
FI(qt))} < 1 f or all t E J. there exists an absolutely continuous function 
(I : .J\S ++ R such that Fo(:c(t)) = CL(~) FI(:rr(t)) for all t E .J\S. 
This implies that for a.e. t E J\S (cl(t) + G(t)) [Fo,FI] (F(t)) = k(t) 
FI(z(t)) because k(t) = F,,(Z(t))+;ii;(t) Fl(Z(t)) = (u(C)+E(t)) F,(:c(f)) 
for a.e. t E J\S. Hence k(t) = I + E(t) = 0 for a.e. t E .J\S: 
since by the assumption of Lemma 1, dim Span {Fa(Z(t)), FI (z(t)). 
[F,,, F,] (F(k))} L 2 and since Fo(:x:(t)) = f],(t) F,(.I-(t)), Fk(Z(t)) and 
[Fo, F,] (z(t)) are linearly independent for all t E .J\S. 

Suppose that S # $4. Then the open set .J\S contains an interval 
]IY./l[ = {t/o < t < /9}, where either OJ E S or /j E S. Assume that 
0 E S C/l E S is similar). Since G,(t) = 0,(t) + E(t) = 0 for a.e. f E 
]o./i[, (J, is constant on I(?./)[ and E(t) = --(I, for a.e. t E ]0,/1[. Hence 
i(t) = 0 for a.e. t E ]o!.lir[. So Z(t) = z. for all t E IN, /I[. This leads to 
the contradiction 0 = FI(y(tr)) = f:,, m FI (F(t)) = FI(:co) # 0. Hence 

tt’n.d[ 
5’ = fl and Z(C) = :I:[) for all t E .I. This proves 1). 

2) Let (F,%) : .I - T*M x R be a singular extremal such that 
~(1;) E Ts*,, M for all t E .I. The assumption of Lemma 1 implies that 
dim Span {Fo(:co), FI(:cCj), [Fo, F,] (~0)) 2 2. If Fl(z0) = 0. then 
I;;,(:r:~~) # 0 but we have for a.e. t E .I : 0 = k(t) = F”(Q). We have a 
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contradiction. Since 0 = k(t) = FO(zO) + OFF for a.e. t E .I, there 
exists an a E R such that FO(zO) = rtF1(zo) and u(t) = --(I, for a.e. t E .I. 

Let G = Fa - aF1 : G(za) = 0 and set H(z) = (G(IIT~~~~(z).z). 

By definition *(t) = ??(~(t)) for all t E J and H1(z(t)) = 0. 
Hence ad” H(Hr)(z(t)) = (nd”G(Fl) (II,,.,,,@(t)), Z+(t)) = 0 for all 
t E J and all k E N. Since G(:cO) = 0, Span {ud” G(Fl)(xo) ; 
k E N} = Span {ad” G(Fl)(x:o), 0 5 k 5 d - 1). By assumption :cg is a 
singular trajectory, hence this space is at least of codimension one. Since 
(J$ Frh j: Fl) @- Be(W, ‘t I is exactly of codimension one, and moreover 
([FL [Cd’~](~~o)], Z(t)) # 0. Th ere ore Z(t) belongs to a line C E T&M f 
and (Z(t), E(t)) is of minimal order. By definition Z(t) is solution of a 
linear system and since G(:ca) = 0; it is autonomous. Hence 2) is proved. 

Proof of Lemma 0. - Assume that (Z, Z) : .I + T*M x R is a singular 
extremal not of minimal order. This shows that there exists an open 
subinterval Jo of J, J,, not empty, such that {{Ha, H1},Hl} (Z(t)) = 0. 
Then the closed set {t E Jo/dim {Fa(~(t), Fr(?i?(t))} 5 I}, n: = IIITeltf(?). 
has an empty interior: otherwise it would contain an open non empty interval 
Jcr c Jo. Then Lemma 1 applies to the restriction (z’, u’) of (Z, I) to Jar. 
But since {{Ho, H,}, H,}(z’) = 0 we get a contradiction. Replacing J by 
an open non empty subinterval we can assume that for all t E J: 

1) {{~o,~l},~l}(q~)) = 0: 
2) dim Span {Fc(Z(t)); Fr(~(t))} = 2 
Since {{Ho,H1},H1}(~) = 0, then 

We claim that there exists a multi index a E (0, 1)“: Q = (or, . . . , a,,)! 
al = 1 such that 

(i) 3 5 7~ 2 2d; 

(ii) HP(~) = 0 for all /I E (0, I}“, fl = (@r; ... :pk); /?r = 1, 
12 k < n; 

(iii) either H,a(Z) # 0 or H,,(Z) # 0. 
In fact were there no such cy, then HP(Z) = 0 for all /3 E (0: l}“, p = 

(P1,..- ,Pk), 1 < I/?[ 2 2d. In particular taking ,kI = lo”, 0 < k 5 2d - 1, 
we get (ad” F,(Fr) (z(t)), z(t)) = 0, 0 5 k < 2d - 1, for all t E J. 
This shows that dim Span {ad” FO(Fl) (z(t)), 0 5 k 5 2d - 1) < d for 
all t E J and contradicts the assumption that (j: Fc, j,” Fl) @ B,(N) 
for all 2 E M. 
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The assumption (iii) above can be replaced by the following: (iv) 
the set {t E J/H,u(Z(t)) # 0 and H,i (Z(t)) # 0} is non empty. 
In fact, suppose we have either Hcyl(??) = 0 or H,n(Z) = 0. In the 
first case we get 0 = $ HCY(Z) = H,,a(?). This would contradict 
(iii). In the second case H,,(Z) # 0 by (iii). On the non empty 
open set 0 = {t/t E .I. H,,(Z)) # 0}, we have almost everywhere: 

0 = $H&)) = ;ii; H,,,(z). H ence U = 0 a.e. on 0. Then 2 = 71,,(Z) 

on 0. Since HI(Z) = 0: we get 0 = $ Hi(z(t)) = ad” Ho(Wi)(Z(t)) for 
all t E 0. This implies that for any t E C3(ncl”FC~(Fi)(:c(t)). Z(t))) = 0 for 
all X: > 0. This contradicts the assumption that (,j,F’Fo: 3: 8’1) 6 B,,(;V) 
for all :I’ E M. 

Finally replacing .I by a subinterval we see that we can assume that: 

(1) 3 5 71 = InI < 2d; 

(2) H,,(T) = 0 for all /j = (/&;. . . yl;). ill = 1. 1 < k: < 71; 

(3) HcyO(Z(f)) # 0. H,,,(Z(t)) # 0 for all t E .I. 

Since Ii,,(i) = 0 we get for a.e. t E .7 : 0 = $ (fICY(Z(t))) = 
H<,&(t)) + C(f) Hi,1 (Z(f,)). 

so z(t) = -* (z(t)) f or a.e. f E .J. Since Hi(?) = 0, this shows that 

z is a trajectory of 2, where 7% : 62 c) R is the function Uo - 2 lil 
and 12 = (z/lZC,i(z) # O}. D e ‘ne now y to be lo”-’ if II # 10”-1 and h 
lOl”-” if CY = 10rtP1. Since /y] = 71. H?(Z) = 0 and: 

d” 
0 = s (H,(z)) = ndk‘ XFt,(H-,)(z) for all x: > 0. 

It is easily seen that this is equivalent to: (H(Z,)“(H,))(T) = 0 for 

all k: > 0, since nd” IFI,, = O(g,,)‘(H,) and 2,” and Z,, 
are collinear. This shows that for all 1. E .I, (.j$t) FC,, ;jtil, FI. 

[2(t)]) E g(N, o> c, (T),c = 0 if a # lo’“-1 and (T = 1 if o = lo”-l, 
where Z(t) = II ~*,,l(~(t)) and [z(t)] denotes the class of 2(t) in PT*M. 

Now we shall prove the second statement in the considerations at the 
beginning of 5 3. To do this we have to study the bad sets and introduce 
some concepts. 

4. PARTIALLY ALGEBRAIC OR 
SEMI-ALGEBRAIC FIBER BUNDLES 

DEFINITION 7. - A VP bundle on M is a locally trivialjiber bundle on M 
whose typical fiber is a product V x P(Wl) x . . . P(WTL), V, WI, . . . , W,, 

Vol. 14. no 2-1997 
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finite dimensional vector spaces, P( WI), . . . P( W,, ) the associated 
projective spaces and whose structural group is Alit (V) x Aut (P( WI )) x 
. . x Ant (P(W7L))(Auti (V) = GL(V). AlIt, (P(14:)) = GL(W,)/X*). 

DEFINITION 8. - A partially algebraic (resp. semi-algebraic) subbundle 
of a VP bundle on kf is a locally trivial subbundle whose typical 
,fiber A is an algebraic (resp. semi-ulgebraic) subset of’ the typical ,$ber 
V x P(Wl) x . x P(W,,,) of the VP-bundle. 

LEMMA 2. - (i) .1!‘;7’M x111 .J”TM, .J2’TAl xdl .J-“T:W x R. 
.J”TM x nr J”TM x !,I l’T*M are 1; P bundles on M whose typical 
fibers are respectively r(~1.N) x I’((1.N). P(cl.N) x r)(tl.N) x R. 
P(d,N) x P(d,N) x P(R”) where r(tI. A’) denotes the set of all 
polynomial mappings P = ( 1)‘. . .I)” ) : R” - R” such that deg I” 5 :v 
for 1 5 i < td. 

(ii) B,,(N), II;(N). E,:l(N). E(N. O. C. a) are partially algebraic 
(for the first two) and semi-algebraic (for the last two), subundles of 
the VP bundles .J”rTi14 xItl .J2’TM. .J”TM x .Il .JzyTM. .7-‘7‘,‘14 x 
.JAvTM x R .JLyTM x>\~ 
~~~(;V).~~(Nj.~~‘(N),~(~. 

./a’ TM x !,, Kf*il4. Their typical fibers 
CV. C. CJ) can be described as follows: 

FcL(lV) = {(PO. l’l)/&nl SI Ml1 [Ml” r:,( I’,)(O). 0 5 h: 2 2tI - I] < d} 

F,‘(N) = { (Po,1’1)/ 1 ( irri Spa11 [IjC:,(0). Pi (0). [I’[. I’,:,](O)] < 1). 

F/(N) is the set of all triples (P (,. f’I. (13) E P(,/. IV)’ x R such that 

(i) Pi(O) # 0, p,:,(O) = G,(O) 

(ii) clim Spitn {;ttl”X,,(l’l)(0).O 2 h, 2 d- 1 and [[1’,,. f’l]. f’l](0)} < C/ 
where R,, = PO - (~1)~ and for two vector fields P. (2: 

2: 1 . . . . : 1c ” being the canonical coordinates. 
For the definition of the last fiber we shall use the following notations: 

for IY E {O,l}“, CY = (cY~....,o,,) the function II,, : R” x R” f R is 
defined inductively as follows: if i = 0 or I. H,(.r;.<) = (P;(.r). 0. If 
CY = (cyl!. . .e,); H, = {HaI . . . . . n,,mi. ET<,,, } where { } denotes the 
Poisson bracket 
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For any integer c 2 0,any (Y E (0, l}“, 7~ > 3, cy = (~~....;a,,). 

(Y i = 1, N 2 r~ + c - 1, F(N. 0, c, g) is the set of all triples (Pa; P1, [I]) 
in P(c1, N)’ x P(R”) such that: 

(0 fi(()), PI(~) are lineary independent; 

(ii> H,,o(O.I) # 0. H,,I(().E) # 0; 

(iii) (H(Z,,)k’(H7))(0,<) = 0. 0 < k < c; 

where y = 10’“-1, (T = 0 if a # lo”-i and y = lOl”-*, o = 1 if 
(1 = lo”-‘. 

5. COORDINATE SYSTEMS ON P(d.N) 

First let us explain a few facts about coordinate systems on homogeneous 
polynomials. For rn, 2 1, the space P7,,,(d) of all homogeneous polynomials 
of degree rn in d variables can be identified with the space of m-muiti- 
near symmetric mappings on RI as follows. Let f E P,,,,(d), <(I), . . . . 
[(rr’) E R”, define the total polarization of .f as (P,f)(<(‘). . . , <(““)) = 
D,(,, ..~D~(,,,,fwhereDEj = EEi $:,$ = ([‘:..,<“). ClearlyfandPf 
can be identified since f(:~;) = 5 Pf(x, . . , :I;). Given a basis ei, . . , Q 
of Rd we define a system of coordinates {X,,/V E I,,,} as follows. The set 
I,,, is the set of sequences 11 = (21,...:2,,),,ik E [l,d] where (ii;...,2,,,) 
and (Go . . . , L,(,,,)) are identified for any permutation (T. Hence we can 
order with %i 5 . . < s&,~. Let ]v] = rn denote the length of v and IV/, = 
the number of occurences of i. Define X,, as follows. For ,171 = 0. set 
I,,, = (0) and define X,,(f) = f(0). If m > 1, X,f = (Pf)(eL1.. . . , e ,,,, ). 

Now let the couple (A, B) E P( d, N). Let U be a neighborhood of 
(A, B) in P(d. N) and let e : lJ + (Rd)d be a smooth mapping such that 
for any (0: n) E U, e(&, n) = (ei(Q, A!)), . , e$ (Q, A!) form a basis of 
R’. Then to e we can associate a coordinate system {Xj,. Yj7 1 < % 5 cl. 
71 = (il,... . ,I,,,) E I,,, i 0 < 777. < N} as follows: 

y;(Q,R) = (P@,,) (e;,(c2,R):...,c;,,,(Q.R)) 

where Qt,, (resp. Xi,,) is the if” component of the homogenous part of 
degree ‘rn of Q (resp. n). This system of coordinate is a curvilinear system 
of course. We set X,, = (XL. . . i Xf) and Y, = (Y,,!. . . , Y,!). 
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6. EVALUATION OF CODIMENSION OF THE F(N) 

Each F(N) being semi-algebraic in their corresponding spaces, the 
concept of dimension is well defined. We shall estimate their codimensions. 

LEMMA 3. 

codim (Fa(N); P(d, IV)“) = d + 1 

Proof. 

co&m (F:(N): P(& N)2) = 2fi - 2. 

;F,(N) = F;(N) u T-;(N) u Fy(N) 

q&q = FcL,(N) n {(POT J%)/fil(()) # (I> 

mw = F,(N) n {(PO, J?)/~l(O) # 0, PO(O) = 0) 

F:‘(N) = Fcl(N) n {(PO, Pl)/Po(o) = P,(o) = 0). 
It is easy to see that codim (F:‘(N): P(d, IV)‘) = 2d. To compute 

the codimensions of F:(N): F:(N) let us introduce the following semi- 
algebraic sets C c Rd x Encl (R”), C = {(u:A)/u # 0. dim {A”v/O < 
II. < d - l} < d} and D c (R”)2d = {(qI;. . ,u~~-~); 11, E R”}. 
dim D < d. Then clearly codim (C, R” x End (R”)) = 1 and it is 
well known that codim (D, (R”)2”) = tl + 1. Consider the mappings: 
X : P(d,N)2 H Rd x End (Rd) x Rd and 11, : P(d,N)2 tf (Rd)2d 
defined as follows: 

where Pal E End (R”) is the linear part of I’,, at 0, 

p(Po: PI) = (P,(O), ad PO(Pl)(O), . . . . at1 2d-1 P”(Pl(0)) 

Then F:(N) = A-r(C x (0)) and FL(N) = ,X’(D). Since X is a 
projection, it is a submersion and hence codim (F:(N) ; ‘P(cL N)“) = 
co&m (C x (0) ; R” x End (Rd) x R”) = d + 1. 

We prove that 11, restricted to the open semi-algebraic subset 12 of 
P(d, IV)~, R = {(PO, P1)/PO(0) # 0) is a submersion. Since F,:(N) = 
IL-~(I) n f2) it follows that codim (F:(N) ; P(d. N)2) = d + 1. 

To study jr, take a couple (&a: Ql) E 12. There exist vectors e2>. . . cd E 
R” such that (Qa(O) = el. e2, .. . j ed) is a basis of R”. Then on a 
neighborhood V of (QO: Qr) contained in (2 the mapping 
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takes its values in the basis of R”. As we explained in 5), let (Xt , Y,“) 
be the coordinate system associated to e on V. For any (PO, Pr) E V, 
the ZtfL component of ad”Pa(P,) (0) has the form: Y:k, + n%, where Rk 
is a polynomial function in the variables Xi, /I/I 5 k;: Y?j, 1~ < k: - 1. 
1 < j < d. 

Indeed ad Po(P1)(0) = Qp,(Pi)(O) - Hp,(Po)(O) = Y1 - X1 and by 
induction ad “PO(Pi)(0) = Y,, + R IC where I& is a function of Xl, 
1711 < k:. Yj , IV/ 5 h: - 1. This shows immediately that p, is a submersion 
at each point in V. As (Qo. Q ) 1 IS arbitrary in 0, /LIP is a submersion. 

The proof that codim (F;(N); P(d; N)‘) = 2$ - 2 is very similar. 

F;(N) = 3)“)(N) u F(?)(N), 

Clearly codim (Fj3’(N); ‘P(d, N)‘) = 2d. Let Oo,l be the open 
set of P(d, N)’ of all couples (PO, Pi) such that PO (0) # 0 or 
PI(O) # 0. The mapping v : 00;1 H (Rd)“, v(Pu,Pi) = (P,(O), P,(O). 
Pol(P,(0)) -P1i(Po(0))) is a submersion and F(‘)(N) = vP1(D3), where 
D3 = {(~u~~~~u~,~u~)/~~~ E R”, % = 0,1,2, dim Span (Q.v~,Q) 2 1). Clearly 
codim (D3 ; (Rd)“) = 207 - 2. This gives the second result of Lemma 3. 

LEMMA 4. 
codim (F:(N); P(d!N)2 x R) = rl+ 2 

codim (?(N! IY, c, (7); P(d, N)’ x P(R”)) = (: + 1. 

Proof. - Let Zen = {(el,~l~.)/~l((~) # 0, Ed(J) = a(())}. 
Define the mapping X : ZO, H Rd x End (R”) x Rd as follows 
x(po, Pl, CL) = (PI(O), PO1 - (LPll, [[PO, q. P,](O)). 

Clearly X is a submersion and F:‘(N) = X-‘(C,) where 

Cl = {(v, A, w)/u, w E R”, A E End (R”), II # 0, 
dim Span {An(u): 0 < n. 5 d - 1, ,w} < (A}. 

Then 
co&m (Cl, Rd x End (R”) x R”) = 2 

so 

and 

codim (F;‘(N); Zoi) = 2 

codim (F;‘(N); P(d, N)2 x R) 

= cod (F:(N); Zol) + codim (Zni; P(nl, N)2 x R) = 2 + d. 
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Now we shall consider the case of ?( N. CJ, C. 0). The case of 
F(N. a: c, 1) is similar. Let S2 ,I1 = {(Po.PI.~)/Po(0). PI(O) are linearly 
independent, (PCYu(0). <) # 0, (PC1,(0), <) # 0. [<I E P(R”)} and where 

Let C : Qor x Rd - R”+’ be the mapping: 

where y = ltY1. Then ? (N, o, c. 0) = C-i(O). If we show that c is a 
submersion it will follow that codim (.?(N, CY, c. 0): P(t1: N)2 x P(R”)) = 
c+ 1. 

Using the rule 

an easy induction shows that: H(Z,,)” H-, = Hckyl Hlo,,+~~-l + ll,,,k. where 
IICr,k is a polynomial in HA, where either ]A] < 71 + X: or ]n] = II + ,4 
but n # lo”+“-“. 

Take a (Ph, P{) E 12u1. There exist c;. . ~7:~ in R’l such that (Pi(O). 
P;(O), c&.-..c;J b is a asis of R”. Then one can find a neighborhood V of 
(Pi,Pi) such that for all (P,,.Pi) E V, the tl vectors el(Po.Pl) = PO(O). 
Q(Po, PI) = PI(O), e;(P,,> PI) = ($1.. 3 < i 2 (1! form a basis of R”. 
Let Xj,, y,! be the coordinate system on V associated to the mapping 
c = (Q.. . . , Q). 

Now [Fl.F,](O) = HF~(F’F;)(O) - t’lp,(F~)(O). Hence H~o(O.E) = (E, 
Yl - X2). Therefore computing by induction we get Hlo,, (0. <) = (<. 
Y l”tlp.’ - X 2A~+llk) + R,, where st), = Ii’,‘]. AZ = ][j]I, k:’ = I&, X:+ h:’ = II. 
and R.,, is a polynomial in <. X,;. k;,i. /v] 5 71,. 

Then the functions f?(Z,,)“(H,)(O. $) can be expressed as follows in 
these coordinates: 

and Rh: is a polynomial in <. Xi. 1711 < II + k: - I, J$ with 1711 < n + k: - 1. 

17111 < n + JC - 1. Hence $ is a submersion. 
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COROLLARY. 

codirn (F:(N); P(d, JV)~) > d + 1 

codim (3(N, o, c, 0); P(& IV)*) 2 C: + 1 - d. 

LEMMA 5. - codim (B(N); ,J”TM xnr ,JNTM) 2 min ($+ 1, 2d - 2: 
c + 1 - d) = ruin (a! + 1, 2d - 2) (S ince we huve chosen c = 2d in the 
definition of B(N).) 

7. END OF THE PROOF OF THEOREM 0 

For rl; > 3, codim (B(N): .J”TM xnr ,J”TM) > d + 1. Hence 
B(N) is a partially semi-algebraic closed subbundle of the vector bundle 
.I-vTM x .I-“TM of codimension > d + 1. The theorem in [GM] shows 
that the set of all (FO. FI) E VF2(M) such that (j,: Fo, j:Fl) $2 B(N) 
for all .I: E A4 is open dense. This ends the proof of Theorem 0. 

8. INPUT-OUTPUT MAPPING AND THEIR SINGULARITIES 

Let (Fo, FI) E VF(M)*, ‘rtt, E M, T E R. T > 0. 

DEFINITION 9. - The input-output mupping associated to the quadruple 
(Fo, $‘I ) 70. T) is the mapping Er,l.r : U(rn, T) ++ M, dejined us follows: 
its domain U(rn. T) is the set of ull u E L”( [0, T]; R) such that the 
solution :ii. of the Cauchy problem: 

$(,j = F,,(z(f)) + ~(t)F~(:c(f)), z(0) = 711, 

is defined on [0, T]. Then E,,,,T (G) = z(T) E 111. 

Then we have the result (for the proof see ([BKl])). 

PROPOSITION 2. - (i) U(m, T) is open in L”([O, T] ; R) and E,,,,r is 
a smooth mapping. 

(ii) A point ?% E M is a critical value of EnL,r if and only if there exists a 
singular extremal (z, ?i) : [0, T] + T*M x R such that II,*,r(Z(O)) = 711 
and II,*.tt(z(T)) = 7~. 
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9. THE “BAD” SETS FOR THEOREM 1 

Let (6,. F1) E I’J’(M)?. We shall use the notations of $3: II, : 
T*M -+ R. 1 = 1,2 is the function H,(z) = (F’:(I17 .I~(z))..c). If o E 
(0. l}“.,H, : T*Af i R is defined inductively by H,, = {H, ,,,, ,,I,, j j. 
H,,,, }. The set 12,n: is the open subset of all z t T”;Zl such that 

Hc~I 1(,~) # 0. Let Z be the field ??,, + %z I on 12011. 

DEFINITION 10. - (i) For my integer q > 0, NYI\’ intrger N 2 q + 2. let 
&(N.q) he thr .subset of.J~‘TM x.\/ .J”T,VJ x.,, PT*il/f x~\~ 1”7’*~4l of’ 
all quudruples (,j;Y F;,. ,j:yF, , [z,]. [;?I) mch thut. 

I) [iz,] # [%g], 

2) H,,ll( 2,) # 0, i = I. 2. 

3) s(z)‘q+Q)(“I) = H(Z)q*)(‘Q)’ 0 < Il. 5 y, i = 1, 2, 
4) Fo( :r), fi; ( :I:) ore linerrrly indepmdent. 

(ii) O,.(N. (Ij {vi// I c rmtr the cnnoniml projection of B(.( N. (1) onto 
.J.‘T:21 x 31 .I,” TM. 

Fmdametm~l L,mnra 6. - IA (F,,.Fk j E 17J+‘(M)’ be a couple such 
that for any .I’ E JI. (,jrE;,.,j, TV’,) @ O(,Y,j ii 13, (,\:. I/). Then ever} 
singular extremal of (F;,. 1’ ’ 1 , is of minimal order and there does not 
exist any two singular extremals (2,. ?iN;) : ./ - 7”;\7 x R such that 
IIT ,,rjs,) = IIT ,,(5,,) and [T,] # [%I” 

PuI~?~: -- The firbf parr is jusl a restatement of Lemma 0. As for the 
second part let (F,.N.,) : .i mm1 7‘“‘M x R, i = 1, 2. be two singular 
extremals of (1~;~. k’, j such that 11 7 .ll(%l) = IIT .Il(i-2) and [,3[] # [;?j. 
By the first statement both (Z,. ii,). i = 1.2, are of minimal order. The 
set {l/[,zl(l)] # [+(t)] _ p IS o en and non empty. Since the sets ‘I?(?,. E,) 
are both open and dense (see definition 1) there exists an open non empty 
subinterval ,I’ of .I such that: 

(1) [am] # [x2(f)] for all t E .I’, 

(2) Holl(?,(t)) # 0. i = 1.2 for all f E .I’. 

The closed subset 

{t E .I’/dim Span {F,(~(t)),F,(:)7(t))} < 1. 

has an empty interior: otherwise on an open non empty subinterval J” of .I’ 
we would have dim Spm {Fo(Z(t)), F~(?i?(t))} < 1. Applying Lemma 1 
to the restrictions of (ZI i ;i-ii) i = 1,2 to J” we get that [zl (t)] = [22(t)] for 
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all t E J”. This contradicts 1) above. Replacing .J by an open subinterval 
we can assume that: 

(3) [Z1 (t)] # [Z2(t)] for all t E J: 

(4) iY,,,,(Z,(t)) # 0, % = 1, 2, for all t E .I. 
(5) F&(t)). Fl(S(l;)) are linearly independent for all t E .I. 

It follows from proposition 0 that 2, = Z(Z1) a.e., 1 = 1, 2, and 
G,(1) = *(Zz(t)) a.e. Projecting on A1 we get: k(t) = Fo(n;(t)) +Gl(f) 
F,(~jf)) = I;;,(.C(f,)) + ,fi2(t) Fl(5(/,)) for a.e. f E .I. Since by (5) above 
F1(.?( t)) # 0 for all t E ./. 7~~ (t) = ,/~(t) for a.e. 1 E .7. This implies that 

H 
lE(jl) zz P(z2) 

011 

Deriving this relation with respect to f we get that for all X: t N: 
(H(Z)“(%))@,) = (H(%)“(e))(&). Hence for all t E .I the 

quadruple (jti,,1;;,. ,;$,,F1. [r;,(t)], [%2(t)]) belongs to E,(nr. q). A contra- 
diction. 

10. EVALUATION OF THE CODIMENSION OF II, (W. 11) 

It is clear that 6,.( :Y, q) is a partially semi-algebraic subbundle of the VP- 
bundle JLy7’A1 x:11 .I~I’T~~%l x.\~ I-‘T”ikf xAf t-‘T*nr, N > (1+ 2. Its typical 
tiber .p<‘(.li. ~1) in P(,l, N)’ x P(R”)’ is the set of all (I’,,. p,, [El], [(?I) 

(i) [II] # [&I. 
(ii) dim Span {P,,(O), P,(O)} = 2. 
(iii) HoI1 (0. <;) # 0, % = 1, 2, 

(iv) (H(Z)‘; (k)) (().<I) = (H(Z)” (e)) (O.<g); 0 5 k: < (1. 

where 
Hi(x,<) = (P,(x). E}. ,i = 1. 2. 

HM~(:I:> <) = ([[PI, PO]> J’ol(x:), I); Holl(~: I) = ([[PO. PII; ~I](:~~,~ Q: 

2 = 7?, + e 2, on the open subset I1ol1 in ?(c&N)~ x Rd of all 
(P,,,l3.<) such that &ll(O,I) # 0. 

LEMMA 7. - (i) For every k > 0, there exists a polynomial function 
@k : P(d, N)2 x R’l H R such that on Ooll 
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@A. = Hl,)i+J - (H1ool &Id”+1 fhlr+~ + $r, 

where *(ilk is a polynomial in the H,, such that /O < h; + 3 or /u] = X: + 3 
and IcYI(~ > 1. loI1 > 1. The proof is an easy induction on X:. 

COROLLARY. - $ (N. tl) is the set of all quadruples (E>o, PI, [&I. [&I) 
such that 

(9 [Cl1 # [Ed. 
(ii) dim Span {PO(O). PI(O)} = 2. 

(iii) H,~ll(O.~,) # 0. i = 1.2, 

0 = {(I’~:,, Pi. [[I]. [&l)/(i) [II] # [&I. (ii)dimSpan {PO(O). PI(O)} = 2. 
(iii) HoI r (0. E;) # 0. i = 1. 2). Complete Pi(O). Pi(O) into a basis 
I:;(o). r;(o). CL. ” ~ (a:, of R” and define the mapping P : 0 t, (Rd)r’. 
/,(f’. C)) = ((‘1 (P. 0). ” r:,,( P. (2)). (‘1 (I’, Q) = I>,,(O). c*(P, C)) = Pi(O). 
(~,(P,C)) = r;. 3 5 i < (1. For a small neighborhood V of (Pi. I’[) in 
P(d. IV)‘. (‘Jo- is basis valued and we can associate to (3, a coordinate 
system S:/. 1:; as in !j 5. We get for X. > 1: 

where Rk. is a polynomial in <. -X,1. ]I/] <: X: + 2. S;j IV/ 5 X. + 2 and 
,/ # t”+c’. 

Hence for t?. > 1. (iv) can be written: 

where I?‘,, is not depending upon I’,‘,, ., ?. Therefore we have 

where Xl,/ is not depending upon I’;‘,,~,. 
For 1 < X: < q, these q relations define on On V a smooth submanifold of 

codimension q, since (1 and & are not collinear. This shows that in 0 n V, 
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Fc(N, q) is of codimension at least Q. Since the V’s for different choices of 
(I’;, Pi) cover 8, Fc(N, q) is at least of codimension 4. Consequently its 
projection Z (N; 4) into P( d, N) ’ is a semi-algebraic subset of codimension 
2 y + 2 - 2d. 

LEMMA 8. - (i) codimension (FC(N. (I); P(d, N)*) > q + 2 - 2d. 

(ii) The set of all couples (F,,, PI) E VF(M)” such that (j: Fo, 
j;” FI) $ B(N) U B,. (N; 3d - 1) is open dense in VF(M)*. 

Lemma 6 and Lemma 8 prove Theorem 1. 

11. CONCLUSION 

Similar results have been obtained in the multi-inputs case and can be 
applied to systems without drift (subriemannian geometry). 

Two important questions are still open. 

1) Are the two properties studied in this article open ? 
2) For a singular extremal (z: 1~) with minimal order let S = {t E .I. 

{{H~t,H~},Hl}(z(t)) = O}. Can the Lebesgue measure of Sbe non zero ? 
Both questions are connected to the analysis of the behaviors qf singular 

trujectories near the previous set. Reference [Bl] contains some results 
in this direction. Moreover it was pointed out by A. Agracev, that some 
additional regularity properties could be obtained by dealing only with 
optimal singular extremnls. 
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