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ABSTRACT. - Linearized instability implies nonlinear instability under 
certain rather general conditions. This abstract theorem is applied to the 
Euler equations governing the motion of an inviscid fluid. In particular this 
theorem applies to all 20 space periodic flows without stagnation points 
as well as 20 space-periodic shear flows. 
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RBsuMB. - L’instabilite linearisee implique l’instabilite non lineaire sous 
certaines conditions assez generales. Ce theoreme abstrait s’applique aux 
equations d’Euler qui gouvernent le mouvement d’un fluide non visqueux. 
En particulier ce theoreme s’applique a tous les flots periodiques dans le 
plan, soit saris point de stagnation, soit des Ccoulements de cisaillement. 

INTRODUCTION 

In this paper we prove a theorem which states that, under appropriate 
conditions, linear instability of a steady flow of an ideal fluid implies 
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nonlinear instability. Such a theorem is of course well known for ODE’s, 
For the evolutionary Navier-Stokes equations describing a viscous flow (in 
a bounded domain with classical boundary conditions) such a result was 
proved by V. Yudovich (see [Yl). The case of the Euler equations addressed 
in the paper is totally different for at least two reasons. First, in no sense 
is the dynamics of an ideal fluid effectively finite-dimensional, as it is for 
the Navier-Stokes equations. The second reason. which is related to the 
first one, is that the spectral problem associated with the Euler equations is 
always a degenerate non-elliptic problem with a continuous spectrum. This 
also makes the question of both linear and nonlinear instability very much 
dependent on the particular norm used. 

The crucial idea underlying the approach in this paper is to use two Ba- 
nach spaces: a “large” space 2 where the spectrum of the linearized operator 
is studied and a “small” space ,y 4 Z where a 10~1 existence theorem 
for the nonlinear equation can be proved. This idea has its origin in the 
recent paper of Y. Guo and W. Strauss [GS] who proved a similar theorem 
for the Vlasov-Poisson system which describes collisionless plasmas. 

The paper divides into two parts. The tirst part is an abstract theorem. 
for which we give two variants (sre Theorems 2.1 and 2.2). The abstract 
theorem states, under certain conditions. that spectral instability for the 
linearized operator L implies nonlinear instability. It is applicable to a wide 
variety of nonlinear PDEs where a local existence theorem is known. The 
main difficulty in applying either variant of the abstract theorem lies in 
proving for a particular PDE that either 

(i) etL satisfies a spectral gap condition which permits projections onto 
the subspaces of growing and decaying modes (see Theorem 2. I) 

(ii) cfL has an eigenvalue with absolute value sufficiently close to the 
spectral radius (see Theorem 2.2). 

Any problem for which the unstable spectrum of the semigroup is 
nonempty and purely discrete automatically satisfies both conditions. The 
second part of the paper studies the specific case of the Euler equation. 

In section 1 we describe the spectral gap condition. In section 2 we 
prove Theorem 2.1 and we state the alternative approach of Theorem 2.2. 
The proof of Theorem 2.2 is an abstraction of the proof given in Guo and 
Strauss [GS] for the Vlasov-Poisson system. In section 3 we check that 
the conditions of Theorem 2.1 other than the spectral gap condition are 
satisfied for an arbitrrzq smooth Euler equilibrium and for usual functional 
spaces: Z being the space of solenoidal square integrable vectors, .y = X,\ 
is a space of solenoidal vectors with components in the Sobolev space 
H”, s > 5 + 1. 
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In section 4 we describe how a dynamical system can be employed to 
determine the growth rate due to instabilities in the continuous spectrum of 
the linearised Euler equation. In Vishik [V] an explicit formula is proved 
for the essential spectral radius as a Lyapunov type exponent. This result is 
used to prove that certain flows, for example 20 shear flows and 20 flows 
without stagnation points, have no unstable continuous spectrum. Hence 
the results of sections 1-3 prove that any such flow which can be shown to 
be linearly unstable must be nonlinearly unstable in X,. 

In section 5 we give an example of a linearly unstable 21) shear flow, 
namely the flow with velocity profile siu7ny, for which all the conditions 
of Theorem 2. I (or 2.2) are satisfied. We prove the existence of discrete 
unstable spectrum following the approach used for the viscous problem 
by Meshalkin and Sinai [MS] and Yudovich [Y 1, which utilizes continued 
fractions to derive and analyze the characteristic equation. It is demonstrated 
by construction that for ‘/r/. > 1 this characteristic equation has at least one 
root corresponding to a discrete unstable eigenvalue. 

1. SPECTRAL GAP CONDITION 

Let us fix a pair of Banach spaces .P - % with a dense embedding. 
We study the evolution equation 

(1.1) ti! = 1,~ + YV(u!). w( 0) = (I’() 

where L is a generator of a Co-group of operators in C(Z), ctL leaves A7 
invariant for t E R. X c D(C), N being a nonlinear operator N : X 4 %. 
We will list separately our assumptions about L and N. 

(Hl) The nonlinear term N satisfies the inequality 

(1.2) 

(H2) “Gap condition”. Suppose that for any t > 0 the spectrum (T of 
(zFL E ,C(Z) can be represented as follows: 

(1.3) (T = CT(cP) = CT+ u CT-. fl+ # fl 

where 

(1.4) “+ c (2 E c 1 rFt < Iz/ < ,!.lt}. 

(1.5) cl- c {z E c 1 f? < IZI < 4} 

Vol. 14. 119 2.lYY7 
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(1.6) -x < x < IL < M < A < cc 

We assume moreover that 

(1.7) 31 > 0. 

No assumptions about the sign of I/, are made. The partition of (T is 
illustrated by Fig. 1. We denote by I’* the Riesz projection corresponding 
to the partition (1.3): 

where the contours y+ surround U* (see Fig. I). It is clear that 1’~ does not 
depend on t > 0. We now introduce a new norm on %. For any .I: E Z let 

.r)i. = . ,~ 1 I . 0  

Fig. I, - Illustration of the partition of a spectrum that satisfies the spectral gap condition 
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LEMMA 1.1. - The norm (11 . 111 is equivalent to II . llz: there exists C > 0 
such that 

(1.10) c-11141z I 111~111 I cll~~llz. 

Proojf - The restriction of etL to the image of P* is a strongly continuous 
group and 

This gives for the second term in the RHS of (1.9) for sufficiently small 
E>O 

lleL7-P-511~ 5 C,e (+yP-+, T>O 

since 0- c {z E 63 I 1.71 5 e(p-2E)t} for sufficiently small E > 0. This 
yields 

(1.11) 
.I 

O” IleLTP-IcII& prdr < E-%‘,IIP-.+. 
0 

Likewise taking negative 7 we obtain 

for sufficiently small E > 0. Hence as above 

(1.12) 
.I’ 

om Ile-L~P+ZII#r dr 5 E-%,llP+ml/,. 

From (1.11) and (1.12) ~~~x~~~ 5 llzllz *. On the other hand, 

Ile-LTP+xllz 2 e -Yl~+4lz; r > 0; 
IleLTP-xllz 2 e qp-:~~IIz, _ 7 > 0. 

Integrating with respect to T yields 

lll4ll 2 &p+xllz + j$qllP-412 2 II42 0 

* Here and below A 5 B means there exists a c > 0 such that A 5 cB. 

Vol. 14. no 2.1997. 
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2. NONLINEAR INSTABILITY: 
ABSTRACT SUFFICIENT CONDITION 

We assume that there is a local existence theorem for the equation ( 1.1). 
This means that for any ‘Q E X there exists a T > 0 and a unique 

(2.1) W(L) E L”((o,T):X) n e([o.T],Z) 

which is a solution to ( 1. l), e.g., in the following sense: for any cp E 27(C), T) 

I 
*T 

(2.2) {111(7)(p’(T) + (Lw(7) + Nw(r))p(T)} oh- = 0. 
. (1 

The initial condition is assumed in the sense of strong convergence in Z: 

Definition of nonlinear stability. - The trivial solution ‘YII(~ = 0 of 
the equation (1.1) is called nonlinearly stable in X (Lyapunov stable) if, 
no matter how small E > 0 is, there exists a 6 > 0 so that ]IuI(o) II .s < h 
implies a) we can choose T = 9c in (2.1), and b) Il,~(t)ll~\- < F for a.e. 
t E [O; x). The trivial solution ‘~1~) = 0 is called nonlinearly unstable if 
it is not stable. 

Remark. - By this definition we regard a “blowing up” solution (i.e., there 
exists a maximal ,$nite T > 0 in (2.1)) as a particular case of inst&ilitl\;. 

THEOREM 2.1. - Let N satisfy: (H 1) nnd L satisfy the inequalities (1.3)- 
(1.7) qf the spectral gap condition (H2). Let the equation (I. 1) admit n local 
existence theorem in the sense described above. Then the trivial solution 
UJO = 0 to the equcrtion (1 .I ) is nonlinearly unstable. 

Proofi - Suppose the contrary: III~~ = 0 is nonlinearly stable. Let c > 0 be 
sufficiently small: it will be specified later. Let ~/l(t), t E [O. x-) be a global 
solution to (1.1). We know that such a global solution exists for I/~u,I~~ /Is < 6, 
where A is constructed from E using the definition of nonlinear stability. 

Let for t > 0 

(2.3) ((1;) = c,-%(t). 

Differentiating (2.3) and using ( I. 1) we obtain 
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From definition (1.9) and (2.3) 

(2.5) 

We compute the right derivative of F(t). Letting h > 0, we have 

(a (,) F(t + IL) - F(i) 
h 

+ ; i^ { I(e-L’P+7J(t + h)(lz - Ile-LrP+71(t)llZ}eAfr &T 
‘. -t 

def I&) + 12(h) 

We have, because of the strong continuity t + pi(t) in 2, 

(2.7) lili’,I(“) = IleL*P+71(t)llZ(~-Aft = e-“qP+?ll(t)llz. 

On the other hand, 

(2.8) 

From (2.4), (2.!5)-(2.8) we obtain 
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But, because 111 . 111 IS a convex functional, the right derivative of IIIP+w(t) I// 
exists for all t 2 0. From (2.9) and (1.10) 

(2.W lll~+~~(h)lll - III~+~~~@2)III 
> - I +w + c-‘)lll~++9III - III~+NwN~ h . t2 

for any tI > t2 > 0. Likewise for the minus component P-w(t), 

(2.11) IlIP-w(t)111 = /urn Ile~Y-w(t)llZe-f‘T dr 

eL(t+'kw(t)(l~e-~T d7 

Therefore, 

(2.12) &lllr_wolll = PIII~-4~)III + ept&w 

where 

(2.13) G(t) = 
J 

m IleLTP-w(t)Il~e-f”’ dr 
t 

We have for Ir > 0 

(2.14) 
G(t + h) - G(t) 

h 
1 - J 

t+h 
h t 

IleLTP-,u(t)Ilze-f“ dr 

L’P-w(t + h)llz - I(eL’P-v(t)llz}e-pT dT 

As above, from the strong continuity in 2 of t --+ w(t), 

(2.15) spoil = -I(eLtP-v(t)llpz-pt 

= -IIP-w(t)llzeCfLt 
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We have for the second term in the RHS of (2.14) 

From (2.12)-(2.16) and (2.4) 

(2.17) &lllW)lll L PlIIJQ-4~)lll - lI~W~)llz + III~-N~4~NIII 

Integrating both sides of (2.17) from t2 to ti where tr 2 t2 2 0 and using 
(1.10) we obtain 

(2.18) III~-~wII - III~-~W(t2)lll 

5 
J’ 

t,t’{(P - c-‘)IIl~-w(~)lll + III~-J%4-HIIIw~> 
2 

t1 2 t2 L 0 

Subtracting (2.18) from (2.10) yields 

(2.19) (III~+4t~lll - lllw~)lll)/~~1’ 
2 

> - .i” wlllp+wIII - PlIIPd4III 
tz 

+ c-llllwlll - lllw44)lll~ (ST 

We will use inequality (2.19) to prove nonlinear instability of the trivial 
solution wa = 0 of equation (1.1). Let Wa E X be an arbitrary vector 
satisfying 

(2.20) Ill p+ a0 III > Ill p- a0 Ill i ll~olls < 1 

The condition (2.20) defines an open set in 2. Since X is dense in 2 
there has to be a solution wo to (2.20). Let w(t), t E [0, 00) be a global 
solution to (1.1) with w(0) = w. = Stio. Since llwollzv < S and because of 
our assumption that the trivial solution is nonlinearly stable in X we have 

(2.21) Ilw(t)Ils < E a.e. t E [0, 03). 

Vol. 14, no 2.1997. 
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Using (1.2) (1.10) we obtain from (2.21) 

(2.22) IIIN(w(t))IlI < Ccoel17~i(t)ll~ 5 C2co~ll/w(t)lll a.e. f E [O. x) 

Let 0 < TI < 3ci be defined as 

Tl = sup {T > 0 1 IIjP+w(t)lll - IlIP-w(t)III > 0 for 0 2 t < T} 

Because of (2.20) and strong continuity of %II : [O: 00) 4 2 we have TI > 0. 
We now assert that Tl = x’. Indeed, if T, < oc, then 

(2.23) III f’+,tlj (TI ) Ill - III p- w (Tl ) III = o 

We apply (2.19) for tl = T,, tz = 0 and conclude using (2.23), (2.22) 
and (1.6) that 

+ c-1)~~w(7)~~~ - C2C”EI(jW(7)~~~ di- 
7-1 

> 
-I 

C:-11~17~i(r)ll( - C2C”E/~pu1(T)~~~ $7 
. 0 

because IIIP+uI(~)II/ > IIJP-~~I(~)III for r E [O,TI) by definition of TI. 
Suppose E is small enough so that E < min(C-“c,’ , p), then the RHS of 
(2.24) is positive while the LHS is negative (see (2.20)). This contradiction 
proves that Tl = cc. 

Applying (2.19) again we have 

Ill~+4t) Ill - lll~-‘4~)lll 

provided F < rnin( c,’ C-“, p) as above. Using Gronwalls’ inequality we get 

(2.25) lllr;~(~)lll - IIIf-~~4)lIl 2 ~(IIl~+~~olll - IlIP-~~fiolll) cw Mf, 
t E [O;x) 

For sufficiently large t (2.25) contradicts our assumption that 
Il~~~(f)llX < E. cl 
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We now formulate the second abstract theorem applicable to the Euler 
equation. We replace the conditions (Hl), (H2) by a different set of 
conditions. Consider the equation (1 .I) where L and N have all the 
properties stated at the beginning of 5 1. We assume the following. 
(H 1’) There exist rl E ((Ill], cg > 0, p > 0 so that 

(2.26) IIN(w)llz F ~~II~~II:~‘~II~~II~+‘~~ w E x, Illlllldy < p. 

(H2’) Let 

Assume there exist XI > &, cl > 0, cz > 0 and *tuo E X, 711~ # 0 so that 

ClPllW& < IlPw& 5 C2efxqw”Ilz. o<t<m. 

THEOREM 2.2. - Let the conditions (HI’) and (H2’) he satisfied. Suppose 
the equation (1.1) admits a local existence theorem. Then the trivial solution 
to the equation (1.1) is nonlinearly unstable. 

We omit the proof since the proof of a similar result appeared in [GS]. 

3. THE EULER EQUATION 

Let 12 c R’” be a bounded domain with C’“--smooth boundary 80 so 
that 12 has a structure of an rb-dimensional manifold with boundary. Let 
~0 be a Cm-vector field on fi which satisfies the steady Euler equations 
with classical boundary conditions 

(3.1) 
C 

(?J,(j, V)U,) + vpo = 0 
div u. = 0; (TJ,(), 71) li)(> = 0 

where y() : 0 -+ R is a C” -smooth pressure. Here r/, denotes the 
unit outward normal vector on the boundary 312. Alternatively let 
12 = T” = R”/27rZ” and 

760 E (C"(T"))" , yo E C-(T”) 

satisfies 3.1 (in this case i)Q = 0). We take arbitrary s > $ + 1 and denote 

(3.2) X = X, = {w E (H”(f2))‘” I divscu = 0 in S2: (~1, /l)ltic2 = 0) 
(3.3) 2 = {SW E (L”(Q))lL I div*tll = 0 in $2; (~1,r~)]~~2 = O} 

Vol. 14, no 2.1997 
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In the case 62 = T” of course there is no boundary condition imposed. 
We define L as the generator of the group (linearized Euler equation) 

which is given by 

(3.4) Llll = -(u,,, V)w - (711; 0)U” - VI,, ‘W E 2 n (C”(R))“. 

Then eLtWO = w(t) for wa E 2 where ,ui(t) is the solution to the linearized 
Euler equation, 

(3.5) 
1 

c(t) = -(7&o, V)w - (w, V)u, - vp 
div ?u = 0: w(0) = wo E z 

We now define N : X + Z as follows 

(3.6) N(w) = -(w, V)U~ - 0~. 

We note that for this choice of L, N equation (1.1) becomes the standard 
Euler equation 

(3.7) 
C 

(uo + Ul)’ = -(uo + w, V)(uo + w) - VP 
div(lro + 1~) = 0 

PROPOSITION 3.1. - The operator N satisjies 

IIN(~u)llz I coII4I~~Il4z .for all w E x. 

Proo$ - According to the Weyl decomposition lemma, 

We used the Sobolev embedding theorem on the last step (s > : + 1). 0 
All the general conditions we imposed on the pair X of 2 are clearly 

satisfied by (3.2), (3.3); the spectral gap condition, on the contrary, needs 
to be checked in each case separately. The local existence theorem for the 
Euler equation in X,T for s > 2 + 1 is well known (for example, see [T] 
following earlier results in [L], [G], [WI, [K]). 

Remark. - To our knowledge a local existence theorem for the Euler 
equation is unknown in X, for s 5 2 + 1. 

Anna/es de I’hsritur Henri PoincnrP - Analyse non 1inCaire 
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Remark. - As follows from [BB] the results of this section are valid 
also for 

They are also valid in Holder classes. 
We will indicate now that for appropriate choice of X, 2 the condition 

(2.26) is satisfied for the Euler equation. 

LEMMA 3.2. - Let s > z + 1, X = X,9 as in (3.2), Z is dejined by (3.3). 
Then the inequality (2.26) for the nonlinear term N(w) dejined by (3.6) is 
satisfied ,for p = CO, appropriate co > 0 and rl = i - 9 > 0. 

Proo$ - Following the proof of Proposition 3.1 and choosing ‘r = 
g.s + y + 1) > ; + 1, 

On the last step we noticed that 7’ = (1 - r/).s and used the interpolation 
inequality 

4. THE SPECTRUM OF THE EVOLUTION OPERATOR 
FOR THE LINEARIZED EULER EQUATION 

Here we analyze CJ(&‘) where L is defined as in (3.4). In general we do 
not have a recipe to check whether for a given smooth flow ~0 the spectral 
gap condition (1.3)-( 1.7) is satisfied. Little information is known in general. 

We first define the essential spectrum (following Browder [B]). For 
any Banach space B and an operator T E L(Z?) we use the following 
classification of spectral points. 

A point z E o(T) is called a point of discrete spectrum if it satisfies 
the following conditions: 

I. z is an isolated point in a(T). 
2. z has finite multiplicity; that is, U,g”_, ker(z - T)’ = N is a 

finite-dimensional subspace in B. 

Vol. 14. no 2-1997 
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3. The range of z - T is closed, which implies that there is a 
complementary subspace Q c B such that B = N $ Q, TQ c & and 
(2 - 2’) is invertible on Q. On the contrary, if z does not satisfy (1.3), it 
is called a point of essential spectrum. Thus 

(4.1) a(T) = oca(T) U orlisr(T) 

and the union in (4.1) is disjoint. We define for any T E l(B), following 
Nussbaum [N], 

(4.2) T,,,(T) = sup{~~l 1 2 c Gss(T)) 

We will use below the following theorem proved recently by Vishik [VI. 

THEOREM 4.1. - Let 62 = T” = Rn/27rZn and u. be a C” steady solution 
to the Euler equation (~0, O)uo + 8~~ = 0, div ~~~ = 0, u. E (C”(n))“, 
~0 E C-(n). Then for any t > 0, 

(4.3) 1.,,,(P) = edf 

where 

(4.4) 
1 

w = tl;rz T log Sup Ib(~O~ to, bo; t)I 
---t , d’o x0 ,h 

(bCo)=U 
IEoI=l, Ibol=l 

Here(z, <; b) satisjies the following system qf ODE’s (which we call the 
bicharacteristic amplitude equations) 

(4.5) 

x(O) = x0. ((0) = (0. b(0) = b(j 

The quantity on the RHS of (4.4) is the Lyapunov exponent of the cocycle 
over the dynamical system in the projectivization of the cotangent bundle 
defined by the b-equation. The dynamical system describes the evolution 
of a point II: and a direction *<,/[<I at this point. It is given by the first 
two equations (4.5). 

This theorem implies in particular that any 2 E ~(e”“) with 1~1 > e”” 
is a point of discrete spectrum. Any accumulation point of gdisc(etL) 
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necessarily belongs to (T,,,(@‘). Thus if ~(e”“) n { /z( > c?} # fl then 
there exists a partition 

satisfying the gap condition (1.3)-( 1.7). We note that for any flow ~0, w 2 0 
(see [V]) and therefore M can be chosen to be positive. 

COROLLARY 4.2. - Assume the conditions of the Theorem 4.1. Suppose 
there is a z E cr(etL) with IzI > cYt then the,flow ug is nonlinearly unstable 
in X = X, for every s > t + 1. 

Pro05 - We combine either Theorem 2.1 or Theorem 2.2 with Theo- 
rem 4.1. 0 

The Lyapunov exponent w can be effectively computed in a number of 
examples [FV]. In [FV] it is proved that exponential stretching (positivity 
of the Lyapunov exponent along at least one Lagrangian trajectory) implies 
that w > 0. In the present paper we show that w = 0 for several classes 
of flows without exponential stretching. We present here two examples of 
this situation. 

PROPOSITION 4.3. - Let R = T2, uug as in the formulation of the theo- 
rem 4. I. Let ug(z) # 0 for all n: E T2. Then w = 0 and hence ress(etL) = 1 
for t > 0. 

Proot - We first point to the following general feature of the system 
(4.5). We claim that (bo, <a) = 0 implies 

(4.6) (b(t),<(t)) = 0. tEW 

Indeed, differentiating and using (4.5) 

(6.Q’ = (b;-($)Tt$ - ($$U) +2(zb:E) =O. 

We next assert that for n = 2 

(4.7) lb(t)1 I<(t)1 = const 

along any trajectory of (4.5). Indeed, 

But (3< - (2)‘<, <) = 0. S’ mce, according to (4.6) (6: <) = 0, it also 
follows that $$< - ($Q)‘c = c(t)b for some function c(t). 

Vol. 14, 11' 2-1997 
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Hence 

$(b x () = - tr (2) (b x I) = 0 
/ I 

since divua = 0. Thus (4.7) is proved. 
Now we assert that, given the trajectory :x(f), the equation for < can be 

solved explicitly for r~ = 2 and u() non vanishing as follows. Let A: be a 
unit vector in the directions Q. We may decompose 

‘U() (x0) 
i’o = (:I /7,,o(~X.(t)12 + c* k: x ‘IQ) (:I:()). 

Then 

(4.10) 

In order to prove this identity we differentiate the right side of (4.10) and 
use (4.5) to get 

(411) 

We claim that the last factor k: x 2~0 = - (%)‘( k x ~1). Indeed, for 
every 7 E R2 

(((&$!.)’ (k x uo),,q) = -(k x 7LO-%rl) 
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since %k = 0 and div ‘LL~ = 0 as claimed. Thus in order to check that 
(4.11) equals -( %)T times the right side of (4.10), we need only check 
the first three terms of (4.1 I): 

The left and right sides of (4.12) have the same scalar product with ug and 
h: x ~0 which proves (4.12). Thus (4.10) follows. 

From (4.9) and using ILO # 0 for all 2 E T2, we get 

ICI1 5 Cllol = c; Ic2I 5 c 

for some constant C. Hence from (4.10) 

Bt>l 5 (1 + t)ltol = 1 + t; t 2 0. 

Changing t H -t we find also 

I<(t)1 > g = -A- , 1+t’ t > 0 

Indeed if we start at point x(t) and apply the previous argument to -%L~, 
then the equation for < has the same solution just run in the reverse 
direction. Thus we obtain I<(O)1 5 (1 +t)l((t)l as claimed. Thus from (4.7) 

Ih( 5 (1 + t)lhl = 1 + t, t>0 

Hence, from (4.4), w = 0. 0 
In the following proposition we consider a very simple class of 20 shear 

flows that may vanish. 

PROPOSITION 4.4. - Let 62 = T2, u(xl, x2) = (U(x2), 0). Then w = 0. 

Prm$ - From (4.7) (we were not making use of the assumption rho # 0 
in deriving (4.7)) 

lb(t)1 5 & 5 (1 + t), t > 0 

because < is a function linear in t. Hence w = 0. q 
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5. AN EXAMPLE OF A SHEAR FLOW 
THAT IS NONLINEARLY UNSTABLE 

For the case of classical boundary conditions which are not addressed 
in this section, the Rayleigh criterion states that any shear flow without 
inflexion points is linearly stable. Of course for periodic boundary condition 
there must be an inflexion point. 

In this section we prove the existence of an unstable eigenvalue 
z E ndisr-(efL), 1.~1 > 1 for a particular shear flow. In fact we will construct 
a <Y” (even P) eigenfunction of L with an eigenvalue of positive real part. 
According to proposition 4.2 and theorem 4.1 the spectral gap condition is 
satisfied for such a flow. Thus according to Theorem 2.1 and the results of 
$3 showing that all the other conditions (besides the spectral gap condition) 
of this theorem are satisfied, this flow is nonlinearly unstable in say X,. 
s > 2 (see (3.2)). 

In this section II = 2, ~0 = (U(y),(l), R? = (:x:. ;q), T” = R2/27rZ”. 
We choose the how 

(5.1) U(y) = sin mg, m E Z+ \ (0). 

For perturbations PU satisfying (27r-” I;.2 ~1 d:c +J = 0, we may introduce 
a stream function $ : T2 + R, (27rei .f ,JI d:r dy = 0, 

(5.2) 

The equation (3.5) written for the stream function 4) instead of II! is 

(5.3) 

We will construct a solution to (5.3) of the form 

(5.4) 

The coefficients cj decay exponentially as :j + fs, thus the eigenfunction 
for L constructed using (5.2) is in (C”(T2))2. For fixed k: our eigenvalue 
problem is described by the Rayleigh equation which follows from (S.3), 
(5.4) 
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Here k: E Z is fixed and we are looking for a solution X : T1 -+ W with 
Re a > 0. 

PROPOSITION 5.1. - Let m > 1 and rn2 # ,mT + rni where ml, ~12 E Z, 
71~~ . 71~~ # 0. Then there exists a real eigenvalue (T of the operator L 
with CJ > 0 with a smooth (analytic) eigenfunction. Therefore this $0~ is 
nonlinearly unstable in X, with s > 2. 

We follow the approach of [MS] for the Navier-Stokes equations who 
investigated stability of viscous shear flow with a profile like (5.1) using 
the techniques of continued fractions. Their elegant paper was followed by 
[Yu] and recently by [Li]. To our knowledge no previous proof of instability 
for the inviscid flow (5.1) appears in the literature. In 1935 Tollmien [To] 
gave a heuristic demonstration of instability of an inviscid shear flow 
U(:y) = sin ‘y with the boundary condition 1~2 = 0 in a sufficiently wide 
channel. This is a classical result widely quoted in engineering literature 
although no mathematical proof has been given to our knowledge. 

Prooj: - The recurrence relation equivalent to (5.5) is 

(5.6) $(j” + k2)“,j + (k” -  Tlb2 + (j -  Trl)2)Cj-,,l 

-  (k2 -  V12 + (j + V1)2)Cj+,, = 0 

We assume 5 # 0 since otherwise (5.5) does not have nontrivial solutions 
with Re (T > 0. We may moreover assume rE > 0 since the equation (5.5) 
remains valid under substitutions A: H -/c, (7 H i?, X H X. We assumed 
for simplicity that the diophantine equation 

m2 = m: + rni 

does not have solutions with mlm2 # 0. We will construct below a 
solution with k: < ~1. We define 

(5.7) 

Note that denominator in (5.7) is not vanishing. Let 

(5.8) (L,j = “j(,~2 + k12 - nap), j E z. 

Then (5.6)-(5.8) imply 
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We shall construct a sequence d, # 0, j E ~22. Define 

(5.10) 
dj 

?i = r ’ j > 0 
‘,, II? 

It follows from (5.9), (5.10) that 

We note that 

(5.13) 

We dejne now dj = 0 for j $ 0 (mod m) and de$ne 
(T real and positive 

(5.14) 
m . . ] 

for p 2 1, p E Z, 

Obviously the continued fraction in the RHS of (5.14) is convergent. 
Indeed the partial denominators grow exponentially because the elements 
are positive and bounded away from zero. Likewise, from (5.9), (5.11) 

We define for p 2 0, p E Z, (T real and positive 

(5.15) C)--pm = i%ml C(T) = [a_(,+l)7n> (]‘,I,, 
I 171 1 . . 

] 

Again, convergence of the continued fraction in the RHS of (5.15) is evident. 
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It is easy to check that as p + cc 

(5.17) 

IN AN IDEAL FLULD 

(T 
Ppn, 4 -Pm = -- + k \i 

1+$. 

207 

We see that 

(5.18) -1 < pm < 0 

From (5.9)-(5.11) we obtain the characteristic equation 

Since asmpnL = UpnL (see (5.7)) (5.19) is equivalent to 

(5.20) Q,o 1 
-T [f&,, . ff,2,r,. . . .] = F(a) 

Suppose there exists c real and positive such that (5.20) is satisfied. Choose 

i 

d() = 1; 
(5.21) d Pnl = Pm P2m . . . ppm; 

d- yrn = PO i)-WL . . . /i(,-I),,. 

Then this sequence satisfies (5.9) by construction and d,,, , d-,,,,, + 0 
exponentially because of (5.16)-(5.18). 

We are now going to study the characteristic equation (5.20). The RHS 
F(o) defined for (T E (0, cc) is a continuous function because the sequence 
of partial fractions is uniformly convergent on [E, CG) for any E > 0 (with 
exponential estimate). Because the elements are positive, we have 

(5.22) do) = o<a<cc 

Figure 2 she;; the graphs of g(a) and f(u) together with the graph of 
-a0 =E- 

here 
k m2-k=’ 

Vol. 14. no 2.1997 
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As is obvious from Figure 2 equation (5.20) is guaranteed to have a positive 
solution provided that !I’( 0) > - q. This condition is 

(5.23) 2 
4m2 f k2 kJ2 
3m2 + k12 

> 
rr1-J - k? 

which is guaranteed for, say, 

(5.24) 
rn2 23 
1;2>% 

Fig. 2. - Graphs of curves showing the existence 
of a solution to the characteristic equation (5.20). 
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