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ABSTRACT. - We classify the existence and non-existence cases for 
localized solitary waves of generalized Kadomtsev-Petviashvili equations 
according to the sign of the transverse dispersion coefficients and to the 
nonlinearity. We also prove regularity properties of the solitary waves. 
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RBsuMB. - Nous classifions les cas d’existence et de non-existence 
d’ondes solitaires localisees pour les equations de Kadomtsev-Petviashvili 
generalisees selon le signe des coefficients de la dispersion transverse et la 
puissance du terme non-lineaire. Nous montrons Cgalement des proprietes 
de regularite de ces ondes solitaires. 

1. INTRODUCTION 

Kadomtsev-Petviashvili equations are “universal” models for dispersive, 
weakly nonlinear waves, which are essentially unidimensional, when weak 
transverse effects are taken into account [lo] [ 131. They read, for a general 
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nonlinearity f (2~). 

IL = u(:r. y, t), (x, y) E R*, t > 0 in dimension 2, and 

1 

7J,t + f(lL)7L,r + u#s,,r + cLuy + bu,, = 0, 

(1.2) 2J.c = IL!, . 

711, = II,, . 

u = ~(2~ g/, z.t), (:I:: y. z) E W”. t > 0, in dimension 3. 
The constants E, CL, h measure the transverse dispersion effects and 

are normalized to i 1. The “usual” Kadomtsev-Petviashvili equations 
correspond to f(~) = 9~. We will consider therein power nonlinearities. 
We recall that (1.1) with f(~) = u is integrable by the inverse scattering 
method and is classically called KPI (E = - 1) or KPII (E = + 1). 

Many rigorous results have recently appeared concerning the Cauchy 
problem associated to (1 .l) (1.2) (mainly in the KPI or KPII cases). To 
quote a few, [.5], [7], [8], [9], [17], [19], [21], [22] and the survey [18]. We 
are interested here in solitary wave solutions of ( 1.1) (1.2). In order to give 
a precise definition we need to introduce a few spaces. 

We shall denote for tl: = 2; 3, Y the closure of az(C;p(Wd)) for the norm 

where &( Cr( Rd)) denotes the space of functions of the form aL(p 
with cp E C,~(R”) (i.e. the space of functions $ in Cr(W”) such that 
JTf q!1(2,:c’)dz = 0: for every z’ E F@-l). 

DEFINITION 1.1. - A solitu~ wave of (1.1) (rap. (1.2)) is a solution qf 
the type U(:C - ct, y) (rap. U(:X - ct. y. z)) where 1~ E Y and c > 0. 

Remark 1.1. - By standard imbedding theorems, if IL E Y and d = Y. 
then ?L = d,cp where +S E L”(R”); if d = 2 and IL E Y then IL = azcp 
where cp E Lo,,, V ‘I, 2 < Q < +x0. Note that for $ = 2. the choice 

of cp E qoc such that u = i3,(p is not unique, but two such cp will differ 
by a function g(y) independent of 5. Hence, only one of them (up to a 
constant) satisfies 71 = ir3,cp E L’(Iw*). We assume in all what follows that 
when IL E Y and when we take p E L;‘o, with axp = IL. we also have 
11 = i3,(p E L2. We then denote ‘I/ = 8,~ by D,;‘TL,. 
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We are thus looking for “localized” solutions to the systems 

(1.3) 
1 

--c% + f(u)& + u,,, + &Vv = 0 
v, = ‘fLy 

-cu, + f(U)% + u,,, + avy + bw, = 0 

(1.4) v, = uy 

‘111, = IL, 

Except for the KPI equation (where the existence of “lumps” solitary 
waves is well known (see [l] [2]) no general results seemed to exist so 
far concerning solitary wave solutions to equations (1.1) and (1.2). The 
aim of the present paper is to solve completely this problem for power 
nonlinearities f(~). Throughout the paper, we will assume that f(u) = Us, 
with p = n%/~ > 1, rn and n relatively prime, and r~, odd, except in 
Section 4, where p is a positive integer. 

Remark 1.2. - Note that we may from now on assume that c = 1, 
since the scale change fi,(~, 5’) = c-~/“u( -&, $), where 2’ = y (resp. 
n:’ = (y, z)) transforms the system (1.3) (resp. (1.4)) in ‘uLL, into the same 
in 6, but with c = 1. 

We now describe our results. In Section 2 we use Pohojaev type identities 
to prove nonexistence of solitary waves. In Section 3 we prove the existence 
of solitary waves in the remaining cases. Our strategy is to consider the 
minimization problem 

’ (1.5) Ix = Inf ]]rr]]$, 7~ E Y, with 
{ / 

*~~+~d:C&c’ = X , 
R” 1 

where :c’ = y if d = 2, CC’ = (:y, Z) if d = 3 and X > 0. We shall 
use the concentration-compactness principle of P.L. Lions [14]. There are 
some difficulties due to the functional setting of the Kadomtsev-Petviashvili 
equations. In particular the minimizing sequence u,, is not bounded in HI 
and we have to prove a compactness lemma in L:,, for bounded sequences 
in Y. In Section 4 we show that solitary waves are smooth; namely, 
they belong to H”(IW”) = nmEN H”(i@) where Hn’(BBd) is the classical 
Sobolev space of order VL. The difficulty arises from the nonisotropy of 
the symbol of the underlying elliptic operator -A + 8:. We argue by 
“bootstrapping”, by using the imbedding theorems for anisotropic Sobolev 
spaces [4], and a variant due to Lizorkin [ 1.51 of the Mikhlin-Hormander 
multiplier theorem. Finally Section 5 is devoted to an extension to physically 
minded equations with other dispersions and to some concluding remarks. 

Vol 14. no 2.1997 



214 A. DE BOUARD AND J.-C. SAUT 

The results of this paper were announced in [6]. After this work has 
been completed we have been aware of the paper [20] where an existence 
theorem for solitary waves to (1.1) is presented. 

2. NONEXISTENCE OF SOLITARY WAVES 

The main result in this section is the 

THEOREM 1.1. - (i) Assume that d = 2. The equation (1. I) does 
not admit any nontrivial solitary wve satisfying II. = ;3,.p E Y. ‘IL E 
H’(R*) n LrC(R2). i)lf~ and C$(P E Lt,,(R*). if 

(2.1) i’ = -1 071d p 2 3 

1 
(2.1) (I = tJ = - 1. P 2 Tj 

Proof: - It is based on Pohojaev type identities. The regularity 
assumptions of Theorem 1.1 are needed to justify them by the following 
standard truncation argument. Let y. E C;;“‘(W). 0 5 x0 5 1. yo( 1) = 1 if 
0 2 ItI < 1, Xc)(t) = 0, ItI > 2. We set Xj = Gus. ,j = 1.2. 

To begin with we treat the 2-dimensional case. We multiply ( 1.3)1 by 
:cxju and we integrate over iR2 to get (note that the third integral has to 
be interpreted as a H1 - H-l duality) 
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and after several integrations by parts we obtain 

(2.6) 

where .I.’ = .I? + ~1”. By Lebesgue dominated convergence theorem. we 
infer from (2.6) that 

From now on. we will proceed formally, the rigorous proofs following 
by the same truncation argument as above. We multiply (I .3)1 by :YV and 
integrate (the 2 last integrals are understood as a H’ - H-r duality). After 
several integrations by parts and using (1.3)~ we obtain tinally 

To prove the third identity, we first remark that if %I, E I’ n L’(P+l) satisfies 
(1.3) in D’(W2), and if Y’ is the dual space of Y, then u satisfies 

UP+1 
-u + u,,z + - + ED,l,l+, = 0 in Y’ 

p + 1 

where 7: = D;‘u,~ E L2( R2) and D;~IJ, E Y’ is defined by 
(D,%,, ~)Y,YJ = (v, D,‘&,) f or any ?/I E Y. Taking then the Y - Y’ 
duality product of this last equation with IL E Y, we obtain 

(2.9) 
./[ 

e2 -u2 + - 
P+l 

- u; + &u2 dzdy = 0. 1 
Vol. 14, no 2-1997. 
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By substracting (2.7) from (2.8) we get 

IL2 1 
- -rUp+2 + 21L; + El12 d:r:(hJ = 0. 

p + 1 1 
Adding (2.9) and (2.10) yields 

(2.11) .I ‘[ <IL; + 2E,!P] dxdy = 0. 

which rules out (2.2). The identity (2.11) for E = - 1, namely J’ ~~~d:~d:y = 
2 /‘~*dxdy~ gives when inserted in (2.7), (2.9) 

I[ - - 2 1 !,I, 2 + pf2 / 1,z’+2 - ;‘,t? 2 dxdy = 0 
1 

.i[ -u* + p 2 ,),I’+2 + 1 - h’ d:rd?y = 0. 
1 

Eliminating 11~ leads to 

(2.12) 
<IL2 

p - 4 
+ 2(p + l)(p + 2) 

‘lt,p+2 1 d:l:d~J = 0. 

On the other hand adding (2.7) and (2.8) yields 

and (2.1) follows from this equality reported in (2.12). 
Let us now consider the case d = 3. Again we give a formal proof which 

can be justified by the aforementionned truncation process. We multiply 
successively (1.4)t by :IX, :~J’u and %‘UI and integrate to get 

Integrating (1.4)r once in :c, and taking the duality product of the resulting 
equation with u E Y as in dimension 2, one obtains 

(2.16) 
.I[ 

-12 + 
*#+2 
p + 1 

*up + ml’) + h2 dxdydz = 0. 1 
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Substracting (2.15) from (2.14) yields 

(2.17) .I’ [au* - bw2] dzdydz = 0: 

which rules out the case (2.3) when ab = -1. Now adding (2.16) and 
twice (2.13) implies 

(2.18) -2u2 - 4u; + 
3p + 4 

(P + l)(P + 2) 
.IL’+~ 1 dzdydz = 0. 

Adding (2.18) and (3~ + 4) times (2.14), and using (2.17), we obtain 

’ 3p 
.I[ -u2 + 

3p - 4 
2 -,u: 2 1 dxdydz = 0. 

which rules out (2.4). On the other hand, from (2.14) and (2.17) we infer 

uT2 + uf] ddydz. 

This identity plugged in (2.16) yields 

which proves (2.3) for (I, = b = 1. 

3. EXISTENCE OF SOLITARY WAVES 

In this section, we prove the existence of solitary waves solutions of 
equations (1.1) and (1.2) by using the minimization problem 1~ defined in 
Section I. The existence results are the following. 

THEOREM~.~.--L~~~=~: E=-landpbesuchthatl<p<4.Then 
equation (1.3) possesses a solution (71,. II) with II, E Y. u # 0. 

THEOREM 3.2. - Let d = 3, a = b = -1 and 1 < p < 413, then equation 
( 1.4) possesses a solution (u. II. 111) with 11, E Y, 11, # 0. 

Remark 3.1. - The uniqueness of solitary waves to (1.1) or (1.2) (when 
they exist !) is an open problem. 

As said previously, Theorems 3.1 and 3.2 will be proved by considering 
the minimization problem (1.5). More precisely, we will show that under 
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the conditions of each theorem, 1~ has a nontrivial solution II E Y. This will 
be done by using the concentration-compactness principle (see [ 141). Then. 
when d = 2 for example, if 7’ = II,;’ I/~, , there is a Lagrange multiplier 
H such that 

(3.1) - o.p.l. + II + II, 1 /‘!, = 
H 

-tP+l in Y’(P) 
p + 1 

where D,J~~I, is the element of I” (the dual space of Y in the L’-duality) 
such that for any ‘1;’ E 17 

By taking the .r,-derivative of (3.1) in D’(iw’), using the definition of 
I’ = D,;l,t~,y. and performing the scale change g = sgn( 0) lo]’ 11’ II, and 
I’= sgll(H)lBI1/” 0. one then easily see that (2. -) satisfies the system ( 1.3) 
(with I: = 1) in D’(R’). 

A similar argument works for the j-dimensional case. We now turn to 
the proof of the existence of a minimum for r,i. 

Pr-oaf o>f Theotwn. 3. I. - First, observe that I,\ > 0 for any X > 0 : this 
follows from the imbedding theorem for anisotropic Sobolev spaces (SPCJ 
[4] p. 32.3) which gives 

NOW, let X > 0 and let u,, be a minimizing sequence for (1.5). 
Then, as was noticed in Remark 1.1, there is a sequence of functions 
+P,~ which belong to LyO,(lw”) for any positive and finite (I. satisfying 
?I,,, = i),.~,,. Let v,, = a,~,, = D,;‘,u,, : we apply the concentration- 
compactness lemma of [14] to {),I = ]u,,‘]’ + /,(I,, 1’ + ]i),r~~~,,,/z (note that 
,f p,,dxd:l/ = IIU,, 11;. ,i; 1x > 0). 

(i) Assume first that “vanishing” occurs. i.e. that for any l? > 0. 

(3.2) lim sup 
‘I-+% h.!/)ER . i 

(/16,,12 + /L’,,12 + li),7,,,, I”) = 0. 
(.r.~,)+Bf+ 

where Bn is the ball of radius R centered at 0. Let (I such that 2 < (I < 6: 
then from the Sobolev inequalities in anisotropic Sobolev spaces (see [4]), 
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there is a positive constant C independent of (.I.. 11) E R2 such that if 
tgr E I,: 

X 
I 

(IP.r12 + lvu12 + j(t?.J). 
, i, J/l ! ni 

Now, covering R’ by balls of radius 1, in such a way tht; each p,rint of 
R’ is contained in at most 3 balls, we have 

for any p such that p,[. E I: From this, we conclude that under assumption 
(3.2). 11,,! - 0 in L,q for any (/ such that 2 < (1 < 6. which contradicts 
the constraint in 1,. 

(ii) Assume now that “dichotomy” occurs, i.e. that 

I lim C)(t) = fv E IO, I,J[. wllort~ for t 2 0. t++,x. 

Note that the sub-additivity condition of [14] holds here, since we have for 
X > 0: 1~ = X’/(ll-c’)I1. Assumption (3.3) will then give a contradiction 
provided that it leads to the splitting of IL,, into two sequences of, and ,I/,:~ 
with disjoint supports. In order to get ,I/! and ,u: in I’: we have to localize 
wI1 instead of ‘u,,: but since p,, is not in L”(lR”). the splitting property of 
u,, is not a direct consequence of [14]. To prove this splitting property, we 
first need to show the following lemma. 

(.I 1 
1 /‘I If(x) - ~rlL~(.f)l”f~x R<lx-x,,l<2R 

(.I * 1 

l/2 

< CI?2/4 ICf 12dX 
R<lx-x(,l<ZR 

Vol. 11. ii i ’ 2.IYY7 
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where 

and 
12 X(1.R - - {x E R2. R < /x - x01 < ZR}. 

Proof of Lemma 3. I . - The lemma is proved by applying Poincare 
inequality for zero mean-value H* functions on the bounded open set 
62 X0,~z . Then, using Sobolev imbedding theorem, we obtain the existence 
of a positive constant C(xu, R) such that 

Then the translation invariance of Lebesgue’s measure, and the scale change 
f H f(i) show that C(xa. R) = CR2/q where C is independent of x0 
and R,. n 

We are now able, with the use of Lemma 3.1, to prove the following 
Lemma 3.2. 

LEMMA 3.2. - Assume that (3.3) holds. Then for all E > 0, there is CI 
C?(E) (with S(E) s 0). such that we can jnd wfl and 1~:~ in k’ satisfying 
for n > 71,~): 

II’ 
[(,l,,y+’ + (‘up+2 - u;+2 

1 iwz 
I/ L b(E) 

and 
disk (supp ,r,f, , siipp 71,:~ ) ,,‘+;h +Oc. 

Proof of Lemma 3.2. - The proof is adapted from [ 141 by using 
Lemma 3.1. For the reader’s convenience, we give the details. Assume 
that (3.3) holds, and fix E > 0. Then we can find R. > 0. R,, > 0 with 
R, / +oc and x,, E R2 such that 
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for 71, 1 no, where 

’ Q,,(t) = sup 
I 

(1% I2 + I%, I2 + I&%, 12). 
(Ql.w)E~ ’ (so..Yo)+B1 

It follows that 

s 
(11L,J2 + I1J,12 + p.&12) 5 2E. 

Ro~Jx-x,,~~2R2,, 

Let $ and 71 E Cr(R2) be as in [14], i.e. 0 5 < 5 1. 0 5 71 5 1. 
[ z 1 on B1, supp < c B2, 71 z 1 on R2\B2, supp 71 c R2\B1. We set 
<,, = <(*); ‘I/, = 7,(3). and we consider 

u1 = a,.(<n(cp,, - G,)): 77 7,; = &(%I(%, - h)) 

where (a,,) and (h,, ) are sequences of real numbers which will be chosen 
later. Lastly we set 

and applying Lemma 3.1, we get 

Vol. 14, no 2.1997 
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In the same way, choosing b,, = ‘~t,n,, (p,!) leads to the bound 

This implies the desired estimate on ll,~f, + 7~f, - ‘II,, IIJ,L; the bound on 
II?!: + 7,: - ~I,,JI~~ is obtained in the same way. Now, consider 

~~~~76~+i!,.lL~-~.,.~lL,,~II, 

The three first terms in the right hand side of the above inequality are 
bounded as the preceding ones. For the two last terms, one may use for 
example 

All the other terms of Lemma 3.2 are bounded in a similar way; the last 
bound follows from the first one, the fact that supp 71,:~ n supp 1~: = 0 
and the injection of I7 into T,“+“(R’). 

We now continue the proof of Theorem 3.1. Taking subsequences if 
necessary, we may assume that 

with 1X1(~) +X2(e) - XI < S(E). 
l Assume first that iii:, A1 (E) = 0; then choosing E sufficiently small, we 

2 have for w large enough ,/nL(~~,I) “+2d~dy > 0. Hence by considering 

we get 

but this is a contradiction since liliOX2(~) = X. 
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l Thus, we may assume that Liz; /X1(~)/ > 0 and h::, I&(E)[ > 0. In the 

same way as before we then obtain 

We reach a contradiction by letting E tend to zero, and by using the 
fact that I, = 11, 2/(P+2)11 for any positive 1~. This ends to rule out the 
“dichotomy” case. 

(iii) The only remaining possibility is the following : there is a sequence 
(x7?) with x,, E R2 such that for all E >O, there exists a finite R > 0. 
and ~1,~ > 0. with 

.I 
x 
?/ 

Note that this implies, for r~ large enough, 

Since %L,, is bounded in Y, we may assume that P//,,~ (. - x,,) converges 
weakly in Y to some u E Y. We then have 

The following lemma shows that the injection Y c LE,,(R’) is compact. 

LEMMA 3.3. - Let u,, be a bounded sequence in Y, and let R > 0. Then 
there is a subsequence ‘YL,,, which converges strongly to II, in L”( l3,). 

We first end the proof of Theorem 3.1, afterwhat we prove Lemma 3.3. 
By Lemma 3.3, we may assume that u,,(. - x,,) converges to IL strongly 
in Lfo, But then, the inequality precedin, 0 Lemma 3.3 shows that in fact 
‘/l,,,(. - x,,) converges to II strongly in ,5”(Iw2): and by Interpolation, using 
the imbedding Y c I,‘(@); IL,,(. - x,,) also converges to IL strongly in 
L”+2 so that Ju?‘+~ = A. Since [Iu[/~- < 1’ nn infII//,, III- = 1,. this shows 
that IL is a solution of I,,,. 

Proof of Lemma 3.3. - Let S/L,, be a bounded sequence in Y. with 
‘U,, = &cp,, , cp?, E Lt0,(R2). and let u,, = a!,(~,, E L”(R2). Multiplying 
(p7, by a function ,$ E C;T(R2) with 0 < JJ < 1. ,I/) z 1 on UR and 
s11pp 7) c &n: we may assume that supp (p,, c B2n. Now since ‘u,, is 
bounded in Y. we may assume that II,, - ~1 = L),,p weakly in Y, and 
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replacing if necessary cp,, by cp,, - cp. we may also assume that cp = 0. 
Then we have 

t I . ,,,,,Rd M2 + ~,c~,~R,,,il,‘R:) IM2 
where f^(cI, &) is the Fourier transform of f(:r:, y). The third term satisfies 

The second term is bounded in the following way 

Fix E >O; then choosing RI sufficiently large leads to 

We then use Lebesgue’s dominated convergence theorem for the first term, 
having noted that since ‘u,, tends to 0 weakly in L2(R2). 

tends to zero as 11 - +oo, for a.e. ([r><2) E R2. and that ]fi,l(<)] 5 

1% IL’(BLn). n 

We now turn to the 3-dimensional case. 

Proof of Theorem 3.2. - Again, we prove the existence of a minimum for 
IX, by using the concentration compactness principle. Many details are very 
similar to the two-dimensional case, so that we will omit them. Moreover, 
to avoid technicalities, we restrict the proof to the case p = 1. 

First, we also have IX > 0 for any X > 0. since from [4, p. 3231, we have 

Let X >O, and let ‘IL,, be a minimizing sequence for 1~. Then there exists 
C,CJ,~ E LG(W3). with 8,rp,, = u,,; let u,, = i),~,, and ,111,~ = iJ,cp,,. We apply 
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the concentration-compactness lemma of [14] to /I,~ = ]p,,]‘. Since (prl is 
bounded in L’(Iw,‘) by Sobolev’s inequality, there exists a subsequence 
still denoted by /I?, such that s /),&d&z -+ /j > 0. Applying the next 

>,i+-Ix- 
lemma with 7‘ = 6 shows that /j > 0. 

LEMMA 3.4. 
0 Let p E L”(W) with iJ,rcp E Y; then cp E Ll”(R”) and there is a 

constant C > 0 such that 

l For any T with 6 5 T < 10, there exist CY,; with 0 < CY~ < 1 for 
j = 0.1, ‘2.3 and CI constant C > 0 such that if p E L”(W”) and i3,T(p E Y. 

Proof of Lemma 3.4. 
l The first inequality and the case 7’ = 6 in the second inequality follow 

directly from the generalized Sobolev inequality (see [4], p. 323). 
l If G < 7’ < 10; then we cannot take directly (I = S in the generalized 

Sobolev inequality but we first consider (1 such that :I < & < (1 < y; 
3-(7./q) then the generalized Sobolev inequality applies with /I,~ = -. 

1-1,~ = //,s = 2~1~ - 1 and /do = Y( i - Cj) . i.e. we have 

We obtain the desired inequality by interpolation, writing 

1 !+- 1-H 
3=q 2 with H E]O, I[ n 

(i) We first show that “vanishing” cannot occur. If it occured then an 
easy adaptation of Lemma 1.1 of [ 141 part II would show that (p7? tends to 
zero in L’(W”) for any *Y such that 6 < 1’ < 10 (Note that Lemma I.1 of 
[ 141 does not apply directly because we are in the “limit case” ‘1 = $& 
with the notations of [ 141, but using the fact that (p,, is however bounded 
in L”( R”) for 7’ < s < 10, one easily checks that the proof of [ 141 adapts). 
But then, the use of Lemma 3.4 contradicts the constraint. 

(ii) Next, assume that “dichotomy” occurs, i.e. that 



226 A. DE BOIJARD AND J.-C. SALT 

We define I?“. IX,,. [,, I/,, in the same way as in the proof of Lemma 3.2, 
with I,M,,/’ + ]v,,/’ + Ii),~~/,,l’ replaced by Ip,,I’: we then set p,‘, = <,,q,,. 
4 = vrryrl. and (,/I,,‘,. ,!!:, . (II,!,) = Gfi!. (?L:, . ,(I:: ,r/:z ) = r+$. By doing so, 
we have for II sufficiently large. 

(3.4) 
{ 

lIIp-,‘,II1,,, - 01 < c c”li 

lIIy&; - (/!j - o)/ < C’ cl’t). 

Now, using the fact that 

I’ 
lg,,I%x 5 2c, wl1erc x = (.c. y. 2) E FP, 

. fh1<lx-x,, iizn,. 

it is not difficult, although quite technical, to show that 

Consider for example 

5 qo<,, II;,,: P + IVY,, 11,’ .l’O:II<nvEl, IIL I 
and we conclude by using the fact that rp,[ is bounded in L”. and that 
a<,, is bounded in L”. independently of 7). Using this and the second 
inequality in Lemma 3.4, we also have 

Finally, (3.4), (3.5) and (3.6) lead to a contradiction with the subadditi- 
vity condition implied by the relation 1~ = X”/‘Ir: exactly as in the 
2-dimensional case. 

(iii) The only remaining possibility is that 3 x,, E IF!“. V E- > 0, 
3 R < +X such that for 71 sufficiently large 

Now, it is easily checked that Lemma 3.3 is also true in dimension 3. hence 
the sequence (cp,,) is relatively compact in I& (R”) by Sobolev inequality. 
This together with (3.7) shows that, modulo a subsequence, p,, (. -x,! ) + ;7 
strongly in L’(lR”) and 11,,, (. - x,,) - II = i3,>.cp E Y weakly in Y. Lastly, 
by the use of Lemma 3.4 with 1’ = 6. ?I,,, - 1~ strongly in L’([w”) and 
II is a solution of IA. 
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4. REGULARITY PROPERTIES OF THE SOLITARY WAVES 

In this Section, we prove that any solitary wave of (1.1) (resp. (1.2)) is 
a Cm function, provided p is an integer. More precisely we have 

THEOREM 4.1. - Any solita~ wa\‘e solution of (1.1) (resp. (1.2)) belongs 
to H” (UP) provided c = - 1 and p = 1,2.3 (resp. II = h = - 1 and 
p = I). Moreover, u = D,;‘u, (resp. II = D,F~YL, and BUD = D,;‘u, belong 
to HyP). 

Proqf: - We are reduced to prove regularity results for the nonlinear 
elliptic equation 

(4.1) -Au + a$ = 4~(7Pf’) in I@. 

where p = 1.2,s if d = 2 and p = 1 if d = 3. 
The difficulty arises from the non isotropy of the symbol of the linear 

elliptic operator -A + 82. We will proceed by bootstrapping, using the 
following variant due to Lizorkin [ 151 of the Hiirmander-Mikhlin multipliers 
theorem. 

PROPOSITION 4.1. - [ 1.51 Let @ : R’” --) [w be C” for I~,jl > 0. ~ = 1, . . . . 71,. 
Assume that there exists M > 0 such that 

(3.2) 

wirh k, = 0 or 1, k = k:l + kp + . . . + k,, = 0. 1. . . . . n. Then @ E MCI(WT’), 
1 < q < +CC: i.e. @ is a Fourier multiplier on L”(R”). 

We first consider the case cl = 2. Setting $1 E -uI-‘+‘, (4.1) yields 

LEMMA 4.1. - Let u E Y be a solution qf (4.1). Then 

‘7/, E {f E L6(R2) n L61(p+l)(lw2); aLf E L12/(Jj+2)(1w2), 

%.f EL w(P+l)(p): @f E Lw”+ly~*)}~ 

proof of Lemma 4.1. - By [4], Theorem 15.7, p. 323, one has 
Y C LG(R2) and therefore ‘IL P+l E Lc;‘(P+‘)(R2). It is easily checked 

out that @‘l(l) = &, @2(E) = & and %(<) = $$$ satisfy 
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the assumption of Proposition 4.1, yielding U, i)lt~, iJYll,. E zI’/(I’+‘)(W’). 
The claim that i3,,~ E L - “/(I’+‘) F!*) ( follows by interpolation between 
II E L”(R’) and 8,;~ E L”l(“+‘)(Iw’). n 

Lemma 4.1 implies that 11. 8,~. iJ,zu E I, ‘/(r’+l)(W”). By [4), Theorem 
10.2, one has 3~ E Lq(@). where (1 = +x, if 1 5 1, < 3. 3/2 < 4 < +x8 
if y = 3. In any case, one has, for f = --(uJ’~~),,.,, = -&I + I)u!‘~‘u~ - 
(p + l)U!‘U~.~, 

fEL Wz’+l)(@)* 1 <J, < 3, 

f E LyR’). v g. 1 5 ‘1 < 312. p = 3 

Another application of Lizorkin’s theorem leads to 

q=G/(p,+l), ifl<IJ<3 

1 < (1 < S/2, if 1’ = 3. 

Let II = 3:~. Then V. i)f~. i),~ E Lq(R’), and by the aforementionned 
result of [4], 

‘(1 E L”(P). 1<1’<3 

II E L”(Iw*j. v ‘I’. 3/2 < 7’ < fca, 1’ = 3. 

In both cases, we obtain that f E L”(Iw’), V r, 2 5 1’ < +xj , and Lizorkin’s 
Theorem implies that i3,$, 3zi3!,~, N~u E LY(R*), V y, 2 5 (1 < +oc. which 
implies that i),.f.&,f E LY(R”), V q, 2 5 q < fx. 

Reiteration of the process leads to the proof of Theorem 4.1 for o! = 2 
(the regularity of D,;l~~,,!, is obtained by using equation (1.3) and the 
regularity of II,). 

In the case rl = 3. (4.1) reads 

where 9 = -u’ E L”/“(Iw”), because Y c L1O/“(R”) (see [4], Theo- 
rem 15.7). Lizorkin’s Theorem still applies to (4.4) and leads to 

LEMMA 4.2. - Let ‘1~ E Y he (I solution of (4.4) (with p = 1). Then 

11 E { f E L 10/J n LqP). L),,f E L 20’yR”), i),f, dZf, a;f E L”‘“(R”)}. 

The previous lemma implies in particular that U, i)y~~,, i3Z~~6r ;?ZU E L’/“(R”) 
which implies [4], ‘(1 E L5(R3). We apply Lizorkin’s Theorem from 
~,Z(U’) = 211: + 27~831, E L”/‘(R”) to obtain 
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Another application of [4] to ‘u = 8:~ (note that d,v, i)-~, 8:~ E L”/“(R”)) 
yields 8;~ E L”/‘(R3). Similarly [4] applied to 71, (noticing that 
i3&di~,d$ E L”/“(W’)) implies that u E LY(R”). V (I: 5/4 < y < +cx 
and by interpolation, %L, E LY(R”), V y, 5/4 < g < 4. This leads to 
IL: + UU,,. E L’l(R3). V Q. 5/S < q < 2 which by Lizorkin’s Theorem 
implies that 

d~7L,d~dy’LL,d~d,U,i3~U,i322U E LQ(F!“): vy. 1 < ‘1 < 2. 

Thanks to [4] applied to ‘u = 8:~: we thus have 8:~ E LY(R”), ‘dq, 
1 < g < 10, ‘U E Lyw) and by interpolation 8,:~ E Lq(b!“), ‘i y. 
1 < y < 10/3. 

We also obtain by [4] that i):18,;ZdF3~ E Lq(Iw”), where 

!2+:+7 <i,$ i.e. 

3 %- 
cyl + 202 + 20~~ < - + 3 

2 y: 
and l<q<+cG. 

Lizorkin’s Theorem implies that @u, 8z8Y~7 a:aZu, 8;~ 8:~ E Lq(lR”), 
\J q < 10 and also (because ~u,u,., + MI,,,,. E LY([wy), V q < 1()/3); that 

f$L, i3,~,,u.~~iJZU,d,:i-J,2u,a,a2u E L”(P). vq < 10/x 

By [4] again, 

Thus, U, dEu, a;~, dyes,, 8,~. 8zu, &i),,~. aJaYu E L”(Iw”). This implies, 
setting f = 1~: + UU,.,., that f, a,f E L”(Iw”): and d,f, 8:-.f E Lq(Iw”), 
V y < 10. Theorem 4.1 is now obtained by reiteration (again, the regularity 
of D;lr~,,~ and D;lu, follows from the regularity of *(I, and equation (I .4) 
which gives AD;~u~ and ADJ~u, E H”). n 

Remark 4.1. - In the case where p is not an integer (1 < p < 4 if 
d = 2 and 1 < p < 4/3 if d = 3), the previous method only gives a 
finite order regularity for the solitary waves, since in this case, f(~) is 
not a C” function of II,. 

Remark 4.2. - It is worth noticing that, contrarily to the solitary waves of 
Korteweg-de Vries or nonlinear Schrodinger equations, the solitary waves 
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of Kadomtsev-Petviashvili equations are neither radial, nor positive, and in 
general do not decay exponentially to 0 at infinity, as shows the example 
of “lumps” solutions of the KPI equation : 

We do not know whether the solitary waves obtained in Theorems 2.1 and 
2.2 decay with the same algebraic rate or not. (Added in proofs: a positive 
answer to this question has been given in [23].) 

5. AN EXTENSION AND FINAL REMARKS 

The results of the previous sections can be extended in various ways. We 
consider here the 20 and 30 versions of a fifth order KdV equation which 
have been investigated numerically by Abramyan and Stepanyants [3] and 
by Karpman and Belashov ([l I], [12]). They read 

(5.1) 
{ 

ILt + ul’?L.r + ‘us.r.r + n‘16,~,,.l:,~,i. - Iii, = 0, 

1 II. = ‘U Y 

in the 2-dimensional case and 

in the 3-dimensional case. In both cases, h = fl. Let 

endowed with the norm 

where u = i),.~. Here is our result concerning (5.1) and (5.2). 

THEOREM 5.1. - (i) The equation (5.1) has no nontrivial solituy 
wave u = &cp E Z satisfiing II, E H1(W2) n L~c(R2), d,$, il,$u and 
+P E G”,P2), !f 
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or 
s = 1, l<p<4, 

and c is sufjciently large. 
For ~5 = -1 and p arbitrary, it admits a non trivial solitar), wave u E Z 

which is a HxI(Iw2) function when p is an integer. 
(ii) The equation (5.2) has no nontrivial solitary wave IL = i3,(p E Z 

satisfying 1~ E H1(R3) n L2(r’+1)(R”) n LrC(R”), azu, i?;fu., ?$cp and 
t&J E Lfo,(R”), if 

Y L 813 n = -1 

or 

or 
l<u<2, S = +l and c &ficiently large. 

For h = -1 and 1 5 p < 813, it admits a non trivial solitary wave 
II, E Z which is a H” function if p = 1, 2. 

Remark 5.1. - Solitary waves for (5.1) (5.2) have been observed 
numerically for S = -1, p = 1 in [3], [II], [12]. 

Proof of Theorem. 5.1. - We first prove the non existence part. The proof 
is similar to that of Theorem 1.1 though the algebra is different. We just 
give the Pohojaev type identities. For equation (5.1) we get successively: 

(5.4) 

(5.5) 

(5.6) 

-g+2 1 
p + 2 

.r[ -IL2 2 c - k+ 1)b+2) 1 1 d:CdlJ = 0 

Substracting (5.4) from (5.5) we obtain 

Vol. 14, no 2.1997 



232 A. DE BOUARD AND J.-C. SAUT 

and adding (5.6) (5.7) yields 

.I’ [Uf - 2&L& - 21121 dxdy = O? 

while adding (5.4) and (5.5) implies 

The next steps consists in plugging (5.8) and (5.9) into (5.7) to get 

(5.10) .I’ [2& + (yp + ~u:z]dxd?J = 0 

which proves that no solitary wave can exist for 5 = + 1 and ?, 2 4, or for 
S =l, 1 5 p < 4, when c is sufficiently large, namely c > v (we have 
used the inequality 11~~11:~ I /?LIILL IIu,,I/~~). 

As for equation (5.2). we find the Pohojaev identities 

(5.11) 
.i[ 

,,JP+z 
-“,2 + ___ _ 3 2 2 

2 pf2 ‘LU; + $h&. + 5 + F 1 dx,$& = 0 

(5.12) 

.r[ 
‘1,g 1 2 

2 - (P + l)(P + 2) 
‘lLpf2 + ;,,? - $ - % + ; dzdy& = () 1 

(5.13) 

.i[ 

c 1 2 2 
4 - 
2 (p + 1) (p + 2) %I!+2 + ;?,: - ;u;, + ; - F dmjydz = () 1 

We add (5.12) and (5.13) to obtain 

Now we add (5.11) and (p + 1) times (5.15) and get 

(5.16) .I’ [ q,u2 + t&y - 2) - bu:,(p - 4) + u2 + w’] dxdydz = 0. 

Our claim for S =l, 1 2 p < 4 resultsLfrom (5.16) (In the case 1 5 p < 2 
we have non existence for c > - &!$I. 
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To solve the remaining cases we need a few more identities. First, 
substracting (5.13) from (5.12) yields (independently of the value of n) : 

(5.17) 
J’ 

w2d:cdydz = 
s 

w2dzdydz. 

Then adding 2 times (5.13) to (5.14), and using (5.17), we obtain 

1 2 . 

(P + l)(P + 2) 
?dLlTd?JdZ. 

* /’ 
uPf2dxdydz = 1, 

.I 

This identity plugged into (5.15) yields 

(5.18) 
.I ‘1 cpu2 + puf - pSu;, - 4v2] dzdydz = 0, 

which with (5.16) and (5.17) imply 

(5.19) 
.I 

[3q& + (3p - 4)UE - S(3p - 8)&] dzdydz = 0. 

This rules out the case S = -1, p > 8/3. Note that the cut-off value 
p = 8/3 for p corresponds to the imbedding 2 c L1”/3(R3) (see below). 

In order to treat the last case 6 =l, p 2 4, we substract $ times (5.19) 
from (5.16) to get 

(5.20) 
.I’ 

[-IL; + 26~;~ + 3w2] dzdydz = 0. 

Eliminating the U& term thanks to (5.18) leads to 

.I[ 2cu2+u;+ (3-;)u2]dxdydr=0. 

which rules out the case p 2 8/3 (for 6 = &I). This concludes the non 
existence proof for d = 3. 

We now turn to the existence proof. Let d = 2 or 3, h = - 1, z > 0 and 
1 5 p < 8/3 if d = 3 (p arbitrary if d = 2). The proof of existence of 
a solitary wave for (5.1) or (5.2) is similar to the proof of Theorem 2.1. 
Consider for X > 0 the minimization problem 
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Note that JA is well defined since we infer from [4] that 

We then proceed as in the proof of Theorem 2.1 and find a minimum II, E .Z 
of .Ix, which after a scale change satisfies 

(5.21) 
1 

-Ub, + lLIJ’u,,r + ‘lI,~,r,~ - ‘ll,,,,’ ~d’,~ - ‘l,y = 0, if (I = 2 

‘II, = ‘II,, 

and 

(5.22) 

-fClL, + ll,~71,,~ + IL,,,, - ‘IL,,,,,,,, - II!, - ‘UI, = 0. if d = 3. 

Ii’,? = ‘lLY) 

‘111, = II, . 

Note that here, no resealing allow us to suppress c in equations (5.21) 
and (5.22). This explains why we have to introduce c in the minimization 
problem .]A. 

The regularity of the solitary wave is obtained by the same method as 
in Theorem 4.1. H 

We conclude this section by some remarks and open questions. 
1. We postpone to a subsequent paper [23] the study of further properties 

of the solitary waves and the study of solitary waves of Kadomtsev- 
Petviashvili type equations with non pure power nonlinearities (see a 
physical example of such equations in [ 161). 

2. One could also consider solitary waves propagating along an arbitrary 
direction, i.e. of the form ,u,(:c - cit. y - c2t) (resp. U(X - cl t, !/ - c2t, 
z - cst)), with cl > 0. In this case, the change of variables .I.’ = .I’. 
y’ = y - ~EC~:C (resp. z’ = :c, 1~’ = y - ~uc,:c, Z’ = z - +bc33:) allows 
to get back to a solitary wave propagating along the z-direction with a 
velocity c = cl + EC;/~ (resp. c = cl + a~$/4 + Oci/4). The computations 
in Section 2 then show that no such solitary wave exist if c’ = +l, or 
E = -1, cl > ~$14 and p > 4, or E = -1, cl < &4 and p 5 4 (resp. 
ab = -1, or CL = b = 1, or (I = b = -1, cl > (cz + ci)/4 and p > 413, 
or IC = b = -1, cl < (c: + cz)/4 and p < 4/3). On the other hand, 
the existence theorem in Section 3 shows that when E = -1, 11 < 4 and 
cl > cs/4 (resp. (1, = b = -1, p < 4/3 and (~1 > (c; + ci)/3), there is 
a solitary wave solution 71, E Y. 
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3. An interesting question is that of stability of solitary waves. To our 
knowledge no rigorous result is known so far concerning the orbital 
stability of solitary waves for Kadomtsev-Petviashvili type equations 
(even for the lumps of KPI). As to instability, it is claimed in [ZO] that 
the solitary waves of (4.1) with E = -1, f(~) = 1~~ are unstable for 
y > 4/3. (Added in proofs: see [24] for an answer to this question.) 
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