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ABSTRACT. — We study the uniqueness and expansion properties of the
positive solutions u of () Au+ hu — ku? = 0 in a non-smooth domain €2,
subject to the condition u () — oo when dist(x, 9§2) — 0, where h and
k are continuous functions in €, £ > 0 and p > 1. When 950 has the
local graph property, we prove that the solution is unique. When 9€2 has a
singularity of conical or wedge-like type, we give the asymptotic behavior
of w. When 02 has a re-entrant cuspidal singularity, we prove that the
rate of blow-up may not be of the same order as in the previous more
regular cases.
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RESUME. — Nous étudions les propriétés d’unicité et de comportement
limite des solutions positives « de (£) Au+hu—ku? = 0 dans un domaine
non régulier €2, sujettes a la condition u () — oo quand dist (z, 0§?) — 0,
ol h et k sont des fonctions continues dans Q, k > 0 et p > 1. Quand OS2
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238 M. MARCUS AND L. VERON

a la propriété du graphe local, nous démontrons que la solution est unique.
Quand 0f) a une singularité de type conique ou diédrale, nous donnons
le comportement asymptotique de u. Quand Jf) a une singularité cuspide
rentrante, nous montrons que l'ordre de I’explosion peut ne pas étre le
méme que dans les cas précédents.

0. INTRODUCTION

In this paper we study positive solutions of the problem
Au+hu— kv =—f in £, 0.1)
u(x) = oc as 6 (x)=dist(x, Q) — 0 (0.2)

where © is a domain in R or SV (=the unit sphere in R¥*!) with
(possibly) non-smooth boundary. Here N > 2, p > 1 and h, f, k are
continuous functions in © with & > 0 and f > 0. In order to simplify the
presentation, we shall confine our discussion to bounded domains. However
the results can be extended to unbounded domains with compact boundary
and also to some classes of domains with unbounded boundary. In fact,
positive solutions of the problem in unbounded conical domains play an
important role in the present study.

The mains topics treated in this paper are, existence and uniqueness,
rate of blow-up of solutions at the boundary and a principle of localization
which is central to our investigation. Our main interest is in the study
of these problems in domains with non-smooth boundary. An uniqueness
result in domains with non-smooth boundary was recently established by
Le Gall [LG] (by probabilistic methods) in the case p = 2, h = 0 and
k = 1. In the case of domains with smooth boundary i.e. boundary of class
C?, existence uniqueness and rate of blow-up of solutions for problem
(0.1), (0.2) (and also for more general equations) have been thoroughly
investigated (see [BM1,2,4] and [V1] and the references cited there). The
existence and uniqueness results of the present paper can also be extended
to a larger class of problems, similar to the one treated in [BM4]. These
and other extensions will be discussed elsewhere.

We turn now to a brief description of the main results.

(i) Existence. If () is a domain satisfying the exterior cone condition then
Problem (0.1), (0.2) possesses a maximal and a minimal positive solution.
(Corollary 1.10).
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SOLUTIONS WITH BOUNDARY BLOW-UP 239

(ii) Uniqueness. 1f € satisfies the local graph property then Problem (0.1),
(0.2) has at most one solution. (See Theorem 2.2).

A domain ) satisfies the local graph property it every point P € 92 has
a neighborhood () p and a local set of Cartesian coordinates £ with origin
at P, such that QN Q, = (£ € Oplén < Fp (&1, .... En—1)) where Qp is
a neighborhood of the origin and Fp € C(RY~1), F, (0) = 0.

Under this general assumption on {2 it is not known if a solution of
problem (0.1), (0.2) exists and if it exists, the rate of blow-up at the
boundary is not known. Therefore, in contrast to previous works, the
uniqueness result is not based on information of this type, but on a direct
comparison of solutions, More precisely, it is shown that if uy, u» are
solutions of the problem, then wu;/us — 1 at the boundary. (A preliminary
version of this result was presented in [MV]).

(i) Rate of blow-up at the boundary. It is known that if 9 is of class
C? then every solution u of problem (0.1), (0.2) (with k = 1) satisfies,

w(x)s (o) ¢y as d(e)—0 (0.3)

where ¢, is a constant.

We show that this result remains valid if €2 is of class C'. In addition,
if £2 is a domain with piecewice C'' boundary, we prove that the rate of
blow-up is the same as above but the limit in (0.3) exists only if « — I
where P is a regular point of 0f2. Otherwise the limit depends on the
direction of approach to P and on the geometry of the boundary near P.
(For a complete description of the asymptotic behavior of solutions in this
case, see Theorem 3.7). Finally, if €2 is a Lipschitz domain, we show that
the rate of blow-up is the same as above, but the limit in (0.3) may not
exist. (Theorem 2.5).

If the domain is not Lipschitz the rate of blow-up of solutions at the
boundary will in general depend on the limiting point and may be lower
than the rate described in (0.3). Such behavior can be observed in the case
of domains whose boundary contains a re-entrant cusp, (see Ch. 4). Suppose
that {2 is a domain with smooth boundary except for a standard re-entrant
cusp at Py. Let (r, o) denote a set of spherical coordinates centered at .
Then, if 1 < p < (N —1)/(N — 3) every solution u of problem (0.1),
(0.2) exhibits the following behavior near Fy:

w(r, o) P2/ =1 oy, (o) as r—0, (0.4)

where w is a solution of a semilinear equation on S™~1 (related to (0.1))
which blows up at one point (essentially the point where the “axis” of the
cusp intersects the sphere). However if p > (N —1)/(N — 3), then (0.4)
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240 M. MARCUS AND L. VERON

holds with w = O (Theorem 4.1). In this case the rate of blow-up is lower
than r=2/(*=1) depending on the geometry of the cusp. (For details see
Theorem 4.2 and 4.6).

The investigation of the behavior of solutions near the boundary depends
in an essential way on the following principle which is closely related to
the uniqueness result.

(iv) Localization principle. Let ) be a domain satisfying the local graph
property and let I" be a relatively open subset of its boundary. Let «; and
uy be solutions of (0.1) which blow-up as © — I'. Then wy /us — 1 locally
uniformly as « — ' (Proposition 2.4).

(v) Stability. Suppose that ) is a domain satisfying the local graph
property with F), Lipschitz (see (ii)). In this case problem (0.1), (0.2)
possesses a unique solution which is stable in the following sense.

(a) The solution u depends continuously on k. More precisely if w,
is a solution of the problem with & replaced by k; (i = 1. 2....) and
ki/k — 1 uniformly then wu,/u — 1 uniformly (This is a consequence of
Proposition 2.4).

(b) The solution « depends continuously on the domain (See Propo-
sition 2.7).

1. A COMPARISON LEMMA AND EXISTENCE RESULTS

Let © be a bounded domain in R, N > 2. In this section we consider
positive solutions of the equation,

AuAd by —kfu ™ u=—f in Q, (1.1
where h, k, f € C(Q), k > 0, f > 0 and p > 1. (For technical reasons
it will be convenient to assume that /i, k, f are defined and continuous
in a neighborhood of ) A positive solution of (1.1) which satisfies the
condition,

u(x) — oo as o(x)=dist (x, Q) — 0 (1.2)
will be called a large solution. We start with a comparison resulit.
Lemma 1.1. — Let @ be a bounded domain. Let wy be a weak positive

supersolution and us a weak non-negative subsolution of (1.1) belonging to
WL 2(Q)NC (). Accordingly, if w is a non-negative function in W2 (§2)

loc

which has compact support in §Q, then,

(Vuy Vw — huy w + kvl w)de > fwdzx, (1.3)
Jo Ja
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SOLUTIONS WITH BOUNDARY BLOW-UP 241

and

/ (Vuy Vw — huyw + kubw)dr < fwdx. (1.3);
Ja

Ja
Under these assumptions, if

limsup (ue — ug) (x) <0, (with é (z) = dist (z, 0Q)), (1.4)
Id (;1:)—>0

then wy > ug in ). If, in addition, (1.4) holds with strict inequality and
uy, ug are in C? () then uy > uy in Q.

Proof. — We shall employ (a variant of) a method due to [BBL]. Let
£1 > g9 > 0 and denote w; = (u; + ;)7 ((un + 89)% — (uy +¢1)%)4
(i =1, 2). Observe that w; belongs to W, (2) and (in view of (1.4))
it has compact support in €. Using (1.3), with w = w; and substracting,
we obtain

— / [Vus Vwe = Vus Vurlde — [ f{w —wsy)de
Jo

Q

> / k(z)(ubwy —ulw)+ [ hiz)(ugwy —ugws) (1.5)
Jo Jo

Denote §2 (g1, e2) = {x € Q : uz(2) + €2 > uy () + €1} and note that
the integrands in (1.5) vanish outside this set. The first integral on the Lh.
side of (1.5) equals,

2

} do.

_/ [}VILQ—YL2+E2V711
S, (61, €2) Uy + €1

Noting that wy > ws in 4 (&1, €2), we conclude that the Lh. side of (1.5)
is not positive. On the other hand as ¢; — 0 (recall that £, > £5 > 0) the
r.h. side of (1.5) converges to

/ k(z) (ud™" —ub™Y) (u2 — u?) da.
Jou (0,0

2
U + €1

Uy + €9

v Uz

+|VU1——

(Indeed, in Q4 (e1, €2), up > uy > 0 so that w; — u;' (v —u?) as
g; — 0. In addition the integrands on the r.h. side of (1.5) are dominated
by integrable functions.) Unless 2 (0, 0) is empty, the limiting value of
the r.h. side of (1.5) is positive.

Since this leads to a contradiction we conclude that uy < uq in Q. If

uy, up € C?(§2) and (1.4) holds with strict inequality then, by the strong
maximum principle, us < w; in €. (Indeed if u; = wuo at some point in €2,
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242 M. MARCUS AND L. VERON

then there exists an arbitrarily small ball B C €) such that u; = w» at its
center, but w; is not identical to u, in 3. This contradicts the generalized
maximum principle. U

Remark 1.2. — The following variant of lemma 1.1 can be established
by the same argument as above.

Let wy be a weak positive supersolution and us a weak non-negative
subsolution of (1.1) belonging to W )((2 (A(c()rdlngl\ (1.3).2 holds
whenever w is a non- negative )‘metlon in Hl (2).) Under these
assumptions, if (uy — uy) € W 2 () then uy > us in €.

Employing lemma 1.1, a standard argument yields the following existence
result.

LemMA 1.3. — Let 2 be a bounded domain with C* boundary. Suppose that
k. f € Cv(Q) for some «« € (0, 1). Then there exists a large solution
()f (l.l) in C?(£2).

Proof. — If 4 is a non-negative function belonging to W2 ()N C (),
then there exists a bounded, non-negative solution w of (1.1} in
WH2() N L>= () such that (u—1) € Wi 2 (2). Indeed, u = 0 is
a subsolution of our problem, while 7 = M where M is a constant such
that M > supy, v and k M? — h M > f in €1, is a supersolution. Thus
there exists a solution u as above, such that 0 < u < M. If in addition
¢ € W2 () then by classical regularity theory, u € C*® () N C(Q).
Finally by the strong maximum principle, « > 0 in 2. By the previous
lemma this solution is unique.

Now let u,, be the solution of (1.1) satisfying w, = nond{d,n =1, 2, ..
The estimates of Keller [K] and Osserman [O] imply that {u, } is locally
uniformly bounded in . By the previous lemma {u,} is monotone
increasing. Consequently, {w,} converges locally uniformly in @ to a
solution u of (1.1) which obviously satisfies (1.2). U

Remarks 1.4. — (i) The solution w obtained as the limit of {u,} is
obviously the minimal large solution. It is in fact the supremum of all
bounded positive solutions of (1.1} in (1.

(ii) If © is an arbitrary bounded domain and if there exists a large
solution of (1.1) in €2, then there exists a maximal solution, i.e. a solution
which dominates every positive solutions of (1.1) in €. Indeed if {Q,}
is a sequence of smooth subdomains of 2 such that Q, C 2,4, and if
v, is a large solution of (1.1) in €, then {v,} is monotone decreasing
and converges (locally uniformly in €2) to a solution » of (1.1). Lemma 1.]
implies that v dominates every positive solution of (1.1) in €2.
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SOLUTIONS WITH BOUNDARY BLOW-UP 243

(iii) The result stated in Lemma 1.3 remains valid if € is a domain
contained in the unit sphere SV¥~! and if A is replaced by the Laplace-
Beltrami operator A, in (1.1). Indeed, the stereographic projection Px
transforms this problem into a similar problem in the domain Py  in RV L.

Next we describe a construction of certain special solutions of (1.1) that
will play a key role in the proofs of the existence and uniqueness results
to follow.

Lemma 1.5, — Let Q be an arbitrary domain in RY and suppose that there
exists a large solution of the equation Auw = u? in Q. Let = be a compact
subset of OQ and let P € Z. Suppose that, for everv 6 > (), there exists an
open, connected neighborhood of P, say Qp, with C? boundarv, such that,

Qp = QpNQis a simply connected domain,

Qp CEy = L dist (0, E) < 8} and 02N Qp = QN Qp.

Then there exists 69 > 0 (which depends on = but not on P) such that, if
p is contained in Zg,, the following statements hold.

(a) There exists a large solution of (1.1) in Qp;

(b) There exists a positive solution v of (1.1) in Qp such that,
v(x) — oo locally uniformly as ©—1't = 00N Qp, (1.6,

veC(Qpuly) and v=0 onTy=0NndQp. (1.6),

Proof. — (a) Let b = 2supg k and let ¢ = sup {—h (x)t — 1 bt” : £ > 0,
x € Q}. Then, every positive solution u of (1.1) satisfies

Au < bu? +c. (1.7)

Let U be a large solution of Au = 2bu? in Q. Let M = inf {U (x) : 2 €
QN Es} and choose &g sufficiently small so that b M? > ¢. Then

AU >bUP + ¢ in Qp. (1.8)

Let {6, } be an increasing sequence of domains with C'? boundary such
that

0,C0,,CQ and 6,1 Qp.

Let u, and V be large solutions of (1.1) in ©, and (Jp respectively.
By lemma 1.1 {u,} is monotone decreasing and u, > V in ©,. By the
maximum principle, (1.7) and (1.8) u,, > U in ©,,. Hence lim u,, is a
large solution of (1.1) in Qp.
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244 M. MARCUS AND L. VERON

(b) In the proof of the second statement we may assume (in view of (a))
that there exists a large solution of (1.1) in ©. Now, let {©,} be an
increasing sequence of domains with C? boundary such that,

O, CQp, 0,10 and Q2p\O, C K, = {x : dist (z, T) < 27"},

Denote I'y ,, = 00,NK,,, 5., = 90,,N(K ). Thus s , C T3, 11 C Ty,
We shall also assume that the sets ['; ,, are disjoint.

For every n, consider a sequence of functions {, x}72, on 00,
satisfying the following properties.

Onk=konly ,; ¢, =0forzels, suchthatdist (z, I'; ,) > 27"

0 < ¢,.x < k everywhere; ¢, , € C*(00,,);

Ok > Pno1,k on Loy yand @, < 9y k1 on 0O,

Let v, , be a solution of (1.1) in ©,, such v, ; = ¢, , on 00,. By
lemma 1.1 {v, x}32, is monotone increasing and (by a standard argument)

the sequence is locally bounded. Hence v, = limy—oc Un, x 18 @ solution
of (1.1) in 6, such that

v, — o0 asr—1I1,: v,€eC(O©,Uls )
and (1.9)

v, =0 onIy,.

Furthermore, by their construction, v,, > ¥,41, so that {v, } is monotone
decreasing. Consequently v = lim,,_ ., v,, is & solution of (1.1) in Qp. If
V is a large solution of (1.1} in Qp, v, + V is a supersolution of (1.1)
in ©,, which blows up on 00,,. Hence v, + V > U, where U is a large
solution of (1.1) in 2. Thus v + V > U and this implies (1.6);. Finally,
by (1.9) v satisfies (1.6),. [l

Remark 1.6. — (i) If € is bounded and if the assumptions of lemma 1.5
holds w.r. to every P € 01} then the existence of a large solution of the
equation Au = u? in {2 implies the existence of a large solution of (1.1)
in ) and conversely.

The first statement follows from part (b) of the lemma. Consider a
sequence of smooth domains {€2,,} such that Q, T Q. If w, is a large
solution of (I.1) in €, then {u,} is decreasing and for every P € 01},
the solution v constructed in part (b) is a subsolution in €2,, N 2p. Thus
lim u, > v in Qp.

An examination of the proof shows that the lemma remains valid if the
roles of the two equations involved in it are reversed. Therefore the same
is true w.r. to the statement of the remark.
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(it) If it is assumed that there exists a large solution of (1.1) in  then
the assumption “G}p C =" is not needed for statement (»). (In fact it is
even sufficient to assume that there exists a local subsolution of (1.1) near
the boundary, which blows up on df2.)

Using the construction described in the previous lemma we can extend the
existence result of lemma 1.3 to a larger class of domains as defined below.

DeriNiTION 1.7. — A domain {2 satisfies the exterior cone condition if there
exists a bounded spherical cone K (e.g. K = {(r, 0): 0 <r < R, 0 € 5}
where S is a spherical cap on S™V1), such that for every P € 9Q there
exists acone K p with vertex P and congruent to K, which is contained in
the complement of £2. The transformation mapping K onto Kp (composed
of a rotation followed by a translation) will be denoted by Tp.

A domain §) satisfies the exterior segment condition if the previous
condition holds, with K a bounded segment.

ProprosiTION 1.8. — If Q is a bounded domain in RN satisfying the
exterior cone condition, Equation (1.1) possesses at least one large solution.
Furthermore, there exists a function ¢ € C (0, oo), which tends to infinity
at zero, and a positive number 6y (both of which depend only on K), such
that every large solution u of (1.1) satisfies,

u(x) > o (dist (z, Q)), in {x € Q:dist (x, OQ) < o}.  (1.10)

Proof. — Consider a cone Cg ={(r,0):0<r <R, o€ S} Denote,

I ={(ro):0<r<Ro€dS}, Ty={(r.o):r=R, oeS5)}

We claim that for @ = CF there exists a solution of (1.1) such that,
uwe CH(CHnC(CRuUTy) and =0 on Iy, (111,

u(z) — oo locally uniformly as z - I';. (1.11),

This is a consequence of lemma 1.5 and the fact that there exists a large
solution of the equation Au = «” in the unbounded cone Cs = CZ°. Such
a solution is given by,

ug (r, o) = 21 g (o) (1.12)

Vol. 14, n® 2-1997.



246 M. MARCUS AND L. VERON
where wg is a large solution in S of the equation,

Ayw+ AN, p)w —w? =0,
2 2] (1.13)
A(N.p) = ( P N)}

p—1\p-—1

Now suppose that the cone K mentioned in Definition 1.7 is given by
K = CE and let K’ denote its complement in the R-ball. Let v be a
positive solution (in K') of the equation,

Av = kv — ho (k=sup k. h = i?)f h) (1.14)
0 !
which satisfies the boundary conditions corresponding to (1.11);,. Thus v
vanishes on the spherical boundary of A and blows up (locally uniformly)
on the lateral boundary. Finally let K}, = Tp K" and vp = v o Tp.

Let {2,,} be a sequence of domains with smooth boundary such that
Q, C Quyr CQand Q, T Q. Let w, be a large solution of (1.1) in £2,,.
By lemma [.1 {u,} is decreasing and w, > vp in K}, N §2,,. This implies
the stated result. [

Remark 19. — If 3 < N and 1 < p < (N — 1)/(N — 3) then
Proposition 1.8 remains valid if the exterior cone condition is replaced
by the (weaker) exterior segment condition. Similarly if | < p <
(N =k —1)/(N—k—23) for some integer & such that 0 < hk < N — 1
then the proposition remains valid if the exterior cone condition is replaced
by the exterior (% 4+ 1)-dimensional plane condition.

We sketch the proof which is similar to that of Proposition 1.8. If
k = () Equation (1.13) possesses a positive solution in S~ ! which blows
up at one point, say a. Let wg, S = SV "\{oy}, be such a solution
and let ug be as in (1.12). Then ug satisfies the equation Au = u! in
Dy, ={(r.o):0<r. 0S¥ ' o# 0y} and blows up at the boundary.
Using this fact one can proceed as in the proof of Proposition [.8.

ForO <h<N-—4 ifp>(N-—Fk—1)/(N—Fk—3). singularities of
solutions of (1.13) concentrated on a k-dimensional submanifold of SV~
are removable (see [V2]). However, if 1 <p < (N -k — 1}/(N -k —3).
there exist solutions of (1.13) which are singular on a k-dimensional
submanifold. Therefore there exist solutions of Au = u? of the form (1.12)
with § = SV~I\A where A is a k-dimensional submanifold of S*~1.
Consequently, for such values of p. the existence of large solutions can
be established if the domain satisfies an exterior (k& + 1)-dimensional plane
condition.
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CoroLLARY 1.10. — if Q is a bounded domain in RY satisfving the
exterior cone condition, equation (1.1) possesses a minimal and a maximal
large solution.

Proof. — The large solution constructed in the proof of the proposition
is obviously the maximal large solution. In order to obtain the minimal
large solution we consider a sequence of domains {G,} such that
QC G, CG,. NG, =Qand {G,) satisfies the exterior cone condition
uniformly, i.e. there exists a cone K as in Definition 1.7 such that, for
every n, (7, satisfies the exterior cone condition with respect to K. Let w,
be a large solution in G,,. Then {w, } is monotone increasing in €2 and it
converges to a solution w of (1.1). The last statement of Proposition 1.8
implies that the rate of blow up of w,, at JG,, is uniform with respect to n.
Since w, < w, w blows up at 9G. Clearly w is the minimal large solution.

2. UNIQUENESS, BOUNDARY ESTIMATES AND CONTINUOUS
DEPENDENCE OF LARGE SOLUTIONS ON THE DOMAIN

In this section we present an uniqueness result for large solutions of (1.1)
in domains with non-smooth boundary, we derive boundary estimates for
such solutions in Lipschitz domains and we demonstrate their continuous
dependence on the domain. We start with a definition needed for the
statement of our uniqueness result.

DeriNniTion 2.1, — Let © be a domain in RY. We shall say that ()
satisfies the local graph property if for every boundary point P there exist
a neighborhood () p, a set of coordinates £ obtained from x by rotation and
a function Fp € C (R 1) such that

(Jp N = (2[) N G(Fp) with G(]"p) = {5 : EA\' < [‘jp (é| E‘Vﬁl)}.

The class of domains (2 satisfying this property will be denoted by C,.
If this condition holds with Fp € C%! (R¥~1) we shall say that € is
of class €Y1

Tgr

Note that every bounded domain of class Cy, (resp. Cp.') possesses
the exterior segment (resp. cone) condition. In fact it is known that the
local graph property is equivalent to the segment property, but this fact
will not be used here.

The following is our main uniqueness result. A special case, dealing with
the equation Aw = wP, was proved in [MV].
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248 M. MARCUS AND L. VERON

TueorREM 2.2. — Let 2 be a bounded domain of class Cy,.. Then
Problem (1.1) possesses at most one large solution.

Proof. — Suppose that w is a large solution of (1.1). Note that for every
¢ > 0 there exists . > 0 such that

E(l—g)u’ Au<k(l+e)u” in {xe Q:dist(x, 09)> 5.}

Let P € 99 and assume (as we may) that the set Jp mentioned above
is an open, bounded spherical cylinder centered at P, with axis parallel
to the &y axis. Thus,

Qp = 1{n:1| <pp.[nx] <7r}.
where = ¢ — P and ' = (#,..., yn—1). By appropriately choosing op
and 7p we may also assume that J€) is bounded away from the ‘top’ and
‘bottom’ of the cylinder () and that 92 N Qp = IQ N Qp. Finally we
assume that pp and 7p are sufficiently small so that Lemma 1.5 can be
applied to (p and so that,
E(PY(L—=a)ul () < Au < k(P)(1 +e)u? ().

Yo €e®=QpnNI }
Recall that, by Remark 1.6, the existence of a large solution of (1.1) in €2
implies the existence of a large solution of the equation Au = u” in (2.
Therefore by Lemma 1.5, there exists a solution « of the problem,

2.1

Av=v" and ©v>0 in ®=0QpNAL, (2.2)
v(x) — oo locally uniformly as = — Qp N OS2, (2.3)
v(x) — 0 locally uniformly as @ — d@Qp N L (2.3)

Next denote,

o) = (k(P)(1—g))~ /=1y and vy = (k(P)(14¢))~ Y=y,

and let w be the large solution of equation (2.2) in @ p. We claim that,
ve < u < v +w in 6. (2.4)

To verify this claim, let £ denote the unit vector parallel to the axis of
Qp such that P+ £ is outside Q2 and set O, = {x ~0cf: 2 € O, 0 > 0}. If
f is a function defined in ©, set f, (x) = f (x + o) for z € B,. Assume
that o is a sufficiently small positive number so that &, CC 2. Then
11, » + W, 1S a supersolution in ©, and hence vy, , + w, > u there. On the
other hand, by (2.1), v2. _, < u on d(©_, N Q) and hence vy, , < u in
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©_, N Q. Thus, for 0 < o sufficiently small, vy _, < u < uy,, + W, In
©_, N O, and hence, letting ¢ tend to zero, we obtain (2.4). Finally, since
w is bounded in every compact subset of () p, it follows that

w(z)/(k (x) Py (1) - 1

(2.5)
locally uniformly as & — Qp N JS2.
Therefore if u;, uy are large solutions of (1.1), then
uy () /us (z) — 1 as dist (x, 92) — 0. (2.6)

Consequently, for every € > 0 there exists a neighborhood (92), of the
boundary where u; < (1 + &) us. Hence, by the maximum principle, the
inequality holds in €. Thus u; < us and by symmetry, u; = uy in Q. O

CoroLLARY 2.3. — If Q0 is a bounded domain of class C,, satisfying
the exterior cone condition, then Equation (1.1) possesses a unique large
solution.

Proof. — This is a consequence of Proposition 1.8 and Theroem 2.2. [

We observe that the arguments employed in the proof of the theorem
yield also the following.

ProposITiON 2.4. — Let Q@ be a domain of class Cg, (not necessarily
bounded).

() If w is a large solution of (1.1) and U is a large solution of AU = U?
in £}, then

w(z)/(k(x) VU (2)) = 1 locally uniformly as = — 0. (2.7)
(ii) Let T’ be a relatively open subset of 0S). Suppose that G is a positive
solution of (1.1} such that,
@ (x) — oo locally uniformly as 2 — T. (2.8)
If u is a large solution of (1.1), then
w(z)/u(x) — 1 locally uniformly as © — T. (2.9)

Proof. — Under the assumptions of part (ii), statement (2.5) holds for
every point P € I, for both » and . Hence (2.9).

Under the assumptions of part (i), u satisfies (2.5) as stated while U
satisfies (2.5) with the same function v but with &£ = 1. Hence (2.7). O

The next result provides estimates near the boundary for large solutions
in Lipschitz domains.
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THEOREM 2.5. — Let §) be a bounded Lipschitz domain. Then there exist
positive constants ¢y, ¢o such that the large solution of (1.1) in Q satisfies,

-

e 8 ()T <y, () < eadh () fr=1i, Ve Q. (2.10)

where O () = dist (. 0Q).

Proof. — We shall use the notation of Definition 1.7 and Proposition 1.8.
First we observe that a bounded Lipschitz domain satisfies both the exterior
and the interior cone condition. (The interior cone condition is defined as
in Definition 1.7 with the obvious modification.) One may assume that the
same basic cone K = (' is associated with both conditions. For P € J$}
let K p be as in Definition 1.7 and let K'p be its counterpart with respect to
the interior cone condition. Since () is Lipschitz we may assume that K
and K p vary continuously with . Finally let K/, denote the complement
of Kp in the R-ball centered at I

Let ¢ and vp be solutions of (1.14) in K’ and K, as in the proof of
Proposition 1.8. Similarly let w be a large solution of the equation

Aw = kw” — hw — | (k= i?zf k. h=suph. f=sup f) (2.1
0

Q2

in K and let wp be the corresponding solution in Kp. Assuming that
K = CElet 8 = SY\S (so that K’ = Sg (R)) and let us and us be
as in (1.12). By Proposition 2.4 (ii),

e (:1:)/(&"1/(‘"1) ug (1)) — 1 locally uniformly as o — I'j,  (2.12),

1/ (p—
V=D ug: () — 1 locally uniformly as = — I}, (2.12)>

v () /(F

where T') = {(r,0): 0 <r <R, 0 €9dSH and I} = {(r,0) : 0 <
r < R, 0 € 95'}. From these relations and (1.12) we conclude that if S,
and S} are compact subsets of S and S’ respectively, there exist positive
constants by, by, b, b) such that

by < v(r)r D <y, we Cs; (1R/2). (2.13),
bo < w (:1:)/7""2/(”4) <by, x€Cs (R/2). (2.13),
Now if u is the large solution of (1.1) in £ then for every P € 911,
vp <wu in Kp NS, u<wp in kp. (2.14)
These inequalities together with (2.13),, imply (2.10). [
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For the statement of the next result we need an additional definition.

Derinimion 2.6. — If A, B are two bounded sets in RV we denote,

ba(B) =sup{dist (r. A): - € B}
and (1.17)
b (A, B)=464(B)+ép(A).

If {A,} is a sequence of bounded open sets and 73 is a bounded open set.
we say that { A, } converges to B it 6 (A,,. B) — 0and §(9A,,. IB) — 0.

PROPOSITION 2.7. — Let §) be a bounded domain of class )", Let {D,, }

be a sequence of bounded domains of class Cfl);,l such that D,, — . Let v,
and w denote the large solutions of (1.1} in D,, and § respectivelv. Then

v, — w locally uniformly in Q.

Proof. — Let {Q,} be an increasing sequence of subdomains of € as
in Proposition 1.8 and let {G,} be a decreasing sequence of domains
as in Corollary 1.10. If w,, (resp. w,) is a large solution of (I1.1) in €,
(resp. () and w is the unigue large solution of (1.1) in € then both {u,, }
and {w, } converge to u locally uniformly in €2 (see proof of 1.8 and 1.10).
Let v; denote the large solution of (1.1) in D;. For every n there exists j,
such that €}, C D; C G,,. Hence there is a subsequence of {v,} which
converges to u locally uniformly in §2. Since the limit is independent of the
subsequence, it follows that ©; — v locally uniformly in . O

Remark 2.8. — The results presented in this section, remain valid for
Equation (1.1), with A replaced by the Laplace-Beltrami operator A,. in
domains on the unit sphere S™ 1. Indeed, the stereographic projection
transforms Equation (1.1) in a domain S in S¥ ! into an equation of the
same type in a domain S* in R™V~! which is the image of S by this
projection. In this connection, we shall say that S is of class C, or that S
satisfies the exterior cone condition if S* has this property.

3. ASYMPTOTIC BEHAVIOR AT CORNERS AND EDGES

In the previous section we obtained the rate of blow up at the boundary,
for large solutions of (1.1) in bounded Lipschitz domains. In this section
we describe the precise asymptotic behavior of such solutions in domains
whose boundary is piecewise C1.

For 0 < k < N — 2, let II; be a k-dimensional subspace of RY, say
{x €RY :2; =0,j=1,... N—k}. For k = 0 we assume that IT, is a
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point, say the origin. Denote by (r. ¢, z) a set of cylindrical coordinates
in RY with axis Ty, e.g. z = (2, ..., z;) with 2, = 2x_4; and (7, o)
polar coordinates in II; (=the orthogonal complement of II;). Given a
domain S in SY~*~1 (the unit sphere in RY~*) we denote by W (TI;)
the cone (or wedge),

Ws(Iy) ={(r,0.2):0<r, 0 €8, z€ R*} (3.1
and by W (T1;,) the intersection of W (1) with BF (=the ball of radius
R centered at the origin in R™). I, will be called the edge of Ws (II;,).

If k£ = 0 and Il is the point P then W (Il) (resp. W& (I1,)) is a cone

with vertex P which will also be denoted by Cs (P) (resp. C# (P)). Then
we have the following result.

THEOREM 3.1. — Let S be a subdomain of S ~*~1 of class C;'. Then
there exists a unique large solution of the equation Aw = u¥ in Ws (I1;).

This solution is given by,
w(r, o, z) = 2P Dy (o) in We(Il), (3.2)

where w is the unique large solution of the equation,

Ayw+ AN -k p)w—w? =0 and w>0 inS (33
and XA{m, p) = pzl (1)2_"1 —m).

Proof. — The existence and uniqueness of the large solution of (3.3)
follows from Proposition 1.8 and Theorem 2.2. A direct computation shows
that (3.2) is a solution of the equation Au = w”. Thus it remains to shows
that the function « given by (3.2) is the unique large solution.

Let U be a large solution of Au = 4 in Wy (11 ). (Here we only assume
that U blows up locally uniformly at the boundary.) Let vy g (resp. v2 g)
be the unique large solution of this equation in W (I,,) (resp. Q = BF).
Then v, r is monotone decreasing with respect to R and v; p > U in
WE (11;,). Consequently V = limp_, v g is a large solution of (1.1) in
Ws (II) and V > UJ. On the other hand U + w2 g is a supersolution in
WE(11,), so that v; g < U + va p. Since limp_,. v2 p = 0 we conclude
that U = V. 0O

DerinTIoN 3.2, — (i) Let © be a domain in RY and let I be a k-
dimensional submanifold of 9€2. We shall say that 1" is a curved edge of
dimension k, if for every P € I' there exists an open neighborhood A
of P and a C? transformation of coordinates 7' defined in M, such that
T(MnNQ) =T (M)n Ws () where S is a domain in S™ %1 and
T(TNM)CI If k=0and I' = {P}, we shall say that P is a corner.
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If 2 is a domain on SV~ a curved edge on 9¢) is defined in the same
way, but now the range of 7 is in RV ™!,

(ii) If © is a bounded domain in R? (or in S2) we shall say that it is
piecewise C1 if for every P € 09, either P is a corner or 9§ is C' in a
neighborhood of P. If €} is a bounded domain in RY (or in SV), N > 2,
we define the notion of piecewise C'! inductively as follows. First, we say
that a curved edge or a corner is piecewise C'! if the domain S mentioned
in (i) is piecewise C''. Then we say that  is piecewise C* if, for every
P € 09, either P lies on a piecewise C! curved edge of dimension £,
0<k<N-=2 ordQis C!in a neighborhood of P.

Note that every bounded domain which is piecewise C is of class Cy); .

(iii) If P € 02 lies on a curved edge of dimension k, we associate with
it a limiting wedge W (I1;) which is defined as follows. Assume that P is
the origin and denote €2, = QN B”. Then the family of domains Z, = /—1) Q,
converges (as p — 0) to a domain =P C B3, which, in an appropriate set
of local coordinates, can be represented in the form W, (I1;) N By. (Here
the convergence of =, is understood in the sense of Definition 2.6). This
notation applies also to points P where 0f2 is smooth. Indeed, if a tangent
plane exists at P then k = 0 and ST is a half sphere so that the limiting
‘wedge’ at P is a half space.

The limiting wedge Wgr (I1j) can also be described as follows. Let
T’ (P) be the derivative of the transformation 7' at /. Then

Wer(Ily) = T' (P) ™" Ws(TI,).

Note that if the curved edge is piecewise C! then ST is piecewise C'!.
Furthermore S* satisfies the properties of class C5;! uniformly with respect
to P in compact subsets of the curved edge.

Lemma 3.3. — Let Q be a domain in RN and let Py € OS). Assuming
that Py is the origin, suppose that there exists a ball BT such that
QN BF = WE(L,). Let u be a positive solution of (1.1) in Q such
that v — oc locally uniformly at 9N BE. Then, for every R, 0 < R' < R,

w(@)/(VE @) r) e Vg (6) =1 as dist (2. 90N BT ) =0 (34)

where w is the large solution of Equation (2.3) and x is given by (r, 0, 2)
in cvlindrical coordinates with axis Tl

Proof. - This is a consequence of Proposition 2.4 and Theorem 3.1.

LEMMA 3.4. — Let Q be a bounded domain with piecewise C' boundarvy
and let u be the large solution of (1.1) in Q. Suppose that T is a connected

Vol. 14, n® 2-1997.



254 M. MARCUS AND L. VERON

curved edge of dimension I on 98). For IP € T, let Wqr (11,) be the limiting
wedge at P (in an appropriate local set of coordinates) and let wp be the
large solution of Equation (2.3) with S = S?. Then,

w(x)/(Vk(P)r) V(o) = 1 as 2 — P, x € (L. (3.5)

locally uniformly with respect to @ in Sp and with respect to PP on I'. Here
(r, 0. 2) is a set of cylindrical coordinates with axis 11, corresponding to
the local set of coordinates mentioned above and x = (r. 0. z).
Proof. — Let {57} be a monotone increasing sequence of domains on
g - . . .
S¥=FLguch that S, | € S” and S| — S¥. Let {S¥,} be a monotone
. . . TN o =P
decreasing sequence of domains on S~ such that S, © §° and
5P, — S In addition assume (as we may) that {S¥ .} i = 1.2 is
uniformly of class (/‘f]],;,l. If {R,} is a sequence of numbers monotonically
decreasing to zero denote,

DY :L/1~’":,";’(Il,‘.). i=1,2. n=12 .. (3.6)

.t

From the definition of limiting wedge it follows that, given { R, }, one can
choose the sequences {SI";} in such a way that the domains D[, defined

by (3.6) in an appropriate set of local coordinates centered at P, satisfy
the following relations,

D ocanpfopycDr n=1 2. (3.7

1,2
Let ¢! be the large solution of (1.1) in DI . Let v, be a positive
solution of (1.1)in D, such that v/, (r, 0, z) — 0as R — R,,, uniformly
with respect to o in 5%, and with respect to z, |z| < R, and v, — ~
locally uniformly on the remaining portion of DY . Such a solution can
be obtained as the limit of a monotone increasing sequence of bounded
solutions of (1.1) in DY, and we shall assume that v , is of this type. Then

~

'zr,ll)_.z <u < ’17,11)‘ B n=1 2 .. (3.8)

Further, if 'ur,]:-

. is the large solution of Equation (3.3) in SY . then by
Lemma 3.3,

ol () (VE (z)r) 72D wh (0) =1 as dist(z, 9D ) — 0 3.9

nd n.i

for |z| < R, /2,4 =1, 2 and every n. Finally, by Proposition 2.7,

lim “’5,1' = wp locally uniformly in S¥, 1=1, 2. (3.10)

n—oo

Aunales de Ulnstitut Henri Poincaré - Analyse non linéaire



SOLUTIONS WITH BOUNDARY BLOW-UP 255

From (3.8)-(3.10) it follows that for every ¢ > 0 and every compact
subset A of S¥, there exists a positive number v, = 1, (A, P) such that,
for ¢ € A,

L—e <u(x)/(VE(P)r)"2=Dyp(a) <14 5.}

311
for |z — P| <r.(A, P) G-I

Since () is piecewise C', ST varies smoothly with P in I". In particular,
if P — Py € T then S” — S and there is a neighborhood M of P,
such that {S” : P € M NT} is uniformly of class C7;!. Therefore, if
{R,} is a sequence of positive numbers monotonically decreasing to zero,
one can choose the sequences {SI' ;15,4 = 1, 2, for each P in M N T,
in such a way that,

(1) 8P, — SP uniformly with respect to P € M NI, i =1, 2;

(i1) for each P> € M N T there is a set of local coordinates centered at
P and varying smoothly with P, such that the sets D2’ ; given by (3.6) in
this set of coordinates, satisfy (3.7);

(iii) the family {S”,: P e M NT,i=1.2, n=1.2. ..} is uniformly
of class CD,}.

Consequently, the relations (3.8)-(3.10) hold for each P € M NT; in
addition the convergence in (3.10) is uniform with respect to I’ as above,
while the convergence in (3.9) is uniform in P, for each fixed n.

The statement concerning (3.9) can be verified as follows. In view of
(i) and Proposition 1.8 the functions w[ ; blow up uniformly with respect
to n, ¢ and P € M NI Therefore, following the arguments in the proof of
Theorem 2.2 and Proposition 2.4, we find that the convergence statement
of Lemma 3.3, applied to the domains D, (with fixed n) holds uniformly
with respect to P € M N 1. Thus the convergence in (3.9) is uniform
in I°, for each fixed n.

The uniform convergence in (3.10) should be understood as follows.
Suppose that A is a compact set on SV ~*~1 which is contained in S”
for every P € M NI Then lim, . w! ; = wp uniformly with respect
to o in A and with respect to P € M N T. To verify (3.10), assume that
the convergence is not uniform with respect to I’ (say, for + = 1). Then
there exists a sequence of points I, € M NT, a sequence n;, — oc and

a positive ¢ such that,

sup |y —wp,| > € where = m,’? 1
e ’

with n = mny and P=Pr. k=1, 2, ..
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We may assume that { P} converges to some point Py in M N T'. Hence
5P — S and consequently wp, — wp, uniformly in A. In addition,
from (i) we deduce that Sf:’] — ST g0 that 4y, — wp, uniformly in 4.
Thus we reach a contradiction.

In view of these observations we conclude that the number r. (A. P)
in (3.11) can be chosen independently of P in some neighborhood of P,
provided that A is a compact subset of each domain S¥ with P in this
neighborhood. This concludes the proof of the lemma. [

Next we bring a technical lemma that will be used in the derivation of
the main result of this section.

LEMMA 3.5. — Let Q be a piecewise C' domain. Suppose that 0 € OS2
and that there exists a ball B® centered at the origin such that Q N BY =
|14 § (ITx.). Suppose that oq is a point on 3S such that, for some positive v,
the set {(7, 04, 0) : 0 < r < 1o} lies on a ‘linear’ edge of dimension k.
(Necessarily, ko < N — k — 2.) Thus there exists a spherical cap By on
SN=k=1" centered at oy, and a domain % on SN "F"* =1 guch that

{(r,0,0): 0<r <ryg,0€ By} NS
:{(7’. ag, 0)ZU</'<'I'(),()'€B0}ﬂWg(Hku) 3.1

where Wx: (I, ) is a wedge in R™ =% (identified here with the subspace z = ()
of RY) whose axis contains the ray {(r, o¢, 0) : 0 < r}. Let us denote this
set by W and its cross-section (for fixed 1) by W,. Inan appropriate local set
of ‘cylindrical’ coordinates in S¥*~1, with axis 1I' = {0 : (v, o, 0) € 11,
Jor v > 0}, say (p, 8, ¢) with ¢ € T, we have,

W,={(r.o.0):0=(p.0.0.0<p<~()r.0eX, Cell'}
where 1y is a smooth, non-negative function of ¢ which is positive at { = ().
(It is determined by By and 11'))

Let w be the large solution of Equation (2.3) in S and let w* be the large
solution of (2.3) in ¥, with A(N — k-1, p) replaced by A\ (N —k—Fky—1, p).
Then if Q is a point on 98 lving on the edge of W and uis a large solution
in ) we have,

(3.12)
as v — 0, ©={(r o, z)

I)/(\/—) —2/(p—1) “7 }
u (@) (VE(Q)r p)~2 = 1) } (3.12),

as © - Q, x={(r,p 0. (.

Annales de Ulnstitut Henri Poincaré - Analyse non linéaire



SOLUTIONS WITH BOUNDARY BLOW-UP 257

The rate of convergence does not depend on @QQ but only on |z - Q|/r i.e.
on p. Hence, letting Q) tend to the origin we obtain,

w(o)/p~ PV () > 1 as p — 0. (3.13)

Proof. — This is a consequence of Lemma 3.3 which, in the present
case, will be applied at the origin (to obtain (3.12))) and at () (to obtain
(3.13),). O

DEFINITION 3.6. — A wedge Wy (I1) is of order one if S is of class
C!. Similarly, a k-dimensional curved edge is said to be of order one if
(in the notation of Definition 3.2 (i)) S is C!. A piecewise C! domain
Q in RY (or in SN¥~1) is said to be of order one if it is not C' and
if every k-dimensional curved edge on df? (for every k) is of order one.
Inductively we define: a wedge Wy (Il;) is of order m if S is of order
m — 1. A piecewise C! domain  in RY (or in S¥~1) is said to be of
order m if every k-dimensional curved edge on 0f) (for every k) is of
order m’ < m and there exists on 92 a curved edge of order m.

THEOREM 3.7. — Let  be a bounded piecewise C* domain. Then there
exists a unique large solution u of (1.1) in {2

If P € 0Q, let Wqr (11},) be the limiting wedge at P and let wp denote
the unique large solution of Equation (3.3) with S = ST. (We shall use this
notation for every P on 09, even if the boundary is C" in a neighborhood
of P. As we have mentioned before, in such a case k = 0 and ST is a half
sphere.) Let (r, o, z) denote a local set of cylindrical coordinates with axis
[y such that Wgr (1) = {(r, 0, 2) : 0 <7, 0 € ST, z € 11}.}. With this

notation the solution u satisfies,

u (:1:)/( (D) (P) 7,)—2/(1741) wp ((7) — 1 as x — D, } (3.14)

rx={(r, 0 2)€Q,

and the convergence is uniform with respect to P € J€).

Proof. — 1t is sufficient to consider the case where h = 0 and k& = 1,
ie. Au = u. Indeed, if (3.14) is valid in this special case, then (by
Proposition 2.4) it is also valid in the general case of Equation (1.1). The
proof will be by induction on the order of .

If P is a point on 992 such that the boundary is C* in a neighborhood
of P statement (3.14) is well known although in a slightly different form
(see [BMI, 2] or [V1]), namely,

ulx))ey 6 (2) P L1 as 6 (x) = dist (x, 0Q) — 0. (3.15)
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In this case the denominator in (3.14) (with & = 1) is the large solution
for a half space, specifically the half space bounded by the tangent plane
to J€) at PP, which contains the intersection of {2 with a neighborhood
of P. This solution is also given by U/ (i) = ¢, & ()" where 6 ()

is the distance from » to the tangent plane. Therefore (3.14) and (3.15)
are equivalent.

A modification of the arguments employed in the proof of (3.15) (as
presented in [M]) shows that the result holds under the assumption that 0f2
is of class C'*. Indeed (3.15) is obtained by comparing « with the large
solution in a ball touching 92 at PP (for an upper estimate) and in an
annulus whose inner boundary touches {2 at P (for a lower estimate). For
this reason it is required that €2 satisfies the interior and the exterior ball
conditions. However if one replaces the ball and the annulus by conical
sections with vertex at I’, the same argument leads to (3.15) and requires
only "' boundary.

Next suppose that I" is a k-dimensional curved edge of order I on df)
and let P, € I". Then, in the notation of Definition 3.2, S and S are
of class C' and 9Q\I" is (! in a neighborhood M of P,. Using further
the notation of Definition 3.2, let D, denote a one-sided neighborhood
of 92 N M which is the pre-image by T of the set T (M) N Wq, (TI})
where Sy = {0 € S : dist (0. 9S) < J}. It follows trom (3.15) that,
it 7 is sufficiently small, (3.14) holds for P € ' M and = € D,
uniformly with respect to such . (/7 must only be small enough so that
for v € Dy, 6 () < | — P|.) On the other hand. by Lemma 3.4, (3.14)
holds in (A M) D uniformly with respect to > € I'N M. Consequently
(3.14) holds uniformly with respect to 7 € T' N M. Thus the theorem
holds (for equation Au = w”) in domains of order 1 in R". Hence (by
Proposition 2.4) it holds for any equation of the form (1.1), in domains of
order 1 in RY or in V1.

Now suppose that the theorem holds for domains of order +n’ <
and let 2 be a domain in R of order m. Observe that this assumption
implies that if 2 is an arbitrary, piecewise C'! domain and if P is a point
on JQ lying on a curved edge of order /' < m then (3.14) holds in
a neighborhood of I?. (This is again a consequence of Proposition 2.4.)
As before we shall consider the equation Awu = u”. Suppose that T" is a
k-dimensional curved edge of order m on 9§ and let I, € I'. Then, in the
notation of Definition 3.2, S is a domain of order m — 1 and there is a
neighborhood M of P such that if ) € (9Q\[') N M, either JQ is C''in a
neighborhood of (), or () lies on a curved edge of order m’ < . In either
case, our assumption implies that (3.14) holds at each such point (). This
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fact and Lemma 3.5 imply that (for Dy as in the previous paragraph), if /3
is sufficiently small, (3.14) holds for P € I' " M and « € D, uniformly
with respect to such P. (In fact (3.14) with respect to () corresponds to
(3.12), with ¥ = Y. We note also that if () — P along a curved edge
then X, converges to a domain ¥ such that Wy, (II;, ) is a limiting edge at
a point gg on 9ST.) The proof may now be completed using Lemma 3.4,
as in the previous paragraph.

4. ESTIMATES AT A RE-ENTRANT CUSP

In this section we present estimates for the growth of large solutions
of (1.1) in the neighborhood of a boundary point of {2 which is the vertex
of a re-entrant cusp. We shall assume that €2 is bounded, of class C, and
that 9 satisfies the exterior cone condition away from the cusp. Without
loss of generality we shall assume that the vertex of the cusp is at the
origin and that there exist R > 0 such that Qg = QN By (0) is a simply
connected domain satisfying the following conditions:

QR:{(’I', 0') I()<7'<R,(T€F,.}, I C Snv_1. (4.1,

diamT, - 0 as r—0 and ﬂ T isuot empty.  (4.1),
0<r<R

Let P = (Yyopor I, and set

Bo(r) =sup{lop:oel.}, 8(r)= sup by(s). (4.2)

O<s<r
where |o|p = d, (0. P) is the geodesical distance between ¢ and P on
SN-=1 Finally denote

E,={oec SN olp>p}
and 4.3)
G, ={(5,0):0< 5 <1, 0€Zh}
Thus
G, CQ,. for 0<r <R. (4.4)

PrROPOSITION 4.1. — (i) Suppose that 1 < p < (N —1)/(N — 3). Then
there exists a large solution of (1.1) in 2. If u is such a solution, its growth
near the cusp is given by,

lim (v/k (0) 2 ®=D oy (r, 0) = wo () (4.5)
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where (in the notation of (1.12)) wy = wg with S = SY=1\{P}.
(ii) Suppose that N > 3 and thatp > (N — 1) /(N — 3). If u is a positive
solution of (1.1) in ) then,
lim 72 *= Yy (r, ) = 0. (4.6)

r—0Q

Proof. — (1) Our assumptions on {2 imply that it satisfies the exterior
segment condition. Therefore the existence of a large solution follows from
Remark 1.9. In view of Proposition 2.4, it is sufficient to establish (4.5) in
the special case where (1.1) reduces to the equation Au = u? and 2 = Qp.
If R is sufficiently small then Qr C Dp = {(r,0) : 0 <1, 0 € SV,
o # P}. The function ug given by (1.12) is a large solution of Au = u”
in Dp. Hence ug < wu and

lili;l_é(l]lf =D a) > wy (o). 4.7
On the other hand if vg is a large solution of Av = v in G then (in view
of (4.4)), vg > u. (Note that our assumptions imply that the large solution
in  is unique so that it is sufficient to verify that vy dominates every
bounded positive solution in €2.) By Proposition 2.4, v behaves near the
origin in the same way as the solution of Au = «¥ in {(s, ¢) : 0 < s,
o € Eg(m)}. Therefore by (1.12)

limsup vV (r, o) < wg (o) (4.8)
r—0
where wp is the large solution of (1.13) in Z4(r). Note that Zg(p) |
SN=I\{P} as R | 0 so that wg | wo. (Here we use the fact that wy is
the unique large solution of (1.13) in S¥~'\{P}, see [V2, 3].) Hence (4.7)
and (4.8) imply the stated result.

(ii) Inequality (4.8) holds by the same argument as in the first part.
However when p > (N —1)/(N —3) the singularity of wy at P is
removable [BV]. The only non-negative solution of (1.13) on the whole
sphere SV ~1 is w = 0. (Note that in this case A (N, p) < 0.) Thus (4.8)
implies (4.6). O

In the remaining part of the section we derive more precise estimates for
the behavior of large solutions in the neighborhood of the cusp, in the case
where p > (N — 1)/(N — 3). We start with estimates from above.

THEOREM 4.2. — Suppose that the function 0(-) defined in (4.2) is
continuous.

(Y Let p > (N —1)/(N = 3). Given 1y € (0, R) and T > 1, there exists
a constant ¢ (g, T) (depending also on N, p, k, h) such that every positive
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solution u of (1.1) in §) satisfies the inequality,
u(r, o) < c¢(ro, 7')|a|3P_N v (r)_z/(p_l),

4.9
for 0<r<ry, o€, (4.9)

where v is a strictly monotone increasing function in R, whose inverse is
given by,
v (p) = pf (p)” MmN =R/ (4.10)
and
A ={oce SN ialp > TO(v (1)} (.11
Note that as v | 0, p = v (r) | O and consequently A, , T S¥~1\{P}.
(i) Let p = (N — 1)/(N = 3). Given rog € (0, R) and 5 € (0, w), there
exists a constant ¢ (ry, 3) (depending also on N, p, k., h) such that every
positive solution v of (1.1) in € satisfies the inequality,

)3—N

uw(r, o) < (ro, 3)v(r , for0<r<wry ocZs 4.9)

where
v (p) = p(log (1/8 (p)) ™2 (4.10Y

Remark 4.3. — Note that the expression —1+(p — 1) (N — 3)/2 is positive
in case (i) and vanishes when p = (N — 1)/(N — 3). Since by its definition
6 (.) is monotone increasing, the right hand side of (4.10) or (4.10) is
strictly monotone. Thus v is well defined. Further note that,

r/v(r)—0 asr—0 4.12)
Indeed if v (r) = p then,
r/p = g (p) =D N=3)/2 iy case (i)
P= (log (1/6 (p))~1/2 in case (ii).

By (4.1); lim, .08 (p) = 0 and by (4.10) or (4.10) p — 0 as r — 0.
Therefore (4.13) implies (4.12). In view of (4.9) and (4.9) this fact implies
that the rate of blow up of large solutions at a cusp is lower than the rate
of blow up at regular points or corners.

(4.13)

The proof of the theorem is based on the following lemma.
LemmA 4.4. — Consider the equation,
Ajw—Aw—rw? =0, (4.14)

where A, k are constants, x > 0 and A, is the Laplace-Beltrami operator
on SN Ler wy, denote the large solution of (4.14) in &,
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W Ifp > % then, for every T > 1 there exists a constant ¢1 (1) (which
depends also on N, p, k, A) such rthat,

wy (o) < i (1) ol Y N VoeZ.,, 0<ny<a/r. (415)
(i) If p = :—:—% and A > 0 then, for every 5 € (0, ) there exists u

constant ¢ (3) (which depends also on N. p. k. \) such that,

(3-N)/2
wy, (0) < e (3) (log 7—/) . VYoeZz 0<n<s/2. (4.16)

The proof of the lemma is given in the appendix. We turn now to,

Proof of Theorem 42. — For p € (0, R) let ), be the unique large
solution of

A — kP =0 in B, (0) 4.17)
and let w, be the unique large solution of
Agw—Aw—rw? =0, in Zy,). (4.18)

where —A = A (N, p) as in (1.13) and x = k (0)/2. We observe that in the
case p = (N —1)/(N —3), A > 0. Then the function u, given by

u, (r. o) = P w, (o), (4.19)

is a large solution of (4.17) in the cone {(r.c) : 0 < r, 0 € Zg(,}.
Consequently U, = u, 4+ 4, is a supersolution of (4.17) in G,

AU, - r U} <0. (4.20)

Note that (by scaling) 4, (1) > 4 (0) p=2/@~1_ Therefore there exists
po > 0 such that for p € (0, py), U, is sufficiently large so that (in view
of (4.20)),

AU, +hU, —EUY <0 in G,. (421

Since U, blows up on dG,, we conclude that,

u(r,o) < U, (r,0) = P wy o)+, (r) in G,. (4.22)

From (4.22), Lemma 4.4 and the standard estimate for large solutions in
regular domains it follows that in case (i),

2

wlr, o) < ey (1) lO’]:;;N 6 (p)N_3_Fi—l PR ca(p—r) 7T, (4.23)
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for 0 <r < p < pyand 0 € Zrg,), and in case (ii),

B-N)/2 ,
w(r, o) < c2(3) (10g m) PN Lo (p—r)N, @23y

for 0 < v < p < pg and o € Z5. The constants ¢1, ¢o are independent of
p which can be freely chosen in the interval (0, pp). We shall choose p
in such a way that the two additive terms on the right hand side of (4.23)
(resp. (4.23)") will be of the same order of magnitude when » — 0. Thus,
assuming that 0 < r < p/2, we choose p so that,

5 2

P (p)N—s—p:] FTRT = p~-,,3—1’ in case (i),

(3-N)/2 ‘
<log ——(—) 3N = p*=N in case (ii).

p)

With this choice of p we obtain (4.9) and (4.9). (Note that, with p = v (r),
o) = Arpl)

Examples 4.5. — (a) Suppose that 6 (p) = p'™ for some & > 0. If
p > =1 then (4.9) yields,

u(r, o) <eclrg, 7) |0|:};N r_<P*1>%1+ﬁ‘L>, Vo e A, 0<r <1, (424)

where 11 = ((p — 1) (N — 3)/2) — 1. Note that in this case p > 0.
If p= 5= (and N > 3) then (4.9 yields,

1\ BN
u(r, o) < (rg, 5)r* N (log ~> ,
,

Vo€, 0<r<rg

(4.24)

(b) Suppose that 6 (p) = e™#/? for some 8 > 0. If p > N=1 then (4.9)
yields,

N
w(r, o) <c(rg, 7) |a|‘;’;N 08 (log ;) ,

(4.25)
VoeA:,, 0<r<r.
If p = H then (4.9) yields,
u(r, o) S ¢ (rg, 5) M5 01, (4.25Y
VO’E:;, 0<7’<7"0

Next we derive a lower estimate for the behavior of large solutions near a
cusp. Here we shall consider a more restricted family of cusps. Specifically
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we shall assume that for some R > 0, Qg C Dr = D N B (0), where (in
some local set of coordiates z obtained from x by rotation)

D={(7,2y) ERVN" xRy : || > ¢ (2n)} U {2 : 2n < 0},

and ¢ is a convex function in C* (|0, oo)) such that ¢ (0) = 0, ¢' (0) = 0
and ¢ (p) > 0 for p > 0. For p > 0, let P, denote the intersection of the
tangent to the curve ¢ at the point p with the zy axis. Thus P, = (0, ¢,)
where (, = p— (¢ (p)/¢' (p)). We denote by P the point (0, 1) (i.e. 2’ = 0,
zy = 1) and observe that P € f,c,, 0 < r < R (in the notation introduced
at the beginning of the section.)

THEOREM 4.6. — Let Q) be a domain as before and assume that the
cusp satisfies the conditions described above. In addition suppose that
p > (N +1)/(N — 3) and that h > 0. Then there exists a positive constant
¢/, depending on N, p such that every maximal solution u of (1.1) in
satisfies the inequality,

w(z)>c|z—P |_P%l ¢ (p )N_B’_ﬁ, (4.26)

for every p in (0, R) and every z in Qg such that P =77 € ¢ (n)-

For the definition of maximal solutions see Remark 1.4 (ii). Under the
assumptions of the present theorem, it is not known if there exists a large
solution in the sense of (1.2). However it is clear that a maximal solution
exists. The proof of the theorem is based on the following lemma, whose
proof will be given in the appendix.

LemMmA 4.7. — Suppose that p > 5. For n > 0, let w,, be the unique
large solution of

Agw— Aw — kw? =0, mo Zy, 4.27)

where X and k are constants, k > 0 and A < (N — 1) (N — 3)/4. Then
there exists a positive constant ¢ (depending on N, p) such that,

N—3—

wy (o) 2 e’ 7:,—1, for every c €2,, 0<np<m. (4.28)

Proof of Theorem 4.6. — Let p € (0, R) and let (r,, o) denote spherical
coordinates centered at P,. Let o (p) = tg~' ¢’ (p) and denote
F,={(rp,0):1,>0,0 €24y}  FF=F,nBg(0),

Thus F? 5 Qp for every p as above.
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Let Uy be the (unique) large solution of (1.1) in Bg (0). Then u + ¥
is a supersolution of (1.1) in Qg which blows up on JQp.

Let w, (,) be the large solution of (4.27) with = a(p), k = sup k and
Q
—A = A(N, p) as in (1.13). Then

2

U,(r,, o) = 7';”‘] Wa (p) (o), (rp, 0) € F, (4.29)

is a large solution of AU — kU? = 0 in F,. Since h > 0 it follows that
U, is a subsolution in Q. Consequently

U, Su+Tg, in Qg, for pe (0, R). (4.30)
Hence, setting ¢ (R) = sup ¥ in Bgr/2 (0), we obtain
u>sup{U,: 0 < p < R} —c(R) in Qpg/s. 4.31)

Next we observe that the condition p > (N +1)/(N —3) implies
that A < (N —1)(N —3)/4. Therefore we can apply lemma 4.7 in
order to estimate w,(,). Combining (4.28) with (4.29) and (4.31) we
obtain (4.26). O

Example. — Suppose that ¢ (p) = p'*®, for some § > 0. Then
P, = (0, £&). If we set p = |z| then (4.26) yields, (with 1 as in 4.5 (a)),

w(z) > elz| 251, (4.32)

for every z in Qg such that % € Z4(p)» 0 < p < 1. Note that,
for small 6, the exponent in (4.32) is close to the exponent in the upper
estimate (4.24).

Inequality (4.32) implies that in the present example, if 6i < 1 then the
maximal solution is in fact a large solution.

APPENDIX

This appendix is devoted to the proof of Lemmas 4.4 and 4.7. It will
be assumed that N > 3 and the notations introduced in Section 4 will be
used throughout.

Let P* be the antipodal point to P on S™~! and let Py be the
stereographic projection of S¥~\{P*} onto RV~!. It is well known that
P is a conformal diffeomorphism with conformal factor ¢*/(N=3) where,

o (z) = (2/(1+ ||V =372, (a.1)
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Let w be a solution of (4.14) in a domain U C SY~1\{P*} and define

w(x) =w(o)p(r). with o =Py (2), VYaePx(U). (a.2)
A straightforward computation (see [LP]) shows that w satisfies the
equation,

(N=3)(N-1)

- N+1 -
1 — A W= ke 3PP =0, (a3)

A+ /N3

in PN (U)
LemMMA A l. — Let w, be as in Lemma 4.4. Then there exists a constant
co, independent of 1), such that (with w,, as in (a.2)),
iy (y) < con™ PV for [yl =3n, 0<n< 1l (a.4)

Proof. — w, satisfies equation (a.3) in the domain Py (5,) = {z €
RN=1: |z| > tgn}. The function ¥, defined by,
by (@) = =324, (nx) (a.5)

satisfies the equation,

N 2 2 2n n2
Aty + X (L) Uy — K (———71—2> F=0, (n=7n"") (a6)

n? + r? n? + r

where t = N +1—p(N —3) and A = 1(N—1)(N—-3)— A in the
domain K, = {z € RV~! : |z| > n~'tgn}. We note that for small #,
1 < n~ttgn < 2. Therefore for m > 2,

DTIL == {ZL' S RN_l 12 < |.’Ifl < WL} C K".
Observe that for 7 = |x| > 1 and n > 1,
1/nr? < 2n/(n® +7r?) < min(1/r, 2/n) < 1. (a.7)

Consequently, the coefficients of v, and 0% in Equation (a.6) are bounded
above (in D,,) by A, and —f3, (r) respectively, where

On (r) = )op 2 e if >0
and
B (r) = . (n)2)"H/* if p<o.
Let 3(r) = n#*/2 3, (r) and consider the equation,
AV + A,V - VP =0, (a.8)
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If V,, is a large solution of this equation in D,, then n=#/2(=P)V_is a
supersolution of (a.6) in this domain and consequently,
v, < n~#20-P Yy i D,..

(Note that V,,, is radially symmetric.) Hence, using (a.5) and the definition
of p,

Wy (nx) < n—F%T Vi (l2]),  in Dy,. (a.9)
Choosing m > 3, (a.9) implies (a.4). [

Lemma A.2. — The equation

2
N 2
Y = 1
AY+/\<1+T2> 0, (a.10)

{(where X is a constant and T = |z|) possesses a unique positive solution
in RN=1\{0} such that

lim rV3Y =1
N r—00 o @ll)
and 1V 7°Y converges to a positive limit asr — 0.
Proof. — Consider the equation
Au+ (h/(a+ 1)) u=0 in RY, d>2, a>0, (a.12)

If 6 > 0 and A is a smooth bounded function such that » < (d — 2)?/4 in
R?, it is known that Green’s function for (a.12) is equivalent to Green’s
function for A, (see [Pr, Lemma 2.4] and [Py, example 4.3.12]). Thus
(a.12) possesses a positive solution in R?\{0} which has the same behavior
at 0 and oo as Green’s function of A. This solution is unique up to
a multiplicative constant. Now, if Y satisfies (a.10) then the function
Z(x) =Y (x/n), n > 0, satisfies the equation

2
v 2n

If n is chosen sufficiently small, the coefficient of Z in (a.13) satisfies
the conditions described above and consequently (a.10) has a solution
possessing the properties stated in the lemma. [

Using Lemmas A.l, A.2 we obtain,
LEMMA A.3. — Suppose that p > H Then, for every T > 1 there exists

a constant ¢ depending on N, p, 7 such that,

wy (0) < |o|:},—N 7]1\(“3_#%1, Vo €2, O0<n<x/T (a.14)
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Proof. — Let ¢y be as in Lemma A.1 and Y as in Lemma A.2. In view
of (a.11) we can choose a > 0 such that,
oY () > ¢ (r/2)°N for € (0, 1).
Hence by (a.4),

anNETY (x) > iy, (x) for |xl=3n, ne(0.1).

Clearly Y is a supersolution of (a.3) and Y — 0 at infinity. By (a.2)
w, — 0 at infinity. Therefore, by the maximum principle,

(17]N”3_F%T Y () > W, () for |x|>3%n, ne(0,1).

This inequality together with (a.2) and (a.11) implies (a.14) for 7 > 3.
An inspection of the argument shows that the same result holds for any
T > 1. O

Lemma A.3 provides the estimate stated in the first part of Lemma 4.4
(concerning the case p > (N — 1)/(N —3)). When p = (N — 1)/(N - 3)
the exponent of # in (a.14) vanishes. However in this case, a stronger
estimate, namely (4.16), can be established.

Proof of Lemma 4.4 (ii). — Let
Zy (x) = wy (o), where = =Py (o). (a.15)
In view of (a2), Z, = ¢ 'w,. By [GNN] w, is radially symmetric.

Therefore, in spherical coordinates, with » = |z|, Z, satisfies the equation,

, [N =2 2 2 \° ,

Claim. — For every 7] < 7/2, there exists a constant c; such that,
(3=N)/2
Zy(1) < ey (10g —) . for 7€ (0, 7). (a.17)
n

Note that, since p = (N — 1)/(N — 3), point singularities for solutions of
(4.14) are removable and so lim,_¢ w, = 0 in S¥"1\{P}. Thus

Z,(1) =0 as n—0. (a.17y

P a2\ Vs
H(r)= / g2—N ( ~;s > ds, (a.18)
J1
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and let

2y (p) =2y (H ' (p))  for p>p,:=H(tgn).
Then z, satisfies the equation,

2 =G(p)(Azy+r2k),  p>p, (a.19)
where,
9p \ZN-2)
G S
)= ()

It is easily verified that,

pyn P = =25 N /(N =3) as n—0, (a.20)

G(p) (N =3) o> =1 as [p| — oo (220
and G(0) = 1.

Suppose that 77 € (0, w/4) so that (by (a.18)) p, < 0. Let 6 be a positive
number (to be determined later) such that,

N-—

§ < inf G(p) (14 p)?~=s (a21)

¥

and denote by 1, the positive solution of

W =6+ )T (W ay?) in (<fy, B). W)
P — o0 as p— £, where (3, = —p,/2.
Then,
2y <ty in (=5, B,). (a.23)

(Recall that A > 0 and s > 0.) Note that (a.22) is symmetric with respect
to p = 0. Therefore, by uniqueness, 1, is even and so ¢, (0) = 0. In
addition we note that as n | 0, p,, | —oo so that the interval (—3,, 5,)
is increasing and tends to R. Consequently {,} decreases with 1 and
because of the removable singularity result previously mentioned, ¥, — 0
pointwise as 1 — 0. In particular,

Xy =y (0) =0 as n— 0. (a.23Y

Denote,

! (r)=e"" ‘/}'1 (p). 7= (1 - P)-, _/jn <p <0 (a.24)
Then ¢, satisfies the equation,
¢+ =8N o4 kpP) in (0, ,) (a.25)
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where v, = In(1 + 3,). Note that,
Zy (1) = 2, (0) < xy and ©n (0) =Xy 9, (0) = —xy. (a26)

Next, we shall estimate x,, in terms of (3,. Since ¢, is convex and its
derivative vanishes at zero, 1, attains its minimum at zero. Consequently
@, (T) > xne 7 and by (a.25),

cp;,/ + <p;1 > 6Axy e P in (0, y,).
Let y be the solution of
Y +y =8, e, y(0) =X, Y (0)=—xy- (a.27)
Then (e” ;)" > (€7 y')" in (0, ;) and ¢, and y satisfy the same initial

conditions at zero. Consequently, ¢, > y in (0, 7, ). The solution of (a.27)

can be explicitly computed. At this point we assume that (in addition to
(a.21)) 6A < p — 1. Then we obtain,

¥n >y 2 5)‘X1]/p = Ew; in (0, 777)- (a.28)
By (a.25) and (a.28),

(e (,0;])/ > 6()\8(2*17)T£" + et 55)

Hence, integrating from 0 to 7 and using the fact that ¢; (0) = —x, we
obtain,

O (1) > =xy e +rOEE(L—eT). (a.29)
Let ¢ = £ (6A/p)? and 7, = —In (éxz™"). In view of (a.23) if 9 is

sufficiently small 7, is positive. By (a.29), if 7, < v,
<pﬁ, (1) > &x3 for 7€ [, ) (a.30)

Let ¢ > 0 and let ¢ be the solution of the equation (' = (¥ satisfying
¢(0) = &,/2. Assume that > 0 is sufficiently small so that {(0) < 1.
Suppose also that ¢ is so chosen that,

e2p+e<br and e(dA/2p)? <& (a.31)
A simple computation shows that under these assumptions,
"+ <6kC? in [0, 7, (a.32)

where 7, = (71 (1) = (¢ (0)'"" —1)/e(p— 1)/ (Note that ¢ is strictly
increasing so that 0 < ¢ < 1 in (0, 7,).) We also observe that for 5
sufficiently small, 7, < 7,,. Finally, by (a.28), (a.30) and (a.31), if 7, <y,

¢(0) < ¢y (m) and ¢'(0) < @y, (1y)- (a.33)
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Now we distinguish between two cases. Either y,, < 7, for all sufficiently
small i, in which case,

(3-N)/2
Xy < const <1n —) for all sufficiently small 7, (a.34)
1

or there exists a sequence {n,} such that ; | 0 for which 7, < ,,. In the
first case, (a.26) and (a.34) imply (a.17). Therefore we consider the second
case. (In what follows 7 stands for an element of the sequence 7);.)

By (a.25) and (a.32),
(" (T+m)) > (e" ¢ (7)) for 7€ (0,7, —7,)
and hence, by (a.33),

©n (T+Tr1) > ((7), 90:; (T"'Tn) >e (! () for 7€ (0. Ty = Ty)-
Thus,
@p (™) >1  and @ (7)) > 0. (a.35)

Finally compare the solution ,, of (a.25) in (7, 7, ) with the solution ¢ of

¢+ ¢ =6k¢? in (Ty, ), (T, =1, ¢ (F,) =0. (a.36)
In view of (a.35),

¥n (T) Z Qf) (T) in (7:7;» 7’!])~ (337)

Now ¢ can be described as follows. Let Wy be the (unique) positive
solution of,

U+ 0 =507 in (-T,T)
(a.38)

U (t)—oc as |t|—T.

Then Uy is even so that ¥/, (0) = 0 for every T' > 0. Furthermore, there
exists Ty such that Uz, (0) = 1. (Indeed, ¥y (t) = TP ¥, (¢/T).)
Consequently, ¢ (1) = Vg, (7 —7,). Since ¢ blows up at 7 = 7, + Ty,
(a.37) implies that, v, < 7, + T5. Hence, (see (a.25) and (a.38)) there exist
positive constants ¢;, ¢; such that,

In(1+43,) < X}f” + ¢a, for all sufliciently small 7.
However, by (a.20),

In(1+86,)=(l-p,/2)=n((1+0(1))n* N 22N /(N -3))
=B-N)lan+O(1).
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Thus,

(3-N)/2
Xn < const <ln —) for all sufficiently small 7. (a.39)
n

(Recall that 1 —p = 2/(3— N).) Now the inequality (a.17) follows
from (a.26), (a.34) and (a.39). Obviously a similar inequality holds for

every 7 > 0 and every 0 < 77 < 2tg™!r:

1 ) (3-N)/2 )

’

> (a.40)

Thus, for 0 < n < 7 < 2tg~ Lo,
(3=N)/2 Y

wy (0) < 5 (r) (log ) ,
for o€ {PY(x): o] = r}.

> (ad1)

/
By the maximum principle, the inequality holds for all o in {P3! (») :
lz| > r}. O
Finally we turn to,
Proof of Lemma 4.7. — Define w, and v, as in Lemma A.1. Then v,

satisfies Equation (a.6) in K,. Note that,
K, C Do ={zcRY" .1 < |al}, (a42)
and that the assumptions on p and A imply,
A >0, u< 2. (a.43)

For 7 > 1 and n > 1, the coefficient of —~9, in (a.6) is bounded above
by «(r) where,

Yo (r) =k @n)*? i p>0
and (a.44)
Ay (r) = kg2 e if p <.
Now consider the equation,
AU —~, (r)UP = 0. (a.45)

Let U, be the large solution of (a.45) in D,,. Since A >0, U,is a
subsolution of (a.6) and in view of (a.43),

U, <v, in K,. (a.46)
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Let v (r) = n~*/2+, () and let U* be the large solution of the equation,
AU =~ (r)U™ =0 (a.45)

in D.. Since p < 2, U* satisfies the following inequality for every rg > 1:

¢ (ro) |z < U* (x) < " (vo) |27, for ro <|z|, (ad7)

where ¢’ and ¢” are positive constants (see [BM3]). Since U* blows up
at |x| = 1, the constant ¢’ can be chosen to be independent of ry. Now,
U, = 7]2“}:?) U*. Consequently, by (a.46) and (a.47),

d |z 772<1H-P) < 1, (z) everywherein K,,. (a.48)

Returning to w, through (a.2) and (a.5), this inequality leads to (4.28). [J
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