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ABSTRACT. - We study the uniqueness and expansion properties of the 
positive solutions u of (E) AU + hu - kuP = 0 in a non-smooth domain 0, 
subject to the condition u (x) + CC when dist (CC, 82) -+ 0, where h, and 
Ic are continuous functions in I, k: > 0 and p > 1. When 82 has the 
local graph property, we prove that the solution is unique. When dR has a 
singularity of conical or wedge-like type, we give the asymptotic behavior 
of U. When X2 has a re-entrant cuspidal singularity, we prove that the 
rate of blow-up may not be of the same order as in the previous more 
regular cases. 

Key word: Nonlinear elliptic equations. 

R&LJMI% - Nous Ctudions les propriMs d’unicitC et de comportement 
limite des solutions positives u de (E) AU + !LU, - ku” = 0 dans un domaine 
non rkgulier R, sujettes A la condition ‘u. (2;) + CC quand dist (x, X2) -+ 0, 
oti h et k sont des fonctions continues dans 0, k > 0 et p > 1. Quand dl2 
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238 M. MARCUS AND L. V6RON 

a la propriete du graphe local, nous demontrons que la solution est unique. 
Quand dR a une singularite de type conique ou diedrale, nous donnons 
le comportement asymptotique de ‘1~. Quand 362 a une singularite cuspide 
rentrante, nous montrons que l’ordre de l’explosion peut ne pas &tre le 
m&me que dans les cas precedents. 

0. INTRODUCTION 

In this paper we study positive solutions of the problem 

AU + It,u - kv” = -f in f2: 

u (x) --j cx2 as h (XI) = dist (x~ X2) ---f 0 

(0.1) 

(0.2) 

where $2 is a domain in RX or SN (=the unit sphere in RX+‘) with 
(possibly) non-smooth boundary. Here N > 2, y > 1 and 11, .f, k are 
continuous functions in 2 with k: > 0 and f > 0. In order to simplify the 
presentation, we shall confine our discussion to bounded domains. However 
the results can be extended to unbounded domains with compact boundary 
and also to some classes of domains with unbounded boundary. In fact, 
positive solutions of the problem in unbounded conical domains play an 
important role in the present study. 

The mains topics treated in this paper are, existence and uniqueness, 
rate of blow-up of solutions at the boundary and a principle of localization 
which is central to our investigation. Our main interest is in the study 
of these problems in domains with non-smooth bounduty. An uniqueness 
result in domains with non-smooth boundary was recently established by 
Le Gall [LG] (by probabilistic methods) in the case 1) = 2, h = 0 and 
k = 1. In the case of domains with smooth boundary i.e. boundary of class 
C”, existence uniqueness and rate of blow-up of solutions for problem 
(O.l), (0.2) (and also for more general equations) have been thoroughly 
investigated (see [BMl,2,4] and [Vl] and the references cited there). The 
existence and uniqueness results of the present paper can also be extended 
to a larger class of problems, similar to the one treated in [BM4]. These 
and other extensions will be discussed elsewhere. 

We turn now to a brief description of the main results. 
(i) Existence. If 62 is a domain satisfying the exterior cone condition then 

Problem (O.l), (0.2) possesses a maximal and a minimal positive solution. 
(Corollary 1.10). 
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(ii) Uniqueness. If 12 satisfies the local graph property then Problem (0. 1 ), 
(0.2) has at most one solution. (See Theorem 2.2). 

A domain <2 satisfies the local graph property if every point P E i)Q has 
a neighborhood Q~J and a local set of Cartesian coordinates < with origin 
at P. such that f2 f’ (2, = (< E Opl<,v < Fp (<I: . . . . EL+1)) where ()fl is 
a neighborhood of the origin and Fp E C (RN-‘), FT, (0) = 0. 

Under this general assumption on 12 it is not known if a solution of 
problem (O.l), (0.2) exists and if it exists, the rate of blow-up at the 
boundary is not known. Therefore, in contrast to previous works, the 
uniqueness result is not based on information of this type, but on a direct 
comparison of solutions. More precisely, it is shown that if ?L~, 11,~ are 
solutions of the problem, then ,t~r/,o,~ + 1 at the boundary. (A preliminary 
version of this result was presented in IMV]). 

(iii) Rate of blow-~rp nt the boundm-y. It is known that if 82 is of class 
CI” then every solution 71, of problem (0.1) (0.2) (with X: f 1) satisfies, 

‘71 (2:) n (:I:)2’c”-1) ---f I’[, as n (.I:) + 0 (0.3) 

where t:!, is a constant. 

We show that this result remains valid if 0 is of class Cr. In addition. 
if $1 is a domain with piecewice G1 boundary, we prove that the rate of 
blow-up is the same as above but the limit in (0.3) exists only if :I’ + P 
where P is a regular point of i3$2. Otherwise the limit depends on the 
direction of approach to P and on the geometry of the boundary near P. 
(For a complete description of the asymptotic behavior of solutions in this 
case, see Theorem 3.7). Finally, if (2 is a Lipschitz domain, we show that 
the rate of blow-up is the same as above, but the limit in (0.3) may not 
exist. (Theorem 2.5). 

If the domain is not Lipschitz the rate of blow-up of solutions at the 
boundary will in general depend on the limiting point and may be lower 
than the rate described in (0.3). Such behavior can be observed in the case 
of domains whose boundary contains a re-entrant cusp, (see Ch. 4). Suppose 
that 0 is a domain with smooth boundary except for a standard re-entrant 
cusp at PO. Let (7.. CJ) denote a set of spherical coordinates centered at I’,. 
Then, if 1 < 11 < (N - l)/(N - 3) every solution u of problem (0.1) 
(0.2) exhibits the following behavior near PO: 

71 (r, a) r2’(p-l) + w (0) as 7‘ * 0, (0.4) 

where 111 is a solution of a semilinear equation on SK-l (related to (0.1)) 
which blows up at one point (essentially the point where the “axis” of the 
cusp intersects the sphere). However if p > (N - l)/(N - 3), then (0.4) 
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holds with w = 0 (Theorem 4.1). In this case the rate of blow-up is lower 
than ~-‘/(~-l) depending on the geometry of the cusp. (For details see 
Theorem 4.2 and 4.6). 

The investigation of the behavior of solutions near the boundary depends 
in an essential way on the following principle which is closely related to 
the uniqueness result. 

(iv) Localization principle. Let 62 be a domain satisfying the local graph 
property and let r be a relatively open subset of its boundary. Let ~~~ and 
u:! be solutions of (0.1) which blow-up as :I: -+ I’. Then u~/u~ - 1 locally 
uniformly as :I: -+ I‘ (Proposition 2.4). 

(v) Stability. Suppose that 62 is a domain satisfying the local graph 
property with FI, Lipschitz (see (ii)). In this case problem (O.l), (0.2) 
possesses a unique solution which is stable in the following sense. 

(n) The solution 71, depends continuously on h:. More precisely if (I, 
is a solution of the problem with X: replaced by k; (i = 1. 2. . ..) and 
k;/k + 1 uniformly then u,/‘(/, - 1 uniformly (This is a consequence of 
Proposition 2.4). 

(b) The solution II depends continuously on the domain (Se<> Propo- 
sition 2.7). 

1. A COMPARISON LEMMA AND EXISTENCE RESULTS 

Let R be a bounded domain in IwlV, N 2 2. In this section we considet 
positive solutions of the equation, 

Au, + h7i - L: j71,1f’--l 71 = -.f iu 12, (1.1) 
where h, k. f E C(n), k > 0, f > 0 and p > 1. (For technical reasons 
it will be convenient to assume that /j,, k, f are defined and continuous 
in a neighborhood of a.) A positive solution of (1.1) which satisfies the 
condition, 

u (2;) + cc as h (2:) = dist (:I;. 362) + 0 (1.2) 
will be called a large solution. We start with a comparison result. 

LEMMA 1.1. - Let ft be a bounded domain. Let ‘~1 be a weak positive 
supersolution and ~2 a weak non-negative subsolution of ( 1.1) belonging to 
W,yc2 (Cl) n C (0). A ccordingl!J, if 11) is a non-negative function in I&‘. 2 (0) 
which has compact support in $2, then, 
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and 

(V~2~~-hh?l~lll+ku~w)$1~i 

Under these assumptions, if 

(1.3)~ 

(with 6 (z) = dist (x, %I)), (1.4) 

then 71~1 2 u2 in fI. Ij in addition, (1.4) holds with strict inequality and 
7~1; ~2 are in C” (62) then 1~1 > 2~2 in R. 

Proqf - We shall employ (a variant of) a method due to [BBL]. Let 
El > E2 > 0 and denote ‘10; = (,u; + Ed)-’ ((Q + &2)2 - (1~~ + E~)~)+ 
(a = 1: 2). Observe that wi belongs to IVic2 (0) and (in view of (1.4)) 
it has compact support in 0. Using (1.3), with 71) = ru; and substracting, 
we obtain 

- 
I 

[V 11~2 v IL12 - v u1 v 7311 dx - 
* (2 I 

12 f (wl - 211~) dx 

> - /’ k (x) (IL; w2 - u’1’ WI) + h (x) (U1 7~11 - ‘lL2 ‘Q) (1.5) 
. 11 /’ * s2 

Denote Q+ (pi, e2) = {z E S2 : u2 (x) + ~2 > ~1 (x) + &i} and note that 
the integrands in (1.5) vanish outside this set. The first integral on the 1.h. 
side of (1.5) equals, 

71.2 + E2 
2 

u IL2 - ~ 
IL1 + El 

v IL1 I I 7L1 + El 
2 

+ vux----- v 7L2 II drr. 
u2 + E2 

Noting that 711~ > w2 in R+ (pi, Ed), we conclude that the 1.h. side of (1.5) 
is not positive. On the other hand as ~1 -+ 0 (recall that cl > ~2 > 0) the 
r.h. side of (1.5) converges to 

I 
k(x) (u;-’ - u-l) (u; - u,‘f) dz:. 

. s2+ (0.0) 

(Indeed, in R+ ( ~1, Q), ‘fL2 > ‘~1 > 0 SO that ‘u, + 1~;~ (74 - uf) as 
~1 --f 0. In addition the integrands on the r.h. side of (1.5) are dominated 
by integrable functions.) Unless 62+ (0, 0) is empty, the limiting value of 
the r.h. side of (1.5) is positive. 

Since this leads to a contradiction we conclude that 1~~ 2 711 in a. If 
~1.1 3 112 E C2 (12) and ( 1.4) holds with strict inequality then, by the strong 
maximum principle, 71,~ < %~i in 62. (Indeed if ‘f~i = ‘11~2 at some point in cl, 
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then there exists an arbitrarily small ball 11 c !? such that 1/I = ~2 at its 
center, but ~~~ is not identical to 1~ in l3. This contradicts the generalized 
maximum principle. R 

Remark 1.2. - The following variant of lemma I. 1 can be established 
by the same argument as above. 

&)t ~1 be N ~~atk positive s~persolution und ~2 II w’euk non-negutivc 
subsolution of (1.1) belonging to 1/1’l. “(52). (A c;fwdingly, ( 1.3 ) 1, 2 holds 
cvhenever 11’ is u non-nrguti~e ,fimc’tion in If;‘, ’ (12).) Under these 
assuri~~~tions, f((/,z - r/l)+ E IC”, ” (12) then 111 > (12 in S2. 

Employing lemma 1.1. a standard argument yields the following existence 
result. 

LEMMA I .3. - Let f! br a bollnded domain with C2 boLmdury. Sclppose that 
I/.. I;. ,f E C” (a) ,f or some (Y t (0. 1). Tlzc~~ there ~~sists u Iurgr solution 
of (1.1) in C”(1)). 

Pro& - If 4 is a non-negative function belonging to W1,2 (12) n (: (n). 
then there exists a bounded, non-negatixe solution II of (I. 1) in 
W1,“ (12) n L” (12) such that (,h - ~1) E I$“, ’ (12). Indeed, c 3 0 is 
a subsolution of our problem, while 7i; E M where M is a constant such 
that Al 2 supiJfl $ and k Ml’ - 1r M 2 f in 12, is a supersolution. Thus 
there exists a solution II as above, such that 0 5 II 5 M. If in addition 
$1: E IV23 X (12) then by classical regularity theory. II E (;r’,(’ (62) n C(a). 
Finally by the strong maximum principle, %I > 0 in S2. By the previous 
lemma this solution is unique. 

Now let II.,, be the solution of (1.1) satisfying u,, = 7). on 812, rt = 1, 2, . . . 
The estimates of Keller [K] and Osserman [O] imply that {Use } is locally 
uniformly bounded in (2. By the previous lemma {u,, } is monotone 
increasing. Consequently, { ~6,, } converges locally uniformly in 62 to a 
solution 11 of (1.1) which obviously satisfies (1.2). 0 

Rrmurks 1.4. - (i) The solution II obtained as the limit of {[I,, } is 
obviously the minimul large solution. It is in fact the supremum of all 
bounded positive solutions of ( 1.1) in 0. 

(ii) If 12 is an arbitrary bounded domain and if there exists a large 
solution of (1.1) in $2, then there exists a maximal solution, i.e. a solution 
which dominates every positive solutions of (1.1) in 12. Indeed if {12,,} 
is a sequence of smooth subdomains of 12 such that a,, c QT1+l and if 
11, is a large solution of (I. 1) in U,,, then {run} is monotone decreasing 
and converges (locally uniformly in 0) to a solution 71 of ( 1. I ). Lemma 1.1 
implies that ‘II dominates every positive solution of (1.1) in (2. 
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(iii) The result stated in Lemma 1.3 remains valid if 12 is a domain 
contained in the unit sphere S’y-l and if A is replaced by the Laplace- 
Beltrami operator Ay in (1.1). Indeed, the stereographic projection P’.v 
transforms this problem into a similar problem in the domain P.v (2 in WV-l. 

Next we describe a construction of certain special solutions of (1.1) that 
will play a key role in the proofs of the existence and uniqueness results 
to follow. 

LEMMA 1.5. - Let 62 be an arbitrary domcrirz in Iw” and suppose that there 
exists (I Iurge solution of the equation A’~I. = 111 in Il. Let Z be ~1 compact 
subset of 862 and let P E Z Suppose that, ,for every ~5 > 0, there exists lm 
open, connected neighborhood of P, sqv C)p, with C2 boundary, such thrrt. 

12~ = Qp n (2 is II simply connected domain, 

C)p c 26 = {:r : (list (.I., a) < S} and X2 fl np = X2 fl C)p. 

Then there exists no > 0 (which depends on E but not on P) such that, # 
12~ is contained in E;a,,, the ,following statements hold. 

(a) There exists cz large solution of (1.1) in btp; 

(0) There exists CI positive solution ‘11 of (1.1) in btp such that, 

Proqf!f: - (n) Let b = 2 sup6? k: and let c = sup {-h (:I:) t - i bt” : t > 0, 
.I: E 12). Then, every positive solution u of (1.1) satisfies 

A7L < w + c. (1.7) 

Let Ii be a large solution of AU = 2 M’ in R. Let M = inf {Ii (:I:) : :I: E 
62nE.,} d h an c oose SO sufficiently small so that b A@’ > c. Then 

AU>blY+c in Op. (1.8) 

Let {On } be an increasin g sequence of domains with C2 boundary such 
that 

G,, c or,+1 c s2p and cll, 1‘ op. 

Let %I,, and V be large solutions of (1.1) in O,, and QP respectively. 
By lemma 1.1 (1~~~) is monotone decreasing and u,, > V in 0,. By the 
maximum principle, (1.7) and (1.8) %I,,, > U in @,,. Hence lim u,, is a 
large solution of (1.1) in 0~. 

Vol. 14, no 2.1997. 
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(b) In the proof of the second statement we may assume (in view of (a)) 
that there exists a large solution of (1.1) in 62. Now, let (0,) be an 
increasing sequence of domains with C” boundary such that, 

6, c fltp, (->,, T 62~ and 12p\8,, C K,, = {X : tlist (z. II) < a-“}. 

Denote Il,71 = d@,,nK,,, 12,71 = W,,n(K,,)c. Thus 12, R c r2,rl+l c 12. 
We shall also assume that the sets 11, ,, are disjoint. 

For every n, consider a sequence of functions {(pTL, k}r?i on i38,, 
satisfying the following properties. 

PII. k = k on rl,& (PIL. k = 0 for .z E 12,rl such that dist (x, It, ,,) > 2-I’; 
0 < tprL,k < k: everywhere: (~,~.k E C2 (a@,,); 
(P,,. k 2 (P,~-~, k on r2, I{ and (p,,. k 5 (p,&, k-1 on i30,, 
Let PI,,, k be a solution of ( 1. 1) in O,,, such II,,, k = &, k on i%,, By 

lemma 1.1 {v,,, k}T=i is monotone increasing and (by a standard argument) 
the sequence is locally bounded. Hence u,~ = limk,~ 71, k is a solution 
of (1.1) in O,, such that 

Ii,, + m as tIJ + rl,,,: 7I,, E c(8, ur2,,,) 
and ( 1.9) 

u,, = 0 on r2. ,$. 
Furthermore, by their construction, ‘u,,, k > u,,+~, k so that {&} is monotone 
decreasing. COnSeqUently 11 = lim,,, II,, is a solution of (1.1) in 62~. If 
V is a large solution of (1. I) in Q P, ~1, + V is a supersolution of (1.1) 
in 0, which blows up on dOr,. Hence u7, + V > U, where U is a large 
solution of (1.1) in R. Thus II + V > Ii and this implies (1.6)i. Finally, 
by (1.9) 7) satisfies (1.6)2. 0 

Remark 1.6. - (i) If R is bounded and if the assumptions of lemma 1.5 
holds w.r. to every P E ?JQ then the existence of a large solution of the 
equation AU = 13 in 0 implies the existence of a large solution of (1 .l) 
in 0 and conversely. 

The first statement follows from part (b) of the lemma. Consider a 
sequence of smooth domains {Q,} such that IZ,, ‘l 62. If u,~ is a large 
solution of (1.1) in S2,, then {u,,} is decreasing and for every P E 1312, 
the solution 11 constructed in part (b) is a subsolution in (I,, fY Op. Thus 
lim u,,, 2 71 in 0~. 

An examination of the proof shows that the lemma remains valid if the 
roles of the two equations involved in it are reversed. Therefore the same 
is true w.r. to the statement of the remark. 
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(ii) If it is assumed that there exists a large solution of (1.1) in $2 then 
the assumption “Qp c E6” is not needed for statement (b). (In fact it is 
even sufficient to assume that there exists a local subsolution of (1.1) near 
the boundary, which blows up on 80.) 

Using the construction described in the previous lemma we can extend the 
existence result of lemma 1.3 to a larger class of domains as defined below. 

DEFINITION 1.7. - A domain s2 satisfies the exterior cone condition if there 
exists a bounded spherical cone K (e.g. K = {(r, (T) : 0 < T’ < I?, (T E 5’) 
where S is a spherical cap on S”-l), such that for every P E 80 there 
exists acone Kp with vertex P and congruent to K, which is contained in 
the complement of 0. The transformation mapping K onto Kp (composed 
of a rotation followed by a translation) will be denoted by Tp. 

A domain 12 satisfies the exterior segment condition if the previous 
condition holds, with K a bounded segment. 

PROPOSITION 1.8. - If 11 is a bounded domain in R” satisfying the 
exterior cone condition, Equation ( 1.1) possesses at least one large solution. 
Furthermore, there exists a function cp E C (0, 30), which tends to injinity 
at zero, and a positive number 6’0 (both of which depend only on K), such 
that eve? large solution u of (1.1) satisjies, 

‘IL (:I:) > p ((list (x~ X2)), in (3: E R : dist, (:I:, X2) < SO}. (1.10) 

Proof - Consider a cone Cc = { (r.. 0) : 0 < r’ < R, (7 E S}. Denote, 

rl = {(1.,r) : 0 5 r < R. (T E as}, l-2 = {(r’, 0) : 7’ = n. 0 E S}. 

We claim that for R = Ct there exists a solution of (1.1) such that, 

IL E c2 (C,“) n c (C,” u l?z) and ‘lb = 0 on r2, (1.11)l 

16 (cc) + 33 locally uniformly as :L: --+ rl. (1.11)2 

This is a consequence of lemma 1.5 and the fact that there exists a large 
solution of the equation au = TLP in the unbounded cone CS = C,“. Such 
a solution is given by, 

us (7., 0) = 1.-2’(p-1) ‘Ws (CT) (1.12) 

Vol. Id, no 2.1997. 
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where ~1s is a large solution in ,S of the equation, 

Now suppose that the cone K mentioned in Definition 1.7 is given by 
K = CYc and let K’ denote its complement in the R-ball. Let ‘Y’ be a 
positive solution (in K’) of the equation, 

- 

which satisfies the boundary conditions corresponding to ( 1.1 I )1,2. Thus I’ 
vanishes on the spherical boundary of K’ and blows up (locally uniformly) 
on the lateral boundary. Finally let Ki, = Tl, K’ and 111, = /’ o T,,. 

Let {$I,, } be a sequence of domains with smooth boundary such that 
D,, c 12 ,,+1 c 12 and 12,, 1 II. Let ‘~1,~ be a large solution of (I. I) in 11,,. 
By lemma 1. I {Y,, } is decreasing and (I l,i > trl’ in h’i, n 12,,. This implies 
the stated result. 0 

Remark 1.9. - If :I < ,V and 1 < 1~ < (X - I )/( 1V ~ :i) then 
Proposition 1.8 remains valid if the exterior cone condition is replaced 
by the (weaker) exterior segment condition. Similarly if I < [j ( 
(Iv - I?. ~ l)/(;V - x: - 3) f 01 \ome integer k such that 0 < X. < X - 1 . .’ 
then the proposition remains valid if the exterior cone condition is replaced 
by the exterior (X: i- 1 )-dimensional plane condition. 

We sketch the proof which is similar to that of Proposition 1.8. If 
X. = 0 Equation ( I. 13) possesses a positive solution in SAY-l which blows 
up at one point. say O. Let 111~. !? = ,+I”,’ -‘\{cr,,}, be such a solution 
and let 7~s be as in (I. 12). Then ?li‘ satisfies the equation A,// = 0” in 
/I,,, = ((1.. 0) : 0 < I’. ff E s,v-‘. CT # o()} and blows up at the boundary. 
Using this fact one can proceed as in the proof of Proposition I .8. 

For 0 < k < 1%’ - -1, if 11 > (:V - X: - l)/(N - X: - 3). singularities of 
solutions of ( I. 13) concentrated on a /+dimensional submanifold of ,S’!\‘- ’ 
are removable (see lV2I). However, if 1 < ~1 < (n; - k - l)/(N - I,. - ;I). 
there exist solutions of (1 .13) which are singular on a &dimensional 
submanifold. Therefore there exist solutions of A,(/ = ‘~bl’ of the form ( 1.12) 
with S = S’y-l \h where ,4 is a k-dimensional submanifold of S”v-l. 
Consequently, for such values of 11. the existence of large solutions can 
be established if the domain satisfies an exterior (A: + 1)-dimensional plane 
condition. 
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COROLLARY 1.10. - ij’ 62 is a bounded domain in %P\’ satisfying the 
exterior cone condition, equation ( 1. I) possesses a minimal and a maximal 
large solution. 

Proof - The large solution constructed in the proof of the proposition 
is obviously the maximal large solution. In order to obtain the minimal 
large solution we consider a sequence of domains {G,, } such that 
12 c crL+l c G,,, C-K:,, = 12 and {G,, } satisties the exterior cone condition 
uniformly, i.e. there exists a cone K as in Definition 1.7 such that, for 
every 11, G,, satisfies the exterior cone condition with respect to I(. Let II:,, 
be a large solution in G,,. Then {III,, } is monotone increasing in 12 and it 
converges to a solution III of (1 .l). The last statement of Proposition 1.8 
implies that the rate of blow up of ‘YU,, at i)G,, is uniform with respect to I/,. 
Since ll~,, < ~1. II! blows up at 3G. Clearly %I; is the minimal large solution. 

2. UNIQUENESS, BOUNDARY ESTIMATES AND CONTINUOUS 
DEPENDENCE OF LARGE SOLUTIONS ON THE DOMAIN 

In this section we present an uniqueness result for large solutions of ( I. I ) 
in domains with non-smooth boundary, we derive boundary estimates for 
such solutions in Lipschitz domains and we demonstrate their continuous 
dependence on the domain. We start with a definition needed for the 
statement of our uniqueness result. 

DEFINITION 2.1. - Let 12 be a domain in IwaY. We shall say that 12 
satisfies the loccrl graph property if for every boundary point P there exist 
a neighborhood Qp, a set of coordinates < obtained from .I: by rotation and 
a function &‘[a E C ([w-‘-l) such that 

The class of domains 62 satisfying this property will be denoted by C,,.. 
If this condition holds with Fp E C”.l (R”‘-‘) we shall say that 12 is 
of class C&‘. 

Note that every bounded domain of class C,,. (resp. C,:;,‘) possesses 
the exterior segment (resp. cone) condition. In fact it is known that the 
local graph property is equivalent to the segment property, but this fact 
will not be used here. 

The following is our main uniqueness result. A special case, dealing with 
the equation AIL = UP, was proved in [MV]. 
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THEOREM 2.2. - Let 12 be a bounded domain of class C,,.. Then 
Problem (1.1) possesses ut most one large solution. 

Proqf - Suppose that ‘0. is a large solution of (I. 1). Note that for every 
E > 0 there exists PC > 0 such that 

Let P E ~32 and assume (as we may) that the set &p mentioned above 
is an open, bounded spherical cylinder centered at P, with axis parallel 
to the <,y; axis. Thus, 

QIJ = {r/ : /r/‘I < PP. lvA~l < 7~). 

where 71 = < - P and rl’ = (‘r/l . . . ~/~y -1 ). By appropriately choosing CTI~ 
and rr we may also assume that dl2 is bounded away from the ‘top’ and 
‘bottom’ of the cylinder IC)P and that 851 n 0, = 80 fl Qr. Finally we 
assume that l)11 and 71’ are sufficiently small so that Lemma 1.5 can be 
applied to (2~ and so that. 

A, (P) (1 - :) 111’ (X) < AU 5 I!. (P) (1 + ;) U” (3:). 
‘VI t c-1 = cjl, n 62. 1 

(2.1) 

Recall that, by Remark 1.6, the existence of a large solution of ( 1.1) in 12 
implies the existence of a large solution of the equation &I, = UP in 62. 
Therefore by Lemma 1.5, there exists a solution 1: of the problem, 

al, = .I:” ;tutl 1: > 0 iu (3 = CJP n 12. (2.2) 

‘71 (2:) 4 0 locally rmiforiiily a.s .I: + aQP fl It. (2.3)~ 

Next denote, 

111 = (k;(P)(l-E))pp--I) 'II mtl 1’2 = (k(P) (1 +E))-‘/(J)-l) I!. 

and let ~1 be the large solution of equation (2.2) in Qp. We claim that, 

112 < II, < 711 + 711 in 0. (2.4) 

To verify this claim, let < denote the unit vector parallel to the axis of 
(2~ such that P + < is outside 62 and set (->, = {:I: - CT< : :I: E 8; (T > 0). If 
f is a function defined in 0, set fC (:I.) = f (:I: + r<) for :c E 0,. Assume 
that (T is a sufficiently small positive number so that 8, CC 0. Then 
,111, g + UI, is a supersolution in 0, and hence ‘ol, ,, + UJ, > u there. On the 
other hand, by (2. l), 7j2. +, < u on 13 (CX, n 12) and hence *Us, -,, < u in 
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O-, n Q. Thus, for 0 < a sufficiently small, v2, -c < ‘u, < 1~~. g + %I), in 
O-, n 8, and hence, letting (T tend to zero, we obtain (2.4). Finally, since 
‘(11 is bounded in every compact subset of Qp, it follows that 

IL (:1:)/(k (:pp--l) ‘u (2;)) -+ 1 
(2.5) 

locally uniformly as z i Qp fl 012. 

Therefore if ?I,~, u2 are large solutions of (l.l), then 

Consequently, for every E > 0 there exists a neighborhood (iXI)E of the 
boundary where ‘1~~ 5 (1 + E) 7~2. Hence, by the maximum principle, the 
inequality holds in S2. Thus u1 < 7~2 and by symmetry, 1~1 = u2 in 12. 0 

COROLLARY 2.3. - If 62 is a bounded domain of class C{,,, satisfying 
the exterior cone condition, then Equation (1.1) possesses a unique large 
solution. 

Proof. - This is a consequence of Proposition 1.8 and Theroem 2.2. 0 
We observe that the arguments employed in the proof of the theorem 

yield also the following. 

PROPOSITION 2.4. - Let (2 be a domain of class Cl,,. (not necessarily 
bounded). 

(i) Zf IL is a large solution of (1.1) and U is a large solution of AU = lJ1’ 
in 62, then 

IL (z)/(k: (.,l:pp--l) u (x)) i 1 locally uniformly as z + i)f2. (2.7) 

(ii) Let IY be a relative1.y open subset of i3f2. Suppose that 96 is a positive 
solution of (1 .I) such that, 

ii(x) + cc locally uniformly as :c -+ I?. (2.8) 

If 71, is a large solution of (l.l), then 

‘U (x)/71 (3;) + 1 locally un*iform,ly as 3: + IT. (2.9) 

Pro@I - Under the assumptions of part (ii), statement (2.5) holds for 
every point P E r, for both u and ii. Hence (2.9). 

Under the assumptions of part (i), 7~ satisfies (2.5) as stated while U 
satisfies (2.5) with the same function II but with k: = 1. Hence (2.7). 0 

The next result provides estimates near the boundary for large solutions 
in Lipschitz domains. 
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Pro@ - We shall use the notation of Definition 1.7 and Proposition 1.8. 
First we observe that a bounded Lipschitz domain satisfies both the exterior 
and the interior cone condition. (The interior cone condition is defined as 
in Definition 1.7 with the obvious modification.) One may assume that the 
same basic cone K == Cf is associated with both conditions. For 1’ E ?Xt 
let Kp be as in Definition 1.7 and let h;p be its counterpart with respect to 
the interior cone condition. Since 12 is Lipschitz we may assume that h-p 
and I?p vary continuously with I’. Finally let h’i, denote the complement 
of h’p in the R-ball centered at I’. 

Let 0 and 7rl1 be solutions of (1.14) in K’ and Ki, as in the proof of 
Proposition 1.8. Similarly let 11) be a large solution of the equation 

Aw = I;rd - zw ~ y7 (k = iif’ k. I, = slit) I,. f = sup .f) (2.1 I) 
!! (1 

in K and let ~UJF be the corresponding solution in kp. Assuming that 
K = Cf let S’ = S-“-l \S (so that K’ = S’S, (I?)) and let 115 and ~8 be 
as in (1.12). By Proposition 2.4 (ii), 

‘?l! (:I:)/(&- l/b-l) ,l,S (:I.)) i 1 locally uniforrnly~ as .I: - IY r , (2.12) I 

II (:r)/(Ii~r’(“~‘) 7,,5, (.I.)) i 1 locally uniformly as .I: + T“,. (2.12)~ 

where l?r = { (7.. 0) : 0 < I’ < R, (T E i)S}) and 1’: = { (,v, U) : 0 5 
1’ < R, (T E CrS’}. From these relations and ( 1.12) we conclude that if So 
and 5’; are compact subsets of 5’ and S’ respectively, there exist positive 
constants oo, br, /I{,. hi such that 

r,;, < I’ (:r)/t,-“(l’-l) 2 r,;, .I: E cs;, (R/2). (2.13), 

b() 5 111 (,.)/,,-2’(~~-1) 2 61; .I: E cs,, (R/2). (2. I3)> 

Now if u is the large solution of (1.1) in 12 then for every P E X2, 

‘YIP < 11 iu h’p, fl 12, IL 5 ‘lllp in ki-,. (2.14) 

These inequalities together with (2.13)t.l imply (2.10). cl 
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For the statement of the next result we need an additional definition. 

DEFINITION 2.6. - If .A. U are two bounded sets in IwAY we denote, 

A.4 (II) = sup {(list (:I.. A) : .I’ E D[ 

;Illtl (1.17) 

f? (‘4, 13) = A.4 (n) + hB (~4). 

If {A,,} is a sequence of bounded open sets and B is a bounded open set. 
we say that {A,, } converges to D if h (A,,. B) + 0 and ?I (ilAd,,. i3L3) + 0. 

Proof: - Let { 12,, } be an increasing sequence of subdomains of !2 as 
in Proposition 1.8 and let {G,, } be a decreasing sequence of domains 
as in Corollary 1.10. If II,,, (resp. .w,,) is a large solution of (1.1) in S2,, 
(resp. G,,) and U, is the urziqcle large solution of (1.1) in f2 then both {IL,,) 
and {II),, } converge to II, locally uniformly in U (see proof of 1.8 and I .lO). 
Let ‘v, denote the large solution of (1.1) in Dj. For every I/ there exists ,j,, 
such that 12,, c D,,, c G,,. Hence there is a subsequence of {*/I~} which 
converges to ‘/I, locally uniformly in 0. Since the limit is independent of the 
subsequence, it follows that 11, + 71 locally uniformly in f2. 0 

Remark 2.8. - The results presented in this section, remain valid for 
Equation (l.l), with A replaced by the Laplace-Beltrami operator A,. in 
domains on the unit sphere S”m-l. Indeed, the stereographic projection 
transforms Equation (1.1) in a domain S in S”--l into an equation of the 
same type in a domain S* in [WA’--’ which is the image of S by this 
projection. In this connection, we shall say that S is of class c!,,, or that S 
satisfies the exterior cone condition if S* has this property. 

3. ASYMPTOTIC BEHAVIOR AT CORNERS AND EDGES 

In the previous section we obtained the rate of blow up at the boundary, 
for large solutions of (1.1) in bounded Lipschitz domains. In this section 
we describe the precise asymptotic behavior of such solutions in domains 
whose boundary is piecewise G”. 

For 0 < k 5 N - 2, let IIh be a k-dimensional subspace of R”, say 
{XI E UP : XJ = 0, i = 1, . . . . N - k}. For k = 0 we assume that II&. is a 
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point, say the origin. Denote by (r, (T; 2) a set of cylindrical coordinates 
in R” with axis IIk, e.g. z = (2,. . . . . zk) with z, = :I:N-k+, and (r, a) 
polar coordinates in II;. (=the orthogonal complement of II,). Given a 
domain 5’ in S”-k-l (the unit sphere in X”-“) we denote by IV.5 (IIk) 
the cone (or wedge), 

Iv,y (Ilk.) = {(,r, 0, 2) : 0 < I’, 0 E s, z E R”} (3.1) 

and by Wi’ (II,) the intersection of Ws (II,) with BR (= the ball of radius 
R centered at the origin in R”). IIII, will be called the edge of IV,, (II,). 

If k = 0 and II0 is the point P then IV, (II,) (resp. IV: (II,)) is a cone 
with vertex P which will also be denoted by CS (P) (resp. C,! (P)). Then 
we have the following result. 

THEOREM 3.1. - Let S be a ,subdomain of S”-“-1 of class C7:;,‘. Then 
there exists a unique large solution of the equation AU = ~1’ in M/s (II,). 
This solution is given by, 

II, (I-, (T, 2) = 7,-2’(1J-1) ‘Ill (CT) %,I1 w, (II,). (3.2) 

where UI is the unique large solution qf the equation, 

a, II/ + x (N - k:, 11) ‘Ill - Id = 0 

and X (rn, p) = -& (s - rra) . 

and 111 > 0 in S (3.3) 

Proc$ - The existence and uniqueness of the large solution of (3.3) 
follows from Proposition 1.8 and Theorem 2.2. A direct computation shows 
that (3.2) is a solution of the equation AU, = ,uJ’. Thus it remains to shows 
that the function u given by (3.2) is the unique large solution. 

Let tJ be a large solution of AU = UP in W,? (KI,). (Here we only assume 
that U blows up locally uniformly at the boundary.) Let II~, R (resp. ~2. R) 
be the unique large solution of this equation in IV: (IIk) (resp. 62 = BR). 
Then ‘u~,~ is monotone decreasing with respect to R and u~.~z 2 I: in 
W,R (II,). Consequently V = limR,, 111,~ is a large solution of (1 .l) in 
IV5 (II,) and V > TJ. On the other hand G’ + 112, 1j is a supersolution in 
WF (II,), so that 11~. lj < Ii + 71~. 13. Since limn,, ~2. R = 0 we conclude 
that U = V. q 

DEFINITION 3.2. - (i) Let II be a domain in W”’ and let I‘ be a k- 
dimensional submanifold of 8l2. We shall say that I? is a curved edge qj 
dimension k, if for every P E I? there exists an open neighborhood M 
of P and a C” transformation of coordinates T defined in M, such that 
l’(M n $2) = T (A&) n W.9 @I,) where S is a domain in S”‘-“‘-’ and 
T(rnM)~rI~.Ifk:=Oandr={P}, we shall say that P is a corner. 

.l~dcs de /‘l~~wt~~t H~wrri P&M UI.C; .Analvw non I~n&irc 
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If R is a domain on SN-r a curved edge on 80 is defined in the same 
way, but now the range of T is in R’v-‘. 

(ii) If R is a bounded domain in R2 (or in S2) we shall say that it is 
piecewise C1 if for every P E X2, either P is a corner or 80 is C1 in a 
neighborhood of P. If 62 is a bounded domain in R” (or in SK;>, N > 2, 
we define the notion of piecewise C1 inductively as follows. First, we say 
that a curved edge or a corner is piecewise Cr if the domain S mentioned 
in (i) is piecewise Cl. Then we say that 12 is piecewise Cl if, for every 
I’ E X2, either P lies on a piecewise Ct curved edge of dimension X:, 
0 < X: < N - 2, or X2 is Ct in a neighborhood of P. 

Note that every bounded domain which is piecewise C1 is of class C~;.‘. 
(iii) If P E X2 lies on a curved edge of dimension X;, we associate with 

it a limiting wedge IV,,, (II,) which is defined as follows. Assume that P is 
the origin and denote 0, = R r? Br’. Then the family of domains E,> = i 12,) 
converges (as p + 0) to a domain ?’ c B1 which. in an appropriate set 
of local coordinates, can be represented in the form II& (II,) n B1. (Here 
the convergence of E,, is understood in the sense of Definition 2.6). This 
notation applies also to points P where X2 is smooth. Indeed, if a tangent 
plane exists at P then X: = 0 and Sp is a half sphere so that the limiting 
‘wedge’ at P is a half space. 

The limiting wedge T/T!sr (I&) can also be described as follows. Let 
T’ (P) be the derivative of the transformation T at 1’. Then 

W&(II,) = T’ (P)-’ Ws(IIk.). 

Note that if the curved edge is piecewise Cl then S” is piecewise Cl. 
Furthermore Sp satisfies the properties of class Ci;,’ uniformly with respect 
to P in compact subsets of the curved edge. 

LEMMA 3.3. - Let R he a domain in R1’ and let PO E i)O. Assuming 
that PO is the origin, suppose that there exists a ball BR such that 
12 n Bn = Wt (Ilk). Let IL be a positive solution oj’ (1.1) in 12 .such 
that ‘II, -+ x locally uniformly at 82 n BR. Then, for- ever), R’, 0 < R! < R, 

where ~1 is the large solution of Equation (2.3) and :x: is given by (r, a, 2) 
in cylindrical coordinates with axis IIk. 

ProoJ - This is a consequence of Proposition 2.4 and Theorem 3.1. 

LEMMA 3.4. - Let R be a bounded domain with piecewise C1 boundary 
and let u be the large solution of (1.1) in (2. Suppose that I? is a connected 
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curved edge ofdimension X: on <IS?. For P E r, let W,~P (II,) be the limiting 
\t,edge clt P (in at1 qyroprkte local .set of coordinates) cr~ld let ‘II?~’ he the 
Iurge solution o.f Equation (2.3) b\itll S = Sl’. Tlwrl. 

loccrll~ uv~~fbwly w,ith respect to CJ in Sp rmd ti’ith respect to I’ on I‘. Here 
(7’. CT. 2) is n .set cf q*lindrical coordintltes w?th axis II, corresponding to 
the local set of coordinrrtes mentioned uhove und :I’ = (,r. (T. 7). 

Proof - Let { S,l,: 1 } be a monotone increasing sequence of domains on 

S’\--“pl such that ??f,l I c Sr and 5’:: , + S*‘. Let {S!: 2 } be a monotone 

decreasing sequence of domains on A”‘\‘~“~ such that SL’,, > 3” and 

‘Y 2 + Sp. In addition assume (as we may) that {,Si: ,} i = I. 2. is 
uniformly of class C$;,‘, If { R,, ) ‘: 14 a sequence of numbers monotonically 
decreasing to zero denote. 

Df,‘. ; = q’,: (11,;). i = I. 2. ‘7) = 1. 2. (3.6) 

From the definition of limiting wedge it follows that, given {I&, }, one can 
choose the sequences { Sf,: , } in such a way that the domains DC,, defined 
by (3.6) in an appropriate set of local coordinates centered at I’. satisfy 
the following relations, 

I) f,’ , c I I n I+ (1’) c 1)” 11, 2 II = I. 2.... (3.7) 

Let I:;,‘. 1 be the large solution of (I. I) in Of,‘, , Let I.: z be a positive 
solution of ( I I ) in II:,‘, z such that ~,i’, 2 (7.. CT. .z) - 0 as R 4 R,,. uniformly 
with respect to (5 in Sf,:, and with respect to z, 1,~ < I<,, and ,I!:, + ‘7~ 
locally uniformly on the remaining portion of i3Df,‘,. Such a solution can 
be obtained as the limit of a monotone increasing sequence of bounded 
solutions of (I. 1) in LIf,: 2 and we shall assume that I$: 2 is of this type. Then 

llr’,‘. 2 < II < ~&If,‘. l. 7) = 1, 2, (3.X) 

Further, if WI:> 1 is the large solution of Equation (3.3) in S’f:. ,, then by 
Lemma 3.3. 

for 1x1 5 R,,/2, % = 1, 2 and every 71. Finally, by Proposition 2.7, 

P lim 711,. i = 711tj locally uniformly in S”, % = 1. 2. (3. IO) 
1L’CC 



SOLUTIONS WITH BOUNDARY BLOW-LIP 255 

From (3.8)-(3.10) it follows that for every E > 0 and every compact 
subset A of S’, there exists a positive number ‘r, = l’E (A, P) such that, 
for (T E A, 

1 - E 5 ‘/L (X)/( m7.)-2/(1’--1) 711p ((T) 5 1 + E. 
for I?: - PI < 1’, (A, P) I 

(3.1 1) 

Since Sl is piecewise Cl, Sp var’ les smoothly with P in r. In particular, 
if P + I$ E I’ then Sr 4 Sp’l and there is a neighborhood M of P,, 
such that {S’ : I’ E M f! I’} is uniformly of class C,$.l. Therefore, if 
{I?,} is a sequence of positive numbers monotonically decreasing to zero. 
one can choose the sequences {S,: i}‘~zI, % = 1, 2, for each P in M n l?. 
in such a way that, 

(i) $7 i + 5” uniformly with respect to P E A4 n I?, % = 1, 2; 

(ii) for each P E M n I? there is a set of local coordinates centered at 
I’ and varying smoothly with P, such that the sets 0:. i given by (3.6) in 
this set of coordinates, satisfy (3.7); 

(iii) the family { Slf i : P E M n r, % = 1. 2. ~1 = 1. 2. . ..} is uniformly 
of class C.:;,‘. 

Consequently, the relations (3.8)-(3.10) hold for each P E M n r; in 
addition the convergence in (3.10) is uniform with respect to P as above, 
while the convergence in (3.9) is uniform in P, for each fixed 71,. 

The statement concerning (3.9) can be verified as follows. In view of 
(iii) and Proposition 1.8 the functions ‘~1, 1 ‘, blow up uniformly with respect 
to II,. i and P E M n r. Therefore, following the arguments in the proof of 
Theorem 2.2 and Proposition 2.4, we find that the convergence statement 
of Lemma 3.3. applied to the domains II,: i (with fixed II) holds uniformly 
with respect to I’ E M n I?. Thus the convergence in (3.9) is uniform 
in I’, for each fixed 7). 

The uniform convergence in (3.10) should be understood as follows. 
Suppose that A is a compact set on S’“-“‘+] which is contained in S 
for every P E M n I‘. ThGn lim,,,, $, = U:P unifonllly with respect 
to CT in A and with respect to P E n/l n r. To verify (3. lo), assume that 
the convergence is not uniform with respect to 1’ csay, for /, = 1). Then 
there exists a sequence of points Pk. E AI n r, a sequence ~1,~ + -x; and 
a positive E such that, 
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We may assume that {Pk} converges to some point PO in &l n l?. Hence 
s” -+ SP” and consequently ‘UP, + IOP, uniformly in A. In addition, 
from (i) we deduce that ,‘I?,:;, 1 + S n so that ~il,~ + IUP,, uniformly in A. 
Thus we reach a contradiction. 

In view of these observations we conclude that the number r’r (A, P) 
in (3.11) can be chosen independently of P in some neighborhood of PO, 
provided that A is a compact subset of each domain Sp with P in this 
neighborhood. This concludes the proof of the lemma. •i 

Next we bring a technical lemma that will be used in the derivation of 
the main result of this section. 

LEMMA 3.5. - Let $2 be u piecewise C1 domain. Suppose that 0 E i)b2 
and that there exists a ball BR centered at the origin such that 0 n BR = 
W; (II,). Suppose that o() is a point on i3S such that, for some positive ro, 
the set {(r, oTg. 0) : 0 < 1‘ < r(j) lies on a ‘linear’ edge of dimension ho. 
(Necessarily, kc) < N - k - 2.) Thus there exists a spherical cap Bo on 
S”V--k-‘, centered at c-r(), and a domain C on SN-k’-ko-l such that 

{ (1.. cr. 0) : 0 < T’ < ‘ro. CT E Bo} n S2 

= {(r.. UT, 0) : 0 < I’ < ro, CT E B,} n W, (II,,,) (3. II) 

where WC (III;,) is a wedge in R”-” (identijied here with the subspace z = 0 
of RN)-whose axis contains the ray { ( r. o(). 0) : 0 < 7.). Let us denote this 
set by W and its cross-section (forfied 7.) by W,.. In an appropriate local set 
of ‘cylindrical’ coordinates in SIV-k-l, with axis II’ = {o : (,r, o, 0) E lIk,, 
,for ‘I’ > O}, say (p, 0, {) with C E II’, we have, 

r/i/,. = { (7.. CJ. 0) : (T = (p, 0, 0. 0 < (1 < y ((‘) 1’. H E c, (: E IT} 
where y is a smooth, non-negative function of < which is positive at < = 0. 
(It is determined by Bo and II’.) 

Let %II be the large solution qf Equation (2.3) in S and let ,tn* be the large 
solutionof(2.3)inC.withX(N-k-1. p)replacedhyX(N-k:-~,~-I. p). 
Then iffc2 is a point on 82 lying on the edge of I%,- and ‘tt, is a large solution 
in 62 we have, 

II (.I:)/( Jx:or)--2/(1-‘-l) 11, (CJ) - 1 ‘I 
(LS .I’ + 0. :I: = (‘I’. cr. z) I 

> (3.12), 

71, (x)/( Jx-(?jyr /,)--2/(1)-l) Ill* (0) i 1 
(IA 2 + 0, .I: = (1., p; H. <. 2). 

(3. 12)2 
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The rate of convergence does not depend on & but only on I:I: - Ql/l i.e. 
on p. Hence, letting & tend to the origin we obtain, 

T,) ((7)//)-2/w w* (0) + 1 as p -3 0. (3.13) 

ProofY - This is a consequence of Lemma 3.3 which, in the present 
case, will be applied at the origin (to obtain (3.12),) and at Q (to obtain 
(3.13)2). 0 

DEFINITION 3.6. - A wedge Ws (IIk) is of order one if S is of class 
Cl. Similarly, a k-dimensional curved edge is said to be of order one if 
(in the notation of Definition 3.2 (i)) S is Cl. A piecewise Cl domain 
62 in R” (or in S”-l) is said to be of order one if it is not C1 and 
if every k-dimensional curved edge on 80 (for every k) is of order one. 
Inductively we define: a wedge W, (&) is of order ‘rr1 if S is of order 
‘rn - 1. A piecewise C1 domain 62 in RN (or in Sn’-l) is said to be of 
order Tn. if every k-dimensional curved edge on i3R (for every k) is of 
order m’ 5 m and there exists on dR a curved edge of order m. 

THEOREM 3.7. - Let 62 be a bounded piecewise C1 domain. Then there 
exists a unique large solution 71. of (1.1) in 52. 

If P E i3R, let W,IT (II,) be the limiting wedge at I’ and let ‘UIP denote 
the unique large solution of Equation (3.3) with S = Sp. (We shall use this 
notation for ever?, P on X2, even if the boundary is C’l in u neighborhood 
of P. As we have mentioned before, in such a case k = 0 and Sr is a half 
sphere.) Let (1.; IT, z) denote a local set of cylindrical coordinates with axis 
III, such that W,J~ (II,) = {(r. (T, z) : 0 < r, TT E Sr, z E II,}. With this 
notation the solution II, satisjies, 

and the convergence is uniform with respect to P E X2. 

Proof. - It is sufficient to consider the case where /L = 0 and /G = 1, 
i.e. ATI, = YI,~. Indeed, if (3.14) is valid in this special case, then (by 
Proposition 2.4) it is also valid in the general case of Equation (1.1). The 
proof will be by induction on the order of R. 

If I’ is a point on X2 such that the boundary is C2 in a neighborhood 
of I’ statement (3.14) is well known although in a slightly different form 
(see [BMl, 21 or [Vl]), namely. 

II, (x)/c, h (x;)-~‘(~~-~) -3 1 as b (x) = dist (D:, 80) + 0. (3.15) 
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In this case the denominator in (3.14) (with X, E I) is the large solution 
for a half space, specitically the half space bounded by the tangent plane 
to X2 at P. which contains the intersection of S! with a neighborhood 
of P. This solution is also given by U (I) = I’,’ (T (:,.)-““‘~“, where h i.1.1 
is the distance from :I: to the tangent plane. Therefore (3.14) and (3.15) 
are equivalent. 

A modification of the arguments employed in the proof of (3. IS) (as 
presented in [MI) shows that the result holds under the assumption that iSI? 
is of class 6”. Indeed (3.15) is obtained by comparing ‘I/, with the large 
solution in a ball touching 012 at P (for an upper estimate) and in an 
annulus whose inner boundary touches iX2 at I’ (for a lower estimate). For 
this reason it is required that 12 satisfies the interior and the exterior ball 
conditions. However if one replaces the ball and the annulus by conical 
sections with vertex at I’, the same argument leads to (3.15) and requires 
only 6”’ boundary. 

Next suppose that IY is a X:-dimensional curved edge of order I on ill2 
and let Pa E 1’. Then, in the notation of Definition 3.2, S and S”:J are 
of class C1 and XI\1 ’ is <Y’ in a neighborhood III of PO. Using further 
the notation of Definition 3.2. let II 1 denote a one-sided neighborhood 
of i)l2 0 IV which is the pre-image by T of the set T (n) n WS, (HA.) 
where S,, = {(T E S : (list, ( IT. i)S) < ;j}. It follows from (3.15) that. 
if il is sufficiently small, (3.14) holds for P E I‘ n kl and .I’ E lI.9, 
uniformly with respect to such f’. (1) must only be small enough so that 
for .I: E &, n (.I,‘ < 1.1. - I’[.) On the other hand. by Lemma 3.4, (3.14) 
holds in (Al n f?)’ !I,{ uniformly with respect to I’ E I‘ n Ilir. Consequently 
(3.14) holds uniformly with respect to I’ E f f’ .If. Thus the theorem 
holds (for equation & = 111’) in domains of order 1 in [w”. Hence (by 
Proposition 2.4) it holds for any equation of the form ( I. I ), in domains of 
order 1 in W.v or in SAY-‘. 

Now suppose that the theorem holds for domains of order ,111’ < tt1 
and let 12 be a domain in LX-” of order m. Observe that this assumption 
implies that if It is an arbitrary, piecewise c’l domain and if P is a point 
on 312 lying on a curved edge of order Ttt’ < rtt then (3.14) holds in 
a neighborhood of P. (This is again a consequence of Proposition 2.4.) 
As before we shall consider the equation 171, = ,vG’. Suppose that P is a 
X:-dimensional curved edge of order ‘trl. on 82 and let p(, E I’. Then, in the 
notation of Definition 3.2, S is a domain of order m - 1 and there is a 
neighborhood IV of E’,, such that if Q E (iAl\I‘) n izl. either ?I12 is Crl in a 
neighborhood of (2, or () lies on a curved edge of order ,rrb’ < III. In either 
case, our assumption implies that (3.14) holds at each such point 0. This 
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fact and Lemma 3.5 imply that (for DJ as in the previous paragraph), if [j 
is sufficiently small, (3.14) holds for P E r n M and :I: E D,,, uniformly 
with respect to such P. (In fact (3.14) with respect to Q corresponds to 
(3.12)2 with C = CQ. We note also that if 0 - P along a curved edge 
then CQ converges to a domain C such that IVx (II,,) is a limiting edge at 
a point cro on i)Sp.) The proof may now be completed using Lemma 3.4. 
as in the previous paragraph. 

4. ESTIMATES AT A RE-ENTRANT CUSP 

In this section we present estimates for the growth of large solutions 
of (1.1) in the neighborhood of a boundary point of R which is the vertex 
of a re-entrant cusp. We shall assume that Q is bounded, of class C,,. and 
that 862 satisfies the exterior cone condition away from the cusp. Without 
loss of generality we shall assume that the vertex of the cusp is at the 
origin and that there exist R > 0 such that 12~ = 12 n BR (0) is a simply 
connected domain satisfying the following conditions: 

OR = { (7.. CT) : 0 < r’ < R: 0 E r,.}. rr c S:T-l, (4.l)l 

Let P = nO<r,<R i?:: and set 

H() (7.) = sup { Ialp : c7 E r;}, B (7.) = ,)su~,, H() (s). (4.2) 
‘. 

where 1~1~ = d, ((T. P) is the geodesical distance between 0 and P on 
SK’-‘. Finally denote 

and 

Thus 

z 
‘I’ = (0 E s”-1 : IflIp > /I} 

1 

(4.3) 
G,. = {(Y, 0) : 0 < s < r, IT E +,.)}. 

G,. c R,.. for 0 < r’ 5 R. (4.4) 

PROPOSITION 4.1. - (i) Suppose that 1 < p < (N - l)/(N - 3). Then 
there exists a large solution of (I. 1) in II. Zf II. is such CI solution, its growth 
near the cusp is given lay, 

J%) ( vB@) ,.)2/(J1-1) ‘/I, (r’, 0) = ‘W() ((7.) (4.5) 
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where (in the notation qf ( 1.12)) ‘W() = ‘W,y with s = S.-l \{ P). 

(ii) Suppose that N > 3 and thut 11 > (N - l)/(iV - 3). Ij’s~ is a positive 
solution of ( I. 1) in 62 then, 

lim 7,2/(1’-1) II, (7.. CJ) = 0. (4.6) 1~10 

Proof - (i) Our assumptions on (2 imply that it satisfies the exterior 
segment condition. Therefore the existence of a large solution follows from 
Remark 1.9. In view of Proposition 2.4, it is sufficient to establish (4.5) in 
the special case where (1.1) reduces to the equation AU = uJ’ and $2 = (2~~. 
If R is sufficiently small then $2~ c Df> = {(r, IT) : 0 < r’, (T E S’vp’. 
(T # r}. The function ‘tb.5 given by (1.12) is a large solution of ATI. = ,111’ 
in Dr. Hence US < ‘II, and 

linG;if r.2/(pp1) ‘U (r, CT) 2 %I!() (0). (4.7) 

On the other hand if ‘~1~ is a large solution of AU = ,lP in Gx then (in view 
of (4.4)), ?lR > U. (Note that our assumptions imply that the large solution 
in f2 is unique so that it is sufficient to verify that ‘OR dominates every 
bounded positive solution in 12.) By Proposition 2.4, !iR behaves near the 
origin in the same way as the solution of AU = ,/II’ in {(s, (T) : 0 < s. 
rrE z@(R)). Therefore by (1.12) 

lirri sup r.2/(p-‘) ‘u (7’, n) 5 ‘(f)R (0) (4.8) 

where ?liR is the large solution of (1.13) in EQ (R). Note that E:s (13) 1 
S”-l\(P) as R j, 0 so that ‘tl)R j, 71~~. (Here we use the fact that ~1~) is 
the unique large solution of (1.13) in S”-‘\(P), see [V2, 31.) Hence (4.7) 
and (4.8) imply the stated result. 

(ii) Inequality (4.8) holds by the same argument as in the first part. 
However when p > (N - l)/( N - 3) the singularity of ‘(110 at I’ is 
removable [BV]. The only non-negative solution of (1.13) on the whole 
sphere S a’-* is ~1 E 0. (Note that in this case X (N, p) < 0.) Thus (4.8) 
implies (4.6). 0 

In the remaining part of the section we derive more precise estimates for 
the behavior of large solutions in the neighborhood of the cusp, in the case 
where p > (N - l)/(N - 3). We start with estimates from above. 

THEOREM 4.2. - Suppose that the function Q ( . ) defined in (4.2) is 
continuous. 

(i) Let p > (N - l)/(N - 3). G’ lven 7.0 E (0, R) and r > 1, there exists 
a constant c (7.0, r) (depending also on N. p, k:, h) such that every positive 
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solution u of (1.1) in R satisfies the inequality, 

u (r, 0) 5 c(r0, T)lcTg” v (r)-2’(p-? 
for o<r<q), ITEA,,,., (4.9) 

where v is a strictly monotone increasing function in Iw+ whose inverse is 
given h.v, 

and 

(4. IO) 

A,,,. = {(T E P-l : Ialp > d(V(7.))). (4.11) 
Note that as T 1 0, p = v (T) J, 0 and consequently A,, 1’ T S”-l\{P}. 

(ii) Let y = (N - l)/(N - 3). Given ~0 E (0, R) and S E (0, ‘or), there 
exists a constant c’ (~0, 5) (depending also on N, p, k. 1~) such that every 
positive solution u of (1.1) in R satisfies the inequality, 

u(r, 0) < c’(q), s) z+y, for 0 < r < 7’0. (T E s:,, (4.9)’ 

where 

v-l (p) = p (log (l/6, (p))-“2. (4.10)’ 

Remark 4.3. - Note that the expression -l+(p - 1) (N - 3)/2 is positive 
in case (i) and vanishes when p = (N - l)/(N - 3). Since by its definition 
0 ( . ) is monotone increasing, the right hand side of (4.10) or (4.10)’ is 
strictly monotone. Thus v is well defined. Further note that, 

r/z1 (7.) -+ 0 as 7’ + 0 (4.12) 

Indeed if v (r.) = p then, 

dp = 1 (j (p)-l+(“-l) (;1’-3)/Z in cast (i) 
(log (l/0 (p))-‘l’ in case (ii). (4.13) 

By (4.1)~ lim,,,O 0 (p) = 0 and by (4.10) or (4.10)’ p + 0 as 1’ + 0. 
Therefore (4.13) implies (4.12). In view of (4.9) and (4.9)’ this fact implies 
that the rate of blow up of large solutions at a cusp is lower than the rate 
of blow up at regular points or corners. 

The proof of the theorem is based on the following lemma. 

LEMMA 4.4. - Consider the equation, 

a, 711 - x ‘W - k: 7llP = 0. (4.14) 

where A, K are constants, K > 0 and ATI is the Laplace-Beltrami operator 
on S”‘-l. Let 74, denote the large solution qf (4.14) in E,,. 
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(i) if p > E then, for ecery r > 1 there exists cz constant cl (7) (which 
depends also on N. p, K, A) such that, 

‘ifi,) (m) < cl (7) lal’~p.‘~ r(‘-“-*, Vm E ETTt. 0 < ‘rj < 57/r. (4.15) 

(ii) Zf y = z and X 2 0 th en, jbr every S E (0. r) there exists ci 
constunt ~2 (S) (which depends also on N. y. h:. A) such that, 

‘UJ.,) (0) < c:! (3) 
1 (3s,Y)/’ 

( J 
log ?r YJO E 27. 0 < ‘r/ < S/2. (4.16) 

The proof of the lemma is given in the appendix. We turn now to, 
Proof of Theorem 4.2. - For p E (0, R.) let v+!I~ be the unique large 

solution of 

Aljl - to/P = 0 in B, (0) (4.17) 

and let QI,, be the unique large solution of 

A, w ~ X III - h; wp = 0, in Z0 (,,I. (4.18) 

where -A = X(N, y) as in (1.13) and K = ,k(O)/2. We observe that in the 
case 11 = (N - I)/( N - 3), X > 0. Then the function 11,~ given by 

-L IL, (I., m) = 1’ /‘-I ‘l/f/, (n), (4.19) 

is a large solution of (4.17) in the cone { (7.. U) : 0 < r, (T E E@ (,,) }. 
Consequently U,, = ‘/J,,, + I/I, is a supersolution of (4.17) in G,,, 

AC’,, - kc “1; < 0. (4.20) 

Note that (by scaling) (/I,> (1.) 2 ,$r (0) p-- “/(“-r). Therefore there exists 
p() > 0 such that for p E (0. on). U,, is sufficiently large so that (in view 
of (4.20)), 

3 ( $ + h U,, - I,: (J:: < 0 iii G,, 

Since UP blows up on i)G, we conclude that, 

(4.2 I ) 

u (7.. v) 5 U, (,r. 0) = 7.- 5 7ff,l (g) + $,l (7.) in G,, (4.22) 

From (4.22), Lemma 4.4 and the standard estimate for large solutions in 
regular domains it follows that in case (i), 
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for 0 < T < p 5 p0 and 0 E Z:TB(p), and in case (ii), 

1 

( > 

(3-N)/2 

1L (7.. (T) < cp (2) log - 
0 (PI 

p-N + c2 (/, _ +-y (4.23)' 

for 0 < 7’ < p 5 p. and g E ET. The constants cl, c2 are independent of 
p which can be freely chosen in the interval (0, po). We shall choose p 
in such a way that the two additive terms on the right hand side of (4.23) 
(resp. (4.23)‘) will be of the same order of magnitude when r -+ 0. Thus, 
assuming that 0 < r < p/2, we choose p so that, 

e(P) 
N-3-A.. -L p-l r p--l = -$T P 1 in case (i), 

(3%N)/2 

r3-N = psPN, in case (ii). 

With this choice of p we obtain (4.9) and (4.9)‘. (Note that, with p = v (T), 

50 (p) = AT,..) 
Examples 4.5. - (a) Suppose that 19 (p) = p’+” for some 6 > 0. If 

p > E then (4.9) yields, 

u(r, CJ) 5 c(ro, T) Ioj;-N r-(p-')T'+b$ Vcr E A,,,, 0 < r < ro, (4.24) 

where 11, = ((p - 1) (N - 3)/2) - 1. Note that in this case IL > 0. 
If y = z (and N > 3) then (4.9)’ yields, 

11. (r, a) < c’ (T-0, ‘E) r3-lV 
l (3-N)/2 

( > 
log - 

r 

?I 

(4.24)' 
vr E z:,, o<r<ro 

(b) Suppose that B (p) = e -O/P for some ,0 > 0. If p > 2 then (4.9) 
yields, 

, 
(4.25) 

If p = fi then (4.9)’ yields, 

‘u (r, a) 5 c’ (ro, s) /j(3--N)/3 rf C-N)> 

vcr E ET, O<r<ro 
I 

(4.25)' 

Next we derive a lower estimate for the behavior of large solutions near a 
cusp. Here we shall consider a more restricted family of cusps. Specifically 
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we shall assume that for some R > 0, (2~ c Dn = D n BR (0), where (in 
some local set of coordiates z obtained from :I; by rotation) 

D = ((2, z,v) E RN-l x R+ : lz’l > c/J(z*r)} u (2 : zn’ < O}, 

and 4 is a convex function in C1 ([0, oo)) such that 4 (0) = 0, q5’ (0) = 0 
and q!~ (p) > 0 for p > 0. For p > 0, let PP denote the intersection of the 
tangent to the curve q5 at the point p with the ZN axis. Thus Pr = (0, 6) 
where &, = p- (4 (p)/$’ (p)). We denote by P the point (0, 1) (i.e. z’ = 0, 
ZN = 1) and observe that P E i?z, 0 < r’ < R (in the notation introduced 
at the beginning of the section.) 

THEOREM 4.6. - Let (2 be a domain as before and assume that the 
cusp satisfies the conditions described above. In addition suppose that 
p > (N + l)/(N - 3) and that h > 0. Th en there exists a positive constant 
c’, depending on N, p such that every maximal solution ‘IL of (1.1) in 0 
satisfies the inequality, 

11.(z) > c/ Iz - u,Jh #(p)=-*. (4.26) 

for every p in (0, R) and every z in Qn such that s E Q (,>). 

For the definition of maximal solutions see Remark’1.4 (ii). Under the 
assumptions of the present theorem, it is not known if there exists a large 
solution in the sense of (1.2). However it is clear that a maximal solution 
exists. The proof of the theorem is based on the following lemma, whose 
proof will be given in the appendix. 

LEMMA 4.7. - Suppose that p > E. For r/ > 0, let w,t be the unique 
large solution of 

a w-xw-k.wp=o, 9 in E,,, (4.27) 

where X and z are constants, % > 0 and X < (N - 1) (N - 3)/4. Then 
there exists a positive constant c (depending on N; p) such that, 

Proof of Theorem 4.6. - Let p E (0, R) and let (rP; 0) denote spherical 
coordinates centered at Pp. Let o (p) = tg-’ $’ (p) and denote 

Fp = I(+, a) : rp > 0, 0 E E,,(,,)}. 

Thus Fp” > 62n for every p as above. 

F,f = F,, n BR (O), 
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Let QR be the (unique) large solution of (1.1) in BR (0). Then u + 9~ 
is a supersolution of (1.1) in fin which blows up on i)flR. 

Let W, cP) be the large solution of (4.27) with rl = a (p), k: = strop k and 

-A = A(N, ~1) as in (1.13). Then 
2 

UP (5, g> = ~4, ’ ’ w,(~) (g), b-p, a) E Fp (4.29) 

is a large solution of AU - k-UP = 0 in Fp. Since h > 0 it follows that 
U, is a subsolution in on. Consequently 

up 2 ?L + *R, in no, for p E (0, R). 

Hence, setting c(R) = sup @R in BR/~ (0), we obtain 

(4.30) 

712 sup{U, : 0 < p < R} - c(R) in OR/s. (4.3 1) 

Next we observe that the condition p 2 (N + l)/(N - 3) implies 
that X < (N - 1) (N - 3)/4. Therefore we can apply lemma 4.7 in 
order to estimate w, (,,). Combining (4.28) with (4.29) and (4.31) we 
obtain (4.26). q 

Example. - Suppose that 4 (p) = pl+‘, for some S > 0. Then 
P,, = (0, &). If we set p = IzJ then (4.26) yields, (with /L as in 4.5 (a)), 

71. (z) 2 c IzI-“++, (4.32) 

for every z in RR such that s E E,, ~~1, 0 < /, < 1. Note that, 
for small 5, the exponent in (4.32) is close to the exponent in the upper 
estimate (4.24). 

Inequality (4.32) implies that in the present example, if S/L < 1 then the 
maximal solution is in fact a large solution. 

APPENDIX 

This appendix is devoted to the proof of Lemmas 4.4 and 4.7. It will 
be assumed that N > 3 and the notations introduced in Section 4 will be 
used throughout. 

Let P* be the antipodal point to P on SK-’ and let PN be the 
stereographic projection of SN-‘\{P*} onto RN-‘. It is well known that 
PN is a conformal diffeomorphism with conformal factor v4/cNe3) where, 

$9 (LIT) = (2/(1 + /:@)(N--3)‘2. (a.1) 
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Let w be a solution of (4.14) in a domain U c SIV-l\{P*} and define 

72, (3:) = 111 (0) p(x). with (7 = $i: (:I:), V’z E $,v (0). (a.21 

A straightforward computation (see [LPI) shows that VW satisfies the 
equation, 

a 6 + @W3) 

[ 

(l-v - 3) (N - 1) 
3 

- Jj 1 u, - &;‘p*-” 75” zz (). (a.3) 

in $N (U). 

LEMMA A.l. - Let w,, be as in Lemma 4.4. Then there exists a constant 
CO, independent of r/, such that (with u”l, as in (a.2)), 

7i$ (y) 5 co r)--2’(+ for ITjl = 3rj. 0 < r/ < 1. (a.4) 

Proof. - W, satisfies equation (a.3) in the domain pN (ET,) = {:I: E 
RN-l : 1x1 > tg 71). The function cs defined by, 

‘G,] (x) = q(fi-3)‘2 cl7 (,rj x) (a.5) 

satisfies the equation, 

*~~+jl(~)‘j,-~(~)~“,i.:;=II! (n=rj-‘) (a.6) 

where p = N + 1 - y (N - 3) and i = i (IV - 1) (N - 3) - X, in the 
domain Kq = {x E R”-l : Ix/ > r1-l tg;}. We note that for small ~1, 
1 < rl-’ tgrl < 2. Therefore for rr~ > 2, 

II,,, = (3: E R”-1 : 2 < 1x1 < rn} c K,,. 

Observe that for 7’ = lx > 1 and ~1 > 1, 

l/nr2 2 2n/(rb2 + ?) < min (l/r. 2/n) < 1. (a.7 
Consequently, the coefficients of ,;?I and ilg in Equation (a.6) are bounded 

above (in II,) by x+ and -& (r) respectively, where 

ljjTL (r) = K rr,-p’2 7.-‘h if II, > 0 
and 

i(jTL (r) = K (rq2)-“‘” if 1s < 0. 

Let /J (7-) = npi2 ,& (r.) and consider the equation, 

nv+x+v-pvp =o. (a.8) 

A~rrmlr,s dc> I’lnstitut Hmt? PoinrrwP Analyw non linhre 
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If V,,, is a large solution of this equation in D,, then n-pj2 (l--P) V,, is a 
supersolution of (a.6) in this domain and consequently, 

l’,, 5 f-1, --11/2(1-P) V,,, iI1 D m . 

(Note that V,, is radially symmetric.) Hence, using (a.5) and the definition 
of p> 

ti& (~2) 5 7-h V, ([XI), in D,,,. (a.9 

Choosing rn > 3, (a.9) implies (a.4). 0 

LEMMA A.2. - The equation 

Y = 0, (a. 10) 

(where i is a constant and r = 1x1) possesses a unique positive solution 
in RN-l\(O) such that 

lim rNm3 y = 1 
1’“cc 

and rNp3 Y converges to 0, positive limit ns r -+ 0. 1 
(a.1 1) 

ProojI - Consider the equation 

Au + (/~/(a + r2)1+6) u = 0 in Wd, d > 2, a > 0. (a.12) 

If S > 0 and h, is a smooth bounded function such that h 5 (d - 2)2/4 in 
Rd, it is known that Green’s function for (a.12) is equivalent to Green’s 
function for A, (see [Pr, Lemma 2.41 and [Py, example 4.3.121). Thus 
(a.12) possesses a positive solution in Rd\{O} which has the same behavior 
at 0 and 00 as Green’s function of A. This solution is unique up to 
a multiplicative constant. Now, if Y satisfies (a.10) then the function 
2 (II:) = Y (x/n), 7~ > 0, satisfies the equation 

z = 0. (a. 13) 

If 7~ is chosen sufficiently small, the coefficient of 2 in (a.13) satisfies 
the conditions described above and consequently (a.lO) has a solution 
possessing the properties stated in the lemma. 17 

Using Lemmas A. 1, A.2 we obtain, 

LEMMA A.3. - Suppose that p 2 E. Then, for every r > 1 there exists 
a constant cl depending on N, p, I- such that, 
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Proofi - Let CO be as in Lemma A.1 and Y as in Lemma A.2. In view 
of (a.1 I) we can choose a > 0 such that, 

0 Y (x) > C() (7./4)3-‘V for 7’ E (0, 1). 

Hence by (a.4), 

Clearly Y is a supersolution of (a.3) and Y + 0 at infinity. By (a.2) 
rii, + 0 at infinity. Therefore, by the maximum principle, 

This inequality together with (a.2) and (a.1 1) implies (a.14) for 7 > 3. 
An inspection of the argument shows that the same result holds for any 
7>1. 0 

Lemma A.3 provides the estimate stated in the first part of Lemma 4.4 
(concerning the case p > (N - l)/(N - 3)). When p = (N - l)/(N - 3) 
the exponent of rl in (a.14) vanishes. However in this case, a stronger 
estimate, namely (4.16), can be established. 

Proof qf Lemma 4.4 (ii). - Let 

2, (3;) = 111,) (CT). where :I: = lP*r (0). (a.15) 

In view of (a.2), Z,, = 9-i yi&. By [GNN] r&S is radially symmetric. 
Therefore, in spherical coordinates, with 7’ = IX], 2, satisfies the equation, 

2:;+ 
N-2 
7-+(3-N) 5 (A Z,)+K; Zg) = 0. (a.16) 

Claim. - For every q < 7r/2, there exists a constant c, such that, 
(:I-!\‘)/2 

: for I/ E (0. ‘Il). (a. 17) 

Note that, since p = (N - l)/(N - 3), point singularities for solutions of 
(4.14) are removable and so limlr,a ‘uI,~ = 0 in S”-‘\{ P}. Thus 

ZT, (1) - 0 as r/ + 0. (a. 17)’ 

Denote, 

(a.18) 
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and let 

27 (P> = 2, (H-l b-9) for p > plr := H(tgrj). 

Then z,, satisfies the equation, 

4; = G(P) (AZ, + $), P > Ps (a.19) 

where, 

G(H(7-)) = & 
( > 

2(N-2) 

It is easily verified that, 

P71 17 
N-3 --+ -2”~N/(N - 3) as 7/-+ 0, (a.20) 

G(p)((N-3)lpl)“= --+l as jpl+cc (a.20)’ 

and G(0) = 1. 

Suppose that 71 E (0, r/4) so that (by (a.18)) pa < 0. Let 6 be a positive 
number (to be determined later) such that, 

6 5 i;f G(p) (1 + p)” E (a.21) 

and denote by T&, the positive solution of 

(a.22) 

Then, 

xl1 I $, in (-ij%l, B;). (a.23) 

(Recall that X 2 0 and rc > 0.) Note that (a.22) is symmetric with respect 
to p = 0. Therefore, by uniqueness, &, is even and so *$i, (0) = 0. In 
addition we note that as rl J 0, pV1 J, -cc so that the interval (-/?I?, I$) 
is increasing and tends to R. Consequently {li,,} decreases with 71 and 
because of the removable singularity result previously mentioned, r,&, + 0 
pointwise as fir/ -+ 0. In particular, 

Denote, 

x,, := rT/& (0) -+ 0 as 71 -+ 0. (a.23)’ 

PI, (T) = CT (4, (p). 7 = In (1 - p); -& < p < 0. (a.24) 

Then p,, satisfies the equation, 

$5” + $9’ = t, (A e(l-p)T p + /up”) in (0, yfTl) (a.25) 
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where ys = ln (1 + [j,,). Note that, 

Next, we shall estimate x1, in terms of &. Since & is convex and its 
derivative vanishes at zero, $+ attains its minimum at zero. Consequently 
p,,(r) 2 xv eer and by (a.25), 

pi: + cp:, 2 6Xx1, CpT in (0; yV). 

Let y be the solution of 

y” + y’ = SAX7] fcT; y (0) = XVI, y’ (0) = --X7). (a.27) 

Then (eT cph)’ 2 (eT 9’)’ in (0; yq) and ‘pV and y satisfy the same initial 
conditions at zero. Consequently, (ps 2 y in (0, yV). The solution of (a.27) 
can be explicitly computed. At this point we assume that (in addition to 
(a.21)) 6X 5 p - 1. Then we obtain, 

v. 2 y L SJxa/Tj =: El1 in (0, rll). (a.28) 

By (a.25) and (a.28), 

Hence, integrating from 0 to r and using the fact that ‘pC (0) = -x0 we 
obtain, 

‘p; (T) 2 --x1, CT + .s<g (1 - e-T). (a.29) 

Let Z: = ?j (6X/p)P and rT1 = -In (cxg-‘). In view of (a.23)’ if 71 is 
sufficiently small rV1 is positive. By (a.29), if Yrl < yq, 

dl CT) 2 ‘;x; for 7 E [r,), %,). (a.30) 

Let E > 0 and let { be the solution of the equation <’ = &<I’ satisfying 
C (0) = t,P A ssume that rl > 0 is sufficiently small so that C (0) < 1. 
Suppose also that E is so chosen that, 

E2p+E < hK- and & (bX/2y)‘I < c. (a.3 I) 

A simple computation shows that under these assumptions, 

<” + <’ 5 btc<” in [0, S,,]. (a.32) 

where 7V = C-l (1) = (C (O)l-” - l)/& (p - l)/ (Note that < is strictly 
increasing so that 0 < 5 < 1 in (0, TV).) We also observe that for 71 

sufficiently small, rV < 7,]. Finally, by (a.28), (a.30) and (a.31), if r7! < yo, 

c (0) i PO (4 and C’ (0) I $4, (TV). (a.33) 

A~mnlr~ dr I’lnsritur Herwr Poin~vm~ Analyst non lintare 
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Now we distinguish between two cases. Either yrl 5 7, for all sufficiently 
small V, in which case, 

x,, 5 const ln r ( > 
(Z-5)/2 

for all sufficiently small q9 (a.34) 
‘It 

or there exists a sequence {qj} such that qj 1 0 for which F,,,, < y,), . In the 
first case, (a.26) and (a.34) imply (a.17). Therefore we consider the second 
case. (In what follows 71 stands for an element of the sequence 71j.) 

By (a.25) and (a.32), 

(f?:7 $4, (T + TJ)’ 2 (CT C’ (4)’ for 7 E (0, ?,I - T,,) 

and hence, by (a.33), 

vJ,z (T+T,) 2 (“(‘I; cp:, (7+7;,) 2 e-‘, C’(r) for 7- E (0. 7,,-T,,). 

Thus. 

(Prr (7,) L 1 and cp:, (c,) > 0. (a.39 

Finally compare the solution (p? of (a.25) in (Fll, r,,) with the solution $ of 

4” + 4’ = fY11;gY in (F’71j y7,), f$(?,) = 1, $‘(?,,) = 0. (a.36) 

In view of (a.35), 

‘Pi (~1 2 d, (~1 in CT,,, rr,). (a.37) 

Now 4 can be described as follows. Let QT be the (unique) positive 
solution of, 

V’ + 9’ = fYtc!l?” in (-T: T) 
9 (t) -+ cc as ItI -+ T. 1 

(a.38) 

Then %‘T is even so that Q!, (0) = 0 for every T > 0. Furthermore, there 
exists To such that !PT~ (0) = 1. (Indeed, !PIIT (t) = T2/11-J’) *I (t/T).) 
Consequently, 6, (T) = 9, (7 - FT1). Since 4 blows up at V- = 5,, + T,, 
(a.37) implies that, 7,) 5 TV + To. Hence, (see (a.25) and (a.38)) there exist 
positive constants cl, c2 such that, 

111 (1 + P713,,) 5 Cl xv 1--p + c2, for all sufficiently small 7. 

However, by (a.20), 

W+&) =ln(l-p,/2) =1n((1+0(1))rj3-?2-N/(~-~)) 

=(3-N)ln?/+O(l). 
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Thus, 

xv < const ln 1 ( > 
(S-N)/2 

for all sufficiently small rj. (a.39) 
71 

(Recall that 1 - p = 2/(3 - N).) N ow the inequality (a.17) follows 
from (a.26) (a.34) and (a.39). Obviously a similar inequality holds for 
every T > 0 and every 0 < q < 2 tg-’ r: 

-z, (7.) 5 G)(r) log ; 
( > 

(s-N)/2 

1 

1 

(a.40) 
for r/ E (0, q). 

Thus, for 0 < 71 < Tj < 2 tg-’ r, 

( 1 

(3sIV)/2 

‘WV (0) < c;r(r) log ; 
(a.41) 

for 0 E {P,’ (x;) : 1x1 = 7-}. 
>I 

By the maximum principle, the inequality holds for all (T in {P&l (x) : 
121 > 7”). q 

Finally we turn to, 
Proof of Lemma 4.7. - Define G, and ii,, as in Lemma A. 1. Then ir,, 

satisfies Equation (a.6) in K,,. Note that, 

K,, c D, = {:J; E RN-’ : 1 < In:l}; (a.42) 

and that the assumptions on p and X imply, 

ii > 0, p < 2. (a.43) 

For T 2 1 and n > 1, the coefficient of -6, in (a.6) is bounded above 
by y (r.) where, 

and 

yq (7.) = Ic(277)PL/2 if p > 0 

I 

(a.44) 

ys (7.) = Krff2 reAL if p < 0. 

Now consider the equation, 

au - yrr (r) up = 0. (a.45) 

Let U, be the large solution of (a.45) in D,. Since i > 0, U,, is a 
subsolution of (a.6) and in view of (a.43), 

U7,~ii, in Kq. (a.46) 
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Let y (r) = vAc”i2 y. (r) and let U* be the large solution of the equation, 

au*-y(r)U*p=O (a.45)’ 

in D,. Since p < 2, U* satisfies the following inequality for every rO > 1: 

3 N C’(T0) 1513-*’ 2 u* (XT) < c” (7.0) 151 - ) for TO 5 1x1, (a.47) 

where c’ and c” are positive constants (see [BM3]). Since U* blows up 
at 1x1 = 1, the constant c’ can be chosen to be independent of ro. Now, 
U,] = ,JI* U*. Consequently, by (a.46) and (a.47), 

C’ I:I:13-N q2(1--p) < _ Ge (x) everywhere in K,,. (a.48) 

Returning to wTI through (a.2) and (aS), this inequality leads to (4.28). q 
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