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ABSTRACT. - We give a “generalized’ version of the isoperimetric 
inequality when the perimeter is defined with respect to a convex, positively 
homogeneous function on W”. We use it to prove that, for any function 
u compactly supported in R”, the integral of a convex function of DU 
decreases when u is rearranged in the corresponding “convex” way. Similar 
arguments allow us, for example, to prove comparison results for solutions 
of the Dirichlet problem for elliptic equations when the differential operator 
satisfies suitable structure assumptions. 

R~~SUMI? - Nous donnons une version (< generalisee >) de l’inegalite 
isoperimetrique lorsque la definition du perimetre depend d’une fonction 
convexe et positivement homogene sur W”. Cette inegalite est employee 
pour demontrer que, pour toutes les fonctions u avec support compact 
dans R”, l’integrale d’une fonction convexe de DU decro’it quand u est 
rearrangee a une faGon << convexe B. Avec des arguments du m&me type nous 
demontrons, par exemple, les resultats de comparaison pour les solutions 
du probleme de Dirichlet pour des equations elliptiques quand l’operateur 
differentiel satisfait des hypotheses de structure convenables. 
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1. INTRODUCTION 

It is well known that under Schwarz symmetrization certain quantities 
increase or decrease. As an example let us consider a nonnegative smooth 
function u defined on [w’“, with compact support. If u# is the Schwarz 
symmetrization of u, the P6lya-Szego principle states (see, e.g., [PSI, [Tl]) 
that: 

(1.1) 
.I’ 

IDu1’d:r: > 
.I’ 

ID&l2 dz. 
R” R” 

We recall (see also Section 2) that the Schwarz symmetrization or spherically 
decreasing rearrangement of 1~ is defined as 

where w, is the measure of the unit sphere in R” and IEl denotes 
the measure of the set E c I$“. In other words, u# is a spherically 
symmetric and radially decreasing function such that its level sets (i.e. 
{CC : u#(x) > t}) are balls which have the same measure as the level sets 
of u (i.e. {X : ~(2;) > t}). The proof of (1.1) is essentially based on the 
following inequality 

(1.2) 
d 

-I dt 
IDzll d.2: > n~;“~I{x : u(x) > t}l, 

. IL>1 

which is a consequence of the isoperimetric inequality and of Fleming- 
Rishel formula. 

Using similar methods, it is possible to prove that Schwarz symme- 
trization increases the L”-norm of solutions of linear and nonlinear elliptic 
equations. Let TL be a weak solution of the Dirichlet problem 

where 62 c 53” is an open bounded set and CQ~ are bounded functions 
satisfying 

Gj<J,EZ 2 IE12. 

If II is the solution of the “symmetrized’ problem 
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where fl# is the ball centered at the origin such that (R# 1 = 101, then 
the inequality 

holds (see [T2] and, for various generalizations, [T3], [ALT], [FP], [BFM]). 
This means, for example that any norm of ‘u. increases under Schwarz 
symmetrization. Once again, one of the main tools to prove (1.3) is 
inequality (1.2). 

At this point, one could ask if it is possible to find the way to 
“symmetrize” a function u in order to minimize the functional 

where H(t) is a nonnegative convex function, positively homogeneous of 
degree 1. 

In order to solve the problem of minimizing (1.4) we will prove that for 
any bounded set E of finite perimeter, an inequality like 

(1.5) &(E) 2 ~~~~E11-1’7L 

holds (see Section 2), where cy, is a suitable “isoperimetric” constant and 
PH (E) is a “generalized” perimeter. Using (1 S) it is possible to prove the 
following version of the Polya-Szego principle (see Section 3): 

/’ (H(Du))2 dz > 1 (H(Du*))2 dz: 
. RB” R” 

where u* is the “convex” rearrangement of u with respect to H, that is, 
the level sets of ?L* have the same measure as the level sets of u and are 
homothetic to the set K” which is polar to the set {X : H(z) I 1). 

In a natural way, using (IS), we prove (see Section 4) comparison results 
for solutions of the Dirichlet problem: 

(1.6) 
i 

-(ai(w)s~= f 

21, E w;~“(n), 

where $2 c R” is an open bounded set and ai satisfy 

ai(O5 2 (H(E))‘> 
Vol. 14, no 2.1997. 



278 A ALVIN0 et id. 

and for solutions of the Cauchy problem: 

r ’ g + .4(t, Du) = 0 in Q = 12 X [0, T] 

where 

For example, it is possible to prove that if H(E) is sufficiently regular (off 
the origin) a solution of (1.6) can be estimated in terms of the solution 
of the problem: 

i 

-(H(Dw)H,, (D71?))d., = f* in 12* 
711 = 0 on iW. 

where f” is the convex rearrangement of f with respect to If and S2* is 
the set homothetic to K” such that ]lt*/ = 1611. 

2. PRELIMINARIES 

Let H : IW”+[(). +X [ be a convex function satisfying the homogeneity 
property: 

(2.1) H(h) = ltlH(.r). V.I. E [w”. V’I E iw 

Furthermore. assume that 33 satisfies 

for some positive constants o < ;j. Because of (2. I) we can assume, without 
loss of generality, that the convex closed set 

A- = {I E R” : H(x) 5 I} 

has measure ]K] equal to the measure w,, of the unit sphere in Iw”. 
Sometimes, we will say that H is the gauge of K. If one defines (.w [RI) 
the support function of K as: 
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it is easy to verify that H” : R’” -[(I? +30[ is a convex, homogeneous 
function, and that H, H” are polar to each other in the sense that: 

For example it follows: 

1(:x, ()I 5 H(x)H”(<). 

Clearly H”(z) itself is the gauge of the set: 

K” = {:I: E [w’” : Ho(x) 5 l}. 

We say that K and K” are polar to each other. Finally we denote by K,, 
the measure of I<“. Further details can be found, e.g., in [La], [R]. 

Let 12 be an open subset of R”. It is possible to give the following 
detinition of the total variation of a function II. E J?\‘(S2) with respect to 
a gauge function H (we [AB]): 

This yields the following “generalized” definition of perimeter of a set 1; 
with respect to H: 

The following co-area formula 

~lID’fLIH=~m PH({?l. > s}; 62) ds. VT/> E BV(f2): 

and the equality 

.! 
’ Pff(E; 0) = H(#) dlFI’“-‘(:c) 

WIT)- E 

hold, where i3*E is the reduced boundary of E and uE is the outer normal 
to E (see [AB]). 

Vol. 14, no 2.1997. 



280 A ALVIN0 et d. 

One obtains readily that by definition PH(E; 62) is finite if and only if 
the usual perimeter: 

is finite. In fact, (2.1) and (2.2) give: 

and then: 

Our aim is now to state an isoperimetric inequality which allows us to 
estimate from below the perimeter with respect to a generic gauge function 
H of a set E in terms of the measure of the set itself. 

PROPOSITION 2.1. - Let f E BV( $1). A sequence { fil}h c C”(0) exists, 
such that: 

and 

Proqf: - Suitably mollifying f it is possible to define a sequence 
{fh)h c c-(n) ( see [G], [MI). Then, for example, one can follow the 
proof of Theorem 1.17 of [G]. 

PROPOSITION 2.2. - Let E be a set qffinite perimeter in 0. A sequence of 
C” sets {Eh}h exists, such that: 

and 

Proo& - Mollifying the function XE as in Proposition 2.1, it is possible 
to find a sequence {*uh}h c C-(n) such that: 
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and 
p\ sl p4-f = PH(@ fl2). J 

Furthermore, one has also (see [G], [MI) 0 5 ?lh 5 1. By the co-area 
formula we have: 

J ID~/AH = J' Pf$({Uh > s}; 62)d.s. 11 0 
Sard’s theorem implies that the sets Eih) = {uh > s} have C” boundary 
for almost every s E (0,l). We consider only such levels s. Let us fix 
E l ]0,1/4[ and /A = h(~) such that: 

I’ 
. sl 1% - XEI < &. 

Following [M] (Lemma 2, p. 299) we have: 

(2.3) 

for every s E [Al/*, 1 - &/‘I. 
On the other hand, for every h there exists ~1, E (&l/‘, 1 - cl/*) such that: 

.l 

(2.4) (1 - 2E1’2)PH(E$ $2) 5 
.I 

P&E,(“); L?) rlt. 
0 

In view of the properties of uh, we also get: 

(2.5) P,(E; a) = lim htco h lDu& = p; .I” P,(E,‘“‘; 0) dt. 
0 

By (2.3), it follows that xES;)--+XE in L1(f2) and, by (2.4), (2.5), 

Taking into account the fact that, by definiton, PH is lower semicontinuous, 
the proposition follows. n 

It is well known that, if E is a smooth set (for example Lipschitz), then 
the following inequality holds: 

Vol. 14, no 2.1997. 



It is proven in [Bu] (see also IBZ]) making use of Brunn-Minkowski 
inequality. Then, using Proposition 2.2 and (2.6), we have: 

PROPOSITION 2.3. - If’ E is CI set qf,finite perimeter in $“, then: 

Remark 2.1. - The inequality (2.7) obviously reduces to the classical 
isoperimetric inequality due to De Giorgi [DG] when H(E) = I<\. As in the 
classical one, (2.7) holds as an equality when the set E is homothetic to K". 

3. PbLYA-SZEGij PRINCIPLE 

We first observe that if ‘II E I4-1,1(12) then (ser [AB]) 

The co-area formula then gives. for any ?I, E W1.1(12), 

(3.1) 
tl 
-I (.G . I, >t 

H(Du) d:r: = PH({Tl, > t}; iI), 

for almost every 1. 
Let now *(J : R” +[(I. +m[ be a smooth function with compact support. 

It is well known that for a.e. t E [0, sup u[, 

For p 2 1 we have: 

On the other hand, by Holder inequality we get: 

(3.2) 
1-t 
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It follows that for almost every t E [Cl, sup~[ the inequality 

holds, where, as usual, we have denoted by j&(t) = I{J: : U(X) > t} 1 the 
distribution function of II. 

Taking into account (3.1) and the isoperimetric inequality (2.7) we obtain: 

Let us verify that the right hand side of (3.3) coincides with 
&,, H”(Dv*) d:~:, where ,u.* is a suitable “convex” symmetrization of II.. 
We set 

where K”(X) = {< E Iw” : H”(E) 5 H”(J)} and lh’“(:~)I = h:,, (H”(:~;))n. 
By construction the level sets of ?I,* are homothetic to K. This means that 
the isoperimetric inequality holds as an equality for the sets {u* > t}, i.e.. 

l+;, H (+&G-C-’ = n’~;I”p(t)~-‘/~~. for a.e. t. 

On the other hand, the Holder inequality in (3.2) also holds as an equality 
when IL = u*. In fact, we claim that H(Du*) is constant on the set {u* = t}. 
In order to prove this claim, one has to observe that DH”(z) is, for a.e. .x:, 
a vector normal to aP(:r:). Then the definition of H gives (see [R]) 

The homogeneity assumption (2.1) implies: 

H(DH”(x)) = 1. 

It follows that: 

(3.4) H(Du*(:r:))= - ,~*‘(I~(Lc)I)IL~~,,(H~(:c))“~’ 

= - ll*‘(lK(:I:)l)7L~.,1,/n pqLy”“. 

and the claim is proven. 
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284 A ALVIN0 et d. 

One also obtains: 

(3.5) / 
-00 . 

Hp(Du*) dz = 
. W” I (I 

Hp(Du*) 
dw-l dt * 0 , “‘=t )Du”I > 

1; 
= 

/’ [ 
-7L*‘(p(t))7L~~,‘T1 

. 0 
lL(I)‘-‘l”ll’(-lr’(I)j dt 

02 
I-L 

I’ [ * 0 
rrKjl”~L(t)l-‘/“]P (-p’(t)) 1-p dC. 

Now, taking into account the fact that 

is a norm in ~V;‘“(R’“) equivalent to the usual one, a density argument 
gives the following 

THEOREM 3.1. - Let H be a gaugefunction and let u E W~~p(Iwn), 11 > 1. 
Then u* E W,‘,‘(W) and 

(3.6) J HP(Du) dz > 
W” J HP(Du*) dz. 

W” 

Remark 3.1. - Clearly, in the case H(c) = ][I, Theorem 3.1 gives the 
well known Polya-Szego principle. In such a case, u* coincides with the 
spherically symmetric decreasing rearrangement of TL, which is usually 
denoted by ?A# (see, e.g., [Tl]). 

We now give sharp Sobolev-like inequalities as a simple application of 
the above results. Using Theorem 3.1 and the arguments in [Tl], one gets: 

COROLLARY 3.2. - Under the assumptions of Theorem 3.1 we have: 

(3.7) 
l/P 

H”( Du) d:e . 

where c,,~ is the best constant in Sobolev inequality given in [Tl]. 

Proofi - The fact that one can bound the norm of ‘11, in L” by the 
integral ( /ng, HP (Du) dx) I” times a suitable constant is a consequence of 
the Sobolev inequality and of the hypotheses on H. The best constant can 
be obtained observing that by Theorem 3.1 the ratio 

IMP 

(i > 

l/P 
H” (Du) d:l: 

* R” 
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increases when u is replaced by u*. But, once one supposes ‘1~ = u”, 
(3.5) gives: 

where u# denotes the spherically symmetric rearrangement of IL. So, using 
the estimate of the right hand side of (3.8) given in [Tl], we get (3.7). n 

4. APPLICATIONS TO PDE’s 

In this section we will give some applications of the results in Section 2. In 
particular we will obtain sharp estimates for solutions of elliptic equations 
and of Hamilton-Jacobi equations. 

4.1. Elliptic equations 

Let %I, E W$2 (0) be a solution of the problem 

(4.1) in 52 
on i)i? 

where f E L*(12) ‘f I n > 3, f E P(O), p > 1, if 71 = 2, and 
a(z, r/l I) z {&~> 7/, <)>i=l,...,n are Caratheodory functions satisfying 

and H(E) is a gauge function as in Section 2. 
A weak solution of (4.1) satisfies 

Such a solution exists for example if the vector u(z, *r/; [) satisfies: 

(u(x, ‘rl, ,o - a(z, r/, E’),E - F’) > 09 

for a.e. x E 0, V/71 E W, E, I’ E R’“. 

Vol. 14, no 2-1997. 
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Using, for 11 > 0, f > 0, the following test function 

{ 

I/. if 1,!1,) > t + Ir 
pf,(:r:) = (17~1 - f) signs if t < I,/// 5 f + h 

0 if III,I < t 

one gets, in a standard way, 

where /I is the distribution function of ‘~6. Taking into account the 
assumption (4.2), it follows: 

At this point, one has to use the isoperimetric inequality (2.7) in order to 
estimate from below the left-hand side of the above inequality. Proceeding 
for example as in [T2], one obtains: 

15 (-P’if)) *PC,) 
‘I 2/“,,,( t)“-2/r, I .f”(s)d.s for a.e. f E [O; SII~ st/,[. 

n-h-,, ,) 

Integrating both sides and using the definition of decreasing rearrangement 
of II. we have: 

It is easy to recognize that the function on the right hand side of (4.3) is 
proportional to the decreasing rearrangement of the solution of a suitable 
“symmetrized” problem. More precisely, (4.3) can be written as: 

2/n 
( 2.3) ,ll,*(s) 5 h;, ~u*(ts,. 

where II* (.v) is the decreasing rearrangement of the solution 11 of the 
Dirichlet problem: 

(4.5) 
I 

-Au = f# in [2# 
‘II = 0 on X2# 

and C2# denotes the sphere centered at the origin such that )@I = )12). 
Then we can state: 
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THEOREM 4.1. - Let 71, E IV:%2 (52) b e a solution of Problem (4.1) under the 
Hypothesis (4.2). If’u E W,““(fI#) is the solution of (4.51, then (4.4) holds. 

Remark 4.1. - A result similar to Theorem 4.1 can be easily obtained 
using Hypothesis (2.2) and Talenti’s result (see [T2]), but our result gives 
a sharper estimate. In fact, by (4.2) and (2.2) it follows that the vector 
n(:c, 71: I) satisfies the hypothesis 

Talenti’s result then implies 

(4.6) 

where ‘u is the solution of (4.5). It is easy to show that 

In fact, the hypotheses IKI = w, and H(c) > oI<j imply that K” > {< E 
R” : 111 < a} and 

and then (4.4) is sharper then (4.6). We also observe that $ = -$ if 
and only if H(t) = 111. 

KS> 

Example. - In order to give an idea of the improvement obtained, we 
give an example where K, can be explicitely calculated. Let us consider 

It is easy to show that the hypotheses required on H are satisfied and that 

It follows that ~2 = 3 and s = f . 
62 

r(i) On the other hand, the best choice of o in (2.2) is CY = m and then 

W2 -=- 
ti’1 

; < -A- N 1.1981. n 
(9 
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In the case when H(E) = 111, th e estimate (4.4) can be written as 

One could ask if, also in the general case, (4.4) gives an estimate of IL 
in terms of a suitably symmetrized Dirichlet problem. We readily observe 
that (4.4) can be written as 

where U(X) minimizes the functional 

Now we show that 

2/u 

(4.9) %7:(x;) = z#(:c), 

&1 

where z = z”, z E Wi,2(12*), minimizes the functional: 

. (4.10) F”(w) = 
I [ dx: 111 E W,‘>“(l2”), . !, , ~H’lDw) - f*w 1 

and 62* is the set homothetic to K” such that 112*1 = IILl. 
First of all we observe that a minimizer x of F” such that z = Z* exists 

because we have, for any 711 E vC::.“(62*), 

This inequality is a consequence of Pblya-Szego inequality (3.6) and of the 
following Hardy-Littlewood inequality 

This means that, in order to minimize F”(w) one can consider 111 = ,uI*. 
On the other hand, because of equality (3.5), we have: 
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for any w = w*. This means that the minimizer z = Z* of the functional F” 
is such that Z# minimizes the functional F#. In other words Z# minimizes 
the functional 

2/” 
that is the functional (4.8) with %-- f# in place of f#. Equality (4.9) 

p7 
immediately follows. Taking into a&ount (4.7) we have that (4.4) can be 
written as 

(4.11) u*(z) 5 .z(x). :I: E 62”) 

where z = z”, z E W,‘.“(Q*), is a minimizer of functional (4.10). 
If H is enough regular one has that z is the solution of the problem 

(4.12) -(H(Dw)H~~ (Dw))~, = f” in f2* 
711 = 0 on XZ* 

In other words, as in the case considered in [T2], one could say that among 
the Dirichlet problems (4.1) where 0 has a jixed measure, the right hand 
side of the equation has a jixed distribution function and the differential 
operator satisjes condition (4.2), problem (4.12) has the biggest solution. 

Taking into account the above considerations it appears natural to deal 
with minimizers of functionals of the following type: 

(4.13) F(u) = 
/ 

’ [A(Du) - fv]d:r;, II, E w,;.“p), 
. s> 

where A(<) is convex, continuous and coercive. Under the hypotheses made 
on A(E) it is well known that 1~ E IV~~‘( 0) minimizes F(u) if and only if 

where 

(4.15) A((‘; E”) = lim A(<’ + 4”) - A(<‘), 
E-O- & 

Vol. 14, no 2.1997 
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Using (4.14) and the arguments of the proof of Theorem 4.1, it is possible 
to prove the following: 

THEOREM 4.2. -Let II E Wc~.‘(i2) b e n minimizer qffunctionul F in (4.13) 
and let us assume thut il(<‘: E”) in (4.15) sutkfies 

A((: 0 L H’(E), v< E R’“. 

where H(c) is a gauge,function as in Section 2. Then (4.11) holds. 

4.2. Hamilton-Jacobi equations 

Let T > 0 and let II. E W1~“(O. T; Hi(O)) be a generalized solution of 
the following Cauchy problem: 

{ 

thl, 

(4.16) 
iJt + A(f. U/L) = 0 in Q = 12 x [O; T] 
I,,(;,:. f) = 0 on i)l2 x [O. T] 
ld(X. 0) = p(x) in 62, 

where cp > 0, p E CT(S2). and 

(4.17) Act.0 2 H(t), for a.e. < E Iw”: 1 E [0, T], 

being H(E) a gauge function. We will obtain a comparison result between 
1~ and the viscosity solution of the “symmetrized” problem 

i 

L)C! - 
(4.18) 

L)+ + H(1h) = 0 in 12” x [O. T] 

,?!(:I.. t) = 0 on i)l2* x [O. T] 
71(x. 0) = p*(x) in II”. 

More precisely, we have: 

THEOREM 4.3. - Suppose IL E W’~‘(O, T: Wj’“($Z)) is a non-negative 
generulized solution of (4.161. Then we have: 

lL*(:r: f) < 11(x, I-) iT/, 12* x [O, T] 

where u(:c. t) is the viscosity solution of (4.18) and u*(., f) denotes the 
convex rearrangement of ?I,(.. t) with respect to H for jixed f. 

Proof: - Using hypothesis (4.17) and proceeding for example as in [FPVJ 
(see also [GN]) it is possible to obtain: 

(4.19) 
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for almost every 1: E [0, T] and B > 0, where the notation 

is used. 
If, for a fixed t, we denote by /L(B, t) the distribution function of U(Z, t), 

using a result contained for example in [Ba], [MR], [ADLT] one obtains, 
for almost every B 2 0, 

(4.20) 

where U* (., t) is the decreasing rearrangement of u(., t). On the other hand 
the isoperimetric inequality (2.7) implies 

Now, using standard techniques, (4.19), (4.20) and (4.21) give: 

Putting s = K.,, (Ho(~))” and taking into account (3.4) we have: 

H(Du”(zJ)) 5 -~7L*(x. t). 

The assertion then follows from the well known properties of viscosity 
solutions (see, e.g. [Li] Theorem 11.2). W 

Remark 4.2. - As a final remark we would like to point out that, 
using methods similar to those indicated above, it is possible to obtain 
comparison results for solutions of equations in a more general form and 
also for solutions of equations of different type. For example one could 
consider solutions of the problem: 

(4.22) - Wa(z, u, 07~)) + b(:cT 071,) + C(X, IL) = f in 0 
‘IL = 0 on 812, 

where the assumptions on c1(:1:, q, <) and f are the same as for problem 
(4.1), while on b(:z, <) d (: ) an c c, IL we assume: 

11” 
H(E)1 c(z, 7)) 7) 2 0. 

Vol. 14. no 2.1997 
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An estimate like (4.4) can be found (see also [ALT]), where now PI is 
solution of the problem: 

{ 

‘1’ 
-av + “f+ = f# in 62# 

‘11 = 0 on iJW+. 

In a completely analogous way (see also [ALT]) one can give comparison 
results for parabolic equations of the type: 

{ 

7~~ - div(a(z:, f, 0~)) + b(z, t: Dw) + C(X, t, U) = f(~, t), 
in Q = 12 x [O, T] 

11, E L2(o, T; H~(62))nC([o! T]; L2(R)), 1L(X, 0) = U()(X), 

under the assumptions 

where 11(t) and B(f) suitably depend on t. 
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