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ABSTRACT. — This paper deals with the problem of minimizing the
curvature functional [ k2 ds on isotopy classes of closed knotted curves in
R3. We show existence of minimizers under a given topological knot type
and develop a regularity theory by analyzing different touching situations.
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RESUME. — Dans cet article nous minimisons la fonctionnelle de courbure
Jk*ds dans des classes d’isotopie des courbes fermées et nouées.
L’existence des courbes minimales étant donné un type de nceud topologique
est démontrée et une théorie sur la régularité est développée par I’analyse
de situations de touchage différentes.
© 1999 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

1. THE PROBLEM

Knotted loops of elastic wire spring into stable configurations as soon as
they are released. Due to the physical fact that it is impossible for a wire to
pass through itself the knot type is preserved in the experiment. To model
this behavior we consider the well-known curvature functional

(1) /;«F ds

as elastic energy to be minimized on isotopy classes of closed curves in R>.
In addition, we define an obstacle condition that prevents selfintersections
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138 H. VON DER MOSEL

of the curves under consideration in order to preserve the given isotopy
class, i.e., knot type in the minimization process. We show existence of
minimizers and develop the regularity theory for a variety of different
touching situations.

The curvature functional (1) was suggested as early as 1738 by D.
Bernoulli as a model for the elastic energy of springy wires. In 1743 L.
Euler considered the corresponding variational equations and classified the
solutions called elastica in the plane ([3]). In the first half of this century J.
Radon and R. Irrgang examined more general curvature functionals also in
the case of curves in space ([15], [7]). Until very recently there have been
numerous publications regarding existence and form of solutions of related
variational problems such as the investigations by J. Langer and D.A.
Singer as well as R. Bryant and P. Griffiths concerning critical points of
the functional in different space forms ([9]-[11], [1]) and the corresponding
gradient flow ([12]), see also [14] for the evolution probiem. Different knot
energies suitable for describing nonelastic but electrically charged wires
were considered by J. O’Hara ([13]), M. Freedman, Z. He, Z. Wang ([4]).
R. Kusner and J. Sullivan ([8]). But the treatment as an isoperimetric
obstacle problem excluding selfintersections is new. A special feature of
our setting is that the solution itself determines the shape of the obstacle,
which is therefore not known a priori.

We model the centerline of knotted wires as regular, closed space curves
in the Sobolev class

H**(S'R®) := {xeH*?((0,27),R%) | x(0)=x(2r) , X(0)=x%(2n),

%(5)#0 for all s€S*'}

Note that the first derivatives of x€H?22((0,27),R?) are defined
everywhere on [0,27] because of the embedding H*?((0,27)) —
Cch/2([0, 2n]).

In order to exclude selfintersections we assign to such curves a small
“thickness” 0 < § <« 1 in the form of an obstacle condition, by which

different curve points x(s) and x(s’) cannot have euclidean distance less
than § unless the parameters s and s’ are close to each other:

Cp = {xemﬂ(sam | fx(s) — x(s")]

1 1
> min { (S, EL[Sws/](x), §L[gr,s](X) } }7

where L, .(x) denotes the length of the arc connecting the points x(s)
and x(s').
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ELASTIC KNOTS IN EUCLIDEAN 3-SPACE 139

Given a curve in Cs we are able to determine its knot or isotopy type
by deforming it continuously and without selfintersections into a standard
knot in R3. To be more precise, let wg,w;,ws ... be equivalence classes of
such standard knots in R®. Then the isotopy class C} is defined as

Cy = {x€Cs | 3 a parametrization y€w, isotopic to x }.

A curve x is isotopic to y, if and only if there is a continuous
deformation ® : S! x [0,1] — R*® with the following properties:
®(.,0) = x(.), ®(.,1) = y(.), and ®(., 7) closed and 1-1 for all 7€[0, 1].
Isotopy is an equivalence relation, see the simple argument in [18, p. 28].

Restricting our attention to curves of prescribed length [ we finally obtain
the class of admissible knots Cy,; as

27
0

Neglecting the effects of physical torsion or twisting and gravity we look
at the following variational problem:

Minimize the functional F(x) := / k*ds in CJ,.

X

Remark. — Without any normalization like the isoperimetric side condition
one cannot expect to find a minimizer, since the scaling x — ERx
yields F(Rx) = F(x)/R — 0 as R /" oo. The total curvature
T(x) := [_|«|ds, on the other hand, provides a lower bound for the
functional F' for closed regular curves x of fixed length [ by Holder’s
inequality:

(T(x))*/1 < F(x).
By the classical Fary—Milnor theorem we have the estimate T'(x)>4n for

knotted curves x, i.e. for x€C¢, n>1; see [18, Chapter 2] for an alternative
proof in the H?2—context.

Using a direct method and drawing extensively from the fact that H??2
embeds into C11/2 we are able to show the following existence result
(Section 2):

THEOREM 1.1. — Let 6<l/8. If C}, is nonempty, then there is a curve
x5 € Cf, with |Xs(s)| = /27 for all s € S* and

F(xs) = nf{F(y)|yecs).

Vol. 16, n® 2-1999.



140 H. VON DER MOSEL

The physical experiments show that we have to take points of selfcontact
into consideration when investigating the regularity of the minimizers.
These are points, where one has equality in the obstacle condition — points,
in fact, with euclidean distance equal 8, as will be shown in Section 3.1.
Our regularity results for different touching situations are based on a lemma
by S. Hildebrandt and H.C. Wente ([6]) that guarantees the existence of
a Lagrange multiplier for obstacle problems with side conditions. Using a
measure theoretic argument we show

THEOREM 1.2. — A minimizer x=Xs€Cy, has bounded curvature near
isolated simple touching points.

In fact, we derive H3!-regularity for such points, which — according to
the experiment — seem to constitute the only type of touching that occurs
in nature. For certain “unhooked”, so-called convex touching situations,
we are able to improve the result up to H?*2-regularity employing
Nirenberg’s difference quotient method (§3.4). Finally, we treat two-sided,
i.e., “clamped” contact points in Section 3.5, where we use inverse Holder
inequalities and Gehring’s lemma to show H?P—regularity for a p>2 near
such a point.

We conclude this introduction by mentioning some interesting open
problems:

1. Is the H*!-regularity optimal for general isolated simple touching
points ? Due to the fact that the obstacle is not fixed but determined by the
solution itself one might conjecture higher regularity.

2. Are there minimizers that have any other than isolated touching
points? For instance, one could think of a curve that possesses two touching
arcs winding around each other like a part of a circular double helix.

3. The application of Hildebrandt’s and Wente’s Lagrange multiplier
lemma is based on the assumption that the minimizer is not extremal for
the length functional L in the class C}. In the case of isolated touching
points this assumption is not necessary, but is it conceivable that there are
minimizing knots that are L—extremal ? Geometrically this means that such
a minimizing knot would not have any freely variable arc; in other words,
every point on that curve would be a touching point. In [18, Chapter 4]
we have considerably reduced the class of curves where this problem could
occur.

Let us remark that this paper is self—contained, although at some places
we refer to the author’s thesis [18], where the straightforward but somewhat
tedious admissibility proofs for certain comparison curves are carried out
in detail.
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ELASTIC KNOTS IN EUCLIDEAN 3-SPACE 141

The appendix contains a slight generalization of the result by Hildebrandt
and Wente and some technical material.

2. EXISTENCE OF MINIMIZING KNOTS

Proof of Theorem 1.1. — Observing that the functional F' is translation
invariant we may assume that there is a minimal sequence {y,};2; C C§,
with

(2) ph/l{.lo F(y,) = inf{ F(y) |y € Cgit  and y,(0)=y,(2m)=0.

Using the embedding H?2%((0,27)) «— CY*/2([0,27]) and the fact that
v, (t)#0 for all teS? we find constants ¢, >0, s.th. |y,(£)] > ¢, > 0 for
all t € St

As usual one considers the function g, : [0,27] — [0,]]

op(t) = / V(5| ds,

which is in C*([0,2~]) and invertible, since 6,(t) = |y, (t)|>c,>0.
For the derivatives of the inverse function 7, : [0,l] — [0,27] €
C1([0,1]) one finds

d 1
&7 =
and .
LN AU 10)
ds? v, (0

for t=7(s) for almost all s€|0,!].
In particular, 7, is a C'-diffeomorphism with

!
/ [75(8)|* ds < Cp < 0.
0

Then one can show (Lemma A.l in the appendix) that the composition
ypoTy : [0,]] — R®is in H22((0,1),R*). Composing this with the linear
transformation A(t) := [-¢/2= one obtains a regularized minimal sequence
Xp = Yypo0Tp0A :[0,21r] — R® € H?2((0,27),R®) with

(3) I%p(s)| = 1/2x for all s€S*.

Vol. 16, n® 2-1999.



142 H. VON DER MOSEL

To get compactness we note (recalling the parametric invariance of F' and
using (3)) that there is a positive constant M, such that for all peN

2r [%p (o) A xp(a)i

%, (o)1
= (2n/1)? /O Wli‘c,,(o)|2da,

= s < |/ M=)

In addition, we have ||X,||z> = {/v2m. Together with (2), which implies
x,(0)=x,(27r) by the definition of 7, and A, we find a constant C
independent of p, such that

Mszm=Fum=A 5y do

(4) e < © < .

Hence, there is a weakly convergent subsequence X, — X €
H?2((0,27),R%). The embedding H?>? — CV1/2 inequality (4) and the
theorem by Arzela—Ascoli imply also the strong convergence x, — X in
C1([0,27], R?) for a subsequence { X, }52, C {x, }55_,.

Cramm. - x € Cp.

Proof. — 1. The strong convergence in C' implies the conditions

(5) x(0) = x(27),  (0) = x(27),
(6) |%(t)] = 2x/l for all teS*,

since this is true for all x,, peN.
2. The parametric invariance of the length functional implies that the

obstacle condition for the original minimal sequence {y,};2, C Cf,
carries over to the regularized minimal sequence { x, }52, :
|xp(8) — %xp(s")| = |yp 0T 0 A(s) — yp 0 7 0 A(s"))
. 1
2 mm{ 8, 5 Liry (@) (s (V)
1
IR CHEANON2Y)

.1 1
= nnn{ b, —2—L[S7S/](xp), EL{S’,SI(XP) }
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ELASTIC KNOTS IN EUCLIDEAN 3-SPACE 143

This fact together with the strong C'—convergence x, — x guarantees that
x satisfies the obstacle condition as well, which is shown in Lemma A.2
in the appendix.

3. The reparametrization of the original minimal sequence does not
change the isotopy type of the curve, ie., x,€Cy for all peN. The
following lemma together with the C'—convergence yields xeC¥, which
concludes the proof of the claim.

LEMMA 2.1, — Let ne H*2(S',R?) satisfy
(7) [n(s) — n(s’)| > min{d,0l|s — s'|s1 } forall s,s'eS*,
where d>0, §€(0,1). Then there exists a constant >0, such that all
EeH?2(SY,R®), with ||€ — n||co<e are isotopic to 7.
Proof. — The homotopy ® : S! x [0,1] — R? defined by
B(s, 1) := (1 = t)n(s) + t&(s)
satisfies ®(s,0) = n(s), P(s,1) = &(s) and the curves ®(.,¢) are closed

for all t€[0,1].
In addition, ®(.,¢) is injective for ¢>0 sufficiently small, since by (7)

1B(s.£) — B(s'.1)] = | (1 — £)(n(s) — m(s)) + ¢ / H(o) do

[s.8"]g1

~tf e —é@)as

> [n(s) = n(s")] = t€ = nllco - |s = 5’|

> min{d,0l|s — s'|s1 } — € = Alco - |s — §'| s

1
> imin{ d,8l|s — s'|s1 }  for all t€]0,1],

if ||€ — 1jllco < € := min{d/2,81/2}. For convenience, we have denoted
the minimal distance between two parameters s,s’ on S' 22 [0,27) by
|s = 8'|g1 := min{ |s — ¢’|, 2 — |s — ¢'| } and the corresponding arc on S!
by [s, s’]s1. (Obviously, this proof also works for vector functions 17, £ that
are Lipschitz continuous.) -

It remains to show that xs := x actually minimizes the curvature
energy F. Since |%,(t)|=|x(t)|=I/2x for all t€S?, the functional F is a
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144 H. VON DER MOSEL

bounded nonnegative quadratic form on the regularized minimal sequence.
A standard reasoning then shows that F' is lower semicontinuous with
respect to the weak convergence x, — x in H>?. Consequently, since
X € Cg I8

inf{ F(y) |y € C3y} < F(x) < liminf F(x,) = inf{ F(y) |y € G} ).
0

3. REGULARITY

3.1. Preliminaries

We first observe that the minimizer xs€Cy, in Theorem 1.1 also

minimizes the functional D(y) := [, }igg}i do in C§;, since by (6)

D(xs) = /S Rolo) @) gy pix

[%s(a)[°

< Fly) < / (o)l

G Werde = D).

The following lemma simplifies matters for touching points, i.e., for points,
where there is equality in the obstacle condition:

LEMMA 3.1. — Assuming there exists a 6:<1/8, with C} | # 0 we find a
80<61, such that for all 0<6<6y and the corresponding minimizers xs€CYy,
the following holds:

If |x5(s) — x5(s")| = min{ 8, 3Ly +1(Xs), 5L1e s)(Xs5) } for s # &', then
[xs(s) — x5(s")| = &.

Proof. — 1. For 0<§<6; we have by definition Cf, ; C Cg; and therefore
inf{F(y)|y € C3y} <inf{F(y) |y € C§, ; } =11
Equation (6) then implies

(8) |I%s|l2. < Cy =130y /(2m)® <00 (Ci #0, since Cg #0).
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ELASTIC KNOTS IN EUCLIDEAN 3-SPACE 145

2.
x5(s) — x5(s")]

> | / xs(s')do | — | / (%5(0) — %5(5"))do |

5] f5.]

l o /2] po  (1/2

() 22_.[3——5’|51—‘ / / |%s(7)|? dT / dr da]
T s’ s’
[s,8'] 51

[ N
> s — 5|5 — [lsllze < s — 8/

2n

3l [
Z 5 |s—s'lsr for |s — /[ < 8 C1/2

We define 6y := min{ 61, & - } and

641r2C

| L (x) if [s,8]=[s,8]s1,
L[s s'g1 (X) = {L[Slﬁs](X) clse.

(If 5>5' the length Ly, »1(x) is given by [* |x|dt + [7 |%|d¢.)
Since 61<!/8 (compare (45) in the appendix) we have

. 1 1 1 {
mln{ §L[8’S/](X5), §L[s:,s](x(;) }z §L[s,8:]sl (x5) = o [s — st

Consequently, we obtain for %L[3731151 (x6)<6<6y the inequality

Nz o [

o= sle < o

The estimate (9) then implies

3 ) 1 1
|X5(8) - Xg(sl)l Z ZL[S’Sllsl (X[;) > mln{ 5, §L[s,s’](x5)a EL[SI’S](X6) }

That is, for §<&y equality in the obstacle condition can only occur when
6 < mm{ %L[svsq(xﬁ), %L[S”s](xé) } O
From now on we make the

General Assumption (G): Let §<8y<8;<(/8 be fixed, and x := x5 a
minimizer of the functional F' in the class Cf,.

Vol. 16, n® 2-1999.



146 H. VON DER MOSEL

3.2. Regularity of free arcs of the minimizer

THEOREM 3.2. — If there is a parameter s€S*' with
1
|x(5) — x(s")| > min{é, 5[’[“’]54 (x)} forall s' # s.

then there is an arc B,.(s) C S! centered in s, such that xeC*>(B,.(s), R®).

The proof is more or less standard in the calculus of variations and will
only be sketched briefly: First one shows the admissibility of comparison
functions z. ; := x+eg+t1p forall |¢], |t]<ep with g sufficiently small, i.e.,
z..€CY, using continuity arguments to establish the validity of the obstacle
and isotopy condition for z, ;, (Lemma 3.5 in [18]). Then one can derive a
differential equation involving a Lagrange multiplier, and standard regularity
theory including a “bootstrap” argument gives the desired smoothness of x,
([18], pp 50-52).

3.3. H%!'-Regularity

We start out with a simple case of a contact situation, namely with
touching points that are isolated and simple:

DEFINITION. — We call s€S! an isolated simple touching parameter (with
respect to X) <>
(i) |x(s) — x(s")] = min{ 6, 3Ly, (x) } for one and only one 5" # s
and
(ii) there is a radius R=R(s). such that for all o€ Br(s)\{s}

1
|x(0) — x(c")| > min{ é, §L[Uﬁflsl (x)} forall o’eS', 0’ # 0.

The corresponding image point x(s) is called an isolated simple touching
point.

Theorem 1.2 is a consequence of the Sobolev embedding H*! — H?>
and the following theorem:

THEOREM 3.3. — Let s€8' be an isolated simple touching parameter of
a minimizing curve X satisfying the assumption (G). Then there is a radius
R<R, such that xc H>'(By(s),R®), where R=R(s) is the radius in the
definition above.

Proof of Theorem 3.3.

Step 1. — If x(s) is contained in a straight part of the curve x, then
we have C°°-regularity near s, and nothing has to be proved. Excluding
this case we show that we can “correct” the length infinitesimally in the
following way:
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ELASTIC KNOTS IN EUCLIDEAN 3-SPACE 147

LEMMA 3.4. — There exist arcs I, Iy C Br(s)\{s}, T N I,=0 and vector
valued functions ;€C(1;,R3?) for i=1,2 and 10>0 with

a) x+7¢ € CF for all |7|<70,

b) 6L(x,¢;) = 1 for i=1,2.

Proof. — By choice of a coordinate system and a shift of parameters if
necessary, we can assume that x(s) = ({/27)e; and s # 0. (Here and
throughout this paper e; denotes the i-th standard basis vector in R>.)
The assumption that x(s) lies on a curved part of x and the continuity of
x imply that there are parameters s, sz, S3,84€BR(8), $1<82<8<83< 84
with x(s1) # X(s2), X(s3) # X(s4).

That means, x restricted to I := (s1, s2) or I := (s3, 84) is not a straight
line, hence there are vector functions &;€C§°(I;,R%) with 6L(x,&;) # 0.
The normalization {; := &;/6L(x,&;) gives the desired result, if one
proves that x + 7¢;€C} for |7|<7y < 1, which can be shown as in [18,
Lemma 3.5]. O

Remark. — It is straightforward to extend this lemma to an arbitrary
finite number N €N of disjoint arcs I, I, ..., Iy C S! and corresponding
vectorfunctions ¢;,7 = 1,..., N with the properties a) and b).

Step 2. — The following result due to S. Hildebrandt and H.C. Wente is a
valuable tool in deriving a differential inequality for obstacle problems
with a side condition. We will prove a slight generalization in the
appendix (Lemma A.4) in order to treat more general contact situations,
see Section 3.5.

LEMMA 3.5. - Suppose, there are functions ¢1,v,€C([0,€0));
¢, 12€CH((~to,t0)) for €o,to>0 and constants ¢po,c € R with the
properties

(i) 0= ¢:(0) = v;(0) for i=1,2,

(i) w(0) = 1,

(iil) the function ¢(e,t) := ¢o + P1(€) + ¢2(t) satisfies

(e, t) = ¢(0,0) forall (e,t) € [0,€p) X (—tg,to) with v(e, t) = ¢,

where v(e, t) 1= ¢ + vi(e) + va(t).
Then we obtain the inequality

(10) ¢1(0) — #5(0)v1(0) > 0.

The number A := —¢,(0) is the Lagrange multiplier in this situation.

Vol. 16, n® 2-1999.



148 H. VON DER MOSEL

Step 3. — By a further rotation and translation of the coordinate system
we may assume that e : ;—(;7—’;—%:,—%' = e3 and x(s)=0, where s’ is the
(unique) touching parameter corresponding to s.

CraM. ~ There exists a radius Ri<R(s), such that (x,e) = z° €
H*!(Bp,(s)).

Proof. — One has to check that there are constants Ky>0, 0<ty < 1
and eq=¢o(n, Ko, t5)>0, such that for 0<K <K, the comparison curves
z; i = X + en|Key + e3] + t¢* are admissible, i.e., in the class C} for
all (e,t)€[0,€e9) x (—ty,to). Here n is an arbitrary nonnegative function
in C5°(B,(s),RY), r<min{ |s — 59|51, |5 — 83|51 } and {*€C(I*,R?) is
one of the vector valued functions ¢; in Lemma 3.4. By the choice of r
we have B.(s)NT* = §.

In order to apply Lemma 3.5 we define

¢o :=Dg1(x), c:=l=Lgi(x),
¢1(€) :==Dp, ()(2 ) —Dp, ((X), v1(€) :=Lp, (s)(2L ) —Lp,(5)(%),
$a(t) == Dy (2¢ yo)— D+ (x), v(t) ==L+ (2g )= L1-(X)

Then we obtain
‘b(ert} = Qb() + ¢’1(6) + ¢2(f) = DSl(zi K)?
v(et) = c+vi(e) + va(t) = Lsr (2l i),
= ¢(0~0) = DS1 (X) S DSI( eiK) = (Z)(Ef)
for all z! ;- €Cy with v(e,t) = Lsi(z{ ) =1 = c.
One observes that Lemma 3.4 implies condition (ii) of Lemma 3.5, hence

inequality (10) holds, which in turn gives us a differential inequality in the
coordinates x> and x° for all 0<K < Kj:

a -/ RS 0) 4 0 - (o) o)
. (Kj:Q(U) +j;3(g)) -i(a)]do > 0

with ¢ := 672/12, ¢y 1= =X - 12/(1673), A := —¢5(0) = ~6D(x,¢*).
Setting K = 0 and integrating by parts one obtains

Jo.olE30) + [T {eul&(r)P + ca} - #%(r) dr] - ii(0) | do > 0

(12) for all neC§°(B,.(s),R*).
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We can interpret the left-hand side in (12) as a positive distribution T' on
CEe(B,(s)) setting

T(1) := fBr(s)[i?’(o) + f:{cl|§c(7’)|2 + o} - #3(r)ydr] (o) do
for YeC§°(B,(s)).

Employing an argument of L. Schwartz ([16], p. 29) we find a Radon
measure 4 on B.(s), such that

T(¢) = /B ( )¢du for all YeCg°(B,(s)).

In the appendix (Lemma A.3) it is shown that for 6€(0,1) one can find a
nondecreasing bounded function g=gy, such that

T(¢) = —/ Y(0)g(o)do  for all peC®(By,(s)).
Bor(s)
An integration by parts yields
Joo.co [72(0) + [T HaR(P + e2}i(r) = () dr | - (o) do = 0

for YeC§°(Bo,(s)),

which implies
13 o)+ /G[ (%) + e2}a(r) — g(r) ] dr = ac + b

for some numbers a,b€R and for almost all o€ By, (s) by a generalized
version of the fundamental lemma in the calculus of variations. Since
x€H>?(S1 R%) — CH1/2([0,27],R®) and g is bounded, the integrand
in (13) is in L', hence Z2€ H'}(By,(s)), i.e. (x,e) = 2* € H>*(By,(s)).

Step 4. — For K := K,/2 in (11) we apply the same method to find a
nondecreasing bounded function g=gy x€L'(By,(s)), such that
(14)

Kfé2(0)+fé3(0)+/ (e 1%(T) P+ e} Ka2 (7)) +2* (1) —g(7) | dT = Go+b

8

for some numbers @, b€R for almost all o€ By, (s). Since 3 HV! and
go.k €L, we obtain

#B(o)+ / " (e + e} Ki(r)+4%(r) — g(r)] dr € B (Bay(s)
= 2 HY(By,.(s)).

Vol. 16, n® 2-1999.



150 H. VON DER MOSEL

Step 5. - Differentiating the equation |%(o)|*=[?/4w? and recal-
ling that #'(s)=I/2r one obtains '€ H“'(Bg (s)) with #l(o) =
—[2*(0)E* (o) + &*(0)@*(0) /it (o) for all o€Bg,(s), where R, :=
min{ /(4= ||%||%.), 67 }.

In fact, one estimates

[#(0)] 2 [ (5)] = #(0) ~ '(5)]
> 1/2m — ||&|| L2 - o — /2

l
> — for all o€Bpg, (). O
4

Remark. — With a suitable modification of the admissibility proof in step 2
one can extend this regularity result to more general one—sided contact
points, where the constant Ky now depends on the touching parameter
seSt, see [18, pp. 65-72]:

DEFINITION. — A parameter s€S' with
i / e 1
(15) Ix(s) — x(s")| = min{ 4, §L{S’s/]sl (x)}

for at least one s'€S*\{s} is called a parameter with one—sided contact if
and only if there is a vector v=v/(s)€S?, such that {x(s") — x(s), v) <0
for all s'€S'\{s}, for which (15) holds. Geometrically this means that all
touching points x(s’) corresponding to x(s) lie in an open halfspace H,
with v L 9H, and x(s)€dH,.

3.4. Higher Regularity

It is an open question, if the H*!—regularity is optimal for touching points
of the minimizer x=Xx;; there are, however, contact situations, where one
can prove higher regularity.

DerFiNiTioN. — Let V, 1= {s € S'\{s} ] |x(s) — x(¢")| = min{é,
L1, (x)}} be the set of all touching parameters corresponding to
2 [ 1 ]Sl

s. Then we call x(s) a convex touching point, if and only if there are radii

R>0 and R’>0, such that
(16) dist (x(Br (Vs)), conv(x(Bg(s)))) > 6.

Remark. — This means that we can vary the curve x locally near the
point x(s), as long as we stay in the convex hull of a short arc containing
x(s). Not every isolated touching point is convex — consider for instance
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two arcs that are “hooked” in the sense that the normals at s and s’ point
at each other. On the other hand, there are convex contact situations that
cannot be treated with the previous method. For simplicity, however, we
will concentrate on convex touching points that are also isolated and simple.
With some technical modifications one can prove the following results for
more general convex touching points, see [18, Chapter 3.4.1].

THEOREM 3.6. — Let s€S' be an isolated simple touching point that is
convex with respect to the minimizer Xx=Xg satisfying assumption (G). Then
there is a radius r<R, such that x € H>?(B,(s),R?), where R=R(s) is
the radius of H*'-regularity (Theorem 3.3).

The embedding H*? — C%'/2 implies that near such contact points the
curvature of x is Holder continuous with exponent 1/2.

Proof. — As before, one shows first that there exists a radius Ri=R;(s),
such that for all functions n€C§°(Bag, (s)), there are constants eq, to€(0, 1),
such that for all |h|<R;, 0<e<hZey, |t|<ty the comparison curves
2!, = X+ eA_,(n*Apx) + t¢* are admissible, i.e., in Cf. The vector
valued function ¢*€CS°(I*, R3) is chosen from the finitely many ; in the
remark following Lemma 3.4, such that s ¢ I; and s’ ¢ I;. Furthermore
we have used the notation Ay, f(o) := (f(e + h) — f(o))/h for difference
quotients. (For the details of the admissibility proof see [18, Lemma 3.24].)

We take n€C3°(Boy(s),[0,1]), r< min{ R/4, Ry} with ny = 1 on B,(s),
[AI<Cr, (7 <C/r.

As in the proof of Theorem 3.3 we apply Lemma 3.5 to obtain a diffe-
rential inequality in terms of x and ¢ := A_,(7*A,x)€ H3?(Bs,(s), R?):

/B KB~ {aKOP + 2} - k(o). SN do 2 0
for ¢; 1= 672/1%,¢5 1= =X+ 1/(167%), X == —6D(x,C").

Applying the well-known calculus for difference quotients (see e.g. in [2],
vol. I, p. 84) we arrive at

/ <Ah}"(, Ahx) . 7]4 do
Bj,(s)
(17 <- / (D%, (120" Dpx + AL x + 8P LX) do
B3, (s)
_ / (An({erlR2 + 2)%), 4nPi A% + 1A A%) do.
J B3, (s)
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For vector valued functions f=f(p,r) we have

AR f(p(t), ()

h/ fo(P(t) + ThARP(L), r(t) + ThARr(t)) - RARP() dT

+ E/o fe(p(t) + ThALP(L), v(t) + ThARr(E) ) - RALx(T) dT.
Hence, from (17) we obtain

/ (D%, Dpk) -t do

B (s)

<- / (Do, (12057 Do + 4052 + SP10%) ) do
Bj.(s)

. 1
—/ / {er|% + ThARK] + ¢} dT
B3 (S)

(ARX, AP0 Anx + 0 ARk ) do

— 2(:1/ / X+ ThARX |
B3T(S)

[% + ThARX ] dT( Ak, AP nARX + ' Ap% ) do
= Il + IQ + 13.

(18)

Using a generic notation for constants we estimate
|| < e/ n*|An%|? do + Cle,r),
Bsr(s

since

/( lAhXIQ + lAh)d2 ) do < CHX”Hz,z.

1
bl <C / / (]2 + 5. + B)J% + |ez] | dr
Bs.(s)Jo —

indep. of T

. ) C
\oaxl(n*l2n%| + | Anx| } do
. . c
<C (32 + leal ] - { I 2nk]? + | Anx]” } do
By, (s) r

< C(llxl| 2= 57)
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Similarly,

) c .
11| < e/ |k do + < 1%[2
BSr(S € Bq,—(s)

(PR ARX)? 4+ nH(ArX)? ) do

S 6/ 'U4|Ah}“(|2 do + C’(”X”Hz,m,E,T)
Bsr(s)

Summarizing the estimates for I; — I we can choose €>0 sufficiently small
to absorb the leading term on the right-hand side to get

/ Ank do < / A2 do < C < o,
Br(s) BST(S)

which implies fBr(s) |X|?2do < C < o0. O
3.5. Two-sided contact points

DERINITION. — We call s€ S an isolated double touching parameter <=

() |x(s) = x(s")] = min{8, 3L, (x)} for exactly two different
parameters s,,s, € S'\{s} and at least one of the s; is isolated
simple;

(ii) there is a radius R=R(s), such that for all c€Bg(s)\{s}

1
[x(o) — x(¢")| > min{é, EL[S,S/]SI(X)} for all '€ S*\{c}.
The corresponding image point x(s) is called an isolated double

touching point.

Remark. — Such a point is a one-sided contact point (see the definition at
the end of Section 4.3), unless x(s),x(s}) and x(s5) lie on a straight line.
Hence, we can concentrate on that special situation and fix the coordinate
system in the following way:

x(s) =0 € R®, x(s1) = fes, x(s3) = —bes,

X(s) = (I/2m)e; and (x(s) — x(s3))/6 = (x(s1) —X(s))/6 = es.

The idea is to vary simultaneously near the point of interest x(s) and near
the contact point that is isolated and simple, say x(s}). One has to show
that there is a constant K, such that the comparison curves

7! = x + e[ Key + €3] + 2¢|| || L~ne3 + t{*
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are admissible, i.e., in C§ for all ()<K<K0, |t|<to, €€[0,¢€0).
co=¢o(p,n, Ko, to) < 1, where neCg°(Bg, (1), [0,1]), n = 1 on Bg, (s})
with || < C/Ry, |ij] < C/R3 for some Ry < 1. Here g€ Ho*(B,(s),RY)
is an arbitrary nonnegative testfunction for p<R sufficiently small. (See
{18, pp. 87-90] for the detailed computations.)

We define
do 1= Ds1(x).
c:=1= Ls(x),
¢1(€) := Dp,()(2:) — D, (9(x)
vi(e) := LBP(S)(zﬁ) — Lp,(s(x)
$a(t) := Dr-(2zl) — Dr(x),
va(t) := Ly (2l) = Ly (x),
P3(s(e)) = DB“,<~ 1(ze) = D, (5 (X).
'03('9(6)) 1?1(* (Z ) - LBHl(SI;)(X)’

where s(e) := 2¢||¢lloo. Then we obtain

d(e, 1) := o + P1(e) + pa(t) + ¢(s(€)) = Dsr(2L),
v(e,t) := ¢+ vi(e) + va(t) + v3(s(e)) = Lo (2).

Since x€Cy; is minimal,
$(0,0) = Ds:(x) < Dsi (z,) = ¢(e, 1)

for all z'cC? with v(e,t) = Lgi(zl)=l=c.

Consequently, the generalized Lagrange multiplier lemma (Lemma A.4
in the appendix) is applicable. From the inequality (48) one finds after a
short calculation

(19) / (K#2+3%)g—{c1|k]?+ea b (Ki*+i°)p) do+2X floll > 0
B,(s)

for all 0< K < Ko with ¢ := 672/12, ¢ := ~A-12/(167%), A := —6D(x, (")

and )\1 = 5DBR] (srl)(x,nzeg) - 6D[* (X,C*) . (SLBM(S;)(X,’I}ZGQ,).

CLam. — There is a radius ro=7o(s) and p>2, such that 2® €
H*?P(B,,(s)).
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Proof.

Step 1. — We test (19) for K=0 with (o) := (*(0) - (2% — 2°)(0) €
HS’Z(Q(S,T‘),R"'), where 7<pg := 5p/6, Qs,T) := Ber5(s),

(20) 2% :=max{z(t) |t € Qs,r)} (>0, since z°(5)=0)
and CeC((s,7),[0,1]), ¢ =1 on B.(s), |(|<C/r, [{|<C/r.

Inserting this into (19) we arrive at

/ 42@3)2(105/ 322 +200) @ — 2%) — 4¢Ci%do
Q(s,r) 9(3,1)

@) - / (”){cuxl%cm (206 (P —2%)~ i) do

+2A)|¢% - (2 - %)l
= h+L+ 1+ 1+

Now we estimate (using a generic notation for constants)

=1 @ eErdE - de < 5 [ feteatdo

JQs,1) Q(s,7)

By continuity of z* there is s,€Q(s,7), such that z8=z3(s,), hence

2 =)l = (o)~ (@) = | [ @) - (5|
o S~
(22) =

< |/ / ()| de dr | < Cr/ (1) dt,
Jo Q(s,r) JQ(s,7)

(23) = |L|< g[/ﬂ() ]a'j3(t)|dtr <Cr [][ms,r)ﬁs(t)ldtr'

L] = |/ 406855 dor | < —/ 163] - 3% do
Q(s,r) T Jas,r)

- ;C_ Q(s,r) [#(0)] - #(0) ~ &*(s)| do
(24) Har )
= % o) %] - !/s #3(t) dt | do

-

<< [ /Q . |j§3(o)]dar —Cr [][Q(Sﬂ‘)w?’(an da]z.
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3] = | o V){Clii‘z + 2 }TS(ZCC(Li - 2))do|

S5 {en&[? + Jeo] Ha?| - |23 — 2°| do
" Jagsr)

<o [ al® el o { [ |m$<t>|dt}
ey T Q(s,r) JQ(s,1)

. 2
< Cr? V |23(1)] dt] :
J Qs

where we have also used

(26) ()] = [#%(0) — (s) | < / 35 (1)) dt.
\:6—’ JQ(s,r)

For the remaining terms one obtains
(27)

. . 2
H=1- [ (alkPra)@rcaol sor|f o)
Qs,r) J Q(s,r)

26)

(28) L5 = 21 || (a2 — ;c3)||%(§2107-/ |3 (1) dt < Cr3/2,
2 Qs.r)

Inserting the inequalities (23)—(28) into (21) we arrive at
. . 2

(29) ]l |E3(t)|2 dt < c“ |§§3(t)|dt} +CrY? for all 7<py.
B.(s) J Qs,r)

Step 2. — For r<p1<(5/6)po and $r < |0 — s| < po — 2p1 we can
vary freely around o, since s is isolated by assumption, and we have the
differential equation

(30) /B( )[(i(o),cﬁ(o)) —{e]%(0)? + e2} - (x(0), @(0))] do = 0

for ¢1 := 672/1% and ¢y := —Ag - [2/(167°) for all pe HE*(Q(a, 1), R?).

We test this equation with (t) = n*(z3(t) — Is(t)) - es €
HZ2*(Qo,7),R%), where neC(Qo,r)), satisfies 0<n<l;n = 1 on
B,(0); |9|<C/r and |7j|<C/r?. The function I3 is the linear interpolating
function to z* with values

Is(c — (6/5)r) = 2*(0 — (6/5)r), l3(o + (6/5)1) = z°(0 + (6/5)r).
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By Rolle’s theorem there is 7,&(o,7) with 3%(7.) = l3(7.). Inserting
this into (30) we find

/ &3 dt
Qo,r)

= —2/ 3 [(0% 4 i) (2® ~ 13) ] dt
Q(o,r)
—4/ i (&% = Is)nn dt
Q(o,7)

+ / [erlR[2 + 0} [ 2mi(a® — L) + n? (& — )] d
Q(o,r)

(31)
C C Ay .
<< |£i'3||a:3—13|dt+—/ || — Iy dt
™ Ja(o,r) " J(o,r)
C .. Ly
+ = {ler||%]? + leo| Ha®|jz® — Is| dt
r. Q(o,r)

+c/( (el + leof Y16 — i) dt
S Qo,r)

:211 +IQ+I$+I4
For 7€€)(.r) we have, since I3 = 0

|&%(7) = s(7)] = |23(7) = ls(7) = [2°(0 = (6/5)r) = ls(o = (6/5)r) ]|

~ i
'

=0

[ #3(t) — U3(t)) dt

[, @0 =00 ]

-y / [63(t) — Ia(t) — (#3(r) — I3(r)) ] dt |
o—(6/5)r

= i3 £ 3
|/ —(6/5)7-[* @dtdtlﬂ/a—(e/f»)r/ﬂ(w)’ &

<Cr / |5%| dt
JQo,r)

and stmilarly

159 — Iy| < c/ 1] dt.
Q(o,r)
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Now we estimate the terms [y — I4:

2

cry : ' ’
mlin < S [ @] <o f ]
U LS0e,r) 4 Qo)

Ll < / (Qeal 2 + fea] Y% di - / i) dt

PAYICRD] JQ(a,r)

< Cr ][ |3 dt
Qo,7)
. 2
SC7'+’I‘[7Z |.’i’3ldt} )
J Qo,r)

. 2
L] < Cr + rH 1] dt} .
J Qo)

We insert these inequalities into (31) and obtain

(32) ][ [#37dt < C (7[ |:'1}3|dt) +1
B, (o) 4 Qo,r)

Step 3. — We claim that there are constants C, RO,R>O./ such that for
all o€Bj(s)

for all r<p;.

. 2
(33) ][ |£3)% dt < C[% % dt} +C  forall r<Ry.
B, (o) J By, (o)

In fact, for c€By(s), where R := py — (6/5)p1 and R, :=
min{p1, (5/11)pg }, we distinguish between two cases for r<R; :

6 6 .
L .a~s{<€r and IL g¢'§|a—s\<R.

In case I we have |0’ — s|<|o’ — o] + |0 — s|<ilr for all o’€B,(0),
and therefore
2

" ) 11 /2
][ |ﬁé3|2dt§(}][ |32 dt <C ]Z || dt +C(~;—r)
B.(0) By, () 9 Bgg.(5) 2

2
50[][ mdt] +C
By, (o)

where we used |0’ — o|<|o’ — 5|+ |0 — s|<S2r + Sr<4r for all o'€Bgs .(s).

. In case Il one immediately obtains the desired inequality from (32).
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Step 4. — The estimate (33) implies in terms of the local maximal function
(see e.g. [17]) Mg[f](t) := sup{{p_ (t)fl() <r< R}

Mg, [|13*2)(0) < C - Mg [1&%| + 1)(o)  for all o€ By(s).

Redefining #* and the constant function f = 1 in R\By_ 5 (s) by 0
we arrive at

Mg, [13* o) < C- MZL[|E*| + 1](0) for all c€EBp, 4 (5).

Thus we can apply Gehring’s lemma ([17]) to get the desired higher
integrability on B, (s), 7o := R/2 :

. 1/p
(34) { ]l £8P dt
" BT‘()(S)

1/2 1
) (el
|Bro )l Bayarg(®) | By ()]

for some p>2 and a constant K, depending on p and the ratio R/R,. [

<K,

Now we are in the position to prove higher integrability for the full
vector X :

THEOREM 3.7. — Let s€S! be an isolated double touching parameter with
corresponding touching parameters si,sy € S1\{s}, such that the image
points x(s),%(81),X(85) lie on a straight line, where x=xs € Cy, is the
minimizer satisfying the assumption (G).

Then there is a radius r1=r1(s) and p>2, such that x € H*?(B, (s)).

Proof. - Setting K := K,/2 we test the differential inequality (19) with
o(0) := (o) (a2 — 22(0))€HZ* (s, 7),RT) for radii r chosen as in the
first step in the proof of the last claim.

The only new terms (up to constant factors depending on Kj) are

Jy = / i [(2C7 4+ 2¢0) (2?2 = 22 dt,
Q(s,r) .
Jy = — / 4¢3 dt
JQ(s,r)
Iy = - / [alR? + e Yt 2 (a2 - o) dt,
Qfs,7)
gy = / {e]%)? + ¢p }3* - CPi? dt,
Q(s,r)
Js = / 233 dt.
Q(s,r)

Vol. 16, n® 2-1999.



160 H. VON DER MOSEL

Using the same techniques as before (in particular inequalities (22), (26)

with z® replaced by z%) we estimate
C '
BARS 7/ 8] - |22 — 2| dt < Cr][ |£z§3|dt][ 1) d,
r Q(s,r) J Qs,r) J Q(s,7)
o ,
S [ aesonf @af @
T Ja(s,r) Ja@s,r) Q(s,r)
c f . .
Tl <5 [ {allgP + el 6 a2 = o] d
r Q(s,r)
<O [ el el yar [ e [ i
JQ(s,T) . JQ(s,7) JQ(s,r)

gcﬁ][ |¢31dt][ |52 dt
Q(s,r) J Q(s,1)

and analogously,

|J4|§Cr2][ |5é3[dt][ 42| dt.
Q(s,r) J Qs,7)

Applying Young’s inequality we finally obtain

(35) | s ge/ (2|&52|2dt+(](e)/ ¢ dt.

Q(s,r) Q(s,r)
Summarizing these estimates and absorbing the leading term of (35) for
sufficiently small ¢>0 we arrive at

. 2
][ #2?dt < C (71 |j52|dt)
B,.(s) J Q(s,r)
2 .
+<][ |fi:3|dt) +][ |7°° dt
Qs,r) J Qs,r)

Similarly, one calculates on Q(o,r) with $r < |0 =8| < py — £ p1
testing the corresponding differential equation for K := K,/2 with
o(t) = C¥(t)(z*(t) — l2(t)), where Iy is the linear interpolator to z?
with the same boundary values as z? on 9Q(o, ).

One obtains the inequality

2
][ B2 dt < C (][ |:'t2|dt>
B.(o) Qo,r)
. 2
+ (f Ii3|dt) +][ [£3)% dt + 1
Qo) Q(o,r)
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Treating two different cases as before we finally find constants C, Ry, R>0,
such that for all a€Bj(s)

2

(Fuof1) + (£, 21%)

+][ |£3|2 dt + 1] for all r<Ry
B41-(0')

][ #22dt < C
B, (o)

or in terms of maximal functions after zero—extension of all involved
functions on R\Bp, 4p (5):

Mp,[[#[*)(0) < CMZ[[#] + 3] + 1](0) + CMeo[13°]°]

for all c€Bx, 4p (8)-

A more general version of the Gehring lemma (see e.g. {5, p. 122] gives
us higher LP-integrability of &2 for a p>2 on B, (s), r1 := R/4=r¢/2:

1/p 1 1/2
|£2|P dt <K ||~ |42)2 dt
I:][Bn (s) IBTI (S)I By, (5)

1 1/p
* (IBN(SN Bgr, (s) = dt)
|Bar, (8)\ 7
i (|Bm<s>r> }

As in step 5, Section 4.3 we get an analogous estimate for z', which
completes the proof on account of (34). 0O

A. APPENDIX
Lemma A.1. — Let I, I be open intervals inR, fe H**(I)and 7 : [ — T

a Cl—diffeomorphism. Assume in addition that 7 exists almost everywhere
on I and satisfies

(36) /I #(s)[2 ds < € < oo,
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Then f ot € H>*(I) with
(for) =(for)-#+(for) 7

in the sense of distributions.
Proof. — Taking an approximating sequence f,€C(I) N H?%(I) with
If = fillgzz — 0 for k /' oo we obtain

(37)  (from) (8)=(fuoT) 7(
(38)  (fxoT)"(8)=(fror) 7

s) for all s€l,
(s) + (fro7)-#(s) for almost all se].

Since |7| > ¢ for some constant ¢>0, the functions fk o T constitute a
Cauchy sequence in L*(I):

/[fkoT(s flor( )*ds < /[kaT flOT( )2 - [7(s)| ds
/lfk ()| dt 7000

For a subsequence we have fo — f almost everywhere. The inverse

r~leCt maps sets N C I of measure zero into sets N c I of measure
zero. Hence, fk oT — f o 7 almost everywhere on I and consequently
feor — for in L*I). Similarly we get

(39) fror— for and
(40) feor — for in L2(J).

Multiplying (38) by ¢eCs°(I) and integrating over I one obtains after
two integrations by parts

I JI

(41) /iw'[fko’r-ij—l—fko%‘i‘]dt:/@~(kaT)"dt= /:¢~(fk07)dt.

It is easy to show that the left-hand side of (41) converges to
fio-[for- 7%+ forT-7]dt, which together with (40) proves the
lemma. O

LEMMA A.2. — Let d>0, 0€(0,1) and ¢>0 satisfy

(42) d < %9"’

Annales de IInstitut Henri Poincaré - Analyse non linéaire



ELASTIC KNOTS IN EUCLIDEAN 3-SPACE 163

and n€CY(S*,R?), such that |n(t)|>c>0 for all teS* and
(43) [n(s) —n(s')| > c(s,s") -min{ d, 0L 1(n), 0L (n) }
for all 5,s'€SY, where c(s,s') is a positive, uniformly bounded function:
0 < ¢fs,s") < C < 0.

CLaM. — For all € > 0 there is an € = €(¢), such that for all €€C (S, R?)
with ||€ — 1l||co <€ we have
(44)  1&(s) — &(s")| = (c(s,8") — €) - min{ d, OLps o1 (€), 0L 1(£) }
for all s,s'€S*.

_Proof. — a) For £€C*(S*,R?) with ||§ — nllco<e; := ¢/2 we have
|€(t)|>¢/2 for all t€S*. The technical condition (42) secures that
(45) min{ d, 0L, »1(§), OLe () } = min{ d, 0L, o, (€) }

for all £ with ||€ — 7]|co < €1, ie., the correspondence of the shorter arc
between s and s’ on S with the shorter arc on the curve between the
image points x(s) and x(s').

b) For s,s’€S" one estimates using (43)

[€(s) — (s = | £(t)dt |

. [s,s’]51
> [n(s) = n(s) = 1€ = nllco - [s = &'|s2
> c(s,s") - min{d, 0L, () } = 1€ = llce - |s — 5|1
> ¢(s, ') - min{d, OLgs, 1, &}
—[1+c(s,8)8] - |l = Aillco - |s — &'|s-
¢) If min{d, 0L, ., (€)} = d, then we have for 1€ = Allco < €3 :=
ed/((1 + C)m) by the previous estimate
(46) |&(s) — &(s")| > (c(s,8") —€)d=(c(s,8")—€) min{d, O L5, ()}
If min{d, 0L, (€)} = 0L, o, (€), one obtains for [|€ — ljco <
€3 := €efc/(2(1 + C)) :
(47) €(s) — &(s)| = (c(s,8") — €)0L5,1,, (§)
= (c(s,s") — e)min{ d, 0L, o, (€)}-
The inequalities (46), (47) together with (45) prove the claim, if one takes
€ := min{e;, €2, €3}. O
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LemmA A.3. — Let i be a Radon measure on the open interval J C R.
Then for all open subintervals I CC J we find a nondecreasing bounded
function g=gr : I — R, such that ;n = ¢’ on I in the sense of distributions.

Proof. — Let I := (a,b) CC J; define g = gr : I — R by
g(s) := p((a,s]) for a<s<b. Since p is a Radon measure on .J, g is
bounded on I : ¢g(s) < u([a,b]) < oo for all s€l. By construction g is
nondecreasing, because

g(s) = ul(a,8]) = p((a, b} N (@, 0]) + p((a,b]\(a, 7])
= g(o) + p((o,s]) for o<s.

Furthermore u([o, c]) = u((o, ¢]) = g(c) — g(o) for almost all a<o<c<b.
For ¢eCg°(I) with suppy) CC («,8) C (a,b) we write using Fubini’s
theorem

[ wiortuta / ( [ e dt)dmc) /ﬂ<tﬂ¢'(t>du<a>)dt

z/j w((t, B]) - o (B)dt = /(g ) (1) dt

=— Ag(t)d) (t)dt. L

LEMMA A.4. — Suppose, there are functions ¢1, vi€C([0,¢€0)); ¢,
v2€C((—to,t0)) and ¢3,v3€C([0,50)) with €, to, $0>0 and constants
oo, € R with the properties

() 0= ¢(0) = v;(0) fori=1,2,3,
(i) vy{(0) = 1,
(iil) (e, t) := Po + P1(€) + Palt) + ¢s(s(e)) satisfies

d(e,t) > $(0,0) forall (e,t) € [0,€0)x(—to,t0) withv(e,t) =c

where v(e,t) := ¢+ vy(€) + v2(t) + vs(s(e)) and s : [0,¢0) — R
€ Ol([oveo)a[oasﬂ))vs(o) = 0.

CLamM. — Ther we have the inequality
(48) :(0) + Aov}(0) + Ars'(0) > 0,

where Ao := —d5(0), Ay 1= #5(0) — ¢5(0) - v5(0)
Remark. — Lemma 3.5 in Section 4.3 follows if one sets ¢3 = v3 = 0.
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Proof. — Applying the mean value theorem to v, one obtains
ve(t) = [1+ n(t)] - t with a function 5 satisfying |n(t)] — 0 as |t] \, 0.
Then by the intermediate-value theorem we find a constant dy€(0,%/2),
such that [—d,d] C v2([~2d,2d]) for all 0<d<dy.

On the other hand, there is an €;€(0,¢), such that |vi(e) +
v3(s(e))|<o(<to/2) for all e€[0,€;), since vq,v2 and s are continuous
and v1(0)=v3(0)=s(0)=0. Consequently, for every e€[0,¢;) there exists
t=t(e) with

lt(€)| < 2|v1(e) + v3(s(e))| < 26p (< to), such that

(49) [1+n(t(e))] - t(€) = va(t(e)) = —va(€) — va(s(e))
(50) = 11{1(1] t(e) =0 and v(e t(e)) =c.

The identities (49) and (50) imply
(51)  lim [M] - li\r% [ 1 —v1(€) — v3(s(e))

N0 € 1+ n(t(e) €

= —v1(0) — v3(0) - 5'(0).
Using (iii), (50) and (51) we arrive at

0 < HetE) = 60,0

=3 91(0) + 65(0) - #'(0) + ¢5(0) - 5'(0)
= $1(0) =¢2(0) -0 (0) + [$3(0) — 45(0) - v3(0) ] - '(0).
—— ~— >

-—
= Ag =X

O
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