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ABSTRACT. - This paper deals with the problem of minimizing the 
curvature functional s K’ ds on isotopy classes of closed knotted curves in 
R3. We show existence of minimizers under a given topological knot type 
and develop a regularity theory by analyzing different touching situations. 
0 Elsevier, Paris 

R&uMI?. - Dans cet article nous minimisons la fonctionnelle de courbure 
/ 6’ ds dans des classes d’isotopie des courbes fermees et nodes. 
L’existence des courbes minimales &ant donne un type de neud topologique 
est demontree et une theorie sur la regular& est developpee par l’analyse 
de situations de touchage differentes. 0 Elsevier, Paris 

1. THE PROBLEM 

Knotted loops of elastic wire spring into stable configurations as soon as 
they are released. Due to the physical fact that it is impossible for a wire to 
pass through itself the knot type is preserved in the experiment. To model 
this behavior we consider the well-known curvature functional 

as elastic energy to be minimized on isotopy classes of closed curves in W3. 
In addition, we define an obstacle condition that prevents selfintersections 
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138 H. VON DER MOSEL 

of the curves under consideration in order to preserve the given isotopy 
class, i.e., knot type in the minimization process. We show existence of 
minimizers and develop the regularity theory for a variety of different 
touching situations. 

The curvature functional (1) was suggested as early as 1738 by D. 
Bernoulli as a model for the elastic energy of springy wires. In 1743 L. 
Euler considered the corresponding variational equations and classified the 
solutions called elastica in the plane ([3]). In the first half of this century J. 
Radon and R. In-gang examined more general curvature functionals also in 
the case of curves in space ([ 151, [7]). Until very recently there have been 
numerous publications regarding existence and form of solutions of related 
variational problems such as the investigations by J. Langer and D.A. 
Singer as well as R. Bryant and P. Griffiths concerning critical points of 
the functional in different space forms ([9]-[ 1 I], [ 11) and the corresponding 
gradient flow ([12]), see also [ 141 for the evolution problem. Different knot 
energies suitable for describing nonelastic but electrically charged wires 
were considered by J. O’Hara ([ 13]), M. Freedman, Z. He, Z. Wang ([4]), 
R. Kusner and J. Sullivan ([8]). But the treatment as an isoperimetric 
obstacle problem excluding selfintersections is new. A special feature of 
our setting is that the solution itself determines the shape of the obstacle, 
which is therefore not known a priori. 

We model the centerline of knotted wires as regular, closed space curves 
in the Sobolev class 

w2,2(s1, R”) := { XEH2,2((0, 27r), R”) 1 x(O)=x(27r), qo)=zq27r); 
jr(s)#O for all sES1 } 

Note that the first derivatives of XEH~,~((O, 27r), W3) are defined 
everywhere on [0,27r] because of the embedding H212((0, 2~)) + 
C1J/2([0,27r]). 

In order to exclude selfintersections we assign to such curves a small 
“thickness” 0 < S << 1 in the form of an obstacle condition, by which 
different curve points x(s) and x(s’) cannot have euclidean distance less 
than 6 unless the parameters s and s’ are close to each other: 

C6 := 
1 

XEH2,2(S1,R3) 1 lx(s) - x(s’)I 

2 min 6, jj&,,jl(X), i&f,,l(X) 
1 >> 

, 

where Ll,,,,l(x) denotes the length of the arc connecting the points x(s) 
and x(s’). 

Annalrs de i’lnstirur Henri Paincart! Analyre non lin6aire 



ELASTIC KNOTS IN EUCLIDEAN 3-SPACE 139 

Given a curve in Cs we are able to determine its knot or isotopy type 
by deforming it continuously and without selfintersections into a standard 
knot in Iw3. To be more precise, let wa, wl, wa . . . be equivalence classes of 
such standard knots in Iw3. Then the isotopy class Cg is defined as 

Ct := { xEC6 1 3 a parametrization yew, isotopic to x}. 

A curve x is isotopic to y, if and only if there is a continuous 
deformation Q : S1 x [0, I] - Iw3 with the following properties: 
a(., 0) = x(.), @(., 1) = y(.), and a(.,~) closed and l-l for all r~[0, 11. 
Isotopy is an equivalence relation, see the simple argument in [ 18, p. 281. 

Restricting our attention to curves of prescribed length 1 we finally obtain 
the class of admissible knots CTl as 

c;l := c; n { XEC1(S1, W3) 1 &l(X) := /zT IX(o)l da=l}, O<S<l. 
0 

Neglecting the effects of physical torsion or twisting and gravity we look 
at the following variational problem: 

Minimize the functional F(x) := 
.I 

tc* ds in C’;[. 
x 

Remark. - Without any normalization like the isoperimetric side condition 
one cannot expect to find a minimizer, since the scaling x H Rx 
yields F(Rx) = F(x)/R -+ 0 as R /” 00. The total curvature 
T(x) := J, (61 d s, on the other hand, provides a lower bound for the 
functional F for closed regular curves x of fixed length I by Holder’s 
inequality: 

PW2/~ I F(x). 

By the classical F&-y-Milnor theorem we have the estimate T(x)>47r for 
knotted curves x, i.e. for XEC~, n>l; see [18, Chapter 21 for an alternative 
proof in the H*l*-context. 

Using a direct method and drawing extensively from the fact that H212 
embeds into C1ll/* we are able to show the following existence result 
(Section 2): 

THEOREM 1.1. - Let 6<1/8. If C& is nonempty, then there is a curve 
xg E C& with l&(s)l = 1/2~ for all s E S1 and 

F(x6) = inf{ F(Y) 1 Y E Ctl 1. 

Vol. 16. no 2-1999 



140 H. VON DER MOSEL 

The physical experiments show that we have to take points of selfcontact 
into consideration when investigating the regularity of the minimizers. 
These are points, where one has equality in the obstacle condition - points, 
in fact, with euclidean distance equal S, as will be shown in Section 3.1. 
Our regularity results for different touching situations are based on a lemma 
by S. Hildebrandt and H.C. Wente ([6]) that guarantees the existence of 
a Lagrange multiplier for obstacle problems with side conditions. Using a 
measure theoretic argument we show 

THEOREM 1.2. - A minimizer x=xg~C& has bounded curvature near 
isolated simple touching points. 

In fact, we derive H”ll -regularity for such points, which - according to 
the experiment - seem to constitute the only type of touching that occurs 
in nature. For certain “unhooked”, so-called convex touching situations, 
we are able to improve the result up to H312-regularity employing 
Nirenberg’s difference quotient method ($3.4). Finally, we treat two-sided, 
i.e., “clamped” contact points in Section 3.5, where we use inverse Holder 
inequalities and Gehring’s lemma to show H2TP-regularity for a y>2 near 
such a point. 

We conclude this introduction by mentioning some interesting open 
problems: 

1. Is the H3>l--regularity optimal for general isolated simple touching 
points ? Due to the fact that the obstacle is not fixed but determined by the 
solution itself one might conjecture higher regularity. 

2. Are there minimizers that have any other than isolated touching 
points? For instance, one could think of a curve that possesses two touching 
arcs winding around each other like a part of a circular double helix. 

3. The application of Hildebrandt’s and Wente’s Lagrange multiplier 
lemma is based on the assumption that the minimizer is not extremal for 
the length functional L in the class Ct. In the case of isolated touching 
points this assumption is not necessary, but is it conceivable that there are 
minimizing knots that are L-extremal ? Geometrically this means that such 
a minimizing knot would not have any freely variable arc; in other words, 
every point on that curve would be a touching point. In [18, Chapter 41 
we have considerably reduced the class of curves where this problem could 
occur. 

Let us remark that this paper is self-contained, although at some places 
we refer to the author’s thesis [ 181, where the straightforward but somewhat 
tedious admissibility proofs for certain comparison curves are carried out 
in detail. 
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The appendix contains a slight generalization of the result by Hildebrandt 
and Wente and some technical material. 

2. EXISTENCE OF MINIMIZING KNOTS 

Proof of Theorem 1.1. - Observing that the functional F is translation 
invariant we may assume that there is a minimal sequence {yP}FE1 c C6n;[ 
with 

(2) J>t F(y,) = inf{ F(y) 1 y E Czl } and y,(O)=y,(27r)=O. 

Using the embedding H2>2( (0,27r)) of C1>1/2([0,27r]) and the fact that 
yp(t)#O for all KS” we find constants cP>O, s.th. ]yp(t)] 2 cP > 0 for 
all t E 9. 

As usual one considers the function gP : [0,27r] ---+ [0, I] 

GPW := of lYp(4l d% s 
which is in C’([O, 27r]) and invertible, since irp(t) = ]yp(t)]>cp>O. 

For the derivatives of the inverse function rP : [0,1] ---+ [0,27r] E 
C’( [0, I]) one finds 

and 

$rp(s) = - IYPh I 

-$rp(s) = - (j’PW YPW 
IYP@>l” 

for t=r(s) for almost all sE[O,Z]. 
In particular, rP is a C1-diffeomorphism with 

s ol l+,(s)l” ds 5 cp < co. 
Then one can show (Lemma A.1 in the appendix) that the composition 
yp o rp : [0,1] - R3 is in H2>2 ( (0, I), R”). Composing this with the linear 
transformation R(t) := I . t/2x one obtains a regularized minimal sequence 
XP := yp 0 rp 0 A : [O, 27r] - R3 E H2>2( (0,2x), R3) with 

(3) ]kp(s)] = 1/27r for all sES1. 

Vol. 16, no Z-1999. 



142 H. VON DER MOSEL 

To get compactness we note (recalling the parametric invariance of F and 
using (3)) that there is a positive constant M, such that for all PEN 

M 1 F(yp) = F(xp) = /2n 
0 

“p(;rl ;n;$ig)” ,;cp(c~), da 
P 

In addition, we have ]]Xp]]~a = I/v?%. Together with (2), which implies 
x,(O)=x,(27r) by the definition of rP and A, we find a constant C 
independent of p, such that 

(4) IIXplJfpL I c < 30. 

Hence, there is a weakly convergent subsequence xPT - x E 
H2~*((0,2~),R3). The embedding H2,2 L-, C1,l/*, inequality (4) and the 
theorem by Arzela-Ascoli imply also the strong convergence xP ---+ x in 
@([O, 27r], W3) for a subsequence { xP}gl C { xpf }FZl. 

CLAIM. - x E C$. 

Proof. - 1. The strong convergence in C1 implies the conditions 

(5) 
(6) 

x(0) = x(27r), k(O) = i(27r), 
IA(t)/ = 27~/1 for all tES1. 

since this is true for all xp, PEN. 
2. The parametric invariance of the length functional implies that the 

obstacle condition for the original minimal sequence { yp };=I C C$ 
carries over to the regularized minimal sequence { xp }FE1 : 

Annu1e.s de l’lnstitut Henri Poincorl Analyse non linkaire 
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This fact together with the strong Cl-convergence xP - x guarantees that 
x satisfies the obstacle condition as well, which is shown in Lemma A.2 
in the appendix. 

3. The reparametrization of the original minimal sequence does not 
change the isotopy type of the curve, i.e., xpeCg for all PEN. The 
following lemma together with the Cl-convergence yields XEC;, which 
concludes the proof of the claim. 

LEMMA 2.1. - Let ~EH~,~(S~,IW~) satisfy 

(7) Iv(s) - v(s’)I 2 min{ d, BZ]s - s’]sl } for all S, s'd, 

where d>O, BE(O, 1). Then there exists a constant c>O, such that all 
EEH~,~(S’, W”), with I[( - ~[/CO<C are isotopic to q. 

Proof. - The homotopy @ : S1 x [0, l] --+ R” defined by 

qs, t) := (1 - t)rl(s) + tt(s) 
satisfies +(s, 0) = r)(s), @(s, 1) = t(s) and the curves @(., t) are closed 
for all tE[O, 11. 

In addition, a( ., t) is injective for E>O sufficiently small, since by (7) 

PCs-t) - @‘(s’d)l = ((1 - t)(v(s) - VW) + t [s s,l J. rib) da 

-t MJ) -iW-Ws’ 

2 Iv(s) - rl(s’)l - tlli - lib . Is - 4s’ 

2 min{ d, Blls - s’ISI } - I/i - ellco . Is - s’JSI 

2 i min{ d, &Is - s’/p } for all tE[O, 11, 

if Ili - till0 I E := min{d/27r, 8Z/2}. For convenience, we have denoted 
the minimal distance between two parameters s, s’ on S1 g [0,27r) by 
Is - s’Isl := min{ Is - s’], 27r - Is - s’] } and the corresponding arc on Si 
by [s, ~‘1~1. (Obviously, this proof also works for vector functions q,[ that 
are Lipschitz continuous.) 0 

It remains to show that xg := x actually minimizes the curvature 
energy F. Since (jEp(t)j=lk(t)l=Z/2 r f or all tES1, the functional F is a 

Vol. 16, no 2-1999. 



144 H. VON DER MOSEL 

bounded nonnegative quadratic form on the regularized minimal sequence. 
A standard reasoning then shows that F is lower semicontinuous with 
respect to the weak convergence xP - x in H’J. Consequently, since 
x E q, 

inf{ F(Y) 1 Y E Czl} 5 F(x) L lipn$f F(xp) = inf{ F(y) ) y E C& }. 

cl 

3. REGULARITY 

3.1. Preliminaries 

We first observe that the minimizer x~EC& in Theorem 1.1 also 
minimizes the functional D(y) := JsI m da in C&, since by (6) 

WQ) = s Ik5(fl> A %(~)I2 da = F(x6) 
S’ lkd415 

I F(Y) I .I 
IYWI” s 1 I m . M4I” do = WY) 

The following lemma simplifies matters for touching points, i.e., for points, 
where there is equality in the obstacle condition: 

LEMMA 3.1. - Assuming there exists a S,<l/8, with CiI,l # 0 we find a 
&o<&, such that for all O<S<So and the corresponding minimizers x~EC& 
the following holds: 

If Ix&) - X6(S’)I = min{ S, iL~,,,q(xh), ~L~~~,~l(xg) } for s # s’, then 
Ix&) - x&s’)1 = 6. 

Proof. - 1. For O<S<& we have by definition C$I,l C Czl and therefore 

inf{F(y) ( y E Cz, } 5 inf{F(y) ( y E C$I,l } =: il. 

Equation (6) then implies 

(8) Ili&ll$ 5 Cl := z3 . i1/(27~)~ < co (Cl # 0, since C$ # 0). 

Annales de 1 ‘Institur Henri Poincar6 - Analyse non Ii&ire 
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2. 
1X6(S) - x&‘)I 

145 

>I .I k6(s’) da 1 - 1 
s 

(k(o) - k(s’))da I 
[Y,S’lsl [%4s1 

> & . Is - s’lg - I 312 
II~6llLZ . Is - s IS’ 

We define SO := min{ Si, & . & } and 

-kls~ (x) := 
L~,,,q(x) if [s, s’]=[s, ~‘1~1, 

{ > 
q,, sl(x) else. 

(If ~2s’ the length L [s,st~(x) is given by J,“^ ]k] dt + s,“’ Ik( dt.) 
Since Si<1/8 (compare (45) in the appendix) we have 

nun 
{ 

fL [s,s’](Xd, &s~,,l(X6) 
1 

= fL[s,s’l,, (X6) = -& * Is - S’IS’. 

Consequently, we obtain for ~L~,,,,I~, (x6)<S<So the inequality 

Is - s$!i2 L g&. 

The estimate (9) then implies 

That is, for 6<Sa equality in the obstacle condition can only occur when 

6 < min &&,4(x6), $~$,~](x6) 
C ) 

. El 

From now on we make the 
General Assumption (G): Let S56a<S1<1/8 be fixed, and x := x6 a 

minimizer of the functional F in the class C&. 

Vol. 16, no 2.1999 



146 H. VON DER MOSEL 

3.2. Regularity of free arcs of the minimizer 

THEOREM 3.2. - Lf’there is a parameter SES’ with 

Ix(s) - x(d)1 > miu{ h‘, IL. 2 [h,d~,yl (x) > .bfbr all s’ # $. 

then there is an arc l?,.(s) c S1 centered in s, such that XE C” (B,. (s). Iw”) 
The proof is more or less standard in the calculus of variations and will 

only be sketched briefly: First one shows the admissibility of comparison 
functions z,,t := x+t@+t$ for all It], ItI< eO with e. sufficiently small, i.e., 
z~.~EC~, using continuity arguments to establish the validity of the obstacle 
and isotopy condition for z~,~, (L emma 3.5 in [IS]). Then one can derive a 
differential equation involving a Lagrange multiplier, and standard regularity 
theory including a “bootstrap” argument gives the desired smoothness of x, 
([IQ pp 50-52). 

3.3. H “>I-Regularity 

We start out with a simple case of a contact situation, namely with 
touching points that are isolated and simple: 

DEFINITION. - We call SES’ an isolated simple touching parameter (with 
respect to x) :* 

(i) Ix(s) - x(N’)] = min{ n, ijLr,s,st1,5, (x) } for one and only one s’ # s 
and 

(ii) there is a radius R=R(s), such that for all aEB~(s)\{s} 

Ix(O) - x(a’)l > miu( 0, JjLl,7,ij,, (x) } for all a’ES1. CT’ # 0. 

The corresponding image point x(s) is called an isolated simple touching 
point. 

Theorem 1.2 is a consequence of the Sobolev embedding H”%l pi Hz, X 
and the following theorem: 

THEOREM 3.3. - Let SES’ be an isolated simple touching parameter of 
a minimizing curve x satisfying the assumption (G). Then there is a radius 
R<R, such that x~H”*~(Bu(s), W”), w h ere R=R( s) is the radius in the 
dejinition above. 

Proof of Theorem 3.3 

Step 1. - If x(s) is contained in a straight part of the curve x, then 
we have C”-regularity near s, and nothing has to be proved. Excluding 
this case we show that we can “correct” the length infinitesimally in the 
following way: 
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LEMMA 3.4. - There exist arcs II, 12 c B~(s)\{s}, c n %=0 and vector 
valued functions &EC~(I~, W”) for i=l, 2 and ro>O with 

a) x + ~5; E CT for all 17-1<~0~ 
b) SL(x,C;) = 1 for i=l, 2. 

Proof - By choice of a coordinate system and a shift of parameters if 
necessary, we can assume that k(s) = (Z/2r)e1 and s # 0. (Here and 
throughout this paper ei denotes the i-th standard basis vector in R3.) 
The assumption that x(s) lies on a curved part of x and the continuity of 
i imply that there are parameters sl, s2, sJ, s4cBR(s), s1<s2<s<s~<~s~ 
with k(si) # k(sZ), k(s3) # A(Q). 

That means, x restricted to Ii := (si, sz) or 12 := (53, SJ) is not a straight 
line. hence there are vector functions ci~C,OO(&;, R3) with SL(x, [i) # 0. 
The normalization & := fi/GL(x, (i) gives the desired result, if one 
proves that x + ~&EC; for ]r]<~o << 1, which can be shown as in [18, 
Lemma 3.51. 0 

Remark. - It is straightforward to extend this lemma to an arbitrary 
finite number NEN of disjoint arcs Ii, 1,, . . _ , IN c S1 and corresponding 
vectorfunctions C;, i = 1, . . . , N with the properties a) and b). 

Step 2. - The following result due to S. Hildebrandt and H.C. Wente is a 
valuable tool in deriving a differential inequality for obstacle problems 
with a side condition. We will prove a slight generalization in the 
appendix (Lemma A.4) in order to treat more general contact situations, 
see Section 3.5. 

LEMMA 3.5. - Suppose, there are functions $1) ~1 cc1 ([0, co)); 
&?, wC1((-to, to)) f or ~0, to>0 and constants $0, c E Iw with the 
properties 

(i) 0 = f&(O) = r,i(O) for i=l,2, 
(ii) vi(O) = 1, 

(iii) the function $(t, t) := $0 + &(E) + +2(t) satisjes 

g5(t, t) > $(O, 0) for all (t, t) E [0, ~0) x (-to, to) with ~(t. t) = c: 

where ~(6, t) := c + VI(E) + 212(t). 
Then we obtain the inequality 

(10) duo) - dm)4(0) 2 0. 

The number X := -4:(O) is the Lagrange multiplier in this situation. 

Vol. 16, no 2.1999. 
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Step 3. - By a further rotation and translation of the coordinate system 
we may assume that e := ,X(~j-X(~,j, - X(s)-X(s’) - es and x(s)=O, where s’ is the 
(unique) touching parameter corresponding to s. 

CLAIM. - There exists a radius Rl<R(.s), such that (x; e) = :I? E 
H”J(Bf&)). 

Proof. - One has to check that there are constants Kc>O, O<ta << 1 
and te=~(n,K~,t~)>O, such that for O<K<Kc the comparison curves 
4,K := x + cn[Kez -t- es] + tC* are admissible, i.e., in the class Cz for 
all (F, t)~ [ 0, to) x (-to> to). Here n is an arbitrary nonnegative function 
in Cr(B,(s), iF@), r< min{ 1s - S~]SI, Is - SJ]SI } and C*EC,OC(Z*: R’) is 
one of the vector valued functions Ci in Lemma 3.4. By the choice of r 
we have BT(S) n p = 8. 

In order to apply Lemma 3.5 we define 

&I := D.s (x)5 I: :=l=L,91(x), 

411k) :=DB,.(n)(z~,li)-Dg,(5)(X). ‘h(f) :=LB~(.~)(z:.,)-LB,.(s)(x), 

4520) :=~I-(&-DI+)> 112(t) := LIs (z:.,) - L1- (x). 

Then we obtain 

4(c.f) : = $0 + &I(E) + $2(t) = Ds+:,~); 

u(t, t) : = c + q(t) + ‘Up(t) = LSl (ZE,J> 

=3 $(0,(J) = OS(X) I D,&,, = d(c.t) 

for all zt •,K~C; with u(E.~) = Lsi (z:,~~) = 1! = c. 
One observes that Lemma 3.4 implies condition (ii) of Lemma 3.5, hence 

inequality (10) holds, which in turn gives us a differential inequality in the 
coordinates x2 and :z3 for all O<K <Ko: 

(11) [(KZ2(g) -I- P(a))ij(n) - {cll%(u)l’ + c2} 

. (KiyT) + i?(G)). f&J)] du 2 0 

with cl :== 67r2/12, c 2 := -A ’ 1’/(167r”), X := -q&(O) = -6D(x, <*). 
Setting K = 0 and integrating by parts one obtains 
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We can interpret the left-hand side in (12) as a positive distribution T on 
Cr(B,(s)) setting 

T($) := J&J 5”(o) + J,“{cllji-(~)12 + c2} . i”(7) do] . &a) do 
for TJI~C~(B,(S)). 

Employing an argument of L. Schwartz ([16], p. 29) we find a Radon 
measure 11, on B,.(s), such that 

T(G) = s 1c, db for all q!%C,OO(B,(s)) 
By 

In the appendix (Lemma A.3) it is shown that for &(O, 1) one can find a 
nondecreasing bounded function g=ge, such that 

T(y’/) = - 
/’ 

~)(cr)g(a) dcr for all $JEC,~~(&(S)). 
&r(s) 

An integration by parts yields 

JB,,(,, [z”(o) + J,“[ {c+i(~)I” + c2}i3(7) - g(T)] dT] . ‘(i;(o) da = 0 
for $EC,OO(&h(s)>, 

which implies 

(13) ii”(g) + 
J 

‘O[ {c11%(~)12 + c2}i”(~) - g(T)] d-r = ua + b 
s 

for some numbers n, b&i’ and for almost all am& by a generalized 
version of the fundamental lemma in the calculus of variations. Since 
XEH~,~(,!?, W”) L-) C1>1/2([0, 27r], R3) and g is bounded, the integrand 
in (13) is in L1, hence ?3~H’~1(B~r(s)), i.e. (x, e) = x3 E H3>1(B~,(~)). 

Step 4. - For K := Ko/2 in (11) we apply the same method to find a 
nondecreasing bounded function g=ge,K ELM (I&-( s)), such that 
(14) 
K,2(,)+~3(~)+ 

J’ 
u({cllji(+12+c2}[ Ki2(T)+i3(+-g(7)] d7- = aa+b 

s 

for some numbers 7i,b~lW for almost all crG3eT(s). Since Z3~H1’1 and 
.9e,K-EL1v we obtain 

ii:“(a)+ s”({cl[+)~2+c2}[Kk2(~)+i3(~)-g(~)] deH1~l(Be,(s)) 
.I’ 

=+ Lz2 E fP(B&(S)). 

Vol. 16, no 2.1999 
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Step 5. - Differentiating the equation ]k(~)]~=1~/4~r~ and recal- 
ling that kr(s)=1/2 7r one obtains .?‘EH~>~(BR~(s)) with g’(o) = 
-[i2(~)it2(a) + ~“(o)~~“(cJ)]/~Y’(cJ) for all ~~Bn,(s). where R, := 
mm{ Z2/(47r]1%]1$), Hr }. 

In fact. one estimates 

I:;:‘((T)I > IiJ(s)l - Ii? - i’(s)l 
> 1/27r - )I++? . /cr - s l/2 

2 L for all aEBn,(s). 0 

Remark. -With a suitable modification of the admissibility proof in step 2 
one can extend this regularity result to more general one-sided contact 
points, where the constant K0 now depends on the touching parameter 
SES~, see [18, pp. 65-721: 

DEFINITION. - A parameter SE,!? with 

(15) lx(s) - x(d)1 = min{ 6, iL]3,s,jsI (x) } 

for at least one s’ESl\{s} 1s called a parameter with one-sided contact if 
and only if there is a vector v=v(s)E,!?~, such that (x(9’) - x(s)! V) < 0 
for all s’ESl\{s}, f or which (15) holds. Geometrically this means that all 
touching points x(s’) corresponding to x(s) lie in an open halfspace H, 
with v I 8H, and x(s)~dH,. 

3.4. Higher Regularity 

It is an open question, if the H”)l -regularity is optimal for touching points 
of the minimizer x=x6; there are, however, contact situations, where one 
can prove higher regularity. 

DEFINITION. - Let Vs : = { s’ E S1 \ { s } 1 lx(s) - x(s’)I = min{S, 

~~rv~1,1 (x>H be th e set of all touching parameters corresponding to 
s. Then we call x(s) a convex touching point, if and only if there are radii 
R>O and R’>O, such that 

(16) dist ( x(B~t (Ifs)), conv(x(BR(s))) ) > S. 

Remark. - This means that we can vary the curve x locally near the 
point x(s), as long as we stay in the convex hull of a short arc containing 
x(s). Not every isolated touching point is convex - consider for instance 
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two arcs that are “hooked” in the sense that the normals at s and s’ point 
at each other. On the other hand, there are convex contact situations that 
cannot be treated with the previous method. For simplicity, however, we 
will concentrate on convex touching points that are also isolated and simple. 
With some technical modifications one can prove the following results for 
more general convex touching points, see [18, Chapter 3.4.11. 

THEOREM 3.6. - Let SESI be an isolated simple touching point that is 
convex with respect to the minimizer x=x& satisfying assumption (G). Then 
there is a radius r<k, such that x E H”>2(BT(s),Iw3), where l?=fi(s) is 
the radius of H”,l -regularity (Theorem 3.3). 

The embedding H3)2 it C2,112 implies that near such contact points the 
curvature of x is Holder continuous with exponent l/2. 

Proof. - As before, one shows first that there exists a radius R1=R1 (s). 
such that for all functions ~~C,“(&n~(s)), there are constants ~0, ta~(O, I), 
such that for all Ihl<R,, O<e<h2f0, ]tl<to the comparison curves 

4,/L := x + c&,,(,q’nhx) + tC* are admissible, i.e., in Ct. The vector 
valued function C*EC,~(I*! W”) is chosen from the finitely many Ci in the 
remark following Lemma 3.4, such that s 4 ; and s’ $ ‘;i. Furthermore 
we have used the notation n,f(a) := (~(cJ + h) - f(a))/h for difference 
quotients. (For the details of the admissibility proof see [18, Lemma 3.241.) 

We take rj~C,;O(Bs~(s): [0, 11 ), r< min{fi/4, RI} with 71 E 1 on E&(S), 
l;/l<c/7, lfjl<C/r2. 

As in the proof of Theorem 3.3 we apply Lemma 3.5 to obtain a diffe- 
rential inequality in terms of x and 4 := n-rl(71”nllx)~H~12(B9~(s), R”): 

I [(X(~,,&cg) - {cl~q~)~’ + c2) . (k(g). &a))] da 2 0 
. B,,(s) 

for ci := 67r2/12,c2 := -A . Z2/(167r”), X := -SD(x, C”). 

Applying the well-known calculus for difference quotients (see e.g. in [2], 
vol. II, p. 84) we arrive at 

J’ (A,,, A,?) . q4 da 
h,.(s) 

c 

(17) I- .I (&2, (12&% hx + 477377&x + 8q3+Ahk))dc 
B,,(s) 
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For vector valued functions f=f (p, r) we have 

bf( PC% r(G) 
1 l 

=7i o J 
fp(p(t) + d&p(t), r(t) + Tl&r(t)) . h&p(t) h- 

+t J o1 fr( p(t) + 7-h&p(t), r(t) + Th&r(t) ) . IlAhr(t) dr. 

Hence, from (17) we obtain 

Using a generic notation for constants we estimate 

IIll 5 E J q41&ii12 da + C(E, T), 
&T(S) 

since 

J ( I&xl2 + I&$(’ ) da I cI(xll~2.2. 

141 L c J .I\ B3 r (a) 01[142 + I%(. + h)12 + lczl I c-h 
indep. of 7 

SC J &r(s) 
[ [Xl2 + 1~211 { lq2AGc12 + ;/A~x~~ } do 

L c(ll4lH-, r) 

Annales de I’lnstitut Henri Poincar6 Analyse non h&tire 
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Similarly, 

Lf J B 3r y ( ) ‘r141AG12 da + C( llxllm=, E, r) 
Summarizing the estimates for II - I4 we can choose E>O sufficiently small 
to absorb the leading term on the right-hand side to get 

J [&$I” da 5 J l$A,$l* da 5 C < 30, 
S-(s) E+(S) 

which implies JBFCaj ) x I* da 2 C < 00. 

3.5. Two-sided contact points 

0 

DEFINITION. - We call SE,!?’ an isolated double touching parameter :(2 
(i) Ix(s) - x(s’)I = min{ 6, ~~~~~~~~~~ (x) } for exactly two different 

parameters si, 2 s’ E S’\(s) and at least one of the .si is isolated 
simple; 

(ii) there is a radius R=R(s), such that for all a~B~(s)\{s} 

Ix(a) - x(J)1 > min{ 6, jjL~~,,.qsI (x) } for all a’ESr\{g}. 

The corresponding image point x(s) is called an isolated double 
touching point. 

Remark. - Such a point is a one-sided contact point (see the definition at 
the end of Section 4.3), unless x(s), x(si) and x(sk) lie on a straight line. 
Hence, we can concentrate on that special situation and fix the coordinate 
system in the following way: 

x(s) = 0 E W3, x(si) = Se3, x(sh) = -6e3, 

k(s) = (Z/27r)el and (x(s) - x(si))/S = (x(si) - x(s))/6 = e3. 

The idea is to vary simultaneously near the point of interest x(s) and near 
the contact point that is isolated and simple, say x(s:). One has to show 
that there is a constant Kc, such that the comparison curves 

=, t := x + v[ Ke2 + es] + 2cll(pllpq2e3 + tC* 

Vol. 16. no 2-1999 
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are admissible, i.e., in CL for all O<K<K,r, Jtl<t,, ~E[tI,to). 
co=to(p> 7, Ko; to) < 1, where rl~Cr(Bn, (si), [O. I]), rj - 1 on B,, (s\) 
with I;11 5 C/RI, lijl < C/R: for some RI < 1. Here (PEH~‘~(O,(S), R+) 
is an arbitrary nonnegative testfunction for II<& sufficiently small. (See 
[ 18, pp. 87-901 for the detailed computations.) 

We define 
q&J := DSl(X). 

(’ := 1 = LSl (x). 

‘uQ(s(c)) := LB,,, (s’,)(z’,) - ~?I+,)~X): 

where S(F) := 2c]((pll,. Then we obtain 

Since xEC& is minimal, 

+(O,O) = Us-(x) I Dsl (d) = $(f,t) 

for all z:EC: with V(F, t) = L,~I (zE)=l=c. 

Consequently, the generalized Lagrange multiplier lemma (Lemma A.4 
in the appendix) is applicable. From the inequality (48) one finds after a 
short calculation 

for all O<K<Kc with cl := cjr2/12, c2 := -M2/(16n”), X := -bD(x, C*) 
and X1 = SDBR, cs;,(x, rj2e3) - SDr- (X, c*) . SLB,,~ (s;)(% r12%). 

CLAIM. - There is a radius rg=ra(s) and p>2, such that :I:’ E 
H2q?&)). 
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Proof. 

Step 1. - We test (19) for K=O with p(a) := C’(a) . (x: - x3)(a) E 
H$“(n(s,r),Wf), where r<pO := 5p/6, ~(s,T) := &+p(s), 

(20) xr; := max{ s”(t) 1 t E 0(s, T) } ( 2 0, since z”(s)=O) 

and ~EC?( R(s,r), [O,l] ), C z 1 on B,(s): [</<C/r. I<IFC/T~. 
Inserting this into (19) we arrive at 

Now we estimate (using a generic notation for constants) 

By continuity of x3 there is s,~R(s, r), such that x~=x3(s*), hence 

12Tf - 2(fT)I = buys*) - 2(o)I = 1 Jl’(i”(T) - 3) dT I 

CT 

(22) 
=O 

II I?“(t)l dt d7. ) 5 CT 
I, , n(s l.) I~“@)l& 

(23) =+- I-111 L ;[J’ 
WY>T) 

li3(1Wt]2 5 C~[~~(,s~~l~3(t),dt]2. 

I= 

(24) 
= 

Ii?(c~)l . Ii”(a) - i3(s)l dg 

($31. 1 
I 

u .,3 z (t) dt 1 da 
. s 
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(25) 

where we have also used 

* (26) I:i”(a)l = I2(tJ) - i”(s) I < 
w . I n(,s,l,) Ibw dt. 

=O 
For the remaining terms one obtains 
(27) 

II,/ = 1 - 6, 7,,{ cl/X(* + c2 }(:i:3)2<2 do I ,&Or” [j&?(t), dt]‘. 

Inserting the inequalities (23)-(28) into (21) we arrive at 

(29) .f 
Ii?(t)l” dt 5 C Iit”(t)l dt 

I 
2 + C&” for all r<pa. 

B,(s) 

Step 2. - For r<pi<(5/6)~ 0 and ET < 1~ - .sI < po - Epl we can 
vary freely around U, since s is isolated by assumption, and we have the 
differential equation 

(30) 1 [(X(o), G(u)) - {CILIA’ + cz} . (k(a), @(a))] da = 0 * B,(u) 
for cl := 6x2/12 and c 2 := -X0 . 12/(167r3) for all (p~Ht’~(R(g, r.), R”). 

We test this equation with p(t) := r/*(x3(t) - /3(t)) . e3 E 
H~~2(R(~,~),R3), where n~Cr(fi(c,r)), satisfies O<v<l; r/ E 1 on 
R(c); ItilLCI~ and I;ilG’/r 2. The function Z3 is the linear interpolating 
function to x3 with values 

Z3(c - (6/5)r) = ~“(a - (6/5)r), 13(o + (6/5)~) = x”(u + (6/5)r). 

Anndes de I’lnsritut Henri Poincurc5 Analyse non h&ire 
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By Rolle’s theorem there is T,E~(c, T) with I” = &(T,). Inserting 
this into (30) we find 

it3 . [(e” + T/$(X” - Z3)] dt 

-4 
.I 

23 . (i” _ i3)77rj & 

O(U.T) 

(31) + n(u,,r) s 

{cl Ix12 + c2}i3[ 2r17j(z3 - 13) + q2(i3 - Zs)] dt 

+; lc#q2 + 1~21 }l~“llx3 - 4t dt , 

+C 
I’ 

{ Ic~~~x~~ + Ic~/}Ii311i3 - i,l dt 
. Q(cr,P) 

For TE~(CT.T-) we have, since & E 0 

IX”(T) - Z3(7)) = IX”(T) - Z3(7-) - [x3@ - (6/5)r) - Z3(n - (6/5)~)]1 
. / 

[2:“(t) - i,(t) - @“(T*) - i3(q)] dt 1 

and similarly 

Ii;;” - i3l 5 c 
./, 
n(~ ~) b31 A. 
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Now we estimate the terms II - I,: 

We insert these inequalities into (31) and obtain 

’ (32) 
f 

for all 7’<pt. 
E,(o) 

(5”12dt 5 C[ (~Q,,,v~~i?~dt)2 + I] 

Step 3. - We claim that there are constants G, Rot fi>O; such that for 
all oEBfi(s) 

In fact, for nEBti(s), where A := p. - (6/5)pI and R,, := 
min{pl, (5/11)~0 1, we distinguish between two cases for r<Ro : 

I. /o-s/<~T and II. gr$T - .s(<iz. 

In case I we have (CJ’ - s\<(o - CT] + ICJ - ,sl<yr. for all CT’E&((T), 
and therefore 

where we used )a’--a)ila’--s)+)a--sl<~r+~r<4r for all (T’EBcs,(s). 
In case II one immediately obtains the desired inequality from (32). 
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Step 4. - The estimate (33) implies in terms of the local maximal function 
(see e.g. U71) M~[fl(t) := ~~&j&~~.f 10 < T < R.1 

MRO[ [P[“](o) < G. &I&[ [?“I + l](a) for all aEBfi(s). 

Redefining Z3 and the constant function f ZE 1 in IW\BR+~~~ (s) by 0 
we arrive at 

Mno[ Ii”I”](o) < C. M&[ I2 + l](a) for all (~EBfi+~~~(.s). 

Thus we can apply Gehring’s lemma ([ 171) to get the desired higher 
integrability on B,.,(s), 7’0 := I?/2 : 

(34) [ .fn.,(,s),TJ,Y d,] 1’p 

1:$,2 ,,) 1’2+ ( iB-;;;‘i) “‘1 

for some p>2 and a constant K1 depending on y and the ratio R/R,. Cl 
Now we are in the position to prove higher integrability for the full 

vector X : 
THEOREM 3.7. - Let SE,!?’ be an isolated double touching parameter with 

corresponding touching parameters s:, sh E S’\(s), such that the image 
points x(s), x(3:), x(sk) lie on a straight line, where x=x& E C& is the 
minimizer satisfying the assumption (G). 

Then there is a radius 7’1 =TI (s) and p> 2, such that x E H2+ (B,., (s)) . 
Proof. - Setting K := Ko/2 we test the differential inequality (19) with 

P(O) := C2(a)(zZ - z~(~))EH,~‘~(R(s,T), Iw+) for radii r’ chosen as in the 
first step in the proof of the last claim. 

The only new terms (up to constant factors depending on Ko) are 

l.) { cl [%I2 + c2 }i” . c2i2 dt, 
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Using the same techniques as before (in particular inequalities (22), (26) 
with x3 replaced by x2) we estimate 

and analogously, 

Applying Young’s inequality we finally obtain 

Summarizing these estimates and absorbing the leading term of (35) for 
sufficiently small e>O we arrive at 

Similarly, one calculates on fl(a,r) with g T < 1~ - sI < pa - E p1 
testing the corresponding differential equation for K := Ko/2 with 
cp(t> := <2(t)(x2(t) - h(t)), h w ere Z2 is the linear interpolator to x2 
with the same boundary values as x2 on dfi(a, T). 

One obtains the inequality 

Annales de l’hstitut Hrnri Poincard Analyse non lindaire 
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Treating two different cases as before we finally find constants C, Ra, fi>O, 
such that for all a@~(s) 

or in terms of maximal functions after zero-extension of all involved 
functions on R\Bfi+4Ro (s): 

A&[ ~~“~“](o) 5 cM;[ lZ21 + lit31 + l](0) + CM,[ ]Z3]2] 

for all c~EBk+~n~ (s). 

A more general version of the Gehring lemma (see e.g. [S, p. 1221 gives 
us higher LP-integrability of 2’ for a p>2 on B,,(s), ~1 := &/4=ra/2: 

As in step 5, Section 4.3 we get an analogous estimate for x1, which 
completes the proof on account of (34). 0 

A. APPENDIX 

LEMMA A.1. -Let I, r” be open intervals in 63, ~EH~>~(I) and r : f --+ I 
a C1-difSeomorphism. Assume in addition that f exists almost everywhere 
on f and satis$es 

(36) s 
i IF(s ds 5 C < 00. 
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Then f o r E H’>‘(i) with 

(f 0 T).’ = (f 0 T) . i2 + (f 0 7) . + 

in the sense of distributions. 

Proof - Taking an approximating sequence fk~C~(1) n H2>2(1) with 
IIf - fkllIw - 0 for Ic ,7’ w we obtain 

(37) (fk 0 7) (s) = (fk 0 T) . i(s) for all sErX, 
(38) (fk 0 T)“(S) = (jk 0 T) j2(s) + (fk 0 7-) . F(s) for almost all sEll. 

Since Ii1 > c for some constant c>O, the functions fk o Y- constitute a 
Cauchy sequence in L2(j): 

J’ i 
I& o T(S) - fi o TV” ds 5 i 1 Ifk o T(S) - jl o TV” . l+(s)l ds 

= . Ij&) - fl(t)12 di; --+ 0. 
lC.l/oO 

For a subsequence we have fk ” - f almost everywhere. The inverse - x 
T-~ECY maps sets N C I of measure zero into sets N C I of measure 
zero. Hence, f;c o 7 + f o 7 almost everywhere on f and consequently . . 
fk 0 T - j 0 T in L2(j). Similarly we get 

(39) fk:07-fOT and 

(40) fk. or - fo7 in L2(1). 

Multiplying (38) by (PECK and integrating over r one obtains after 
two integrations by parts 

(41) 
s 

cp.[ fkor.i2+fko+ dt = 
i J 

c+g.(fko7.)“dt = 
i I 

@(ficcm)dt. 
.i 

It is easy to show that the left-hand side of (41) converges to 
Si’P’[fO~‘i2~f07’ i: ] dt, which together with (40) proves the 
lemma. 0 

LEMMA A.2. - Let d>O, @e(O, 1) and c>O satisfy 

(42) d<$ 
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and 7jEC1(S1, R3), such that lf~(t)(>c>Ofor all YES’ and 

(43) b?(s) - rl(s’)l 2 4% s’) . miIl{ 4 ~-&I (~1, oL[s/,sl (7) 1 

for all s; s’ES~, where c(s, s’) is a positive, uniformly bounded‘finction: 
0 < c(s,s’) 2 c < cm. 

CLAIM.-Forulle > Othereisun5= .F(t),suchthatforall~~C~(S~,W~) 
with [I[ - 7jllC0<~ we have 

(44) It(s) - t(s’)l 2 (c(s, 4 - E) . min{ 4 &,,q(t), d-&~,,](t) > 

for all s,s’ES. 

Proof. - a) For [EC~(,!?,R~) with IIt - illco<ci := c/2 we have 
li(t)l>c/2 for all t~,S’l. The technical condition (42) secures that 

(45) min{ 4 @L[,,d](O, ~L[s~,sl(t) > = Din{ 4 @L[,,dls, (0 } 

for all t with Iii - rjjlco I cl, i.e., the correspondence of the shorter arc 
between s and s’ on S1 with the shorter arc on the curve between the 
image points x(s) and x(s’). 

b) For s, S/E,!? one estimates using (43) 

It(s) - W)I = I / i(t) dt I 
’ b’lsl 

2 MS) - rl(s’)l - lli - tib . Is - 4,s 
2 c(s, s’) . min{ d, OL [s,s’]‘$ (rl) > - Iii - 7illco . Is - 4s’ 
2 c(s, s’) . min{ d, ~L[,,,qs, (t) } 

- [ 1 + c(s, s’)d] . Iii - ?jllco . Is - S’IS’. 

c) If min{d, 8L is,+,lsl (<)} = d, then we have for IIt - ~[[CO < t2 := 
cd/(( 1 + C)r) by the previous estimate 

(46) It(s) - t(s’)l> (c(s, s’>-E)d=(c(s, 4-e) min{d, QL[,,,qs, (6)). 

If mint 4 ~Q3,sqsl (0 > = @L[s,s~ls, CC), one obtains for IIt - Gllco 5 
EQ := c&/(2(1 + C)) : 

(47) MS> - aa 2 (4% 4 - wqs,sqsl (62 
= (4s, 4 - e> mint 4 @L[,,,qs, (0). 

The inequalities (46), (47) together with (45) prove the claim, if one takes 
E := min{ei, ea,tg}. cl 
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LEMMA A.3. - Let p be a Radon measure on the open interval J c W. 
Then for all open subintervals I CC J we jind a nondecreasing bounded 
function g=gI : I ---+ Iw , such that /L = g’ on I in the sense of distributions. 

Proof. - Let I := (a, b) CC ,J; define g = 91 : I - Iw by 
g(s) := PC (a, 4 ) f or a<s<b. Since p is a Radon measure on -I, g is 
bounded on I : g(s) 5 p( [a, b] ) < cc for all SEI. By construction g is 
nondecreasing, because 

g(s) = ~((a, 61) = PC@, bl n (a, 4) + 14b bl\h 4) 
= g(0) + ~((0, s]) for a<s. 

Furthermore ~([a, c]) = P(((T, c]) = g(c) - g(a) for almost all u<o<c<b. 
For $EC,OO(I) with supp$ cc (a,@) C (a, b) we write using Fubini’s 
theorem 

s B P = (~ PCL(@, PI) . Ilt’W = (g(P) - g(t)) . Ij,‘(W 

= - /g(t)@(t) dt. 0 
. I 

LEMMA A.4. - Suppose, there are functions 41, v~EC~([O, to)); 42, 
WC1((-~o,~o)) and $3, w@( [ 0, SO)) with eo, to, so>0 and constants 
$0, c E Iw with the properties 

(i) 0 = q&(O) = q(O) for i=l, 2,3, 
(ii) v;(O) = lI 

(iii) $(~,t) := 40 + 41(t) + +2(t) + &(s(E)) satis@ 

4(t,t) 2 $(O,O) for all (~,t) E [O,EO)X(-to,to) with v(c,t) = c, 

where ~(t, t) := c + VI(~) + up(t) + ‘uQ(s(E)) and s : [0, to) + R 
E c’([o,~o),[o,~o)),~(o) = 0. 

CLAIM. - Then we have the inequality 

(48) &O) + xov:(o) + XlS’(0) L 0: 

where X0 := --4;(O), XI := 4/3(O) - &(O) . u;(O). 

Remark. - Lemma 3.5 in Section 4.3 follows if one sets 43 s 213 s 0. 
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Proof. - Applying the mean value theorem to w2 one obtains 
wa(t) = [l + q(t)] . t with a function 7 satisfying ]q(t)J -+ 0 as It] \, 0. 
Then by the intermediate-value theorem we find a constant da~(O, to/2), 
such that [-d,d] c wz([-2d,2d]) for all O<d<da. 

On the other hand, there is an E~E(O,Q,], such that ]‘u~(F) + 
~3(44)l<~O(<~0/2) f or all EE[ 0, cl), since Q, 212 and s are continuous 
and wl(0)=ws(O)=s(O)=O. Consequently, for every EE[ 0, ei) there exists 
t=t(e) with 

It(~)1 i ~~w~(E)+wu~(s(E))I < 260 (< to), such that 

(49) [l + rl(qE))] . t(c) = vz(t(t>) = -R(E) - ‘U3(44) 

(50) =+ itot = 0 and v(E,~(E)) = c. 

The identities (49) and (50) imply 

(51) 1 ;<; [t(c) ; t(o)] = iii [ 1 + &)) . --‘U1(E) y(s(y 
= -w;(o) - WA(O) . s’(0). 

Using (iii), (50) and (51) we arrive at 

o < +(%t(E)) -  W,O) 

-  

&  

s o;(o) + d&(O) . t’(0) + c&(O) . s’(O) 

= &(O) -#m 4(O) + [$O) - dy) . my . s’(O). q 
= x0 =x1 
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