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ABSTRACT. - We give some comparison results for solutions of Dirichlet 
problems of elliptic equations and variational inequalities by means of 
Schwarz symmetrization. 0 Elsevier, Paris 
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R&uMB. - Nous donnons divers resultats de comparaison obtenus par 
la symetrisation de Schwarz pour les solutions d’equations et inequations 
elliptiques. 0 Elsevier, Paris 

1. INTRODUCTION 

If R is an open bounded subset of RN and cp E L1 (O), the distribution 
function of cp is the function CL, defined by 

pp(t) = /{LX E R : lp(z)I > t}l, t E R+. 
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168 A. ALVIN0 et al. 

For s E [0, lo]] we set 

v*(s) = sup{t : &p(t) > s}; 

(P* is the decreasing rearrangement of cp. 
Let 0s denote the ball of RN centered at zero whose measure is ]R ], 

we define 

where WN is the volume of unit ball in R”; (pit is known as the 
decreasing, spherically symmetric rearrangement of cp. Finally we denote by 
p,(s) = cp*(]fl] - s) and (pg(x) = ~*(wNIxI~) respectively the increasing 
rearrangement and the increasing spherically symmetric rearrangement 
of cp. 

We consider the linear elliptic differential operator 

Au = - 2 (a&)uz,)z, + 5 ~;(z)‘LL,% + &di(z)a), + c(z)u: 
i,j=l i=l i=l 

where the coefficients are measurable and bounded. Moreover it is assumed 
that for almost all 2 E R 

Q( E RN, (1) 
i,j=l 

c Idi(z)l* 5 D*, 

(2) 

(3) 
i=l 

C(Z) 2 0, (4) 

where B, D are non negative constants. If u E Hi(R) is a weak solution 
of the homogeneous Dirichlet problem 

Au = f in R, u = 0 on dR, (5) 

with f E L*(R), any Lp or Orlicz norm of u can be regarded as a 
functional of the data of problem (5); we fix some constraints on these data 
(see conditions (l)-(4)) and look for those for which a norm of u achieves 
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COMPARISON RESULTS 169 

its maximum. In order to describe the kind of result we have in mind we 
recall what happens when the operator A has the following simple structure 

In this case if u E HA (R”) is the weak solution of the problem 

-Av+q(~)w=f~on0~, v=Oond@, (6) 

we can estimate the concentration of u by the concentration of v, 

j)* 5 Jo”w*, vs E [0,1cq]. (7) 

The result (7) may be improved when c z 0; in this case we have 

u*(s) 5 w*(s), v’s E [O, Icq. (8) 

The pointwise estimate (8) was first obtained by G. Talenti [14]; for 
some extensions of this result and for a proof of the integral estimate (7) 
see VI, [31, [41, PI, PI, WI, WI. 

By means of (7) it is possible to estimate any LP norm of u by the same 
norm of the solution ZI of (6) 

II’ZLIILP I 1141~~~ l<pl+oo; (9) 

so we can assert that any LP norm of the solution u of problem (5) 
achieves its maximum when the data of the problem (coefficients, domain 
and known term) are spherically symmetric. 

This kind of problem becomes more involved when we take first order 
terms into account in the structure of the operator A. 

Namely if u E Hi (0) solves the following Dirichlet problem 

/ 
L” = - 5 (%(~>UZ~>Z, + eh(,:)uzt + c(x)u = f, on R 

i,j=l i=l 

(lo) 

I u = 0, on dR, 

and ‘u E Ho(d) is the weak solution of 

N 

-Au + B z $vz; + q(x)v = f”, on R”, 
(11) 

v = 0, and@, 
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170 A. ALVIN0 et al. 

the following estimate holds for all s E [0, Iti]] (see [2], [5]) 

J 

s 
exp(-BwN -l’“&“)u*(c+lcr < sexp(-L3wh,1’Y~‘i”)~~*(~)drr. 

0 I’ . 0 
(12) 

Obviously, (12) implies that 

however it is no use if we ask to estimate LP norms of u by the same norm 
of w. In order to obtain (9) it is essential to prove the integral estimate (7) 
which does not hold as shown in [2]. 

The aim of this paper is to show that we can estimate the concentration 
of the solution u of (10) by the concentration of the solution of a suitable 
spherically symmetric problem that is different from (11). More precisely 
let y be a spherically symmetric function, increasing with respect to p = IX], 
such that 

exd-Bl4hd4 L $4 2 0; (14) 
if z E Hi(@) is the weak solution of the problem 

then we have (see Theorem 2.1) 

J 
s 

u*(a)da < 
I 

” x*(cr)dc, s E [0, ]fll]. 
0 0 

(16) 

In other words, the desired comparison holds provided we choose the zero 
order term Z(X) = exp(Blzl)y( ,) T m such a way that Z(X) is spherically 
symmetric, 0 < E(X) < G(X) on @, C is increasing and exp(-B]zl)E((z) 
is increasing. From this comparison result, via a duality argument, it is 
possible to infer a similar result for the following problem 

+ I!I~(x)u),~~ + cu = f, on R, 

We also give a direct proof of this result in order to apply it to variational 
inequalities (see [7], [ 131, [5] for related results). 



COMPARISON RESULTS 171 

2. MAIN RESULTS: ELLIPTIC EQUATIONS 

Our first goal is the proof of the comparison result (7) for a solution 
of problem (10). 

THEOREM 2.1. - Let u E Ht (!I) be the weak solution of (10) where 
the coefficients s&i&v conditions (1) (2) (14) and f E L2(fl); moreover 
let 2 E Hi(Rfl) be the weak solution of problem (15). Then, (16) holds. 
Furthermore, ifr(z) = 0 when (21 5 RQ, then 

~~(4 5 v’(x), 1x1 I Ro. (17) 

REMARK 2.1. - Zfthefunction exp(-BI I) ( ) x cc x is increasing with respect 
to 1x1 we can set y(z) = exp(--B(z()cp(z). In this case, the problem (15) is 
exactly the problem (11): so, by means of Theorem 2.1, we obtain the integral 
estimate (16) instead of the weaker estimate (12). On the other hand if the 
junction exp(-Bl21)cu(z) d oes not sati& this monotonicity property, we 
compare u with the solution of (15) that is greater than the solution of (11); 
this implies that we could sharply estimate u by v rather than by z (see L” 
estimate (13)). However since (16) holds, we can estimate any LP norm of 
IL by the same norm of z too. 

We begin by showing the following properties of the solution of (15): 

LEMMA 2.1. - The solution z E Hi (0s) of( 15) is non negative, spherically 
symmetric and decreasing with respect to 12). 

We have to prove that z is decreasing with respect to 1x1, because the 
other properties can be easily derived from the maximum principle. For 
simplicity we assume that fB and y are sufficiently smooth. 

Setting z(p) = z(z), f(p) = ffl(x), y(p) = y(z), we have 

where R is the radius of 0”. Differentiating with respect to p and letting 
w = z’, we deduce 

Since exp(Bp)y is increasing, the right hand side in the equation (18) is 
non positive; then by maximum principle w = z’ < 0. 

Vol. 16. no 2-1999 



172 A. ALVIN0 et al. 

When fn and y are not smooth we can proceed by approximation; 
however a direct proof could be given replacing in the above argument 
derivatives by difference quotients. 

Proof of Theorem 2.1. - We set 

lcN = NW;“, e(s) = exp( Bw$‘~ sllN), 

k(s) = $s2/N-2r(s). 
N 

Let U(S) = U*(S) d enote the rearrangement of the solution U(X) E H,’ (Cl) 
of (10); then we have (see [5] and the Appendix) 

s 
-u’(s) 5 k(s) 

.I 
e-yf* - c*u) (19) 

0 

and then, by (14) 

-u’(s) 5 k(s) 
I 

ye-y* - ?*?A). 
-0 

Taking into account Lemma 2.1, a direct computation yields: 

(20) 

--z’(s) = k(s) .I ‘ye-if” - y*z), (21) 
0 

where z(s) denotes the rearrangement z* of the solution z E Hi(Rfi) 
of (15). 

Setting w = u - z, we obtain, from (20) and (21) 

i 

.I’ 

s 

-w’(s) + k(s) Y*W I 0, 

w(0) = 0, wt(,i) = 0. 

We claim that (22) implies that 

W(s) = 
.I 

h*w L 0, s E]O, IO([. 
0 

(22) 

Indeed, let us assume that (23) does not hold; since w’(]n]) = 0, there 
exists an interval [a, b] C [0, Ifi]] such that 

i) W(s) > 0, s E]a,b[, 
ii) W(a) = W’(b) = 0. 

Anmks de l’lnstitut Henri Poincarcf Analyse non Iii-&ire 
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In particular, we can deduce from (22) and i) that we have, for s ~]a, b[: 

-w’(s)W(s) + k(s)W2(s) < 0; 

integrating on [a, b] and taking into account the boundary conditions satisfied 
by W (see ii)), since y,(b) > 0, we get 

O>-~wIW+~kWZ=~7*w2+~liW2, 

which contradicts i); hence (23) holds, 
If y* E 0 on [0, so], (23) becomes 

L~*u56 
Y*Z, s E [so, Ml, 

from which we deduce as is well known, s 
J J 

s u< z, s E [so, Ifll]. (24 30 so 
This completes the proof of theorem 2.1, in the case SO = 0. 

If so > 0, (24) yields 

on the other hand, (22) implies 

-u’(s) < -z’(s), s E [O,so], 

and we obtain the pointwise estimate (17) which completes the proof. 
Now, we consider the following Dirichlet problem 

I 21 = 0, on dR, 

and the the symmetrized one 

{ s*v=-AU-B cc > i:, 3 It + w@l4M+ = f! (26) 
v=O,ondRn. 

Vol. 16. no 2-1999. 
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We have that ‘u is non negative, spherically symmetric and decreasing 
with respect to p = 1x1. Indeed the function 

V(x) = exp(Bjzl)v(z) 

satisfies the following equation 

-(exp(-BJz()l& I,, + Y(z)V = .f’. (27) 

If we set V(p) = V(x), y(p) = y(x), f(p) = fC(z), where p = 1x1, we find 

[-V~+v+3- Y)] exp(-BP) + Y(P)V(P) = f; 

differentiating with respect to p and setting 2 = V’ exp( -Bp), we obtain 1 Z(0) -2” - = 92’ 0, 5 + 0, 2 [ y(p) exp(Bp) + v 1 = f’ - T’V, 

Z(R) 
where R is the radius of flu. By the maximum principle we deduce that 
2 5 0 i.e. V’ < 0; so V and 2, are decreasing with respect to p. 

REMARK 2.2. - We have 

w(2) =& exp(-%4) 
N s (IW/w.v) 1/N PN 

IPI 

exp(W 
s 

WNP 

(f*(s) - r*(sMsb* (s))ds 
0 

and thus 

PI-” WNP 
N 

V’=(wexp(Bp))‘=--exp(Rp) 
J 

(f*(s)-r*(s)e(s)w*(s))ds10; 
N 0 

so we have the following inequality 

WNP 
N 

s 
(f*(s) - y,(s)e(s)w*(s))ds > 0. (281 

0 

We now recall some properties of rearrangements we shall use in the sequel: 

Annales de I’lnstitut Henri Poinccrrk Analyse non Ii&ire 
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l if f and g are measurable functions defined on a set R then (Hardy 
inequality (see [lo])): 

for all convex, non negative, Lipschitz function F such that F(0) = 0. 

THEOREM 2.2. - Suppose that (1) (2), (14) m-e satisfied, then we have 
the inequality 

where u and v are solutions, respectively, of (25) and (26). 
We use a duality argument. If g E L2(0), let z E Hi (0) be the solution 

of the equation Lz = g. Moreover, let w E Ht (08) be the solution of the 
symmetrized equation SW = gfl. We have 

I s f u,ti (by Hardy inequality) 
no 

5 J’ f Ow (by theorem 2.1 and property c)) 

~~tiws*+sw=i,u~g~. 

Then we have, since v = vn, 

.b”4 
vifgfl, vg E L2(R); 

by property b) we get the result. 

Vol. 16. no 2-1999. 



176 A. ALVIN0 et al. 

3. MAIN RESULTS: VARIATIONAL INEQUALITIES 

In this section we extend the results of section 2 to the case of variational 
inequalities. The analogue of theorem 2.1 is proven in a very similar way 
to the proof made in the case of equations. On the other hand, in order to 
extend theorem 2.2, we need a somewhat different proof since we cannot 
proceed by a duality argument. 

Let f E L’(R), we consider the following problem 

it is known (see [ 1 l] for example) that the variational inequality (29) has 
a unique solution 21 E H,1 (Q). 

In addition let z E Hi (C@) be the solution of the following symmetrized 
problem 

where in this case we denote by ffi the signed rearrangement of f, that is 

P(x) = c.f+Y - (f-h. 

REMARK 3.1. - The solution z of (30) is spherically symmetric and 
decreasing with respect to p = 1x1. Moreover, it is the solution of the 
following problem 

s nu[exP(-~lxl)~~~(~-~)~~+~(x)~(~-~)I 2 exp(-BIxl>fn(x)((p-~), s nfl 
THEOREM 3.1. - Let us assume that the coeficients of L satisfy (l), (2), 

(14); let u and v be the solutions respectively of (29) and (30). We have 

IL* +*, V’sE [O,lu>Ol], (31) 

and, if-y(z) = 0 for 1x1 5 Ro, 



COMPARISON RESULTS 177 

Proof. - As in the proof of theorem 2.1, writing u(s) = u*(s), we have 

-u’(s) 5 k(s) 
J 

;*(e-‘f* - y*u), s E [O, Iu > Ol[, (33) 
0 

where f*(s) = (f+)* - (f-)+; moreover if z(s) = z*(s), we have 

--z’(s) = k(s) 
J 

ye-‘f* - y*.z), s E]O, Iz > Ol[. (34) 
0 

We remark that if ]z > O] < JR], then (f-)* $ 0 on 10, ]z > O][: indeed, 
since z E Cl(]O, ]fl][), we have .a’( ]z > O]) = 0. Hence, we deduce 
from (34) 

-(k-b’) + y,z = e-lf*, 

z(1.z > 01) = z’(Iz > 01) = 0 

and the assertion follows from the maximum principle. 
From (33), (34) we obtain 

J 

s 
w’ - k(s) y,w 2 0 a.e. on [0, (u > O]], (35) 

0 

where w = u - z. The above inequality is obvious if s E min{]u > 01, 
]z > 01). When ]z > O] < ]u > 01, we set 

f*(s), 0 5 s I 12 > 01, 
G4 = { o 

, Iz > 01 < s I Iu > 01, 

so we can replace (34) by the equation 

--z’(s) = k(s) 
J 

s(e-lS- y*z), s E [O, Iu > 011. (36) 
0 

From (33), (36) we obtain 

J 

s 

J 

.3 
w’(s) - k-(s) Y*W L -k(s) e-lf*, s E [Iz > 01, Iu > 011; (37) 

0 lz>Ol 

since f*(s) < 0 if s > ]z > O] we get (35). From now on we can proceed 
as in the proof of theorem 2.1. 

A comparison result may also be obtained when we consider the dual 
operator 
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178 A. ALVIN0 f?t d. 

and the related problem for u E H;(0), 

4 L*u,(P - u >> J f(cp - u), Vq E H;(R)+ 2 0 R (39) ‘U > 0; 
where f E L2(R) an conditions (I), (2), (14) are fullfilled. d 

LEMMA 3.1. - The problem (39) has a unique solution. 

Several proofs are possible. We present a direct one. Let us fix X > 0 
such that 

is coercive on Hi (0). By an iterative procedure we can define the following 
sequence: ua = 0 and u,+~ > 0 is the solution of 

By the maximum principle {un} is increasing. Since 

L*%+l + ~%+1 i (f + hJ+ 

we have L*u,+~ 5 f+; then u,+~ 5 U where U E HA(R) is the weak 
solution of L*U = f+. Hence we deduce that {un} converges in L2 to 
u E Hi(R); obviously u is solution of (39). 

Next, let U, U be two solutions of (39); proceeding as in [ 111 we obtain 

where V E Ht (0) is solution of L*V + XV = Xlu - Ul. If cpi > 0 is the 
first eigenfunction of L, i.e. 

we have 

from which we deduce V = Iu - Ul = 0. 

Annales de l’hstitut Henri PoincarP - Analyse non Ii&ire 
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We now consider the following problem 

1 

-xs*v,cp-v~~ 
.I’ 

fqp-v) v’cpEH;(n’),~20 
R (40) 

v>o 

The problem (40) has a unique solution ‘u E Hi(@). Moreover, ‘u is 
spherically symmetric and decreasing with respect to p = 1x1 and the 

Iv > 01 
( 1 

l/N 
inequality (28) holds for all n: such that 0 < 1x1 5 we 

THEOREM 3.2. - Let u and v be the solutions of problems (39) and (40) 
respectively. Then we have 

I’u* 5 IL*, v’s E [O, Iu > 011. (41) 

Furthermore, if y(x) E 0 for 1x1 2 Ro, then 

‘LL’(x) 5 v”(x), 1x1 5 Ro. (42) 

First step. - In this step we provide a differential inequality satisfied by 
the rearrangement u* (s) = u(s) of the solution of (39). The procedure is 
largely standard (see [2], [5] for example); therefore, we only sketch the 
argument. For t, h > 0 fixed, we set 

{ 

h, u(x) > t + h 
O,(x) := (u(x) - t), t < u(x) 5 t + h (43) 

0, u(x) < t. 

If we use u f Bh as test function in (39), letting h go to zero, we find 

d -- 
dt 

aijuxz UZ, = -.g~>tu@z, +l>t(f-4- (J4) 

Proceeding as in [2], we obtain the following inequalities, for a.e. 
t E [O,supu[: 

d 
aijuzSu, > -- 

s = - dt u>t 
lVu12, (45) 

d -- 
dt 

Vol. 16, no 2.1999. 
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(47) 
where in the last inequality we used Hardy inequality and condition (14). 
Hence we deduce from- (44)-(47) 

-- d J 
dt u>t 

where a.3 
FzL(s) = 

.I 
(f* - ey,u). 

0 

It is useful to remark that (44) yields 

J 
u>o(f - CU) 2 0. (49) 

We next recall the following inequality that is a consequence of the classical 
isoperimetric inequality (see [9], [ 141) 

kN,u(t)l-l’N I -f J v>t 
And we obtain using (48) 

and then by (50) 

The above inequality can be rewritten in terms of the rearrangement u(s) 
of the solution of (39) in the following way 

kivs ‘-“N(-U’(s)) 5 g(s) + /- (52) --p + (-u (s))F,(s). 

Second step. - An easy computation shows that the rearrangement 
V*(S) = V(S) of the solution of problem (40) satisfies the following 
equation: 

k&“-“‘“(-v’(s)) = BkNsl-l’NV(s) + F,(s), s E [o, 1’~ > ol[. (53) 
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Since F,(s) 1 0 (see (28)), we can write 

kNS ‘-“y-d(s)) = $s) + pTT---- 421 (s) + (-?I (s))F,(s). (54) 

REMARK 3.2. - Setting f = f + - f -, assume f +, f - $ 0. Then we have 

wP(f+)* c P, Iv > 011. 

Indeed, if we set V(s) = e(s)v(s), (53) becomes 

-(Kl(s)V’(s)) = f* - e(s)y,(s)w. 

Since v’( Iw > 01) = 0, V satisfies the following boundary conditions 

V(ltl > 01) = V’(l?l > 01) = 0. 

Hence, by the maximum principle, we deduce that f * cannot be non negative 
on [0, lw > Ol[. 

Third step. - We set SO = l{s E [0, Is2l] : y,(s) = O}l. 
We consider several cases. 
i) 121 > 01 5 SO. 
We thus have IU > 01 5 Iz, > 01. Indeed, let us assume that 

1~ > 01 > I’ZL > 01. Since IZL > 01 5 SO, we deduce from (49) 

.I 

b>OI 
f* 2 0; 

0 

on the other side (see (53)) we have 

F,( IZI > 01) = J’;‘“’ f * = 0. 
0 

Since JV > 01 < Iu > 01, we obtain using Remark 3.2 

y”‘f* <JI’->“‘f*=o, 

and this leads to a contradiction. 
The above arguments imply also that 

Fu(s) = 
/ 

yf* > 0, v’s E]O, Iu > 011; 
* 0 

Vol. 16, no 2.1999. 
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hence we can easily deduce that ‘u satisfies the following differential 
inequality 

k~~s”-“‘“(-u’(s)) 2 Bk~y&l’“U(s) + .b f*. 
J’ 

(55) 
0 

From (55) and (53) setting w = ‘u - v we find 

kA~sl-l“~~w’ + Bw > 0. s E]O,~U > Ol[ 

and then 

(e(s)w(s))’ > 0, s E]O, Iu > Ol[; 

integrating from s to III > 01, we get U(S) > *(L(S). 
ii) so < ]U > O] < ]V > 01. 
Letting 

W(s) = 
I 

a’5 ey*(u* - %i* ) , s > so, 
. S(, 

we show first that 

W(s) 5 0; s E [so, 111, > ()I]. (56) 

If (56) is not true there exist s c]so, ]U > 0]] and 6 > 0 such that 

C 

W(3) > 0, W’(S) > 0 

0 < W(s) < W(S), s E]S - S:s[. 

We remark that s E].s~, ]U > O][. Namely if 

s = I?L > 01 = I?! > 01. 

since W(S) > 0, we have 

F,,,(s) < FL,(s) = 0 

that contradicts (49); if s = ]U > O] < ]U > 01, we have 

W’(3) = -e(s)~*(s)u(s) < 0, 

that contradicts the condition IV’(B) 2 0. 
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The function W(s) has right and left derivatives for all s. The above 
derivatives cannot be non positive on [S - 6, s]. Hence there exists an 
interval ](Y, P[c]s - 6, S[ such that 

{ 

u(s) - w(s) > 0, s +,P[ 
4P) - v(P) = 0. (57) 

From (57) we deduce that there exists a sequence s, / /? such that 

I, = lim ‘zL’(s,) 5 lim zI’( s,) = 1, 5 0. n 72 

Moreover, we have -cc < 1, 5 I, < 0, (see (57)). 
Then we obtain using (52) 

B u(P) kN/jj--lIN < -- 
2 (-LA) 

+ ~~, (58) 

while (54) implies 

kN@l-l/N - B ‘(@) 
2 (4 + &i$pF (59) 

Since u(,@ = v(p), 0 < -1,” 5 -1,‘ and 

(58) and (59) yield a contradiction. 
Hence, 

W(s) IO, s E [so, Iu > 011; 

as in the previous case we then deduce that 

iii) J’u > 0) < ]U > 01. 
The function W(s) is increasing on [max{]u > O],su}, ]U > O]], hence 

either so 5 ]w > O] or so = ]U > 0). The case SO = Jw > O] can be 
analyzed as the previous one. Let so be ]U > 01; from (54) we deduce that 

Vol. 16, no 2-1999. 
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F,(lw > 01) = 0. s ince f*(s) < 0 when s E []w > 01, ]u > 011, ( see Remark 
2.1), we get F,(s) < 0 for s > ]‘u > 01. As W(]U > 01) > 0 it follows 

0 > F”(lU > 01) > Fu(lu > Ol), 

a contradiction since F,,(]u > 01) > 0. 
Arguing as in the previous case we obtain (41). Moreover we deduce 

from (52), (53) that we have for s E [O,sa[, 

k;s2-““(-u’(s)) 5 BkpJsl--l’%(s) + 
J 

If*, 
0 

k;s2-2/“(-w’(s)) = BkNP’%(S) + J 
s f* 

0 

Since U(Q) < I, proceeding as in the case i> we obtain the esti- 
mate (42). 

REMARK 3.3. - As a consequence of theorem (3.2) we have 

F,:(s) < F,(s), s E [O, Iu > 011. ’ 

Since F, 2 0 we have FU (s) > 0 so U*(S) = U(S) verifies the following 
differential inequality 

k2 s”-“‘“(-u’(s)) < BkNsl-l’“u(s) + FU(s). iv 

4. APPENDIX 

We prove here the differential inequality stated in the previous sections. 
For the sake of simplicity we consider the case of an elliptic equation and 
we assume f (and then u) to be non negative. 

REMARK 4.1. - Let p denote the distribution function of a non negative 
function u E Hd (Cl); we have 

l p : [0, sups] + [0, InI] is strictly decreasing; 
0 u”(p(t)) = t, vt E]O, supu[; 
l u* is absolutely continuous on every compact subset of IO, IUl[. 

LEMMA 4.1. - Let U(S) = U*(S) d enote the decreasing rearrangement of 
a function u E Hi (0); if 

IO = 1 s E]O, 11;21[: 2 = o}, 
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and J c]O, supu[ has measure zero, we have 

[u-‘(J) - I,,J = 0. (6’3) 

Indeed, if J = f&J, where {In} is a decreasing sequence of open sets, 
we have 

lim IIn1 = lim 
s 

u’ = lim 
.I 

u’ = 
.I 

U’. 
n Tl u-‘(L) n u-‘(la)-lo u-1(J)-lo 

As lim, ]1,] = 0 it is 

J u’ = 0; 
u-l(J)-lo 

so we get (60) because u’(s) > 0 when s E u-‘(J) - 10. The general case 
can be obtained because every set J such that ) JI = 0 is a subset of G6 
set whose measure is zero. 

LEMMA 4.2. - ZfF(s) = 
J 

’ f with f E L1, we have for a.e. t 
0 

dF(P(t)) 
dt = fW)P’W 

Obviously b is a.e. differentiable; moreover 

F’(s) = f(s) V’s E [O, jfll] - So 

with lSo] = 0. The set of values t where p is differentiable and p(t) E SO 
has measure zero in view of Lemma 4.1. And we conclude. 

We can now prove the following differential inequality, satisfied by the 
solution u E Hi (a) of problem (10): 

-u’(s) 5 k(s) J s e-l(f* - c*u), a.e. on]O, Is2][. (61) 
0 

The first part of the proof uses standard arguments (see [2]). By using 
appropriate test functions we obtain, a.e. on IO, supu[, the following 
inequality : 

(62) 
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Using the isoperimetric inequalities and Hardy inequality we deduce 

d -- 
dt J IW2 

u>t 

<B J 
+oO 

-kiv t P-l+lIN(-Pf) (-& .li,>, lVu/2) + p* - c*u), 
for a.e. t. We denote by 

and we write 

I-~-l+l’N(-d)$ + JYI.L(t)), (63) 

where t ~10, supu[-J, and IJI = 0. We extend T+$ on IO, supu[ setting 
$J = 0 on J: we denote by ‘p this extension. 

REMARK 4.2. - The function p((u(s)) is bounded. Indeed, we can assume 
that ~(10) C J, because lu(lo)l = 0; so cp(u(r)) = 0 if T E IO. When 
T 6 10, by Lemma (4.1), we havefor a.e. 10, IRI[-10, p(~(r)) = @(U(T)); 
hence from (62) we get 

REMARK 4.3. - lj’g E L1 a non negative function; then 

J 

+oO 

J P(t) gM4)(-dW)d~ I 9. t 0 

Indeed, we deduce from Lemma (4.2) 

g(PL(t))(-P’(t)) = f /““‘il. . 0 
We write (63) in terms of cp 

p(t) I E J 
+33 

kiv t 
dUM~)))P-l+l'N b-)(-d(4&- + JWt)); (64) 

hence by Remark 4.3 we get 

@(t) 
‘p(z+))r-l+l’Ndr + F(p(t)). (65) 
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Setting 

H(s) = & 1’ ‘p(u(r))r-‘+““dr, 

we have 

v+(s)) I W(s) + F(s) = G(s). (66) 

The above inequality holds a.e. 10, ]fl][--& since (66) becomes (65) for 
s = p(t). 

If s E la either s is a point of accumulation of the set IO, IQ] [-1a or .s 
belongs to the interior of 10. In the first case there exists a sequence {sn} 
with s, such that G(s,) 2 (P(u(s,)) 2 0. Since G is continuous, we deduce 

G(s) = liFG(s,,) 10 = (P(u(s)). 

In the second case, we can easily prove that s E]s~, sz[C 1, and si i s2 
satisfies (66). Since u is constant on IsI, ss[, we see that cp(~(s)) and H(s) 
are constant on ]si, s2[. Moreover 

F(s) = JS f* - u(sl) J” c* - 1” c*u: s E]Sl, s2[; 

0 YI 

hence F is concave on]si, s2[. Since G(si), G(sa) > 0, we have G(s) 2 0 
on ]si, s2[ and then (66) is proved. 

From (66), by Gronwall inequality, we get 

0 5 p(u(s)) < e(s) l'e-l(f* - c,u). 

On the other side we have a.e. on IO, ]n][-lo 

q+(s)) = q+(s)) = -$ s,,, p@1t=~+) 2 -u’(s)k;d2-2’N. 
Therefore we have 

-u’(s) I k(s) J s e-y.f* - c*u) 
0 

Finally, the previous inequality holds on IO, since the left hand side is non 
negative. And (61) is proved. 
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