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ABSTRACT. - We study the Hamilton-Jacobi equation 

{ 

F(h) = 0 a.e. in fl 
u = ‘p on 80 (0.1) 

where F :_ RN - R is not necessarily convex. When R is a convex set, 
under technical assumptions our first main result gives a necessary and 
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sufficient condition on the geometry of R and on Dp for (0.1) to admit a 
Lipschitz viscosity solution. When we drop the convexity assumption on R, 
and relax technical assumptions our second main result uses the viability 
theory to give a necessary condition on the geometry of St and on Dp for 
(0.1) to admit a Lipschitz viscosity solution. 0 Elsevier, Paris 

RBsuMG. - Nous Ctudions l’equation de Hamilton-Jacobi suivante 

{ 
F(Du) = 0 p.p. dans IL 

‘l/, = $!J sur x2 (0.2) 

oti F : Rx -+ Iw n’est pas necessairement convexe. Lorsque 52 est un 
ensemble convexe, notre premier resultat donne une condition necessaire 
et suffisante sur la geometric du domaine R et sur Dp afin que (0.2) 
admette une solution de viscosite’ lipschitzienne. Si on enleve la condition 
de convexite du domaine R, notre second resultat permet, a l’aide du 
theoreme de viabilite, de donner une condition necessaire sur la geometric 
du domaine R et sur Dp afin que (0.2) admette une solution de viscosite’ 
lipschitzienne. 0 Elsevier, Paris 

1. INTRODUCTION 

In this article we give a necessary and sufficient geometric condition for 
the following Hamilton-Jacobi equation 

I 

F(Du) = 0 a.e. in 62 
‘IL =cp on ix2 (1.1) 

to admit a IV1l” (0) viscosity solution. Here, R c (w” is a bounded, open 
set, F : R” + R is continuous and cp E C’(n). We prove that existence 
of viscosity solutions ’ depends strongly on geometric compatibilities of 
the set of zeroes of F, of cp and of R, however it does not depend on 
the smoothness of the data. 

The Hamilton-Jacobi equations are classically derived from the calculus 
of variations, and the interest of finding viscosity solutions (notion 
introduced by M.G. Crandall-P.L. Lions [S]) of problem (1.1) is well-known 

’ Equation (I. 1) may admit only continuous or even discontinuous viscosity solutions (see [4]). 
We are here interested only in IV”” solutions. 
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EXISTENCE OF VISCOSITY SOLUTIONS 191 

in optimal control and differential games theory (c.f. M. Bardi-I. Capuzzo 
Dolcetta [3], G. Barles [4], W.H. Fleming-H.M. Soner [13] and P.L. 
Lions [ 171). 

It has recently been shown by B. Dacorogna-P. Marcellini in [9], [lo] 
and [1 1] (cf. also A. Bressan and F. Flores [6]) that (1.1) has infinitely 
(even G6 dense) many solutions u E lV1+(R) provided the compatibility 
condition 

Dcp(z) E int(conw(Z~)) U Zf7, for every z E Q (1.2) 

holds, where 

ZF = {( E RN : F(E) = O}, (1.3) 

and cons denotes the convex hull of 2~ and i74conw(Z~)) its 
interior. In fact (1.2) is, in some sense, almost a necessary condition for the 
existence of lVl+(n) solution of (1.1). The classical existence results on 
lVi>” (R) viscosity solution of (1.1) require stronger assumptions than (1.2) 
(see M. Bardi-I. Capuzzo Dolcetta, [3], G. Barles [4], W.H. Fleming-H.M. 
Soner [13] and P.L. Lions [17]). 

Here we wish to investigate the question of existence of IV’)-(n) 
viscosity solution under the sole assumption (1.2). As mentioned above, the 
answer will be, in general, that such solutions do not exist unless strong 
geometric restrictions on the set ZF, on R and on cp are assumed. 

To understand better our results one should keep in mind the following 
example. 

EXAMPLE 1.1. - Let 

F(El,&) = -((g - 1)2 - ([,” - 1)2 0.4) 

(Note that F is a polynomial of degree 4). Clearly, 

I 

2-F = {c$ E R2 : [f = g = 1) 

con?J(z~) = {I E w2 : IhI 51 , I[21 51) 

= {[ E R2 : I& = m41t11 > K21) 5 11 
(14 

ZF c a(co~+,)) and ZF # d(con@F)). 

Our article will be divided into two parts, obtaining essentially the same 
results. The first one (c.f. Section 2) will compare the Dirichlet problem (1.1) 
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192 P. CARLIALIAGUET et al. 

with an appropriate problem involving a certain gauge. The second one (c.f. 
Section 3) will use the viability approach. 

We start by describing the first approach. We will assume there that R is 
convex. To the set conv(ZF) we associate its gauge, i.e. 

p(c) = inf {A > 0 : < E Xconv(Zp)}. (14 

(In the example p(t) = ]clm). 
The lVi+ (R) viscosity solutions of (1 .l) will then be compared to 

those of 

1 p(Du) = 1 a.e. in 62 
U P on im. (1.7) 

The compatibility condition on cp will then be 

Dp(x) E int(conv(Zj7)) ) vx E s2 * p(&(x)) < 1 ) vx E XT 

We will first show (c.f. Theorem 2.2) that if 2~ c a(con~(Z,)) and 2~ is 
bounded, then any W ‘loa R viscosity solution of (1.1) is a viscosity solution ( ) 
of (1.7). However by classical results (c.f. S.H. Benton [5], A. Douglis [12], 
S.N. Kruzkov [16], P.L. Lions [17] and the bibliography there) we know 
that the viscosity solution of (1.7) is given by 

where p” is the polar of p, i.e. 

(1.9) 

(In the example p’(<*) = [[*Ii = ]ET] + \[;I.) 
The main result of Section 2 (c.f. Theorem 2.6, c.f. also Theorem 3.2) uses 

the above representation formula to give a necessary and sufJicient condition 
for existence of IV’~-(fi) viscosity solutions of (1 .l). This geometrical 
condition can be roughly stated as Vy E do where the inward unit normal, 
Y.(Y), is uniquely defined (recall that here R is convex and therefore this is 
the case for almost every y E as2) there exists X(y) > 0 such that 
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In particular if cp = 0, we find that X(y) = & and therefore the 
necessary and sufficient condition reads as 

(1.11) 

In the above example 2~ = ((-1, -l), (-1, l), (1, -l), (1, l)}, therefore 
the only convex R, which allows for W’>-(R) viscosity solution of 

{ 
F(h) = 0 a.e. in R 

U = 0 on dR 

are rectangles whose normals are in 2~. In particular for any smooth 
domain (such as the unit disk), (1.1) has no W’@(n) viscosity solution, 
while by the result of B. Dacorogna-P. Marcellini in [9], [lo] and [ll], 
(since 0 E int(con~(Z~))) the existence of general I@“(Q) solutions is 
guaranteed. Note that in the above example with R the unit disk, F and 
cp are analytic and therefore existence of W1+(R) viscosity solutions do 
not depend on the smoothness of the data. 

No vbwsity dution No viscosity solution One viscosity solution 

It is interesting to note that if F : RN - R is convex and 
coercive (such as the eikonal equation), as in the classical literature, 
then a(con~(Z,)) c 2~. Therefore the above necessary and sufficient 
condition does not impose any restriction on the set R. However as soon 
as non convex F are considered, such as in the example, (1.10) drastically 
restricts the geometry of the set R, if existence of IV@(R) viscosity 
solution is to be ensured. 

In Section 3 the basic ingredient for proving such a result is the viability 
Theorem (Theorem 3.3.2 of [2]). This Theorem gives an equivalence 
between the geometry of a closed set and the existence of solutions of some 
differential inclusion remaining in this set. The idea of putting together 
viscosity solutions and the viability Theorem is due to H. Frankowska 
in [15]. 
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The main result of this section (c.f. Theorem 3.1, c.f. also Corollary 2.8) 
will show that if 

d(conv(ZF))\ZF # 0 (1.12) 

then we can always find an affine function cp with Dp E int(cone(ZF)) 
so that (1.1) has no W1~Oo( 0) viscosity solution. 

The advantage of the second approach is that it will require weaker 
assumptions on F and on 0 than the first one. However the first approach 
will give more precise information since we will use the explicit formula 
for the viscosity solution of (1.7). 

Some technical results are gathered in two appendixes. 

2. COMPARISON WITH THE SOLUTION 
ASSOCIATED TO THE GAUGE 

Throughout this section we assume that F : RN + R is continuous 
and that 

. (Hl) ZF c a(con~(Z,)). 
We recall that 2~ = {[ E RN : F(E) = O}. 

l (H2) 2~ is bounded. 

. (H3) DC+CT(Z) E int(conv(&)), V’z E a. 

In addition we assume that the interior of the convex hull of ZF is 
nonempty, i.e. 

int(conu(ZF)) # 0 (2.1) 

REMARKS 2.1. 
(i) In light of (2.1) we may assume without loss of generality that 

0 E int(conw(Z~)), since up to a translation this always holds. 
(ii) Observe that int(conw(ZF)) # 0 is necessary for (H3) to make sense. 
(iii) Recall that (H3) (without the interior) is, in some sense, necessary 

for existence of W’)-(0) solutions (c.f P.L. Lions [17]). 
(iv) It is well-known (c.f [18]) that the following properties hold: 

l p is convex, homogeneous of degree one and pO” = p. 

0 CO7lW(Z~) = {z E RN : p(z) 5 l}. 

l a(cQntJ(z,)) = (2 E IF!” : p(z) = l}. 

Anna/es dr I’lnstitur Henri Poincar6 Analyse non IinCaire 
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0 p(z) > 0 for every z # 0. 

(v) Since 2~ c a(con~(Z,)), the function F has a definite sign in 
int(conw(Z~)). w e will assume, without loss of generality, that 

J’(I) < 0, (2.2) 

for every < E int(conw(ZF)). Otherwise in the following analysis we should 
replace F by -F. 

Our first result compares viscosity solutions of (1.1) and those of (1.7). 

THEOREM 2.2. - Let R c RN be a bounded open set, let F and cp satisfy 
(Hl), (H2), (H3) and (2.2). Then any W ‘>a R viscosity solution of (1.1) ( ) 
is also a W1+(R) viscosity solution of (1.7). Conversely if in addition 
F > 0 outside conw(Z~) then a W’+(Q) viscosity solution of (1.7) is also 
a W’+(n) viscosity solution of (1.1). 

REMARK 2.3. - In the converse part of the above theorem the facts that 
F is continuous, F < 0 in int(conv(ZF)), and F > 0 outside conv(ZF) 
implies that 

a(conw(2,)) = 2-p. 

We recall the definition of subdifferential and superdifferential of 
functions (c.f. M. Bardi-I. Capuzzo Dolcetta [3], G. Barles [4] or W.H. 
Fleming-H.M. Soner [ 131). 

DEFINITION 2.4. - Let u E C(0), we define for II: E (2 the following sets, 

D+u(z) = p E R” : lirnsup 
qy)-u(z)- <p,y-z> 

b - YI 
50, 

y-z, yEO 1 
~-n(z) = p E RN : linlinf U(Y) - n(~~)- ’ P’ Y - z ’ 

Y-z, YEQ kc - Yl 

D+u(z) (D-u(z)) is called superdifferential (subdifferential) of IL at 2. 

We recall a useful lemma stated in G. Barles [4]. 

LEMMA 2.5. 
(i) u E C(0) . zs a viscosity subsolution of F(D(u(z))) = 0 in 0 if and 

only ifi F(p) < 0 for every z E 52, Vp E D+u(z). 
(ii) u E C(G) is a viscosity supersolution of F(D(,u(x))) = 0 in R ifand 

only if F(p) 2 0 for every LC E 0, Vp E D-U(Z). 
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We now give the proof of our first theorem. 

Proof of Theorem 2.2. 

1. Let u E I@>-(0) be a viscosity solution of (1.1). 
(i) We first show that u is a viscosity supersolution of (1.7). Since u is 

a viscosity supersolution of (l.l), then in light of Lemma 4.2 and 2.5 we 
have for every z E R, and every p E D-u(z), 

p E conw(Z~) and F(p) > 0. (2.3) 

Combining (2.2), (2.3) and (Hl), we obtain that p E a(con~(Z~)), and so, 
p(p) - 1 = 0. Hence, by Lemma 2.5, u is a viscosity supersolution of (1.7). 

(ii) We next show that u is a viscosity subsolution of (1.7). Since u is a 
viscosity subsolution of (1. l), then for every z E R, and p E D+u(z), we 
have by Lemma 4.2, p E conw(Z~) and so, p(p) - 1 < 0. ‘We therefore 
deduce that u is a viscosity subsolution of (1.7). 

Combining (i) and (ii) we have that u E W1+ (a), is a viscosity solution 
of (1.7). 

2. We show that u E WI>“(n), h t e viscosity solution of (1.7) defined 
by (1.8), is also a viscosity solution of (1.1). 

(iii) We recall that 

F(t) 5 0, (2.4) 

for all [ E RN \ conv(Z~). Since u is a viscosity supersolution of (1.7), 
then for every x E R, and p E D-U(X), we have that p(p) - 1 2 0, i.e. 
p E RN \ int(conw(ZF)). F rom (2.4), it follows that F(p) 2 0 and thus 
u is a viscosity super-solution of (1.1). 

(iv) Since u is a viscosity subsolution of (1.7), we have for every II: E 12, 
and p E D+u(z), that p(p) - 1 5 0, i.e. ?, E conv(Zr) and then F(p) 5 0. 
Thus u is a viscosity subsolution of (I .l). 

Combining (iii) and (iv) we conclude that u is a viscosity solution 
of (1.1). 0 

We now state the main result of this section (see also Theorem 3.4). 

THEOREM 2.6. - Let F and ‘p satisfy (HI), (H2), (H3) and (2.2). rf 
R is bounded, open and convex and cp E C1 (O), then the two following 
conditions are equivalent 

1. There exists u E IV’+(n) viscosity solution of (1.1). 
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2. For every y E dR, where the unit inward normal in y (denoted u(y)) 
exists, there exists a unique X,(y) > 0 such that 

{ 
MY) + Xo(YMY) E ZF 

d&(Y) + Xo(YMY)) = 1. 
(2.5) 

Before proving Theorem 2.6, we make few remarks, mention an 
immediate corollary and prove a lemma. 

REMARKS 2.7. - (i) By u(y), the unit inward normal at y, exists we mean 
that it is uniquely defined there. Since R is convex, then this is the case for 
almost every y E dR. 

(ii) In particular if cp E 0, then 

1 
x0(y) = p(u(y)) 

and so, the necessary and st.@cient condition becomes 

4Y) E rJ 
P(4Y)) F- 

(iii) If F is convex and coercive, then (2.5) is always satisfied and therefore 
no restriction on the geometry of R is imposed by our theorem (as in the 
classical theory of M.G. Crandall-P.L. Lions [8]). 

COROLLARY 2.8. - Let Q c RN be a bounded open convex set, let 
F : RN - R be continuous and such that 

2~ c a(con~(Z,)) and 2~ # a(con~(Z,)) 

Then there exists cp afine with Dv(x) E int(conw(ZF)), Vx E n such 
that (1.1) has no W1+(R) viscosity solutions. 

In section 3 we will strengthen this corollary by assuming only that 
a(conw(z~)>\z~ # 0. 

We next state a lemma which plays a crucial role in the proof of 
Theorem 2.6. 

LEMMA 2.9. - Let R be bounded open and convex and cp E C?(n) with 
p(Dcp(x)) < 1, Vx E a. Let u be defined by 

u(x) = $lJQ{[P(Y) + p”(x - y)}. x E i=l 

Let y(x) E dR be such that U(X) = cp(y(x)) + p”(x - y(x)). The two 
following properties then hold 
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198 P. CARDALIAGUET et d. 

(i) I’D-u(z) is nonempty then the inward unit normal v(y(z)) at y(z) 
exists (i.e. is uniquely defined). 

(ii) Furthermore ifp E D-u(z) then there exists X,(y(z)) > 0 such 
that, p = @(y(z)) + X,(y(:~))v(y(~)), where v(y(z)) is the unit inwurd 
normal to dR at y. 

Proof. 
1. Let 

I(x) = {z E dR : u(x) = p(z) + pO(z - z)}. 

If p E D-U(Z) then for every compact set K c RN and h > 0, we have 

u(x + hw) - u(z) 2 < p, hw > +~(h), w E K 

where E satisfies 1i;ni;f y = 0. 

In the sequel we &ume without loss of generality that 

(2.6) 

0 E int(R), (2.7) 

since, by a change of variables (2.7) holds. Let ~0 be the gauge associated 
to R i.e. 

pa(z) = inf {A > 0 : z E An}. 

We recall that 

a52 = (2 E R” : #on(Z) = l}, (2.8) 

and 
R = (2 E RN : /Q(z) < l}. (2.9) 

Now, let ~0 E 0, let yo E 1(x0) and let q. E dpo(yo) (the subdifferential of 
~0 at ya, in the sense of convex analysis, see R.T. Rockafellar [18]). Since 
PQ is a convex function, we have duo = D-po(ya) (see [4]). We have 

Pa(Z) L Pn(Y0) + < qo>z - Yo > 1 25 E RN. (2.10) 

Note that qa # 0 since otherwise we would have 0 E dpo(yo) and so, ya 
would be a minimizer for ~0 whereas ho > pa(O) = 0. Define the 
hyperplane touching dR at y. and normal to qo, 

PrJ = {.z E RN : <qo,z-yo>=O), 

Ann&s dr l’lnst~tut Henri PoincarP - Analyse non liwhire 
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and the barrier function 

2. Claim 1. - We have u 2 w on R and U(Q) = w(q). 
Indeed, for z E fl, let yi (z) E Pa be such that 

4x1 = cp(YlW) + P”(X - Y&4); 

and let 

Zt = (1 - t)” + ty&), t E [O, 11. 

In light of (2.8), (2.9), (2.10), and the fact that yi(z) E Pa, we have 

P&o) = m(z) < 1 (2.11) 

and 
PC&l) = PdYlb)) 2 1. (2.12) 

Using (2.8), (2.11), and (2.12) we conclude that there exists p E (0, l] 
such that 

Using the homogenity of p” we obtain that 

P% - Yl(Z)) = PPO(Z - Y1W + (1 - Pbf% - YIW) 

= p”(x - .+) + pO(+ - Yl(X:)). 

We therefore deduce that 

4x> = cp(Yl(Z)) + P”@ - YlW 

= cp(Yl(Z)) + P”(X - +> + P%p - Y&d). 

As p(Dp) < 1 we have (see Lemma 4.1) 

(Ph) - cp(Ylc4) I P%, - Y/1(4). 

(2.13) 

(2.14) 

From (2.14) and the definition of u, we obtain 

So we have w(z) > u(z). Observe also that ~(2~) < ~(5~) and so, 
V(Q) = U(Q). This concludes the proof of Claim 1. 

Vol. 16, no 24999. 
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3. Claim 2. - We have p E D-v(xo). 

Indeed, in light of Claim 1 and (2.6) we have 

‘0(x0 + hd) - v(xo) - < p, hd >> u(xo + hd) - u(xo) - < p, hd >> t(h), 
(2.15) 

for every d in a compact set, and so, 

p E D-V(Q). 

4. Claim 3. - p - Dv(yo) is parallel to QO (recall that qo # 0). 

Let ql,... ,q~-i be such that {qo,... , qN- i } is a set of orthogonal 
vectors. Using the definition of vu, Claim 1 and the fact that 

yo+hq;EPo, i=l;..,N-1, (2.16) 

we obtain 

v(xo + hi) I (~(yo + hqi) + p”(zo + hqi - y. - hqi) 

= (P(YO + hi) + p’(xo - yo) 

= ‘P(YO + hqi) - cp(yo) + v(xi,). (2.17) 

Combining (2.15) and (2.17) we deduce that 

h < p,qi > I h < Dv(yo),q; > +E(h). (2.18) 

When we divide both sides of (2.18) by h > 0 and let h tend to 0 we obtain 

< P, qi > 2 < MYO), q; > . (2.19) 

Similarly, when we divide both sides of (2.18) by h < 0 and let h tend 
to 0 we obtain 

< p,qi > > < Dv(yo),qi > . (2.20) 

Using (2.19) and (2.20) we conclude that 

< p - Dp(yo), qi >= 0, i = 1,. . . , N - 1, 

thus, 
P - WYO) = ho, (2.21) 

for some X E I-3. It is clear that X # 0, since p(p) = 1 (by the fact that u is 
a supersolution of (1.7) and by Lemma 4.2) and p(Dv(yo)) < 1. 

Annales de l’lnstitut Henri Poincark Analyse non 1inCaire 
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5. Claim 4. - ~0 is differentiable at y. (so y(yo) exists and v(yo) = q. 
by definition of Q). 

Suppose there exists q E duo with q # qo. We obtain repeating the 
same development as before, that 

P - h(Yo) = WI, (2.22) 

for some p # 0. So 

Q = %I0 (2.23) 

with a = p # 0. If Q < 0, then any convex combination of q and q. is in 
dpo(yo) and thus 0 E dpo(yo) which yields that y. is a minimizer for ~0 
which, as already seen, is absurd. So we have QI > 0. 

We will next prove that 

&2(Q) = 1, (2.24) 

for every q E apO(yo). 
Assume for the moment that (2.24) holds and assume that q E dpn(yo) 

satisfies (2.23). Then, 

1 = P%aqo) = w:(qo) = Q. 

Consequently, Q! = 1, q = q. and so, 

%xdYo) = (40). (2.25) 

By (2.25) we deduce that PQ is differentiable at yc (see [ 181 Theorem 25.1). 
We now prove (2.24). Denoting by ph the Legendre tranform of ho, one 

can readily check that 

P;L(~:*) = C 0 if pg(z*) 5 1 
+m if &(z*) > 1. 

(2.26) 

We recall the following well known facts: 

PdYo) + &2(Q) = < Yo, 9 >, (2.27) 

for every q E ape (ya), (see [ 181 Theorem 23.5) and 

< Yo, Q > I Pn(YoM4). (2.28) 
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Since ya E 80, we have ho = 1, which, together with (2.27) and (2.28) 
implies that 

d‘?(4) 2 1+ Pxd. (2.29) 

Hence, p”,(q) being finite, we deduce p;(q) = 0. Using (2.26) and (2.29) 
we obtain that 

&2(q) = 1. (2.30) 

6. Claim 5. - We have p = Dq(yo) + Xov(yo), where v(yo) is the unit 
inward normal at yo. 

By Claim 3 and Claim 4, there exists X0 E R such that 

P = WYO) + Xo4Yo). (2.31) 

The task will be to show that Aa > 0. Let 

xh = (1 - h)Xo + hyo, h E (0,l). 

We have 

+h) = &&((p(?l) + f(xh - Y>> 5 p(!/O) + P’(zh - YO). (2.32) 

Using the definition of zh and the homogeneity of p” we get 

f(zh - YO) = ~“((1 - h)(xo - YO)) = (1 - h)p”(xo - YO); 

which, along with (2.32) implies 

4~) I cP(yo)+~“(xo-yo)-b”( x0-yo) = u(zo)-hp”(zo-yo). (2.33) 

In light of (2.6) and (2.33) we have 

h < P,YO - xo > ++) I -b”(xo - YO), 

which yields, 

< P,Yo - x0 > I -PO(Xo - Yo). 

Using the definition of p” (see (1.9)) we have 

(2.34) 

- < DP(Yo), yo - x0 > = < %4Yo), x0 - yo > F P(~~(Yo))PO(~o - Yo). 
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Also, by (H3), there exists S > 0 such that 

203 

(2.35) 

Combining (2.34) and (2.35) we obtain 

< Y - ~~(Yo),Yo - x0 > I -W(zo - Yo). (2.36) 

Moreover, since we can express ya - x0 as a linear combination of the 
normal I and the tangential vectors { q;}E;’ at d0 in yo, there exist 
n/ and ,LL~ with i = l,...,N- 1 such that 

N-l 

Yo - 20 = 4Yo) + c Piqi. 

i=l 

AS 50 E R and R is convex, Q: < 0. Using (2.31) and (2.36) we obtain 

QXo = Q < P - h(Yo), V(Yo) > 5 -6P”(Zo - Yo). 

Thus, X0 > 0. 0 

We now give the proof of the main theorem 

Proof of Theorem 2.6. 
1. (1) =+ (2) w e assume that u is a viscosity solution of (1.1). 

From Theorem 2.2, we have that every viscosity solution of (1.1) is a 
viscosity solution of (1.7) and therefore by (1.8) u can be written as 

4x1 = yiEn,f,{(P(Y) + P”(X - Y% (2.37) 

Let yn E dR be a point where duo = {I} (see the notations of 
the proof of Lemma 2.9). Let 2 E R be such that u is differentiable at 
2 and z sufficiently close from ya. Moreover the minimum in (2.37) is 
attained, at some y(z) E dR close to ya. In light of Lemma 2.9 there exists 
Xe(y(z)) > 0 such that 

Wz) = WY(Z)) + ~O(Y(a4Yc4)~ (2.38) 

(i.e Du(z) - @(y(z)) is perpendicular to the tangential hyperplane). 
Note that Xa(y(~)) is bounded by 21&l,. Indeed, using the homogeneity 

of p, assuming that Iv(y(z)) 1 = 1 we have 

IXo(Yb)MY(4)I < P-44 + Pcp(Y(4)l L 2IWaJ. (2.39) 
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As 21 is a solution of (l.l), i.e. Du(z) E ZF, we obtain that 

WYW) + ~o(Y(4>4Y(4) E ZF. (2.40) 

Letting z tend to yo, we obtain that y(z) tends to yo. Since apn(yo) = 
{I} we have from Theorem 25.1 in [ 181 that ho is differentiable 
at ya. By Lemma 2.9 we have that dpo(y(z)) = {v(y(z))} and po is 
differentiable at y(z). Using Theorem 25.5 in [ 181, we obtain that V( y(z)) 
tends to I. Also, by (2.39) Xa(y(z)) tends, up to a subsequence, to 
a limit, denoted X0 when z goes to yo. Since 2~ is closed, and F is 
continuous, and so is Dv, (2.40) implies 

DdYo) + Xov(yo) E 2-F. 

As XO(Y(~ > 0, we have that X0 2 0. Moreover u is solution of (1.7) 
and so X0 is uniquely determined by the equation 

P(DV(YO) + x~v(~~)) = 1. 

As p(D)cp(yo)) < 1, we have that X0 # 0 and so X0 > 0. This establishes 
that (1) + (2). 

2. (2) + (1) Conversely, assume that (2.5) holds. 
Using (1.8) we obtain that ‘LL defined by 

is the viscosity solution of (1.7). We have to show that u is a viscosity 
solution of (1.1). 

l Since u is a viscosity subsolution of (1.7), then for every z E R 
and Vp E D+u(x), we have from Lemma 4.2, p E conw(Z~) (i.e. 
p(p) < 1). As (Hl) is satisfied (with the convention: F(t) < 0, 
V,$ E int(conv(Zp))) and as F is continuous, it follows that F(p) 5 0. 
So u is a viscosity subsolution of (1 .l). 

l u is also a viscosity supersolution of (1.7), and so, for every x E fl 
and every p E D-u(z) we have p(p) 2 1 and, from Lemma 4.2, since 
p E conv(Z~) (i.e. p(p) 5 l), we obtain p(p) = 1. From Lemma 2.9, 
there exists y(z) E dR where the inward unit normal is well defined 
such that 

P = WY(Z)) + X(Y(~z:)MY(~>>. 
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Since p(p) = 1, then X(y(z)) > 0 is uniquely determined by 

P(&(Y(Z)) + J4Y(e4Y(4)) = 1. 
And so from (2.9, we deduce that p E 2~. Thus F(p) = 0, 
Vp E D-u(z). We have therefore obtained that ZL is a viscosity 
supersolution of (1.1). 

The two above obsevations complete the proof of the sufficiency part of 
the theorem. cl 

We conclude this section with the proof of Corollary 2.8. 

Proof of Corollary 2.8. 

To prove that there exists cp E Cl(n) such that the problem (1.1) has no 
viscosity solution, it is sufficient using Theorem 2.6 to find y E XI, where 
Y(Y) the unit inward normal exists, such that 

h(Y) + qv> f ZF, v’x > 0. 

1. Without loss of generality, we suppose that 0 E int(conv(Zp)). Let 
p be the gauge associated with the set conv( 2~). We have that p 
is differentiable for HN-lla(c,,,(zF~) almost every (t E a(con~(Z,)). 
So, since 2, # ~(con~~(Z~)) and 2~ is closed, we can choose 
Q E a(conw(z,)) \ 2 F such that a is a point of differentiability of p. 
2. We first prove that there exists yy~ E XI, where I exists, with 

a + h(yo) E i~t(co7Lw(z,)), (2.41) 

for X < 0 small enough. Let a = Dp(cr). By Lemma 4.3 the exists y. E dR 
such that the normal v(ye) to dR at yo exists and 

< a,v(yo) > > 0. (2.42) 

Using (2.42) and the fact that p is differentiable at (u we obtain (keeping 
in mind that p(a) = 1) 

P(a + WYO)) = P(Q) + A[< G(Y0) + ww] < 1 

for X < 0 small enough. This concludes the proof of (2.41). 
3. Choose y E do, where v(y) exists, and x < 0, such that p = a+Xv(y) E 
int(conv(2~)) (such x exists by the previous step). Observe that by 
convexity of p we have since p(a) = 1 and p(cr + XV(~)) < 1 that 
~(a + XV(Y)) > 1 for every X > 0. Let (P(X) = < ,#,x >. We therefore 
have 

&(z) + WY) = P + WY> 4 ZF 
for every X > 0. That is the claimed result. 
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3. THE VIABILITY APPROACH 

In the previous section, we have assumed that ZF c 8(con~(Z,)) and 
R is convex. We have proved that a necessary and sufficient conditions for 
the Hamilton-Jacobi equation 

C F(Du) = 0 a.e. in 0 
(3.1) 

tL=cp on do 

to admit a IV’+(n) viscosity solution is that, for any y E dR where there 
is an inward unit normal, Y(Y), there exists X(y) > 0 such that 

In this section, we no longer assume that 2~ c a(conw(Z,)) and R 
is convex. We investigate the existence of a k@“(R) viscosity solution 
for Hamilton-Jacobi equation (3.1) for any cp satisfying the compatibility 
condition &(y) E i&(con~~t(Z~)). 

The main result of this section is that, if 

ab4zd\z, f 0, 

then there is some affine map cp satisfying the compatibility condition, 
and for which there is no WI+‘(R) viscosity solution to (3.1) (c.f. 
Corrolary 2.8). 

THEOREM 3.1. - Let F : RN --+ R be continuous such that the set 
2-F = {[ E RN ( F(E) = 0) is compact and a(conu(zF)~\zF # 0. 

Then for any bounded domain R C RN, there is some a&e function cp 
with Dp E int(conv(ZF)) such that the problem 

F(Dzl) = 0 ae. in R 
u=cp on do, 

has no W I+ (0) viscosity solution. 

The proof of Theorem 3.1 is a consequence of Theorem 3.4 below. 
For stating this result, we need the definition of generalized normals (see 
also [l]). 

DEFINITION 3.2. - Let K be a locally compact subset of Rp, x E K. A 
vector v E RP is tangent to K at x if there are h, -t O+, v, -+ v such that 
x + hnv, belongs to K for any n E N. 
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A vector v E Wp is a generalized normal to K at x if for every tangent 
v to K at x 

< v, v > 5 0. 

We denote by NK(x) the set of generalized normals to K at 3;. 

REMARK 3.3. - i) If the boundary of K is piecewise Cl, then the 
generalized normals coincide with the usual outward normals at any point 
where these normals exist. 

ii) If R is an open subset of RP and x belongs to dR, then a generalized 
normal v E NRP\Q(x) can be regarded as an interior normal to Q at x. 

THEOREM 3.4. - Let Q c RN be a bounded domain and let F : RN + R 
be continuous such that the set ZF = {I E RN 1 F(J) = 0) is compact. Let 
p(y) =< b, y > with b E int(conw(Zr)). 

If F(t) < 0 (resp. F(E) > 0) for every [[I st@ciently large and if 
equation (3.1) has a W1l”(0) viscosity sup ersolution (resp. subsolution), 
then for any y E Xk, for any non zero generalized normal vY E NR~\o(y) 
to !J at y, there is some X > 0 such that 

REMARK 3.5. - In some sense, Theorem 3.4 improves the necessary part 
of Theorem 2.6 since we do not assume any more that ZF c a(conv(Z,)) 
and that R is convex. Moreover, this result gives a necessary condition of 
existence for sub or supersolution. 

For proving Theorem 3.4 and 3.1, we assume for a moment that the 
following lemma holds. 

LEMMA 3.6. - Let R C RN and F be as in Theorem 3.4. If there is some 
a E RN\(O) such that 

1. VA > 0, F(k) < 0, 
2. 3x E dR such that a E N,+v\*(x), 

then there is no W l+ (0) viscosity supersolution to 

{ 

F(k) = 0 a.e. in R 
u=o on Xl. 

Proof of Theorem 3.4. 
Assume for instance that F(c) < 0 for 111 sufficiently large. Fix 

b E int(conv(ZF)) and a # 0 for which there is some x E dR such 
that a E N,+v\~(x). 

Vol. 16. no 2-1999 



208 P. CARDALIAGUET et al. 

If F(b) 2 0, then the result is clear because F is continuous and 
F(b f Aa) is negative for X sufficiently large. 

Let us now assume that F(b) < 0. Let u be a IV1+ (Q) supersolution to 

{ 

F(h) = 0 a.e. in R 

U(Y) = < b, Y > on 80. 

Set F(t) := F(< + b) and G(y) := u(y)- < b,y >. It is easy to check 
that iL is a supersolution to 

{ 

F(X) = 0 a.e. in R 
ii(y) = 0 on dQ. 

So, from Lemma 3.6 there is some X0 > 0 such that p(Xaa) 1 0, i.e., 
F(b + Xaa) > 0. Since F(b + Aa) is negative for X sufficiently large, there 
is X > Xa such that F(b + Au) = 0. 

We have therefore proved that there is X 2 0 such that b + Xa E 2~. 0 

Proof of Theorem 3.1. 
Since F is continuous and ZF is bounded, F(t) has a constant sign for 

It/ sufficiently large. Say it is negative. 

Let b E ~(con~(Z~))\Z F and T > 0 be such that B,(b) n ZF = 0. From 
the Separation Theorem, there is some a E RN, Ial = 1, such that 

<b,u>= sup <[,a>. 
EEZF 

Note that F(b) < 0. Indeed, F is continuous and F(b + Au) < 0 for 
large X. Moreover, b + Xu never belongs to ZF for positive )\ because 

< (b + Au), a > > sup < I, u > . 
EEZr 

From Lemma 5.3 in Appendix 2, there is some x E dR and a generalized 
normal V, E &N\~(x) such that 

<v,,u>> 0 

Set 0 < E =< ~,,a >, 0 = rc/(l~~l + E), b, = b - ~a. Let X 2 0. We 
are going to prove that b, + XV, @ 2~. If X 5 O/E, then 
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so that F(b, + XV,) < 0 because B,(b) n 2~ = 0 and F(b) < 0. 
If A > C/E, then 

< (b, + Xv,), a > > < b, a > -CT + XE > < b, a > = sup < [, a >, 
EEZF 

so that 13, + XV, $! 2~. 

Since V, is a generalized normal to RN\R at x and since b, + XV, $ 2~ 
for any X 2 0, Theorem 3.4 states that there is no viscosity supersolution 
Wla”(R) to the problem (3.1) with p(y) =< b,, y >. 0 

Proof of Lemma 3.6. 
The main tool for proving Lemma 3.6 is the viability theorem. The 

viability theorem (c.f. Theorem 3.3.2 and 3.2.4 in [2]) states that, if G is 
a compact convex subset of RP and K is a locally compact subset of RP, 
then there is an equivalence between 

i) ‘dx E K, there exists r > 0 and a solution to 

x’(t) E G a.e. t E [0, T), 

x(t) E K ‘dt E [O,T), 
x(0) = 2 

(3.2) 

As usual, the solution of the constrained differential inclusion (3.2) can 
be extended on a maximal interval of the form [0, r) such that ‘either 
T = +CXZ, or x(r) belongs to aK\K. 

Assume now that, contrary to our claim, there is some IVi+ (0) viscosity 
supersolution u to the problem. We will proceed by contradiction. 

First step: We claim that 

vx E R, u(x) > 0. (3.3) 

Indeed, otherwise, there is some x E R minimum of U. Note that 
0 E D-U(Z), so that F(0) > 0 because u is a viscosity supersolution. 
This is in contradiction with F(Xa) < 0 for all X 2 0. 

The proof of the lemma consists in showing that inequality (3.3) does 
not hold. 
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Second step: Without loss of generality we set ]a] = 1. Since 2~ is 
compact and F(Xa) < 0 for X > 0, there is some positive E such that 

Q’x 2 O,Q( E RN, if I< - Xal 5 Xr, then F(t) < 0. (3.4) 

Since u is a I@-(n) p su erso u ion, we know, from a result due to 1 t’ 
H. Frankowska [15] (see also Lemma 5.1 in Appendix 2), that 

Let x E R and (v,, .v,) E N 
thanks to (3.4), 

E~~(~)(Ic, u(x)). Since F( 5) 2 0, we have 

An easy computation shows that this inequality implies 

< a,v, > -(l - E2)1’2 IVJ 5 0. 

Let G = {CZ + (1 - E 2 1/2 B} x (0) where B is the closed unit ball of ) 
RN. Then the previous inequality is equivalent with the following 

inf < g, (vz, up) >I 0, 
gEG 

so that K = Epi(u) n (0 x R) is a locally compact subset such that 

In particular, it satisfies the condition (ii) of the viability theorem. 
Thus, from the viability theorem, Q(s,u(z)) E K, there is a maximal 

solution to 

(x’(t), p’(t)) E G, a.e. t E [O,T) 

(x(t),dt)) E K, Q’t E VW 
x(0) = 2, p(0) = U(X) 

(3.5) 

where either r = oc or z(r) E i352. 

Let us point out that p’(t) = 0, so that p(t) = U(X) on [0, 7). 
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Third step: Let x E dR be such that a E Nn~\o(z)\{O}. We claim that 
there is a solution to (3.5) starting from (5, U(X)) = (z, 0) defined on (0,~). 

Since a belongs to Nn~\o(z)\{O}, from Lemma 5.2 of the Appendix 2, 
applied to C = {u + (1 - E 2 ‘I2 B}, there is some (Y > 0 such that ) 

Vc E C, Vb E RN with lb1 5 1, V’B E (0, a), x + 0(c + c&) E R. 

Since 0 $ C, we can choose also a > 0 sufficiently small such that 
0 $.! C + aB, where B is the closed unit ball. 

We denote by S the set 

S = {X + 0(c + ab), c E C, b E RN with lb1 < 1, t9 E (0, a)}. 

It is a subset of 0 and z E dS. 

Let z, E S converge to 5, (xc,(.), pn( .)) be maximal solutions to (3.5) 
with initial data (x,, u(x~)) defined on [O,r,). Let us first prove by 
contradiction that the sequence ra is bounded from below by some positive 
r. Assume on the contrary that IT, -+ O+. Note that 

because z’(t) E C which is convex compact. Thus, for any n, there is 
c, E C such that ~~(7,) = z, + r,c,. 

Since 2, E S, for any n 2 N there are 8, E (0, (Y), b, E B and CL E C 
such that z, = II: + 8, (CL + ab,). Since zn converges to z and 0 $ C + aB, 
we have 8, -+ O+. Let No be such that Vn 2 No, 0, + T, < (u. 

Then 

Since C is convex, 

belongs to C. Moreover, 

(3.6) 

(3.7) 

Thus, for any n 2 No, zn(rn) belongs to S which is a subset of 0 and 
we have a contradiction with x,(7,) E dR. 
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So we have proved that the sequence T, is bounded from below by 
some positive T. 

Since G is convex compact and since the solutions (zcn( .), pn( .)) are 
defined on [0, ~-1, the solutions (z, (.) , pT1 (.)) converge up to a subsequence 
to some (z(.),p(.)) solution to 

(x’(t), d(t)) E G: a.e. t E [O,i-) 

(x(h(t)) E K,- v’t E [OP-) 
x(0) = 2, p(0) = u(x) = 0 

(see Theorem 3.5.2 of [2] for instance). 
Since, x’(t) E C, for any t E [0, 71 there is some c(t) E C such that 

x(t) = z+tc(t). Thus, fort E (0, inf{T, a}), x(t) belongs to S and so to 0. 

In particular, (x(t),p(t)) = (z(t),O) belongs to the epigraph of u for 
t E (0,~‘) (with T’ = inf{T, a}), i.e., 

v’t E (OJ’), U(x(t)) 2 0. 

This is in contradiction with inequality (3.3). 0 

4. APPENDIX I 

We now state two lemmas which are well-known in the literature. The 
first one is a Mac Shane type extension lemma for Lipschitz functions. 
The second one can be found in F.H. Clarke [7] and H. Frankowska [14]. 
However for the sake of completeness we prove them again. 

LEMMA 4.1. - Let R be a convex set of RN and u E I&“~~(~) with 
p(Du(z)) < 1 a.e. in 52, then there exists an extension fi E W1,m(RN) of 
u with p(DG(z)) < 1 a.e. in RN. 

Proof. 
The task here is to check that U given by 

ii(x) = sup{‘LL(y) - p”(y - X)}, vx E RN 
YE0 

satisfies the requirements of Lemma 4.1. (Note the similarity with the 
viscosity solution (1.0) 
1. We first show that ii is an extension of u. 
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For this, it will be sufficient to show 

P(Wx)) I 1 a.e. * u(y) - U(X) 5 p”(y - x). (4.1) 

To prove (4.1) we proceed by regularization. We introduce the mollifier 

and the sequence fn (x) = n”f(n~) where C is chosen so that sf = 1. 
First, we extend U, as a Lipschitz function, to the whole of RN and we 
still denote this extension by u (this can be done by Mac Shane lemma). 
We then set 

u,(x) = J f& - YMY) dy. RN 
It is well known that U, -+ ‘u. uniformly on every compact set. Let 06 be 
the compact subset of fi defined by 

026 = {x E R : &(x,dR) 2 S}. 

for S > 0 and n > i. As p is convex and homogeneous of degree one, 
using Jensen inequality, we obtain that 

Pm%(~))) I J fd~ - Y)P(~~Y)) dy 5 1, VX E fb. (4.2) 
RN 

Since u, is of class Cl, (4.2) implies that for 2, y E ah, there exists 
2 E RN such that 

z&(y) - u,(x) = < Du,@), y - x > 

F P(hA(q)P”(Y - x) 

5 P”(Y - xl, 

and so, letting n tend to infinity, we obtain 

U(Y) - 4x1 I P”(Y - xl. 

Letting then 6 tend to 0, we have deduced (4.1) and so, U is an extension 
of 21. 

2. We next show that 

ii(z) - ii(x) 5 p”(z - x), x,z E RN. (4.3) 
Vol. 16, no 2-1999. 
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Indeed we have 

3. We then show that (4.3) implies that p(DG(z)) 5 1 a.e. 
As U is a Lipschitz function we can use Rademacher theorem and obtain 

that for almost every x E IWN 

,im qz + h) - ii(x)- < Dti(x), h > 

Ihl 
= 0. 

h-0 

This means that for every t > 0, there exists 5 > 0 such that 

‘IL(x + h) - U,(z)- < DU(z), h > < F. 

Ihl 

for every jhl 5 6, and so. 

ii(~z: + h) - ii(x)- < DU(x),h > < E Ihl 

P-h) - p”(-h)’ 

From (4.3), we get that 

-1 _ < Dqz),h > < ~ Ihi 
P”(-fb) - p”0’ (4.4) 

As p is convex and homogeneous of degree one, we have 

p(Diqz)) = f”(DG(~)) = sup 
< DC(z), A > 

(4.5) 
lXl<h P(X) . 

Taking the supremum over every Ihl < b in (4.4) we obtain 

-1+ sup 
< DU(z), -h > 14 

I sup E- = ED 
IhIS6 @‘C-h) lq<s PC-h) 

where, 

0 < sup 
IhI ~ = D < ‘co. 

IhI< p”(W) 
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Letting now E tend to 0, and using (4.5) we obtain 

P(WX)) 5 1. 0 

LEMMA 4.2. - Let ‘1~ E W’+(O) with Du(y) E conv(ZF) ae. (i.e 
p(Du) < 1 ae.), then 

D+u(x) u D-u(x) c conw(Z~), 

for every x E R. 

Proof. 
We first show that D+u(z) C conw(Zr). 

have: 
u(x + h) - u(x) > 

PC-h) - 

Observe that from (4.1) we 

-1. 

Using the definition of D+u we have for every z E R and p E D+u(z) 

lim sup 
21(x + h) - u(x)- < p, h > < o, 

h+O Ihl - 

Proceeding as in Lemma 4.1, we observe that for every p E D+u(z), and 
every E > 0, there exists 6 > 0 

u(x -I- h) - u(x)- < P, h > < ~ 
Ihl - ’ 

for every Ihl 5 S. We therefore get 

-1+ 
<P,-h> <E bl 

P-4 ~ - P-h) 

since p is convex and homogeneous of degree one. Taking the supremum 
over every I hl 5 S, we obtain 

-1f sup 
<p,-h> IhI 

IhI< PC-h) 
5 E sup ~ 

IhI< p”(-h) ’ 

Defining 

0 < D = sup ~ Ih’ <cx 
IhI< d-h) ’ 

and using (4.6), we get 

(4.6) 

--I+ P(P) I a. 
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Letting E tend to 0, we obtain p(p) 5 1. Using the same argument for 
D-u(z) we conclude that 

In the proof of Corollary 2.8, we used the following result (see also 
Lemma 5.3). 

LEMMA 4.3. - Let R be a bounded, open and convex set. For every 
a E RN \ (0) th ere exists y E Xl, where v(y) the unit inward normal 
exists, such that 

< a,v(y) > > 0 

Proof. 

1. By the divergence theorem, we have 

I < WY(~) > da(y) = 0. 
. x2 

It is then clear from the above identity that the claim of this lemma will 
follow if we can prove that < CL, v(y) ># 0 on a set of positive (relative 
to 802) measure. This will be achieved in the next step. 
2. Suppose on the contrary that there exists a # 0 for which the conclusion 
of the Lemma fails. We may assume without loss of generality that 0 E 62. 
Let pn be the gauge of R. Then for each p E R and each y E dR such that 
Y(Y) exists we have (keeping in mind that pi = 1) 

Pn(Y + w) 2 /m(Y) + P < a, V(Y) > = 1, 

and so, using that the set where Y(Y) exists is dense in dR we deduce that 

(4.7) 

for every y E dR. Next, take z E R and ,0 E R such that 1~ + ,Ga E dQ. 
We have, for y = z + pa, 

1 > PO(~) = PRY - Pa), 

which is at variance with (4.7). 0 
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5. APPENDIX 2 

We collect here some lemmas needed throughout the proofs of 
Theorem 3.1 and 3.4 and Lemma 3.6. Lemma 5.1 appeared in [15], but 
we will give a proof for sake of completeness. Lemma 5.2 and 5.3 are 
well known results of non smooth analysis, although it is not easy to find 
a proof in the literature. We think that the proof of Lemma 5.3 is new 
and interesting. 

LEMMA 5.1. - If R is an open subset of RN and u is a WI,” (0) 
supersolution of 

F(Du) = 0 a.e. in R1 

then 

Let us point out that the converse of this result holds also true (see [15]). 

LEMMA 5.2. - Let !A be an open subset of RN, x E dR and a E NRN\~(:L.) 
with a # 0. Let C be a compact subset of RN be such that 

inf < c, a > > 0. 
CEC 

Then there is some a > 0 such that 

Vc E C, Vb E RN with lb1 5 1, VO E (0, (Y), CC + O(c + ob) E 0. 

LEMMA 5.3. - If0 c RN is open and bounded, then, for any a E RN\(O), 
there is some x E dR and a generalized normal v, E Nw~\n(x) such that 

<v,,a>> 0. 

Proof of Lemma 5.1. 
Let (.v~, vP) # (0,O) be a generalized normal to @A(U) at (x, U(X)). We 

have to prove that vP < 0 and v~/]v,,] belongs to D-U(X). 

Since (z, U(X)) + t(0, 1) belongs to &G(U) for t > 0, (0,l) is tangent to 
&x(u) at (z, U(X)), and so < (0, l), (vZ, up) > 5 0. In particular, vP 5 0. 
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Assume for a while that vP = 0. Then, vZ # 0. Set h, := l/n. Since 
u is Lipschitz, the sequence 

(5.1) 

is bounded and it converges, up to a subsequence, to some (vZ, 0) which 
is tangent to Epi(u) at (2,u(5)). 

Thus < (vZ, 0), (v,? 0) > 2 0 which is impossible since V, # 0. So 
up < 0. 

Set p := vJIv,I. We now have to check that, VW E RN, 

l’,” Ef 
u(x + hv) - u(z) - h < y, u > 

h 
2 0. 

Fix u E RN\(O) and denote by 0 the lower limit as above. Since u is 
Lipschitz, I3 is finite. We have to prove that ,9 2 0. 

Let {hlL} be a sequence converging to 0 such that 

u(x + h,w) - u(z) - h, < y, ‘u > 

hn 

converge to 0. 
Note that 

(5.2) 

(5.3) 

converges to (‘u, < p, ‘u > +19). Thus (v, < p, II > +0) is tangent to &G(U) 
at (z,u(x)) and 

< (‘u, < P, 21 > +Q (%! up) > I 0. 

This implies that 

<w,u,>+< 25 
( > -VP 

) u > up + Bup I 0. 

So 0 2: 0 because vP < 0. 

Since u is a supersoiution and v~/~v~] E D-U(Z), we deduce from 
Lemma 2.5, F(v~/~zI~\) > 0. 0 
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Proof of Lemma 5.2. 

Assume that, contrary to our claim, for any n > 0 there are 0 < 19, < i, 
c, E C, b, E B with x + on(c, + ibn) $ R. 

Then c, converges, up to a subsequence, to some c E C. Clearly c is 
tangent to IWN\R at x. 

Since a E Nn~\o(z), this implies that < a, c > 2 0, which is in 
contradiction with the assumption. •I 

Proof of Lemma 5.3. 
Assume that the conclusion of the lemma is false. Then 

This means (from the viability Theorem (again !) applied to the closed set 
K := IWN\R and G := a) that for any z E 80, the solution to x’(t) = a, 
z(O) = x remains in K forever. 

Let now y belong to R. Since R is bounded, there is some r sufficiently 
large such that z - ~a $! R. The previous remark applied to z - ra yields 
that x(t) = z - ra + ta belongs to WN\R for any t 2 0, which, for t = 7, 
is in contradiction with x E 0. 0 
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