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ABSTRACT. — We study the heat equation B, — AB = 0 in the half-
plane with the nonlinear oblique derivative condition Bx = K BBy on the
boundary, where (Bx, Bz) are respectively the normal and the tangential
derivatives of B. The ultimate goal is to let K — +oo in the equations.

In this first part, we introduce self-similar solutions which verify an
elliptic equation with the same nonlinear boundary condition. The main
part of this first paper concerns this self-similar problem. It is well-posed
and its solution is shown to be smooth, by means of boundary integral
estimates. The originality of the approach is the robustness of the estimates
with respect to K. The evolution problem itself admits global classical
solutions which converge, as times tends to +00, to the self-similar solution.
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RESUME. — Nous étudions 1’équation de la chaleur B, — AB = 0 dans le
demi-plan, avec la condition aux limites Bx = K BBz sur la frontiére. Il
s’agit une condition oblique non linéaire, By et Bz étant respectivement
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222 F. MEHATS AND J.-M. ROQUEJOFFRE

les dérivées normale et tangentielle de B sur cet axe. Notre but final est
de faire tendre K vers +oc dans les équations.

Ce travail est divisé en deux parties. Dans cette premiére partie, nous
introduisons des solutions autosemblables associées a ce probléeme.

Ces solutions autosemblables vérifient un systeme elliptique, avec la
méme condition aux limites non linéaire sur l’axe, et l’étude de ce
probléme constitue la majeure partie de ce premier article. Nous prouvons,
au moyen d’estimations intégrales a la frontiere, qu’il est bien posé et
que sa solution est réguliere. I.’apport de cette approche est la robustesse
des estimations vis-a-vis de K. Le probléme d’évolution proprement dit
admet des solution classiques, qui convergent en temps vers la solution

autosemblable.
© 1999 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

1. INTRODUCTION AND MAIN RESULTS

This paper is the first of a series aimed at studying the long-time behaviour
of a simple nonlinear oblique boundary value problem, written as follows.

B.— AB =0 (RZ)
(1.INH) Bx — KBB; =0 (X =0)
B(t,—0,X) =1, B(t,+00,X)=0

where B(t,Z,X) € R,
R2 = {(Z.X) € R x Ry},
K > 0.
Our eventual goal is to let K — +o0o in these equations.

This system occurs in plasma physics and describes the penetration of a
magnetic field in a plasma along a perfectly conducting electrode.

Let a plasma be injected in R% through an anode located on the axis
{X = 0}. The cathode will be ignored in this paper; indeed, we assume
that if it is far enough it does not perturb the phenomenon we are
interested in here, which occurs near the anode. This plasma is a fluid
composed of electrons and ions. In this problem, we consider the magnetic
field dynamics during the propagation of an electromagnetic wave in this
medium. This propagation is modified by the presence of the light electron
component in the medium. This phenomenon occurs in devices such as
plasma switches ([6], [9]).
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The domain is supposed here to be infinite (R2) since our aim is to study
self-similar solutions. After the instant ¢ = O we apply a constant magnetic
field at z = —oo (the entry of the subset).

The derivation of the model is made in the frame of the Electron
Magnetohydrodynamics ([9], [10]): this is a fluid model derived from
Magnetohydrodynamics where we neglect the motion of ions and the inertia
of electrons. The characteristics of the plasma are constant during the time
and, for the sake of simplicity ([8]), we assume that its density n is uniform.
Therefore, the propagation of the field will only be diffusive. Moreover,
we assume that the magnetic field has only a component orthogonal to
R?, denoted B.

The electric field £ can be expressed in function of B and, finally, we
can reduce all the equations of our model to the following one, governing
the unknown B.

The conservation of momentum for the electrons coupled with Maxwell
equations gives a scalar equation on B(¢,Z, X):

1
(1.2) Bi— —AB=0, V(Z,X)eR, xR},
oo
where o is the permeability of free space
o is the conductivity of the plasma (isotropic and uniform here).

At Z — —oo we have the source of magnetic field B = B, (Vt > 0).
The equation (1.2) describes the diffusive penetration of B in the plasma
if we let the dimensions tend to the infinity. The key point here is the
influence of the electrode, through which the plasma is injected. Since it
is a perfect conductor, on X = 0 the electric field £ is orthogonal to the
surface so it follows from the relation between £ and B

(1.3) By - E%BBZ =0, forX=0and¥(t,Z) R’ x R.

Next we rescale the equations (1.2)-(1.3) to obtain the parabolic system

(I.INH) of B = B/By, with the non dimensional constant K = (—7—@.

Formal studies of this system were made by the authors of [8] in the ggse
where the diffusion along z is suppressed.

In the general study of quasilinear parabolic systems, much is known.
In [2] and [3], a general abstract framework is established, and yields
local existence theorems and continuation criteria. In [13], very general
smoothness results for nonlinear elliptic oblique boundary value problems in
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224 F. MEHATS AND J.-M. ROQUEJOFFRE

bounded domains are given; they include in particular the Bx —K BBz =0
boundary condition. In [7], [15], global existence theorems are proved for
parabolic equations with fully nonlinear oblique conditions are also proved,
in bounded domains.

The smoothness arguments of 7], [15] being local, we could rely on them
for smoothness results in our context, and this is what we are going to do
for the Cauchy Problem. As for the self-similar solutions, the coefficients
of the equation are unbounded; we could still rely on [13], at the expense
of keeping track of the coefficients in the estimates. We shall instead
present an alternative approach, based on the conservative form of the
boundary condition; this will yield immediate H>/2 estimates. Thus there
is enough regularity to allow, via a simple sub- and super-solution method,
the construction ex nihilo of the self-similar solutions. It is at this stage
quite tempting to find out whether this idea is sufficient to prove further
smoothness, with the sole help of the classical Agmon-Douglis-Nirenberg
estimates [1]. We therefore explore it further, and the scheme turns out to be
as follows: H3/2 will imply W?2/33, which will in turn imply H?. A blow-
up argument will lead us to Lipschitz, which will in turn imply C'*. At
this stage, the classical boundary Hoélder estimates [1], [12]} are applicable.

To sum up, our contribution in this first part are the following:

- treatment of a nonlinear oblique derivative problem with unbounded
coefficients in an infinite domain,

- a natural smoothness proof, which is quite simple - at least in its
early stages,

- robust estimates with respect to K. Indeed, a remarkable fact of this
approach is that it lays the basis for much more degenerate equations; in
particular the boundary integral estimates may be rendered independent of
K by rescaling. This will be exploited in the second part [14].

The self-similar problem linked to (1.1NH) reads, in the reduced variables

£

z = and z =

Vi+1 NESh

U U 42U) =0 (RY)

U, -KUU, =0 (x =0)
U(—o0,z) =1,U(+00,z) = 0.

We shall denote by (z) the solution of (1.4H) corresponding to K = 0.

The main results of this first part are contained in the following two
theorems.

(1.4NH)

THEOREM 1.1. — There exists a unique solution U € C*°(R?.) of (1.4NH).
Moreover we have the following properties:
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22+ 22

* 3C > 0 such that 0 < U(z,z) — ¥(z) < Cexp(—

« U is decreasing with respect to z and x

TueoreM 1.2. — Let By € C(R2) be such that By — U tends to 0 (fast
enough) as |(x,z)] — +oo.

The Cauchy Problem for (1.INH) has a unique classical solution
B(t,X.Z). There holds

)

X Z
1.5 I B.X,Z)-U(—— 2 _)|=0
(L8 lim sup Bt X, 2) (mm)‘
. Bo—U
Moreover, if T~ tends to 0 as |(z,z)| — oo, there holds, for all
a > 0,
X VA
1.6 sup |B(t, X, Z) — U —2—, — 2| = 0@t~ 1/2+*).
(L6 s B )(mm>|( )

In the following two sections, we study the solution of (1.4H). Its
existence in H3/2(R%) is proved in Section 2, and we explain in Section 3
how we may work our way through to C°° regularity. Theorem 1.2 is
proved in Section 4.

2. CONSTRUCTION OF THE SELF-SIMILAR
SOLUTION IN H3/2 AND UNIQUENESS

To avoid inhomogeneous boundary condition at Z — o0, we introduce
the function §(t, Z) solution of the one-dimensional heat equation

cop o

ot dzz
B(t,—o0) =1, p(t,+00)=0

1 [t e
=0) = —— T .
\ﬁ(t ) Zﬁ/z e” Tdo

This choice of the initial condition for 5 is not very important for the
study of this evolution problem but is made here to be compatible further
with the self-similar problem and with the function 1. There holds

1 +oo o2

B(t,7) = —— e 5 do.
( 2V 2171
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226 F. MEHATS AND J.-M. ROQUEJOFFRE

We will say that B is the solution of (1.INH) if b = B—( is homogeneous
at the infinity and is solution of

by — Ab =0 (R%)
(1.1H) bx —K(b+8)(b+8)z=0 (X =0)
b(t, Z,X) — 0 if |(Z,X)| — +oc.

We have already introduced the function w(z) from the real variable,
solution of

1
{ —'wzz - §Z¢z =0
th(—00) = 1;9(+00) = 0.
1t e
We have the analytical expression ¥(z) = —= / e” Tdo and
27 J.
¥(z) = B(t, Z). Moreover u = U — 9 verifies

—Au- %mz bou)=0 (R
(1.4H) u, — K(u+ ¢} u+). =0 (2=0)

u— 0 if |(z,2)] = +oo.

The plan of this section is the following: we first regularize the
system (1.4H). We prove that this new problem has a solution, then with a
priori estimates we can pass to the limit. Finally we prove the uniqueness.

2.1. Regularized problem

If v € H'(R?), we denote by ~yv its trace on the axis « = 0 (sometimes v
when there is no ambiguity). Then we introduce a regularizing operator 1
from H'/2(R) to C1*(R), where 0 < a < 1:

Let v € H/2(R) and V (¢, z) be the solution of

V(0,2) = v(z)
Vi— Ve, — 32V, =05

then 7°v := V (e, z). Thus T*(yu), also denoted T"u, is defined as soon
as u € H'(R%) and we have the estimate:
|7 (yu)||cr.= @y < Ce, where C. depends only on € and ||UHH1(R1)~
Remark that, of course, 7¢(v) is much more regular; remark also that
T< is linear and that T = <. This allows us to write T°(u + ¢) =
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T¢u + ¥; it is therefore equivalent to regularize the homogeneous solution
(system (1.4H)) or the non-homogeneous one (system (1.4H)).

We define now a regularized problem associated to (1.4H):

1
—Auf — i(zui +zul) =0 (R2)

ul — K(T%° + 9)(u + ). =0 (z=0)
u® — 0 at the infinity.

(2.1H)

We will prove the existence of a smooth (C*%) solution of this problem
by the super-/sub-solution method. For a given positive ¢, we have a
uniform C** estimate of the oblique vector (—K(T*uf + v),1) in the
boundary condition; this will give us a solution of (2.1H).

Recall that % (resp. w) is a super- (resp.sub-) solution of (1.4H) if and
only if there holds, in the H' sense,

1
22) { ~AT— (T +0T,) 20 (esp.<0)  (RY)
W, — K@+ $)@+9$). <0 (resp.>0)  (z=0).
Remark that O is an obvious sub-solution (3 is decreasing).

LemMa 2.1. — There exists a super-solution A(z,x) of (1.4H) such that

: , 2} + x?
Vo >13C, >0: 0<A(z,z) <min (1 - 4,C, exp(— 2 )
o

Proof. — We seek a function A under the form A(z, z) = 2¢(z)h(z) with

1 —9(z) for 2 <0
hz)=¢ 1—9(z)—az for 0<2< 2
P(z — 2) for z1 <z

where z1, zp and a are given. These parameters z;, zy and a will be chosen
so that A is continuous:

1—9(z1) — azy = ¢¥(21 — 20)- [C1]

A straightforward calculation shows that the first inequality of (2.2) is
verified as soon as the constants z;, zyp and @ are positive and as

R'(2H) = K (z7) <0. [C2]

This last condition comes from the —A’” term and from the fact that A
is only piecewise C*.

Vol. 16, n°® 2-1999.



228 F. MEHATS AND J.-M. ROQUEJOFFRE

The second inequality of (2.2) (the condition on the boundary {r = 0})
writes differently depending on the position of 2z, and we can find
sufficient conditions (see the proof of Proposition 4.1 for details about
the computations):

*» 2z < 0: this condition is automatically checked since —\/%—r(l - 1) <0.

1
e 0 < z< 2¢: < e 3
<z<z a_2Kﬁ (€3]
(with [C1] and the convexity of % on R,)
cs <z {21 > 20+ 2y/Log(2K) if K >1/2 (c4]
21=29=0 otherwise.

For K > 1/2 we can see that the following parameters are convenient
to ensure [C1],[C2],[C3],[C4]:

21 = 4Kﬁ
20 = 4K /7 — 2,/Log(2K)
a adjusted to ensure the continuity of h in z;, ie. [C1].

For K < 1/2, h(z) is simpler:

_ [ 1—-%9(z) for 2<0
h(z)_{ x

) for z > 0.

The estimate of A stated in the lemma follows directly from the properties

_T 0O
of (= 2\/_/ dr.

Write now a more general oblique derivative boundary problem, with a
CY*(R) positive function 7(z) :

1
~Ay — E(zuz +zu,) =0 (R3)

—Kn(u+v).=0 (z =0)
u — 0 at the infinity.

(2.3H)

This standard linear problem has a unique C?° solution u and we can
estimate ||u||cz.« with ||7|lcr..

2 .2
z
Let p(z,z) = exp(

). We define the usual weighted spaces

LAR%) = {ve L*(RY)/pv € L*(R3)},

HYRZ) = {v e L3(R})/Vv € (L3(R}))?}

Annales de I'Institut Henri Poincaré - Analyse non linéaire
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and

||UHL‘;:(R2+) = ”PU”Lz(Riy

“’U”%I;(Ri) = “U”iﬁ(ni) + ”V’U”?Lgmi))z-

LEMMA 2.2. — Let u € C**(R%) be solution of (2.3H). Suppose that
71 < A + ¢. Then u verifies the following properties:

(iHo<u<A

(it) if 1 is decreasing then there exists a constant Cy, independent of 1
such that Hu“H;(Ri) S CO,’

(iii) if n is decreasing then u + 1 is decreasing with respect to z.

Proof. — (i). Set w = A — u. Since A is a super-solution of (1.4H), we
have A, < K(A + ¢)(A + )., for z = 0. Moreover (A + 1), < 0. Thus,
with the assumption on 7, it yields A, < Kn(A + 9)..

Therefore w verifies the inequalities

1
{ —Aw— S +aw,) >0 (RE)
w, — Kn(w+ ), <0 (z=0).
The maximum principle coupled with Hopf’s lemma implies that w > 0,

since w = 0 at the infinity. Thus » < A. The other inequality of (i) is also
a consequence of the maximum principle, directly applied on (2.3H).

(ii). Set & = pu. Apply (i) and the estimate of A obtained in Lemma
supersolution with o = 3/2. There exists a constant C' > 0 such that

2% + z*

3 .

(2.4) 0<(1+4|z]) @< Cexp (—

To estimate « in the H ,} norm, it suffices to estimate % in the H! norm.
A direct calculation shows that @ verifies

1 1
—Ai A3 (1 + g(z2 + x2))& =0 (R%)
(2.5)
iy — K1t ——Ez i— B et (x =0)
T nu. = 4 n 2\/7—r77,0 =Y.
Multiply by #, integrate and apply Green’s formula. It comes
. Lo o 2y).2
IVa|* + = 1+ <2 +2%))u
R2 2 R2 8
+ +

= —/&xﬁ.
R

Vol. 16, n°® 2-1999.



230 F. MEHATS AND J.-M. ROQUEIOFFRE

In this paper, [, are always integrals calculated on the axis (z,z) €
R x {0}. To estimate the right-hand side of the above equality, use (2.4),
(2.5) and the fact that 7 is decreasing and bounded by A+ < 1. It follows

1 1
- [ u.u :—K/ (nﬂzﬂ——zvﬂf—————np_lﬂ)
/R R 4 2\/_
 [ul() o [ )
R 2
Scl/ft
R

< Cs.
Hence “ﬁllHl(Ri) < Cp, then H“”H;(Rj_) < Cy. This constant Cj is

independent of ||n||ci.« thus of e.

(iii). The solution u of (2.3H) is in H?(R?); we are indeed in the case
of a regular oblique derivative boundary problem (7 is smooth) and the
unbounded coefficients of the elliptic equation are taken in account easily
after integrations by parts as in:

—/ (zuz-f-zum)u:/ u?.
R R

Let v = (u+ %), With (ii), this function is in CL*(R%) N H'(R%) n
L2(R3) and verifies

1 1
—_ —_ _ g = R2
(2.6) { Av 2(21)2 + zv,) 5Y 0 (R3)
— Knv., = Kn,v (z =0).

Let Ss(v) = / S5(t)dt be a regularization of v* with
0
0 for t<0
Si(t) = {t/& for 0<t<6

1 for ¢t > 6.

Since S4(v) € H'(R%), we can multiply (2.6) by S;(v) and integrate
by parts. It comes

[ Bsm + [VOP(S2(0) ~ S (Si(v) = Ss(v) | dada

+

= -K/an(ng('u) — Ss(v)) d=.

Annales de IInstitut Henri Poincaré - Analyse non linéaire



A NONLINEAR OBLIQUE DERIVATIVE BOUNDARY VALUE PROBLEM. PART | 231

that v € L*(R%) (which is a consequence of v € L2(R? )). Then, since we
assume here that n, < 0, there holds

1
—/ Ssv < 1/ min (v+,6)-—K§/nz
2 R 4 Ri— 2 R

2

+
1/
< -
__4R

Let &6 — 0. We deduce from dominated convergence that / vt =0,
R2
which implies v < 0. v O

We now can prove the following existence theorem:

Remark that |(vS§(v) — Ss(v)| < L min (v',6), that V¢ S{(t) < 0 and

6
min (’U+,6) + K§

2
+

PropPOSITION 2.3. — The regularized problem (2.1H) admits a solution
uf in C**(R%) that verifies:

(2.7) lullgime)y < Co  where Co is independent of &
(2.8) 0 <uf(z,z) < A(z,z)

(2.9) u® + 1 18 decreasing with respect to z
(2.10) u® 1s decreasing with respect to .

Proof. — We shall apply the super-/sub-solution method - Sattinger [16].
Let the C** sequence u* defined as follows. u° = 0 and, for k¥ > 0, u*+?
is the solution of

1
{ APt — — (T et =0 (R2)
w = K" (™ +9). =0 (z=0),
where n* = Teu* + 4.

The definition of 7 as the solution of a well-chosen parabolic problem
and the property —A,, — %zAz > 0 on {z = 0} imply that

YVe>0 T°A<LA

and that
0<uf <A . (0<n" <A+
u® + 9 is decreasing along z n* is decreasing along z /

Vol. 16, n® 2-1999.
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So, recurrently, Lemma 2.2 shows that these properties are verified Vk > 0.
It also gives the property |lu*|| mw) < Co.

We will now prove that the sequence u* is increasing. Let w**! =
uFtt — uk. We have w! = u! > 0. Since T¢ is linear, this function w**!
verifies, for & > 0,

1 .
—AwFtt — i(zwa + zwt ) =0 (R%)
whtl = KnF~lywh+tl 4 KTewk (uF Tt + ),  (x = 0).

Suppose that w* > 0. Then KTw*(u**! 4 4), < 0 and w**! verifies
wht — Kpf bt <0 (2 =0).

Hence, we deduce from the maximum principle and Hopf’s lemma that

w*t! > 0. Therefore, we prove recurrently that u* < »**! and obtain

finally
0<u! <u?<.. <ok <oyt < <A,

Moreover, with ||uk||H1(w3r) < C and the definition of T, if yields
In*llcre @y < Ce and Hukllcz,ami) <c!

where C! depends on ¢ but not on k. The last estimate comes from the
properties of the regular problem (2.3H). o
Hence we can pass to the limit as & — +oo and get u° € Cz""(Ri)
solution of (2.1H). We also pass to the limit for the properties (2.8) and
(2.9) and apply Lemma 2.2 once again, with 7 = T*u® 41 to obtain (2.7).

To prove (2.10), set v° = uZ. This function verifies

£ 1 e 3 1 & 2

{ —Av® — E(zvz + xvi) — Fv° = 0 (R7)
8= K(u +¢)(u* +v), <0 (x = 0).

Multiply the first equation by (v*)" and integrate; with (v°)(_g, = 0 it
comes (v°)* = 0 on RZ. So u° is decreasing with respect to . O

2.2. Further estimates

The crucial point that will allow us to pass to the limit is the following
estimate.

PROPOSITION 2.4, — Let u® the solution of the regularized problem (2.1H).
There exists a constant C independent of € such that

(211) HUEHHs/z(Ri) S C.
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Proof. — We proceed in two steps: first we estimate ||yus||z2(—co,ap) for
a € R, then we extend to ||U€||H3/2(R‘j)-

Step 1. — u® € H?(R%) so we can take uf as a test function in the
variational formulation associated to (2.1H):

/ Vu*Vus — l/
R 2 Jr

2
+

(suf o wu s = =K [ (T + )+ 2o
R

%
Apply (2.7), (2.8), (2.9) and VuVui = 0, it follows
RY

K/(Tfuf + i <C
R

where C is independent of e.
Since ¥ < (Tu® + 1) and ¢ decreases, we obtain

C
A2 Y R MNezgcooapy £ ——.
(2.12) a€R lyuillrzq-co,ap < )
Step 2. — In this part we estimate uS on [a, +00[ thanks to (2.12).

LemMma 2.5. — Let g € L*(R) and w € H¥?(R%) U H}(R?%) verifying

1
—Ay — E(zuz +zu,) =0 (R2)
Uy = (r=0)
Then |jullgsrme)y < Cllgllzem-

1
The term ——=(zu, + zu,) is indeed treated as a L? right-hand side.
From this lemma, one deduces
LEMMA 2.6. — Let a > 0 and u € H**(R%) verifying —Au — (zu, +
zuz) = 0. Then there exists a constant C such that

(213) ”u”Ha/z(]a,+oo[le+) < C(”uHLQ(]a—l,+oc[><R+)+l|’yuzHLZ(]a—I;{—ooD)'

End of the proof of Proposition 2.4. — We have seen that T°u° < A, so
with the decrease of A and 1 at z — 400, there exists a constant C such that

forz>a—-1, K(T°u* +1¢)< Ce/8

and
._a2
16| 22 a1, 400 xR, < Ce™ /%

Vol. 16, r° 2-1999.



234 F. MEHATS AND J.-M. ROQUEJOFFRE

Thus, if we replace yuS by K(Tu® + o) (us + ¢.) in (2.13), it follows

6% 722 o oo xRy ) < (C1 + Collvulllz2ga—1,400p )€™ 7%

Then we use a trace theorem: |[yu|l12(ja, +ool) < Csllu®||g3/2(ja, +00[xR -
This works because d/0z is a tangential derivative.
We choose a > 0 such that C2Cse™" /8 < 1/2; it gives

1w ir5/2 a,+oofxrey < C(L+ [vufll L2 a-1,ap)-
With the result of Step 1 we can conclude the proof. O

2.3. Passing to the limit

Let ¢ — 0 and take (2.7), (2.8), (2.11); we can extract from u® a

subsequence that converges to u in H3?(R%) weak, L*(R2) strong and
L>(R?%) weak *. Indeed, H,(R? ) is compact in L?(R?).

Then let ¢ € C*(R%). We know that ||[yu®|lm@ < C. Thus if
= C O C R is the compact support of ¢ and O is bounded, then
after another extraction, yu® converges to yu in L?(O) strong. Write the
variational formulation of (2.1H) applied to the test-function ¢ and let
e — 0.

The crucial term is the nonlinear boundary term, that we write

/(Teueui—uuz)go = /(Taus—ua)uinp—k/(us—u)u‘z(p-l-/u(ui—uz)ap.
Jr R R .

R
These three integrals converge to zero:

- For the first one we use the fact that 7 — Id uniformly on every
bounded subset of H'/?(R) and that yuS¢ is bounded in H~/%(R).
- For the second one, yu® — ~u in L*(O) strong and yu¢ is bounded
in L%(Z).
- The third one converges to zero since yu: — ~yu, in L2(R) weak.

We have proved then that

Vp € C(R%)
1
/R VuVp — 5 /Ri(zuz + zuy ) = ~K/R(u+¢)(U+ ¥).p.

The right-hand side makes sense since v(u + ¥)p € HY?(R) and
vy(u 4+ ). € H/?(R) but we can also notice that

2
+

Sl + )7, € HOR),
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so we can extend by density to ¢ € H'(R2), writing

Vo € H'(R%)

1
VuV(p——/
73

Thus » is a weak solution of (1.4H). We can also pass to the limit in (2.9),
(2.10), (2.8) and take Lemma 2.1 with ¢ = 2 to prove the properties stated
in Theorem 1.1.

(su. + xuzw:—K@[(u 9., «p>

: 1 H-1/2(R),H'/? (R)

At the stage, we only have a weak H%/? solution. Nevertheless, this
regularity is enough to prove the uniqueness of the solution in this class,
as we show in the next subsection. :

Remark. — These estimates would be valid for positive solutions of more
general elliptic equations, for example with suitable polynomial coefficients
and suitable nonlinear dependence in u and Vu.

2.4, Uniqueness

Let u; and us be two solutions of (1.4H) in H3/2(R%). We shall prove
that u; = u,. Remark that we only suppose the H3/? regularity of these
solutions; we do not know a priori that they are bounded by A or that
uy + 1 or us + % is decreasing with respect to z.

Set
W 0<w<$
55 for 0<w<
Ry(w) = { (1F9)8
w— —— for w> 0.
1+6

There holds
[ s 190+ Retw) 45 [ (usthuk). (Rl (w)-Re(w) = 0
IRi_ Rz+ R

Y(uy + ¥ + ug + ¥), € L*(R) and y(wRj(w) — Rs(w)) € L*(R) so we
can apply Schwartz’s formula to the boundary term, denoted B.T.:

B.T.| < —125( w2 [ whiw) - Ra(w»Z)I/Q.

We remark that

6° ¢t
Vt 0 <tRi(t) — Rs(t) < mi
= 6() Ré()—mln((1+5)7(1+5)65—1)’
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and, to control / (wRj(w) — Rs(w))?, we use a balance between the two
R

terms of the min function: let (.)?> = (.)23=%)(\)2* with o = 1/(1 + §).
It gives

52
<—/w2.
T (1+6)? Jr

|B.T.| < C8||(ur + w2 + 2¢): |2z - lwll e re -

Hence

Since R{(w) > 0, if we fix w, then 0 < / Rs(w) < C8.
R

The proof is terminated by an application of the Beppo Levi Theorem. [J

Remark. — It would be possible at this stage to prove the uniqueness of

non-increasing H, . solutions. Here it is only of moderate interest, but it

loc

will turn out to be important in Part 2 of our study.

3. SMOOTHNESS OF THE SELF-SIMILAR SOLUTION

3.1. H*(R%) estimate

LemMma 3.1. — Let u be the solution of (1.4). There exists C > 0 such
that ||yu;||smy < C.

Proof. — Remark first that2in this lemma we deal with yu, = yU, — ¢,

1
so since ¥, = oW NG exp(—a—), it is equivalent to estimate ||yU,||z3. Then
is
it will be useful to recall that we control the sign of U, (and of U%),
which is always negative.

We now come back to the regularized problem (2.1H): u* is a solution
of this system, and U® = u® + ) is the solution of the non-homogeneous
associated problem (2.INH). Here C will denote a constant independent
of e. With the Sobolev embeddings and |ju®|| wrre) < C, the two
functions u¢ and ug are bounded in L*(R%) and in L*(R?), independently
of . Hence, we write, if x is a bounded function,

(3.1)

1 .
—/ X0, u® Og,u® Og,u’| < C,
2 Ri—
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where ds u® denotes any first derivative of u°. Moreover, since Vu® is
bounded in Lf,(Ri), there holds

1 .
(3.2) —/ x(zul + zul) dgu dg,u’ | < C.
R

2

1

Since w* € H2(R%) N C*>*(RZ), the functions Oy u° Jg,u’ are in
H'(RZ%), and can be taken as test-functions in the variational formulation
of (2.1H).

Let now v(z,z) be a smooth function such that v and its derivatives are
small enough at the infinity, and x(z) be a smooth function in W >(R)
(x is a cut-off function and shall be precised later). After developments and
integrations by parts, we obtain the two equalities:

sy i(—Au)v;vz.le/% B@a%z—éwz)s}x

+ /R E(vz)zv;v - %(%)3] X'

+

and
B[ A - @Ph= [ |3 - o2
+ [ Sl

We multiply the equation verified by «® (2.1H) inside Ri by the test-
functions uSusx or [(u$)? — (uf)?]x, then integrate it. Recall that on the
boundary there holds uS = KT*(U)US. By (3.2), (3.3), (3.4), (3.1), and
since yU? and . are bounded in L%(R), it comes

(3.5) /R X‘((KTEUE)Z _ %)(Ug)s dz = O(1),
and
(3.6) /R x ((ﬁaU—)J _ (KTEUE)>(U5)3 dz = 0(1).

1
If K < ﬁ then (3.5) implies directly the estimate, with x = 1, since

0< U< 1.
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Otherwise, we know - now for a long time - that U< is continuous, with
uniformly bounded moduli of continuity. For 6 small enough, one can find

1
Zy < Zs and €5 such that for ¢ < €5, z > Zs, there holds KT°U*® < \/—i_é

1 ;
and for ¢ < e5, z < Zj, there holds KT°U*® > Vel 6/2. Then we take
the nonnegative truncation function x;(z) € C°(R) such that
xi(z)=1 if 2> Z;
x1(z)=0 if 2 < Z;.

By (3.5) we have /(Uj):jxl < O, for € < g4, thus
R

WUl Loz, 400p < Cs-
1
If K > —, we obtain, with a similar argument, a point Y such that, for

V3

1 X
z <Ys and € < &4, there holds KT°U® > — + 6 and

V3

IUZllesq—coyap < Cs.
On [Ys, Zs], (3.6) enables to conclude. Indeed % is not a zero of
X—3 — X, so with a truncation function -, that takes the value 1 on [Y;, Z5)
and vanishes on R\[Ys, Zo5], and ¢ small enough, we get, for = € [Ys, Zs],

(KT=U*)? 8
e — (KTU®) < =——=+ 0,

where &' is a small real number. Hence, by (3.6):
WUzl zsqvs,zep < Cs.

1 . v
IfK = E the argument is the same, with Y; replaced by —oc. U
To prove the H? regularity of the self-similar solution, we will use the
Nirenberg translations method. For that, we introduce some notations and

a technical lemma.

for h € R* mhu(z, @) = u(z + h,x)

TR — U
Dpy = =2——

Ih]
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LemMMA 3.2. — Dy, possesses the following properties:
(i) Dy, is linear and Vs, p W*P(R2) is stable by Dy
(ii) Dy, and V. commute;
(iii) Vu,v Dh(u ) = 2uDpu + |hf(Dhu)2
Dy(zu) = zDpu + Ithh

Dy (uwv) = vDpu + (Dyv)(mhu);

(iv) Y(u,v) € (L*(R? )) / w.D_jv = / Dyu.w;
Ri Ri

(V) Yu € HI(R?’_) ||Dhu||Lz(Rz+) S HV’U,”(Lz(Ri))z,

(vi) Vv € Wl’g(R) ’ v, (Dyv)?
R

< |IUZH%3(R)‘

Proof. — (%), (i1) and (74¢) are immediate and come from the expression
of Dj, after straightforward calculations.

(iv) is also obvious after an integration by parts.

(v) is proved in [5].

(vi) can be proved as (v): first for v € C1(R), after an integration,
we have

Rt
Dypv=—— [ v'(z+th)dt
k] Jo

then
1 .
/vz(th)zdz < / (/ [v.].(v.(z + th))zdz> dt
R 0 R
2/3
< ol  f(oxta + 1))
R
with the Holder inequality
< vall2s my- ‘
We conclude by a density argument. O

ProrosiTioN 3.3. — Let u be the solution of (1.4H). There exists C > 0
such that |jul| g2z, < C.

Proof. — We first make the folloWing remark.

Suppose that ”UZ”HI(R2) < Ci; then yu is bounded in H3/2(R). Thus,

since u verifies —Au — —(zuz +au,) = 0in (R?), the estimate in H?(R?)
follows - Agmon-Douglis-Nirenberg [1].

Therefore the point is to estimate u. in H'(R?%). As in Lemma 3.1,
U. = u. + 9., where U is the solution of the non homogeneous problem
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(1.4ANH). We have
(3.7) Vo€ H(R)
. 1 f K/
/ VuVp — = / (zu, + zu.)p + — /(Uz)zgp =0.
R 2 Jr 2 Jm

The idea of the proof is to take ¢ = u,, in (3.7), but we only know
that u.. € H~'/2(R%): it is not an acceptable test function. To avoid this
difficulty, we use the Nirenberg translations method.

With Lemma 3.2 (%)
Y= D_yDyu € HI(R3_>

Then, with the properties (z), (i2), (z4¢) of this lemma, we calculate and
estimate the different terms of (3.7):

/ﬁ; VuVp = / (DA (V)2

+

1
_5 -L(U/L(P
; /
—— 2U,
2 Ri

1 .
/ (Dpu) Z“VUH 2 (2 )2 with (v):

1 / h f
- Dpu)* + — u.D_pu
4 R'i( 2[h| Jrz

HD‘huHL?(R )

IN

1 1
ZHVUH%LZ(R'i)V + §||Uz L2(R)

with (v) and Cauchy-Schwarz formula

IA

3
lev’lj"'?L?(Ri))J;

g R;(UZ);:SO: g/(U2) D_ hDhU——/ U2 D_y Dyt
= K 20 (DYDAD): ———|h|/(DhU V2(DyU).
+—/ —hDh’(/}:

K
K / U(DaU) + K / (U2)D_, Dy
2 Jy 2 Jy

K .
with Lemmas 3.1, 3.2 (vi).
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Finally

. ‘ K A
(3.8) /R‘) (Dh(Vu))2 < HVU||:(2L2(R2+))2 + ‘2‘||’YUz iﬂ»(ﬂ) + C||7Ul’%2(ﬂ)7
I

and the right-hand side is uniformly bounded in €. As in [5], we can deduce
from this inequality that ||V, ||, Ry < C. We conclude as explained
at the beginning of the proof. |

3.2. C>° smoothness
Two lemmas will lead to the conclusion.

Lemma 3.4. — Let u be the solution of (14R). If vu, € L>®(R) then
u € CH*(R?%).

Proof. — We shall prove that v € H*(R%) which implies the result
with the Sobolev embeddings. With Proposition 3.3 we already have
uw € HXR%). Let v = —u, and V = —U, = v — 4,; the assumption
of the lemma is L = ||yv|lco@ < +oc. Moreover, this function v is
solution of the system

1 1
(3.9) { —Avy — i(zvz + 2v,) — SV = 0 (R?)
v, = KUV, - KV? (x = 0).

Thus

Vp € H'(RY)

1 1
/ VoVep — —/ (zv, + 2v,)p — —/
Jre 2 Ja 2 Jr

2
+

ve + K / (UV. = VHyp =0.
i JR
Remark that all the terms are well defined in this equation.

As in the last section, we use the Nirenberg translations and set
¢ = D_,Dyv € H'(R}). A calculation similar as before, with the
technical Lemma 3.2, gives

J

1
l——/ (zv, + v, +v)p
2 Jr

2
+

VuV(p:/ (Dp(Vv))?
H RL
and

1 2
< §”V””(L2(Ri))2-
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The new term is the boundary term

. ) K [
K/(UVZ — V2)<p - = —K/ vDyuDyv, 5 / Thv(D;,v)z +15,
R R ]
I I,

where I is a lower order term in u, v, also involving ¢ and its derivative;
this term is easily estimated.

We can estimate the two integrals I; and I with the assumption on L:

|Ix] < L/(th)2
R

< CLIDwoll 3 e with a trace theorem
C C'LA
SOl ey + = 1Dl 7oz, VA >0
L C C'L ;
< L& 0l e+ SN Di e

w1th Lemma translations (v),

|Il| = <UDhu7 thZ)Hl/z(R),H”l/?(R)
< Clly(vDpuw)

@Dl mw:)-

Remark that ||yv|/L~ < L and ||[yDyullr~ < L; therefore one can prove
that

¥ (vDpw) |2y < Lllyvllgrrzm + LlvDuull giem < Crlvlla @2 ),
and, since this last norm is controlled,

\L| < ClIV Dol (z2me yy2 + Cr-
Finally

VA >0,
||VD,,U||?L2(R2+))2 < CrlIVDwollzagre yy2 + 02(A)HUH§11(R§)

Cs
—Z“VD}LUH%LZ(Ri))? + Cy.
We choose A= 203, thus “VDhU“?LZ(Ri))2—201HVDhU”(Lz (Ri))z ——C5 <0.

Remark that all these constants are independent of A.
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It comes ||VD,,11||?L2(R1))2 < C, which implies v, € H'(R2), then yu,
is in H3/?(R) and yu € H%?(R). Therefore yu € C**(R). O
LEMMA 3.5. — The solution u of (1.4H) verifies ||yu.|| 1= ®) < oo.

Proof. — For K > 0 denote by u” the unique solution of (1.4H)
corresponding to K and M(K) = ||[yuf||p=@m) € [0, +oc]. Assume that
there exists a K; > 0 such that M(K;) = +oo0.

Define Ky = inf{K € Ry / M(K) = 4o0}: with the assumption on
Ky we have Ky < K; < 4+o0. Moreover, the implicit functions theorem
applied to our system in a neighbourhood of (v = 0, K = 0) implies that
for K small enough the solution ©¥ is very smooth (at least C*), so u
is bounded. Indeed, this function vanishes at the infinity since it is in L2
and Holder continuous. Therefore Ky > 0.

Let K < K. For a given K, there holds M(K) < oo, so Lemma 3.4
implies u¥ € C*(RZ). We will now prove that (M(K))g g, is not
bounded.

If this quantity is bounded by a constant Cj, then by the proof of
Lemma 3.4, we have

||uK||Cm(@ is uniformly bounded for K < Kj.

It follows that 1K ——"_, yKo i CH' (R2) so uXo is CH*', where
o' < a. Hence uf° ¢ CZ"’(H_:\!E) since it verifies now a regular elliptic
boundary value problem. We can apply again the implicit functions theorem
to (uf*, Kp) to find that there exists > 0 such that on |Ky — 7, Ko + 1|
the system (1.4H) has a regular (C?*) solution. In particular, its derivative
is bounded; this leads to a contradiction with the definition of K, so
(M(K))g<x, is not bounded.

The remainder of the proof relies on a blowup technique. Define the
sequence

n—-+4oo .
Kn KO with 0 < Kn < K(),
such that
n—-4oo
M(K,)—— + .
Next we denote v, = —ufn

An = (M(K,)) 0
and  z, such that v,(z,,0) = m"%x(fyvn) =M(K,).

_1n—+oe
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Remark that v,, — 0 at the infinity (at least C%* and L?) so |z,| < +oc.
We now rescale the function v,, as follows:

/“]71,(2‘ '(L.) - )‘nlvu<zn + /\nzs /\n,:I;)~
We will prove the following assertions.

(1) w,(0,0)=1

(i) w, — 0 in H'(R?) weak

(1"”)30 : ”"y’lU”“H:Hz(R) S C.
These three properties lead to a contradiction. Indeed with the Sobolev
embeddings (iii) implies that a subsequence of w,, converges to a limit w

in C%. Then with (i) and (ii} we have both w = 0 and w(0,0) = 1.
This contradiction shall end the proof :

VK >0, M(K) < 4.
It now remains to prove the three assertions.

(i) is immediate.
(i) comes from ||v,|[g g2y < ||“nHH2(IR€i) < C and

lwallz2@e) = llonllremz) < €
V|

(Lz(R’i))z = /\,,,HV”U,,]H(Lz(Ri))ﬁ S C)\”.

The key point that will imply (iii) is that Illlgx(q/u;,,,) = 1 with this

rescaling. We already know that ||w,,| HI(R2) is bounded but (iii) needs an
estimate independent of n. It fact it is nearly the same as for Lemma 3.4:
from a L estimate of yw, we obtain a H3/%(R) estimate of the same
function, with a constant independent of #.

The proof is simpler here since, from Lemma 3.4, we know more
regularity on w,,, at least that it is in H?(R%).

Let p,, = O,w, (we change here the notation for the derivative because
of the n, which is only an index). This function is in H*(R?), its L*(R2)
norm is bounded by a constant independent of n and it verifies

)\;2L . . ‘ /\nzn «
(310) { _Aﬂn—'7€Zdzu7L+:1;dxﬂ7L)—/\i,uln_ 9 dzl,L":O (Ri)
aa:ﬂn = KnUnaz oy — 3Kan oy (517 = 0)
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In the boundary term, U,,L(w) = (Un + ) (0202 A0 0)
WrL(z,r) = Wn(z,x) + /\nl/](z,,+/\”z,)\n x)
and Pn(z,2) = Hn(z2) + )\ifl/):(zn-k)\u‘?;)\nm)'
Multiply by p,,, integrate by parts and estimate the different terms like

for the proof of lemma 3.4. Remark that the contribution of the new term
in the estimate is

' /\'II,Z’H,
- / ﬂvlazun =0,
Jrz 2

so we do not need to control z,. It comes
Vi o o e < C.
Vi ,H(L-(Rﬁr))- s

Thus
il ey € C = llypmllmizm < ¢
= ”"}”U)"“HS/Z(R) S C”.

J

End of the proof of Theorem 1.1. — Due to Lemma 3.5, yu, € L>(R).
Hence with Lemma 3.4, u € C"*(RZ). Thus we have already seen that
it implies v € C2*(R2).

Remark that because of the elliptic regularity, u is already C'*° inside
RZ. We have to prove the smoothness on the boundary.

Write the system verified by V = U,:

1 1 .
(3.11) {—AV—— §(zVZ+:I:V_T)—- §V:U (R%)
V., = KUV, - KV? (z =0).

Since we know that U and V are in Cl'“(@), this is a regular oblique
derivative problem so U, € C**(R%). Hence the boundary condition of
the system (1.4NH) verified by U, which is U, = KUU., gives the C?*
regularity of U, on the boundary.

Finally in this step we proved that U € C“‘(ﬁ). By successive

derivations of (1.4NH), we obtain recurrently the C™ regularity of U
on R%. O

Vol. 16, n® 2-1999.



246 F. MEHATS AND J.-M. ROQUEJOFFRE
4. CONVERGENCE TO SELF-SIMILAR SOLUTIONS

A consequence of [7] is that problem (1.INH) with, say, a C? initial
datumn, will have global classical solutions. To prove its convergence to a
self-similar solution, we will first devise sub- and super-solutions to the
problem in self-similar coordinates that will prove the uniform convergence.
A stability argument will yield the convergence rate.

Recall that, if we now come back to the self-similar coordinates

T = Log(t + 1) z X
s A R z = N €r = .
g ' T 1 Vit
Problem (1.1NH) writes
1 .
B, — AB - i(zB: +zB,)=0 (Ri)
<41) B.’lT - KBB; - 0 (:[: = ())

B(r.—o0,2) =1, B(7,+00,2) = 0.
Recall also that any solution (4 )eecr Of

1
~ulz) - () =0 (zER)

Vo (=) =1, Po(+0) = q,

(4.2)

is a steady sub-solution to (4.1) as soon as « < 0. Hence B(z) =
max(1,,0) is a steady sub-solution to (4.1). Remark that we impose
the non-essential condition By > 0.

We now define a family of super-solutions that will be more fiexible
than the ones of Lemma 2.1.

ProposiTiON 4.1. — Let By satisfy the assumptions of Theorem 1.2. There
exists a steady super-solution to (4.1), denoted B, such thar By(z,x) <
B(z, 1).

Proof. -~ What prevents us from using Lemma 2.1 is that By may be
of arbitrary size at finite distance. We thus look for a super-solution B to
(4.1) under the form

B(z, 1) = (2) + 2¢(x)h(2),

A (1 = ¥(2)) for <0,
h(z) = ¢ M1 —4(2)) — az for 0 <2< 2y,
Aat(z — 2p) for z1 < z,
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where the parameters Ay, Ao, @, 2p,2; are to be chosen. We impose the
continuity of B:

M1 —p(21)) — az1 = Aath(2y — 20). [C]]

If @ is nonnegative, this implies, as in Lemma 2.1, that to satisfy the first
inequality of (2.2) we only need to have

W (z5) = h'(z7) <0;
a sufficient condition for this is

a <

A2
27 i
The boundary inequality, B, < K BB., is fulfilled as follows.

e For z < 0, there only needs to hold A\; > 1.
e For 0 < z < 2z, after direct computations, the condition writes

— D' (2 ! - d}(Z) .
a+ (A —D'(z) < K\/;(l Al(l_z/;(z))—(tz%—’l,/J(Z))’

this inequality is verified if a is lower than its right-hand side, since ¢’ < 0.
One can see that, since 1 is convex on R, this right-hand side is larger

. : . . A
than its values in 0 and in 27, which are respectively K—ﬁ 1 +1/\1 and,
) (z) ) 1 Ag "
with [C1], 1 - > . Hence, if
[ ] K\/7_T< ’(/1(21) -+ )\2’1/)(21 — Z()) - K\/7_l'1 + /\2
A1 > 1 and Ay > 1, it is sufficient to have
< ! [C3]
a .
= 9K Jx
e For z; < z, the condition is fulfilled if, and only if,
K( e N2 /2 2 'g/) Z)
— (Ao G20 /4 4 s /4)<1+—~»—> <1,
2\ Aotp(z = 20) ) =
14 Ag)?
which, it K227 S 4 i implied by
. 2
1 2
>0+ 2\/Log(K(—J2r)—?\—?—)—>. (C4]
2

__The last property that B has to verify to be a super-solution is
B > By. [C5]
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Now, let B, satisfy the assumptions of Theorem 1.2: by(z,2) =
Bo(z,x)—(z) is small enough at the infinity. First, one fixes the parameters
Ay > A > 1 such that by(z, ) < 2¢p(x) N\ (1 —oh(2)) for 2 < 0. 2 > 0,
and by(z, x) < 2¢p(2).Aaep(z) for z > 0. & > 0. Next, if moreover \, then
A1 have been chosen large enough, we let

21 :4KﬁA]

1+ Ag)?
Z0 =2 — 2\/Log (R(—-%\-l> > ();
2

[C4] is fulfilled. We can now define « by [CI]:

a

= ﬁ(l — (an) = ol - zO>) < me
there holds « > 0 since 4 (z) < 1/2 for z > 0. Moreover [C2] and [C3]
are satisfied.

It remains to verify [C5]. For z < 0 the super-solution lies already
above By, thanks to the choice of A;. For z > z;, we just remark that
Bo < 40(2) + 20(2) dot(2) < 9(2) + 20(a) Aot (2 — o) = B(z, x).

Finally, for 0 < z < z,, a simple study of the function A; (1 —(z))—az—
Aatp(z) shows that it is larger than its values in 0 and z;, which are positive.
Therefore By < (z) + 2¢:(x)Aa2(2) < B(z.r) and [C5] is fulfilled.

Remark that when we let Ay = A = 1 in the above formulae, the
parameters a, z; and z; are the same as in Lemma 2.1. ]

Therefore we have the first part of Theorem 1.2, expressed in the
self-similar variables:

CoROLLARY 4.2. — There holds

1. B - (] oo — ”
i [1B(r) = U

where U(z,x) is the self-similar solution of (1.4ANH).

Proof. — 1t only remains to remark that, if B, satisfies the assumptions
of Theorem 1.2, then there is o > 0 such that B := max(v,,0) < By.
Therefore By is between a steady sub-solution and a steady super-solution
of (4.1), and the convergence result follows just as in Section 2, using the
method of Sattinger [16]. We just give a sketch of this proof.

Let B(7,z,z) (resp. B(r,z,x)) be the solution of (4.1) with B(z,x)
(resp. B(z)) as an initial datum. These functions are defined as follows.
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B fulfills the assumptions of Theorem 1.2, since B(z,x) — ¢(z) — 0 as
|(z,2)] — oc, so it enables us to define B(r, z, ) directly as the solution
of (4.1) in the sense explained at the beginning of Section 2: B — 1 is
the solution of the homogeneous associated problem. On the other hand,
B does not necessarily tend to ¢ at the infinity. Nevertheless, we define
B(7,z,x) as follows. Let B(r, z) be the solution of the equation

B® —B% — L:8® —0(r >0,z €R)

EOO(T'/ “-OO) = 17 _BOC(T? +OO) =0,
B=(0.2) = B(2)

Then B(7, z, ) is defined as the solution of (4.1) such that B(7, z,x) —
B¥(r.z) — 0 as |(z,2)] — oc.

One proves that B(r,z,z) is decreasing in time, that B(r,z.x) is
increasing, and that both functions converge uniformly to the self-similar
solution U(z,x) as 7 — +oc (remark that B™(7.z) — 4)). Finally, since
for all time there holds B(7) < B(r) < B(7), the result follows. O

Let us turn to the exponential convergence with respect to 7. Let L be
the differential operator

1/ 0 7]

Fa

No domain will be specified, due to the form of the boundary conditions. In
particular, we do not know whether a Krein-Rutman-type principle applies
for L in the natural weighted space where we would like to carry out our
study. The following lemma, which initiates the asymptotic behaviour of
U, will be useful.

LemMa 4.3. — There holds

Ues| | |Usal
-U, =U.

(4.3) < e 1EH D as (12, 2)) — oc.

Proof. — Theorem 1.1 tells us that the equation for V := U, may be
handled as a regular boundary problem that we write

1
SAV - SV fi=0 (R2)

(4.4) Vo= foVo= 5V =0 (x =0)
V(—o0,2) =0, V(4o0,2)=0
V(Z,—|—OO) = _¢27
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1
where the C functions are f; = —i(wVJ. +zV.), fo = KU, f3 = KV.

Hence elliptic estimates [1] and interpolation lead to the following estimates.
Let K (o, z,z) denote the intersection of RZ with the cube centered at
(x,z) and with length «; we have

o+ 12N,

H(]z:HLx(K(l.m.:)) + “[]:.r“L*'([\'(I.J‘,.:)) S C( L (K (2.2.2))"

We now come back to the usual writing of the elliptic equation for U.;
the Harnack inequalities are applicable to it and - Berestycki, Caffarelli,
Nirenberg [4] - they can be pushed to the boundary of R? due to the
particular form of the boundary condition, which allows an extension of /.
along the lines of the vector field (1, —KU). Inspection of the Harnack
constant - see, for example, Trudinger {17], Theorem 1.1 - reveals that it is
no larger than e“*171:D: hence there exists a constant (' such that

H(]:||Lx.(1\'(2_‘r.;)) S (7\‘1('*(}""-#‘;‘) IlliIl (—*[/Y,_)
o N(2.r,2)

This is enough to get estimate 4.3. 0
End of the proof of Theorem 1.2. — Set

B(r.z,x) = Ulz,x) + U(z,x)o(T. z.1).

Remark that since we already know that /. < 0 and is smooth
(Theorem 1.1), the maximum principle and Hopf’s Lemma imply that
U. does not vanish on @ Indeed, consider for that the equations on
w = —U,, and put the zero-order term -whose coefficient has the bad sign-
in the right-hand side of the elliptic equation.

The function v verifies

VU. ] ‘
[ U3 ) SRS Vi Py 2
(4.5) {I,T+LI il Vv + 21 0 (R)
v, = K(U + U.o)v. + KU..v*. (1 =0)

The zero-order term of the equation inside R% has a positive coefficient (1/2)
which will provide the convergence rate thanks to the maximum principle.
Nevertheless, one cannot use this principle directly on the function »
because of the boundary term: indeed, the sign of U . v, the coefficient of v
in its right-hand side, is not necessarily positive. That is the reason why
we shall introduce another function w.

For that, let p, A be two positive real number, to be precised further.
We define the function v(z) by a regularization (near zero) of exp(—A|z|)
and I' by

T(z,2) = zexp(—Ax)v(z).
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We set now
U(T7 2, I) = (1 - H’F(zv I))’U)(T, 2 '77);

this new function w satisfies

1
w, + Lw +P(z,2).Vw + (5 + /Lg(z,x))w =0 (Ri)
w, = hw, + fw, (z = 0)

hi
where P( / ) - 2VUZ ' vl
Z,xr) = U7 Ml—,u,l—‘

VU
g(z,x) = —(1 — pI)" | LT ~ U VF)

z

h=KU+U,(1-ulNw),
fr,2) = KU..(2,0)0(r, 2,0) + pr(2).

To apply the maximum principle to w, we need to choose the different
parameters such that pg is small and f is positive.

Let « be a positive small real number. We fix A = 2C,, where C is the
same as in the statement of Lemma 4.3: thanks to the form of " and to
this Lemma, VI'.VU, /U, is uniformly bounded on Ri. Since LI is also
bounded, it suffices to choose p small enough to ensure |ug(z, )| < «
on RZ. We fix here this constant j.

UZZ
Now, in the boundary term, we write KU v = KT(B —U) and,

thanks to the sub- and super-solutions, their exists a constant C' such that
2
V(t,z) e Ry xR |B(t,2,0) — U(z,0)| < Cexp(—%);

hence, since v(z) ~ exp(—Az) and with Lemma 4.3, one can fix Z; such that

|KU..v|(7,2,0) < pr(z):  f(r,2) > 0.

Let § = min (v) > 0and M = max |U,../U.|. By Corollary 4.2
[_ZO,ZQ} [_ZO7Z0

one can now find a 7. > 0 such that, for v > 7., for (z,z) € RZ,

5
1B — Ul(r,2,7) < ?“—M This implies

UZZ

KU(B—U) <pv: f(r,z)>0.

Y1 > 7., VY)z| £ Zo,
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Finally, remark that the Harnack inequalities applied (as in Lemma 4.3) on
the function —U. imply that the increase of w at the infinity is bounded by

CeCE"+7), Therefore, with this set of parameters (y. A, 7..), the maximum
principle applies for 7 > 7. and yields

w(T, 2, 1) < |Jw(7s)||ace” V20T

The same argument may be used to find a lower bound for w. The result
follows if we come back to the variable ¢, and the function B — U. ]

Remark. — Application of the classical regularity results [11], [12] yields
the exponential convergence in C?.
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