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ABSTRACT. - We study the heat equation B, - AB = 0 in the half- 
plane with the nonlinear oblique derivative condition Bx = KBBz on the 
boundary, where (Bx , Bz) are respectively the normal and the tangential 
derivatives of B. The ultimate goal is to let K + +oo in the equations. 

In this first part, we introduce self-similar solutions which verify an 
elliptic equation with the same nonlinear boundary condition. The main 
part of this first paper concerns this self-similar problem. It is well-posed 
and its solution is shown to be smooth, by means of boundary integral 
estimates. The originality of the approach is the robustness of the estimates 
with respect to K. The evolution problem itself admits global classical 
solutions which converge, as times tends to +oo, to the self-similar solution. 
0 Elsevier, Paris 
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Rl%uMl?. - Nous Ctudions l’kquation de la chaleur Bt - AB = 0 dans le 
demi-plan, avec la condition aux limites Bx = KBBz sur la frontiere. 11 
s’agit une condition oblique non lineaire, BX et Bz &ant respectivement 
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222 F. MEHATS AND J.-M. ROQUEJOFFRE 

les derivees normale et tangentielle de B sur cet axe. Notre but final est 
de faire tendre K vers +cc dans les equations. 

Ce travail est divise en deux parties. Dans cette premiere pat-tie, nous 
introduisons des solutions autosemblables associees a ce probleme. 

Ces solutions autosemblables verifient un systeme elliptique, avec la 
mCme condition aux limites non lineaire sur l’axe, et l’etude de ce 
probleme constitue la majeure partie de ce premier article. Nous prouvons, 
au moyen d’estimations integrales a la frontiere, qu’il est bien pose et 
que sa solution est reguliere. L’apport de cette approche est la robustesse 
des estimations vis-a-vis de K. Le probleme ,d’Cvolution proprement dit 
admet des solution classiques, qui convergent en temps vers la solution 
autosemblable. 0 Elsevier, Paris 

1. INTRODUCTION AND MAIN RESULTS 

This paper is the first of a series aimed at studying the long-time behaviour 
of a simple nonlinear oblique boundary value problem, written as follows. 

Bt-AB=U w 
(l.lNH) B,y - KBBz = 0 (X = 0) 

B(t, -OS, X) = 1, B(t, +mc, X) = 0 

where B(t, 2, X) E R, 

R2+ = {(Z,X) E IF4 x R,}, 
K > 0. 

Our eventual goal is to let K ---f +cc in these equations. 
This system occurs in plasma physics and describes the penetration of a 

magnetic field in a plasma along a perfectly conducting electrode. 
Let a plasma be injected in lR+ 2 through an anode located on the axis 

{X = 0). The cathode will be ignored in this paper; indeed, we assume 
that if it is far enough it does not perturb the phenomenon we are 
interested in here, which occurs near the anode. This plasma is a fluid 
composed of electrons and ions. In this problem, we consider the magnetic 
field dynamics during the propagation of an electromagnetic wave in this 
medium. This propagation is modified by the presence of the light electron 
component in the medium. This phenomenon occurs in devices such as 
plasma switches ([6], [9]). 

© 1999 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved



A NONLINEAR OBLIQUE DERIVATIVE BOUNDARY VALUE PROBLEM. PART I 223 

The domain is supposed here to be infinite (Rt) since our aim is to study 
self-similar solutions. After the instant t = 0 we apply a constant magnetic 
field at z = -cc (the entry of the subset). 

The derivation of the model is made in the frame of the Electron 
Magnetohydrodynamics ([9], [lo]): this is a fluid model derived from 
Magnetohydrodynamics where we neglect the motion of ions and the inertia 
of electrons. The characteristics of the plasma are constant during the time 
and, for the sake of simplicity ([S]), we assume that its density n is uniform. 
Therefore, the propagation of the field will only be diffusive. Moreover, 
we assume that the magnetic field has only a component orthogonal to 
Rt, denoted B. 

The electric field E can be expressed in function of B and, finally, we 
can reduce all the equations of our model to the following one, governing 
the unknown B. 

The conservation of momentum for the electrons coupled with Maxwell 
equations gives a scalar equation on B(t, 2, X): 

(14 &-lAB=O, 
PO* 

v'(t, 2, X) E w; x Iw:, 

where p. is the permeability of free space 
g is the conductivity of the plasma (isotropic and uniform here). 

At 2 -+ --00 we have the source of magnetic field B = Do (W 2 0). 
The equation (1.2) describes the diffusive penetration of t3 in the plasma 
if we let the dimensions tend to the infinity. The key point here is the 
influence of the electrode, through which the plasma is injected. Since it 
is a perfect conductor, on X = 0 the electric field Z is orthogonal to the 
surface so it follows from the relation between f and B 

(1.3) for X = 0 and V(t, 2) E W+ x R. 

Next we rescale the equations (1.2)-( 1.3) to obtain the parabolic system 

(l.lNH) of B = B/B CD0 o, with the non dimensional constant K = -. 

Formal studies of this system were made by the authors of [8] in the %se 
where the diffusion along z is suppressed. 

In the general study of quasilinear parabolic systems, much is known. 
In [2] and [3], a general abstract framework is established, and yields 
local existence theorems and continuation criteria. In [13], very general 
smoothness results for nonlinear elliptic oblique boundary value problems in 
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bounded domains are given; they include in particular the B-y - KBBz = 0 
boundary condition. In [7], [15], global existence theorems are proved for 
parabolic equations with fully nonlinear oblique conditions are also proved, 
in bounded domains. 

The smoothness arguments of [7], [ 151 being local, we could rely on them 
for smoothness results in our context, and this is what we are going to do 
for the Cauchy Problem. As for the self-similar solutions, the coefficients 
of the equation are unbounded; we could still rely on [13], at the expense 
of keeping track of the coefficients in the estimates. We shall instead 
present an alternative approach, based on the conservative form of the 
boundary condition; this will yield immediate H”/* estimates. Thus there 
is enough regularity to allow, via a simple sub- and super-solution method, 
the construction ex nihilo of the self-similar solutions. It is at this stage 
quite tempting to find out whether this idea is sufficient to prove further 
smoothness, with the sole help of the classical Agmon-Douglis-Nirenberg 
estimates [ 11. We therefore explore it further, and the scheme turns out to be 
as follows: H”12 will imply W’/“.“, which will in turn imply H’. A blow- 
up argument will lead us to Lipschitz, which will in turn imply Cl+. At 
this stage, the classical boundary Holder estimates [I], 1121 are applicable. 

To sum up, our contribution in this first part are the following: 
- treatment of a nonlinear oblique derivative problem with unbounded 

coefficients in an infinite domain, 
- a natural smoothness proof, which is quite simple - at least in its 

early stages, 
- robust estimates with respect to K. Indeed, a remarkable fact of this 

approach is that it lays the basis for much more degenerate equations; in 
particular the boundary integral estimates may be rendered independent of 
K by resealing. This will be exploited in the second part [14]. 

The self-similar problem linked to ( 1.1 NH) reads, in the reduced variables 

z=& 
and :I: = ___ 

& 

{ 

-u,, - ;(zaz + xUz) = 0 w 
(1.4NH) U,-KUU,=O (x = 0) 

U(-co, x) = 1, U(+m, x) = 0. 
We shall denote by G(z) the solution of (1.4H) corresponding to K = 0. 

The main results of this first part are contained in the following two 
theorems. 

THEOREM 1.1. - There exists a unique solution U E C” (W?) of (1.4NH). 
Moreover we have the following properties: 
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l 3C>OsuchthatO<U(z,x)-~(~)~Cexp(-~) 
l U is decreasing with respect to z and x 

THEOREM 1.2. - Let B0 E C(R$) b e such that Bo - U tends to 0 (fast 
enough) as 1(x, z)I + +W 

The Cauchy Problem for (1. INH) has a unique classical solution 
B(t, X. 2). There holds 

(1.5) lim sup B(t,X, 2) - U 
t-+m s,z 

tends to 0 as I(x,z)l -+ +CQ there holds, for all 

(1.6) sup B@,X,Z)-U ( 
X 

~ - 
x.2 

m’ & = o(t-1’2+“). 
>I 

In the following two sections, we study the solution of (1.4H). Its 
existence in H”/2(W$) is proved in Section 2, and we explain in Section 3 
how we may work our way through to C” regularity. Theorem 1.2 is 
proved in Section 4. 

2. CONSTRUCTION OF THE SELF-SIMILAR 
SOLUTION IN H3/2 AND UNIQUENESS 

To avoid inhomogeneous boundary condition at Z -+ +w, we introduce 
the function ,D(t, Z) solution of the one-dimensional heat equation 

I 
a@ a2p -- at i)z2=O 

i 
p(t, -2) = 1, (fqt, 3-W) = 0 

I p(t = o) = &J +03 
e-<do. 

Z 

This choice of the initial condition for ,O is not very important for the 
study of this evolution problem but is made here to be compatible further 
with the self-similar problem and with the function $. There holds 

fl(t,.Z) = -!- J 
+oO 

26 z,& 
--+-da. 
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226 F. MEHATS AND J.-M. ROQUEJOFFRE 

We will say that B is the solution of (1. 1NH) if b = B -,0 is homogeneous 
at the infinity and is solution of 

(l.lH) 
{ 

bt - Ab = 0 0%) 
bx - K(b + P)(b + P)z = 0 (X = 0) 
b(t, 2, X) --+ 0 if l(Z, X)1 + +co. 

We have already introduced the function G(Z) from the real variable, 
solution of 

1 
-lljz2 - +)z = 0 

$I-co) = l;$(+oo) = 0. 

1 
s 

+oO 
We have the analytical expression $(z) = - e 4’ cEa and -e 

2J;; z 
G(Z) = P(t, 2). Moreover u = U - ,111 verifies 

-Au - ;(,u; + ZU,) = 0 @“,) 

(1.4H) u~-K(u+~)(u+$&=0 (x=0) 

u --+ 0 if I(z,z)/ -+ +CQ. 

The plan of this section is the following: we first regularize the 
system (1.4H). We prove that this new problem has a solution, then with a 
priori estimates we can pass to the limit. Finally we prove the uniqueness. 

2.1. Regularized problem 

If 2, E @(R~), we denote by y’u its trace on the axis z = 0 (sometimes ‘u 
when there is no ambiguity). Then we introduce a regularizing operator T’ 
from H1/‘(R) to C’>a(W), where 0 < a < 1: 

Let ‘u E H1i2(0;9) and V(t, Z) be the solution of 

I 
T/(0,2) = v(z) 
v, - v,, - ;zvz = 0; 

then T”v := V(E, z). Thus P(yu), also denoted T&u, is defined as soon 
as u E H1(Rt) and we have the estimate: 

IIW~~>llc~q-u, L Cc, where C, depends only on E and IjuIIH~(n:). 

Remark that, of course, T’(v) is much more regular; remark also that 
T’ is linear and that TE$ = $J. This allows us to write TE(u + $) = 
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T"u + $; it is therefore equivalent to regularize the homogeneous solution 
(system (1.4H)) or the non-homogeneous one (system (1.4H)). 

We define now a regularized problem associated to (1.4H): 

(2.lH) 
-Ad - ;(zuE + m:) = 0 w 

IL: - K(T"u'+ti)(u" +$)z = 0 (x = 0) 
uE + 0 at the infinity. 

We will prove the existence of a smooth ((I?+) solution of this problem 
by the super-/sub-solution method. For a given positive E, we have a 
uniform Cl>” estimate of the oblique vector (-K(TEuE + $), 1) in the 
boundary condition; this will give us a solution of (2.1H). 

Recall that U (resp. 2) is a super- (resp.sub-) solution of (1.4H) if and 
only if there holds, in the H1 sense, 

(2.2) 
{ 

- Aii - i (z-i-i, + I%,) 2 0 (resp. < 0) (W 

cr - K(U + $)(U + yi,), 2 0 (resp. 2 0) (lc = 0). 

Remark that 0 is an obvious sub-solution ($ is decreasing). 

LEMMA 2. I. - There exists a super-solution A( z, x) of (1.4H) such that 

Vc7 > 1 37, > 0 : 0 5 R(z, x) < min 
( 

1 - li,, C, exp(- 22Tpx2 
----I> 

Proof. - We seek a function A under the form h(z, X) = 27/j(~)@) with 

i 

1 - $(z) for z 5 0 
h(z) = 1 - $(z) - az for 0 < z 5 z1 

$(z - zo) for x1 < z 

where zl, z. and a are given. These parameters zl, z. and a will be chosen 
so that A is continuous: 

1 - $(,q) - 021 = ?jJ(Zl - z(j). WI 
A straightforward calculation shows that the first inequality of (2.2) is 

verified as soon as the constants ~1, ~0 and a are positive and as 

h’(.q) - hi(z,) 5 0. [C21 
This last condition comes from the -A” term and from the fact that A 
is only piecewise Cl. 
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The second inequality of (2.2) (the condition on the boundary {X = 0}) 
writes differently depending on the position of z, and we can find 
sufficient conditions (see the proof of Proposition 4.1 for details about 
the computations): 

l z < 0: this condition is automatically checked since - -& (1 - $) < 0. 
1 

(with [Cl] and the convexity of II, on R+) 

l Zl < x: 
z1 > .z0+2dm if K 2 l/2 - 251 = zo = 0 otherwise. 

WI 

For K > i/2 we can see that the following parameters are convenient 
to ensure [Cl], [Cal, [C3], [C4]: 

z1 = 4Kfi 
z. = 4KJ;; - 2,/m 
a adjusted to ensure the continuity of h in 21, i.e. [Cl]. 

For K 5 l/2, h(z) is simpler: 

C 1 - 7/1(z) for z < 0 
h(z) = ,$(z) for 220. 

The estimate of A+zted in the lemma follows directly from the properties 
1 2 

of ?/!J(z) = - 
2J;; * e 4 dr. s -- 

q 

Write now a more general oblique derivative boundary problem, with a 
Cl+(W) positive function n(z) : 

(2.3H) 
--Au - ;(,,,: + xu,) = 0 (q) 
u, - Kq(u + $)z = 0 (x = 0) 
u + 0 at the infinity. 

This standard linear problem has a unique C’J’ solution w. and we can 
estimate ]]u](Q,~ with ]]+I,-. 

We define the usual weighted spaces 

H,(R:) = {u E Lpl:)/VV E (L;(R;))2} 
Annoles de I’hstitut Henri PoincnrP - Analyse non h&ire 
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and 

llaI(A:) = ll4ZLf(Fq + IIw~Lp))~~ 

LEMMA 2.2. - Let u E C21a(R$) be solution of (2.3H). Suppose that 
77 5 A + $J. Then u verifies the following properties: 

(i) 0 5 u 5 A; 
(ii) if q is decreasing then there exists a constant CO, independent of rl 

such that (IuIIH;(q) I Co; 
(iii) if q is decreasing then u + $I is decreasing with respect to z. 

Proof - (i). Set w = A - ‘1~. Since A is a super-solution of (1.4H), we 
have A, 5 K(A + $)(A + $)=, f or z = 0. Moreover (A + $), 5 0. Thus, 
with the assumption on q, it yields A, 5 Kq(A + $)z. 

Therefore w verifies the inequalities 

1 

-Aw - $w, + zw,) > 0 
‘W, - KJW + -lJ)= 1. 0 

(R:) 
(x = 0). 

The maximum principle coupled with Hopf s lemma implies that w > 0, 
since w = 0 at the infinity. Thus u 2 A. The other inequality of (i) is also 
a consequence of the maximum principle, directly applied on (2.3H). 
(ii). Set 6 = pu. Apply (i) and the estimate of A obtained in Lemma 
supersolution with rs = 3/2. There exists a constant C > 0 such that 

0 5 (1+ 1~1) 6 5 Cexp ( zg). - 

To estimate u in the Hp’ norm, it suffices to estimate 6 in the H1 norm. 
A direct calculation shows that 21 verifies 

-Al;+; FQ 
(2.5) K 

iii, - Kr& = -$G - - 
2&F 

-l (Lx = 0). 

Multiply by ti, integrate and apply Green’s formula. It comes 
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In this paper, JR are always integrals calculated on the axis (2, X) E 
W x (0). To estimate the right-hand side of the above equality, use (2.4), 
(2.5) and the fact that 17 is decreasing and bounded by A + II, 5 1. It follows 

Hence jIti[IHlcR:, 5 Co, then ~~zL~I~;~~~~ 5 Cc. This constant Cc is 
independent of Il~llcl.- thus of E. 
(iii). The solution u of (2.3H) is in H’(R:); we are indeed in the case 
of a regular oblique derivative boundary problem (7 is smooth) and the 
unbounded coefficients of the elliptic equation are taken in account easily 
after integrations by parts as in: 

- .i,2 (zu, + X’zLzb = s,2 u2. 
+ + 

Let ZI = (U + $)=. With (ii), this function is in C1~~(W$) fl H1(R$) n 
Lg(R:) and verifies 

(2.6) 
{ 

-Au - A(,,,, + xv,) - f,u = 0 
v, - K7/21,, = Kqzv 

(W:) 
(x = 0). 

J 
21 

Let Sg (v) = 5’; (t)dt be a regularization of ‘u+ with 
0 

1 

0 for t 5 0 
S;(t) = t/S for 0 2 t 5 S 

1 for t 2 S. 
Since Sk(v) E P(W”,), we can multiply (2.6) by S;(V) and integrate 

by parts. It comes 

J 
ra”, 

[$qv) + JVV/~(S;(V)) - ~(~s~(v) - s&(v)) ] dzds 

= -K J q&9;(v) - L%(v)) dz. R 
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Remark that ](wSi(v) - S&(w)] 5 i min (w+,S), that V’t S:(t) 5 0 and 
that v E L1 (I$:) (which is a consequence of v E L:(Iw:)). Then, since we 
assume here that nz < 0, there holds 

Let 6 -+ 0. We deduce from dominated convergence that 
.I 

w+ = 0, 
w: 

which implies w 5 0. cl 
We now can prove the following existence theorem: 

PROPOSITION 2.3. - The regularized problem (2.1H) admits a solution 
U” in C”>a(@) that verijies: 

(2.7) WIlrfP’(W~) 5 co where CO is independent of E 

(2.8) 0 < tf(Z,X) L h(z,x) 

(2.9) uE + $ is decreasing with respect to z 

(2.10) IL’ is decreasing with respect to x. 

Proof. - We shall apply the super-/sub-solution method - Sattinger [16]. 
Let the C2+ sequence uk defined as follows. u” E 0 and, for k 2 0, uk+’ 
is the solution of 

i 

- Auk+1 - +:+1+ xu:+1, = 0 (w;) 

uk+l - K?7k(uk+1 + $J)z = 0 (x = O), 

where 7” = TEuk + 4. 
The definition of T” as the solution of a well-chosen parabolic problem 

and the property --A,, - ~zh, 2 0 on {X = 0) imply that 

VE>> T’ASA 

and that 

uk + I,!I is decreasing along z 
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So, recurrently, Lemma 2.2 shows that these properties are verified ‘dk 2 0. 
It also gives the property llzl’ 11 Hk (n: ) < Co. 

We will now prove that the sequence uk is increasing. Let w’+l = 
,ulc+l _ uk. We have w1 = 7~~ 2 0. Since T” is linear, this function ,uI’+~ 
verifies, for k > 0, 

{ 

-Aw”+’ - ~(zw~” + 2w;+l) = 0 P2,) 

wk+’ = Kr]k-lw;+l + KT”w”(u”+~ + $I)~ s (x = 0). 

Suppose that wk > 0. Then KT”uI”(u”+~ + YJ)~ 5 0 and wk+’ verifies 

wk+l - K7/k-1Wt+1 < 0 T (XI = 0). 

Hence, we deduce from the maximum principle and Hopf’s lemma that 
wk+i > 0. Therefore, we prove recurrently that uk 5 uk+’ and obtain 
finally - 

0 1. u1 < u2 < . . . 5 uk 5 ujk+l 2 . . . < A. 

Moreover, with llu’ll H1 (n;) 5 C and the definition of T’, if yields 

IIv~IIo.-(R) I G and IIu~IIcx~(R;) 5 CL 

where CL depends on E but not on k. The last estimate comes from the 
properties of the regular problem (2.3H). 

Hence we can pass to the limit as k -+ foe and get ZI,E E C21”’ (q) 
solution of (2.1H). We also pass to the limit for the properties (2.8) and 
(2.9) and apply Lemma 2.2 once again, with 71 = TEuE + $ to obtain (2.7). 

To prove (2. lo), set ?J& = u:. This function verifies 

i 

-Awe - &J; + XV:) - ;u’ = 0 (R;) 

WE = K(u’ + 7#5)(UE + 7/J)= 5 0 (Lx = 0) 

Multiply the first equation by (o’)+ and integrate; with (~‘)&,a, = 0 it 
comes ( uE)+ E 0 on BB “+. So u’ is decreasing with respect to X. 0 

2.2. Further estimates 

The crucial point that will allow us to pass to the limit is the following 
estimate. 

PROPOSITION 2.4. - Let uE the solution of the regularized problem (2.1H). 
There exists a constant C independent of E such that 

(2.11) lIaf3/yq) - < c. 
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Proof. - We proceed in two steps: first we estimate jlru~ljL~(1-~,~1) for 
a E R, then we extend to jl~~ll~3~(n~). 

step 1. - 21’ E P(q) so we can take uz as a test function in the 
variational formulation associated to (2.1H): 

.I’ 
UU’UU~ - 1 

w: 
2 l2 (2%; + xu:)u; = -K J’(T’d + 4)(uZ + $*)u:. 

+ w 

Apply (2.7), (2.8), (2.9) and 
s 

Vu”Vu~ = 0, it follows 
wz, 

K 
J 

(TV + +)zf; 5 C 
R 

where C is independent of E. 
Since $ 5 (TEuE + $J) and $ decreases, we obtain 

(2.12) VJa E W Il~uZll~~(]-~,~[) I &. 

Step 2. - In this part we estimate uz on [a, +oo[ thanks to (2.12). 

LEMMA 2.5. - Let g E L2(W) and u E H3/2(R:) U Hj(W$) verifying 

i 

-Au - ;(,u, + m,) = 0 (R$) 
u, = g (x = 0) 

Then II~IwP(w~+) 5 Cllgll~~(~). 
The term - i(zuz + zu,) is indeed treated as a L2 right-hand side. 

From this lemma, one deduces 

LEMMA 2.6. - Let a > 0 and u E H3/2(Wt) verifying -Au - ~(zu, + 
xu,) = 0. Then there exists a constant C such that 

(2.13) Ilull H3I~(]a,+c=I[xR+) I WI II (1 - u L2 a l,+oc[xR+)+IIYu,Il~~(]a--l,+co[)), 
End of the proof of Proposition 2.4. - We have seen that TEuE 5 A, so 

with the decrease of A and $ at z + +CQ, there exists a constant C such that 

for z 2 a - 1, K(T”u” + $I) 5 Ce-““’ 

and 
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Thus, if we replace ruj. by K(T”u” + $J)(uE, + $J~) in (2.13), it follows 

IIUEIIH31”(]o,+~[XR+) - < (Cl + C211YU~ll~~(],-l,+oc[))~-~~~‘~. 

Then we use a trace theorem: II~u~ll~~(l,,+,[) < C~I(U~II~~/“(~~,+~[~~+). 
This works because d/dz is a tangential derivative. 

We choose a > 0 such that C,Cse-~“/s 5 l/2; it gives 

II~EIIH3/2(]a,+~[~~+) - < (31 + IlwEIILy]a-l,a[,). 
With the result of Step I we can conclude the proof. 0 

2.3. Passing to the limit 

Let E --f 0 and take (2.7), (2.8), (2.11); we can extract from U& a 
subsequence that converges to u in H3/‘( W$) weak, L’(R$) strong and 
L”(Rt) weak *. Indeed, Hj(Iwt) is compact in L’(R:). 

Then let ‘p E C~(W$). We know that II~u~Il~lcn, 5 C. Thus if 
E c c? c R is the compact support of y(p and 0 is bounded, then 
after another extraction, yuE converges to yu in L’(O) strong. Write the 
variational formulation of (2.1H) applied to the test-function cp and let 
& -+ 0. 

The crucial term is the nonlinear boundary term, that we write 

/ 
(T%%~-UU& = 

. w .I’ 
(T%“-?f)u&+ (u”-u)u;cp+ u(u;-u,)cp. 

R .I’ R I .R 

These three integrals converge to zero: 
- For the first one we use the fact that T” + Id uniformly on every 
bounded subset of H112(R) and that yu:‘p is bounded in H-l/‘(R). 
- For the second one, 7~~ + yu in L2(0) strong and yz$cp is bounded 
in L’(E). 
- The third one converges to zero since 7~2 -+ yu, in L2(W) weak. 

We have proved then that 

s uuvp - 1 
““+ 

2 s,* (zu, + zu,)(p = -K s,(u + +)c” + $)G. 
f 

The right-hand side makes sense since r(u + $)cp E H1/2(R) and 
$U + $), E H-l/‘(R) but we can also notice that 

fT[(U + $)“I1 E H-1’2(q, 

Annales de I’lnstitut Horn’ Poincarb Analyse non h&tire 
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so we can extend by density to cp E Hl(R$), writing 

vcp E Hl(R2,) 

J w: 
vuvv-; J R2 (Z% +xu~)~=-~(~[(u+I)2li-p)H- ,2(R)H ,“(R) 1 1 + 

Thus u is a weak solution of (1.4H). We can also pass to the limit in (2.9), 
(2.10), (2.8) and take Lemma 2.1 with CJ = 2 to prove the properties stated 
in Theorem 1.1. 

At the stage, we only have a weak H3j2 solution. Nevertheless, this 
regularity is enough to prove the uniqueness of the solution in this class, 
as we show in the next subsection. 

Remark. - These estimates would be valid for positive solutions of more 
general elliptic equations, for example with suitable polynomial coefficients 
and suitable nonlinear dependence in u and Vu. 

2.4. Uniqueness 

Let u1 and u2 be two solutions of (1.4H) in H3/2(R$). We shall prove 
that u1 = u2. Remark that we only suppose the H3i2 regularity of these 
solutions; we do not know a priori that they are bounded by A or that 
u1 + II, or u2 + $ is decreasing with respect to Z. 

Set 
w6+1 

There holds 

(l+figh for olwis 

w-l+s 
for w 2 6. 

y(u~ + I/J + ua + $J)~ E L2(R) and y(wRL(w) - Rs(w)) E L2(W) so we 
can apply Schwartz’s formula to the boundary term, denoted B.T.: 

We remark that 

Vt 0 5 i%:(t) - R&(t) 2 min ( 
s2 t1+6 

~ 
> (1+ 6)’ (1+ S)SS-1 ’ 
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and, to control 
s 

(WRXW) - R6(w))2, we use a balance between the two 

terms of the minn function: let (.)” = (.)‘(‘-“I( .)2a with Q = l/(1 + 6). 
It gives 

.I (w&!(w) - R6(w))2 I R (&)“b ((ly;;*-l)i 
b2 

s (1+6)2 nw2. .I’ 
Hence 

Since R:(w) > 0, if we fix w, then 0 5 
.I 

R&(w) 5 C6. 
“: 

The proof is terminated by an application of the Beppo Levi Theorem. 0 

Remark. - It would be possible at this stage to prove the uniqueness of 
non-increasing H&, solutions. Here it is only of moderate interest, but it 
will turn out to be important in Part 2 of our study. 

3. SMOOTHNESS OF THE SELF-SIMILAR SOLUTION 

3.1. H2(R:) estimate 

LEMMA 3.1. - Let u be the solution of (1.4). There exists C > 0 such 
that IIYu~IIL~R) < C. 

Proof. - Remark first that in this lemma we deal with yu, = yU, - tiZ 

so since $= = & exp(-c), it is equivalent to estimate Il$JZIIL3. Then 

it will be useful to recall that we control the sign of U, (and of Uz), 
which is always negative. 

We now come back to the regularized problem (2.1H): uE is a solution 
of this system, and U’ = uE + II, is the solution of the non-homogeneous 
associated problem (2.1NH). Here C will denote a constant independent 
of E. With the Sobolev embeddings and lluE(IH3,2(n~) 5 C, the two 
functions u: and uj, are bounded in L3(Rt) and in L”($$), independently 
of E. Hence, we write, if x is a bounded function, 

(3.1) 



A NONLINEAR OBLIQUE DERIVATIVE BOUNDARY VALUE PROBLEM. PART 1 237 

where i3,u’ denotes any first derivative of u’. Moreover, since VU~ is 
bounded in Lz(Iw$), there holds 

(3.2) 

Since U’ E H2(R$) n C21u(W:), the functions +, tP ij)~~Q are in 
Hl([W:), and can be taken as test-functions in the variational formulation 
of (2.1H). 

Let now ~(2, :x) be a smooth function such that ?I and its derivatives are 
small enough at the infinity, and x(z) be a smooth function in W1+(Iw) 
(x is a cut-off function and shall be precised later). After developments and 
integrations by parts, we obtain the two equalities: 

(3.3) 

and 

(3.4) 

We multiply the equation verified by uE (2.1H) inside rW: by the test- 
functions U~ZL~X or [(u:)” - (u~)~]x, then integrate it. Recall that on the 
boundary there holds U: = KT’(U”)U,‘. By (3.2), (3.3), (3.4), (3.1), and 
since rU,” and gz are bounded in L2(W), it comes 

(3.5) I ( ‘. w-q2 - 5 (U,“)” dz = O(l), 
* R > 

and 

(3.6) 
I ( 

x. 
. w 

yuEJ3 - (KTtllC)) (uz)3 dz = O( 1). 

If K < L then (3.5) implies directly the estimate, with x z 1, since 

0 5 U’$l. 
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Otherwise, we know - now for a long time - that UE is continuous, with 
uniformly bounded moduli of continuity. For S small enough, one can find 

2; < 26 and ~6 such that for E < ~6, z 2 26, there holds KT”IJ’ 5 -!L -6 
fi 

and for E < ~6, z 5 Zi, there holds KT’U” 2 1 - 612. Then we take 
4 

the nonnegative truncation function x1 (z) E C”(R) such that 

BY (3.5) we have 
.I’ 

(Uf)“xi 5 Cn, for E < q, thus 
R 

If K > L we obtain, with a similar argument, a point Yb such that, for 
d’ 

z 5 Y6 and E < e6, there holds KT”U’ 2 -!L + 5 and 
8 

On [Y&, 261, (3.6) enables to conclude. Indeed L is not a zero of 

X” 
G 

- - X, so with a truncation function x2 that takes the value 1 on [Yh, 261 
at?d vanishes on W\[Y26; Z2s], and 6 small enough, we get, for x E [Yh > Z,]. 

(KTYJ”)” 
3 

- (KT’U”) < - -& -I- 6’; 

where 6’ is a small real number. Hence, by (3.6): 

If K = L the argument is the same, with Ya replaced by -w. 
6 

0 

To prove the H2 regularity of the self-similar solution, we will use the 
Nirenberg translations method. For that, we introduce some notations and 
a technical lemma. 
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LEMMA 3.2. - Dh possesses the following properties: 
(i) Dh is linear and tls,p WSJ’(W’$) is stable by Dh; 
(ii) D,, and V. commute; 
(iii) ‘du, w Dh(u2) = 2uDhu + lhJ(Dh~)~ 

Dh(zu) = ,zD,,u + +U Ihl 
D,t(w) = vD/,u + (Dh,‘u)(%U); 

(iv) V(U,U) E (L2(R$))2 lz u.D-,~v = J’l D~~u.‘u; 

(V) tju E ff1(!F!8”+) I~D/&.qw+:j < ,~h~l$&~; 

Proof. - (Z), (ii) and (“‘) zzz are immediate and come from the expression 
of Dt, after straightforward calculations. 

(iv) is also obvious after an integration by parts. 
(II) is proved in [5]. 
(G) can be proved as (u): first for u E C’(W), after an integration, 

we have 

1 

then 

(1 2/3 

I ll%lILqw) (%(Z + W3dz 
R 

with the Holder inequality 

5 II%ll&!). 

We conclude by a density argument. 0 

PROPOSITION 3.3. - Let u be the solution of (1.4H). There exists C > 0 
such that I(uLLJJ~~(~:) < C. 

Proof. - We first make the following remark. 

Suppose that lIuzII~~(~~~ < Cl; then yu is bounded in H3i2 (R). Thus, 
since u verifies -Au - ~(zu, + XU,) = 0 in (W:), the estimate in H2(Rt) 
follows - Agmon-Douglis-Nirenberg [ 11. 

Therefore the point is to estimate U, in Hl(W$). As in Lemma 3.1, 
U, = U, + 4*, where U is the solution of the non homogeneous problem 
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(1.4NH). We have 

The idea of the proof is to take ‘p = u,, in (3.7), but we only know 
that u,, E H-1/2(R:): tt is not an acceptable test function. To avoid this 
difficulty, we use the Nirenberg translations method. 

With Lemma 3.2 (a) 

Then, with the properties (a), (ii), (iii) of this lemma, we calculate and 
estimate the different terms of (3.7): 

1 1 
5 qllw:LyRj)~ + -II&’ 2 ll~-hf~4L’(R~) 

with (u) and Cauchy-Schwarz formula 
3 

5 pIIgL~(R~))~; 

with Lemmas 3.1, 3.2 (vi). 
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Finally 

and the right-hand side is uniformly bounded in E. As in [5], we can deduce 
from this inequality that ((VU,((~~~~~~~~~~ 5 C. We conclude as explained 
at the beginning of the proof. 0 

3.2. C” smoothness 

Two lemmas will lead to the conclusion. 

LEMMA 3.4. - Let u be the solution of (1.4H). If yu, E Lc”(W) then 
‘/I, E cPy (Fig. 

Proof. - We shall prove that u E II”($) which implies the result 
with the Sobolev embeddings. With Proposition 3.3 we already have 
II, E H2(R$). Let ‘u = -uLL, and V = -U, = v - $j,; the assumption 
of the lemma is L = Ilrwjl~(na) < +CXI. Moreover, this function ‘0 is 
solution of the system 

(3.9) -Au-~(Zli,+++l (nq) 
v, = KUV, - KV2 (x = 0). 

Thus 

bp E H1(5q) 

/’ 
vvvp - 1 

. R; 
2 /- (zw, + m,)cp - ; l2 vcp + K l(W - V*)(p = 0. 

q + 

Remark that all the terms are well defined in this equation. 
As in the last section, we use the Nirenberg translations and set 

cp = DphDhu E Hl(IW$). A calculation similar as before, with the 
technical Lemma 3.2, gives 

.I q VVVP = R’ (DdW)* .I + 
and 
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The new term is the boundary term 

where Is is a lower order term in U, ‘II, also involving li/ and its derivative; 
this term is easily estimated. 

We can estimate the two integrals 11 and Ia with the assumption on L: 

1121 F L 
.I’ 

(Dud2 
w 

I CWWz,,,~~ra~~ with a trace theorem 

with Lemma translations (u) , 

IAl = (vD/tv D~v,)~~,“(~),~-L,“(W) 
I ~ll~~~~~~~ll~~/~~~~Il~~~ll~~~~~~~ 

Remark that II~uIIL- L L and IlrD~,4l~- 5 L; therefore one can prove 
that 

and, since this last norm is controlled, 

Finally 

‘dA > 0, 

We choose A=2C3, thus llVD1,211/),,(lp;)),-2C111VDh~II~L~(A:))~ -Cs 50. 

Remark that all these constants are independent of h. 
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It comes ]]VD~V]]~ (L2(n2 jj2 5 C, which implies 21, E Hl(R$), then yuz 

is in H3/2(R) and yu E &j/“(R). Therefore yu E C1,O(R). 0 

LEMMA 3.5. - The solution u of (1.4H) veriJe.r ]lr~~]]~-(n~ < c~. 

Proof. - For K 2 0 denote by ul’ the unique solution of (1.4H) 
corresponding to K and M(K) = ]]r~~]]~~(n) E [O;+oo]. Assume that 
there exists a K1 > 0 such that M(K1) = +cm. 

Define Ko = inf{K E R+ / M(K) = +a}: with the assumption on 
K1 we have Ko 5 K1 < +co. Moreover, the implicit functions theorem 
applied to our system in a neighbourhood of (u = 0, K = 0) implies that 
for K small enough the solution u K is very smooth (at least C2,a), so U: 
is bounded. Indeed, this function vanishes at the infinity since it is in L2 
and Holder continuous. Therefore K0 > 0. 

Let K < Ko. For a given K, there holds M(K) < co, so Lemma 3.4 
implies ~~~ E C1.a(R$). We will now prove that (M(K)),,, is not 0 
bounded. 

If this quantity is bounded by a constant Ca, then by the proof of 
Lemma 3.4. we have 

lIUKII + cl,e (RZ) is uniformly bounded for K < Ko. 

It follows that uK 
K-K,, 
A uKo in C’,a’(e) so uIio is Cl@‘, where 

a’ < a. Hence uKO E C*>“(e) since it verifies now a regular elliptic 
boundary value problem. We can apply again the implicit functions theorem 
to (uKo, Ka) to find that there exists q > 0 such that on ]KO - Q, K0 + q[ 
the system (1.4H) has a regular (C21”) solution. In particular, its derivative 
is bounded; this leads to a contradiction with the definition of K,, so 

WW>)K,Ko is not bounded. 

The remainder of the proof relies on a blowup technique. Define the 
sequence 

7L++CC 

such that 

K,,-K, with 0 < K, < KO, 

M(K,,)“= + co. 

Next we denote v, = -up 

A, = (M(Kn))-ln-+mo 

and z, such that u,(z,, 0) = npx(y7jn) = AI( 
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Remark that V, -+ 0 at the infinity (at least C”.” and L2) so (z,,I < +<x,. 
We now rescale the function %I,, as follows: 

We will prove the following assertions. 

(i) ,w,,(O:O) = 1 
(‘1%) ‘ill,, + 0 in Hl(W$) weak 
(iiiJ3C : Ilyw,, llH.3!2(q 5 c. 

These three properties lead to a contradiction. Indeed with the Sobolev 
embeddings (iii) implies that a subsequence of ~1,~ converges to a limit ~1 
in CO>“. Then with (i) and (ii) we have both w f 0 and w(O,O) = 1. 

This contradiction shall end the proof : 

‘JK 2 0, M(K) < +cx. 

It now remains to prove the three assertions. 
(i) is immediate. 
(ii) comes from I)u,, 11 H’(~;.) 5 II~GIIw(~;) 5 C: and 

The key point that will imply (iii) is that n~x(yzl~,,) = 1 with this 
resealing. We already know that IIru,, IlH, (n:) is bounded but (iii) needs an 
estimate independent of n. It fact it is nearly the same as for Lemma 3.4: 
from a L" estimate of ~~~~~~ we obtain a H3/2(IW) estimate of the same 
function, with a constant independent of 7~. 

The proof is simpler here since, from Lemma 3.4, we know more 
regularity on w,, , at least that it is in H2(R$). 

Let pVL = 8,w, (we change here the notation for the derivative because 
of the n, which is only an index). This function is in H’(lW$!), its L2(R$) 
norm is bounded by a constant independent of 71, and it verifies 
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Multiply by /J,~~, integrate by parts and estimate the different terms like 
for the proof of lemma 3.4. Remark that the contribution of the new term 
in the estimate is 

so we do not need to control z,,. It comes 

End qf the proof qf Theorem 1.1. - Due to Lemma 3.5, ylhz E L”(H). 
Hence with Lemma 3.4, ‘u E Cl,“(orB$). Thus we have already seen that 
it implies IL E C’*“.(W:). 

Remark that because of the elliptic regularity, u is already C” inside 
Iw:. We have to prove the smoothness on the boundary. 

Write the system verified by V = U,: 

(3.11) -AV - ;(zVz + xV~) - ;V = 0 (R;) 

V, = KUV, - KV* (3: = 0). 

Since we know that U and V are in Cl,” (I%$), this is a regular oblique 
derivative problem so U, E C2+(lR$). Hence the boundary condition of 
the system (1.4NH) verified by U, which is U,, = KUU,, gives the C2s0 
regularity of U,. on the boundary. 

Finally in this step we proved that U E C”~“(RS). By successive 
derivations of (1.4NH), we obtain recurrently the C” regularity of U 
on Iw2,. 0 
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4. CONVERGENCE TO SELF-SIMILAR SOLUTIONS 

A consequence of [7] is that problem (l.lNH) with, say, a C” initial 
datum, will have global classical solutions. To prove its convergence to a 
self-similar solution, we will first devise sub- and super-solutions to the 
problem in self-similar coordinates that will prove the uniform convergence. 
A stability argument will yield the convergence rate. 

Recall that, if we now come back to the self-similar coordinates 

T = Log(f + 1). 
z x 

%=JISr. Y = m 

Problem (I. 1 NH) writes 

(4.1) 

{ 

B, - LIB - $B; + XB,,,) = 0 @:I 
B,. - KBB;-= 0 (:r. = 0) 
B(r,-mx:) = 1. B(T: +00.x) = 0. 

Recall also that any solution (t/jr,)CuEn of 

(4.2) 

is a steady sub-solution to (4.1) as soon as (I: 2 0. Hence B(x) = 
IKMX(~/J~~*, 0) is a steady sub-solution to (4.1). Remark that we impose 
the non-essential condition Bo > 0. 

We now define a family of super-solutions that will be more flexible 
than the ones of Lemma 2. I. 

PROPOSITION 4.1. - Let B. satisfj the assumptions qf Theorem 1.2. There 
exists a steady super-solution to (4.1), denoted B, such that B~~(z; :I:) 5 
B(x. :I;). 

Proof. -, What prevents us from using Lemma 2.1 is that Bu may be 
of arbitrary size at finite distance. We thus look for a super-solution B to 
(4.1) under the form 

B(z::r) = -I/@) + Z$J(x)h(z). 



A NONLINEAR OBLIQUE DERIVATIVE BOUNDARY VALUE PROBLEM. PART 1 247 

where the parameters Ai! X2, a: za, z1 are to be chosen. We impose the 
continuity of B: 

X1(1 - $(Zl)) - a%1 = Xg/!(%1 - zo). ICI1 

If n is nonnegative, this implies, as in Lemma 2.1, that to satisfy the first 
inequality of (2.2) we only need to have 

h’(z1+) - h’(%,) < 0; 

a sufficient condition for this is 

A2 
0, < - 

- aJ;; 

exI, _ (a - d2 

4 IC21 

The boundary inequality, B,. 5 KBB,, is fulfilled as follows. 
l For z 5 0, there only needs to hold X1 2 1. 

l For 0 5 z < zl, after direct computations, the condition writes 

this inequality is verified if (I is lower than its right-hand side, since 4~’ 5 0. 
One can see that, since r/j is convex on R+, this right-hand side is larger 

1 Xl than its values in 0 and in zl, which are respectively ~ ___ 
KJ;;I+X1 

and, 

1 
with [Cl], KJ;; 1 - 

( 

$(a) 
,$(a) + X27/4& - a) > 

1 x2 
~~ Hence, if 

’ K,,hl +X2’ 
X1 > 1 and X2 > 1. it is sufficient to have 

1 
(” 2K,,h‘ 

l For z1 < z, the condition is fulfilled if, and only if, 

cc31 

K 

.zl >:o+2/L0g(K(~;;“~). lC41 

The last property that B has to verify to be a super-solution is 
B> Bo. WI 
Vol. 16, no 2.1999. 
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Now, let Ba satisfy the assumptions of Theorem 1.2: ba(z,:~) = 
&(z, X-$(Z) is small enough at the infinity. First, one fixes the parameters 
X1 > X2 > 1 such that bo(z.z) 5 P$(:r:).A,(l - ,//I(Z)) for 2 < 0. .I: > 0. 
and bo(zYz:) 5 Z,/I(:I:).X&(Z) for z > 0. .I’ > 0. Next, if moreover X2 then 
X1 have been chosen large enough, we let 

[C4] is fulfilled. We can now define (1. by [Cl]: 

there holds (1, > 0 since VI(Z) < l/2 for z > 0. Moreover ]C2] and [C3] 
are satisfied. 

It remains to verify [CS]. For -: 2 0 the super-solution lies already 
above BO, thanks to the choice of X1. For z > zl, we just remark that 
B(, 5 //(%) + a~~(:I:)x,!;(z) < ‘?/I(%) + 2’dl(:r)x,‘o;(,? - %,I) = B(,z. .c). 

Finally, for 0 5 2 5 zl. a simple study of the function X1 (1 -~$(z)) -UZ- 
X,$(z) shows that it is larger than its values in 0 and zl, which are positive. 
Therefore B0 < (I(Z) + 21!~(.r~)X~~/~(z) 5 B(z..I.) and [CS] is fulfilled. 

Remark that when we let XI = X2 = 1 in the above formulae, the 
parameters (1, ,ql and z1 are the same as in Lemma 2.1. 0 

Therefore we have the tirst part of Theorem 1.2, expressed in the 
self-similar variables: 

COROLLARY 4.2. - There holds 

lim llB(-r) - UIl, = 0. 
r-+x 

where U(z, x) is the self-similar solution qf (1.4NH). 

Proof. - It only remains to remark that, if Ba satisfies the assumptions 
of Theorem 1.2, then there is N 2 0 such that JJ := max($,, ~ 0) < BO. 
Therefore Bo is between a steady sub-solution and a steady super-solution 
of (4.1), and the convergence result follows just as in Section 2, using the 
method of Sattinger [ 161. We just give a sketch of this proof. 

Let B(r, z,z) (resp. o( 7, z, 3;)) be the solution of (4.1) with B(z, X) 
(resp. B(z)) as an initial datum. These functions are defined as follows. 
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B fulfills the assumptions of Theorem 1.2, since B(z, X) - ii,(z) + 0 as 
1 (z, :c) / + cx;, so it enables us to define B(r; z, CC) directly as the solution 
of (4.1) in the sense explained at the beginning of Section 2: B - 41 is 
the solution of the homogeneous associated problem, On the other hand, 
B does not necessarily tend to $J at the infinity. Nevertheless, we define 
B(r, z, X) as follows. Let Bo3(7, x) be the solution of the equation 

Then Z?(TJ,:I:) is defined as the solution of (4.1) such that g(r, z~.c) - 
p’(T. z) + 0 as 1(%:X)I -+ cm. 

One proves that B( 7, z, :E) is decreasing in time, that Z?(r. z. CC) is 
increasing, and that both functions converge uniformly to the self-similar 
solution r;(z. .I:) as ‘T + +x (remark that B”(r. 2) + ,Y/)). Finally, since 
for all time there holds a(~) < B(T) < B(T), the result follows. I? 

Let us turn to the exponential convergence with respect to 7. Let L be 
the differential operator 

No domain will be specified, due to the form of the boundary conditions. In 
particular, we do not know whether a Krein-Rutman-type principle applies 
for L in the natural weighted space where we would like to carry out our 
study. The following lemma, which initiates the asymptotic behaviour of 
TJ, will be useful. 

LEMMA 4.3. - There holds 

Proof. - Theorem 1.1 tells us that the equation for V := U, may be 
handled as a regular boundary problem that we write 

-AV-‘v+fI=o PC) 

(4.4) v, - f&t - fsV = 0 (2: = 0) 
V(-q2) = 0: V(fc0.z) = 0 
V(z, +m) = -7/J,! 
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where the C” functions are ft = -~(xV’~ + zV>), fZ = KU, f;3 = KV. 

Hence elliptic estimates [I] and interpolation lead to the following estimates. 
Let K(a, IC; Z) denote the intersection of Iwt with the cube centered at 
(:I:, Z) and with length rr; we have 

We now come back to the usual writing of the elliptic equation for r:,; 
the Harnack inequalities are applicable to it and - Berestycki, Caffarelli, 
Nirenberg [4] - they can be pushed to the boundary of Iw: due to the 
particular form of the boundary condition. which allows an extension of IJ; 
along the lines of the vector field (I, -KU). Inspection of the Harnack 
constant - see, for example, Trudinger ] 171, Theorem I. I - reveals that it is 
no larger than f’ “(l.‘l+l’l); hence there exists a constant C such that 

This is enough to get estimate 4.3. 

End I$ the proof of Theorem I .2. - Set 

0 

B(r .%.I) = z,T(z,:r.) + L~,(%,:r)‘fqr. %..I.). 

Remark that since we already know that ITI 5 0 and is smooth 
(Theorem 1. I), the maximum principle and Hopf’s Lemma imply that 
I:: does not vanish on Iw:. Indeed, consider for that the equations on 
UJ = -U3, and put the zero-order term -whose coefficient has the bad sign- 
in the right-hand side of the elliptic equation. 

The function u verifies 

The zero-order term of the equation inside F!“+ has a positive coefficient (i/2) 
which will provide the convergence rate thanks to the maximum principle. 
Nevertheless, one cannot use this principle directly on the function ‘0 
because of the boundary term: indeed, the sign of UZlur the coefficient of ‘~1 
in its right-hand side, is not necessarily positive. That is the reason why 
we shall introduce another function 7~. 

For that, let /r, X be two positive real number, to be precised further. 
We define the function V(Z) by a regularization (near zero) of exp-Xlzl) 
and I by 

I+. 3:) = :l;exp-Xz)v(%) 
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We set now 

W(T, 2, X) = (1 - /Lr(Z, Z))W(7,Z, “:)I 

this new function w satisfies 

1 711, + Lrw + P(,, z).Vw + 
( 

; + pg(z,x) w = 0 (!q) 
> 

w,c = 11’111, + f w, (3; = 0) 

where 
P(,,,) = -2J$ 

VF 
+ 2p----- 

z l-I-“r“ 

g(+ = -(I -pr)-l 
( 

m-2F.vr . 
z > 

h = K(U + Uz(l - pl?)w); 

To apply the maximum principle to ~1, we need to choose the different 
parameters such that pg is small and f is positive. 

Let oz be a positive small real number. We fix X = 2Cz, where CT is the 
same as in the statement of Lemma 4.3: thanks to the form of r and to 
this Lemma, VI’.VU,/U, is uniformly bounded on ‘w:. Since Lr is also 
bounded, it suffices to choose p small enough to ensure Ipg(z,z)/ < (t 
on Rt. We fix here this constant h. 

Now, in the boundary term, we write KU,,v = Kg(LI - U) and, 

thanks to the sub- and super-solutions, their exists a constant C such that 

V(t;z) E IL!+ x R IB(t,z,O) - U(z.O)I < Cexp -; ; 
( > 

hence, since II(Z) - exp( -AZ) and with Lemma 4.3, one can fix 2, such that 

~KU,;v~(r; z,O) < /Au(z) : f(r, 2) > 0. 

Let 6 = [-Fi;; ,(I/) > 0 and M = [-%a$, lUzz/Uzl. By Corollary 4.2 

one can now ‘find a r, > 0 such that, ‘ibor r > ITS, for (X,X) E Wt, 
P6 p - Ul(r, 2:x) < ~ 

KM’ 
This implies 
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Finally, remark that the Harnack inequalities applied (as in Lemma 4.3) on 
the function -U, imply that the increase of w at the infinity is bounded by 
CeC(“+.“). Therefore, with this set of parameters (~1,. X, T,.). the maximum 
principle applies for r > r,. and yields 

The same argument may be used to find a lower bound for W. The result 
follows if we come back to the variable t, and the function B - U. Cl 

Remark. - Application of the classical regularity results Ill]. [ 121 yields 
the exponential convergence in C?. 
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