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ABSTRACT. - In this paper we study the structure of certain level set 
of the Ginzburg-Landau functional which has similar topology with the 
configuration space. As an application, we generalize Almeida-Bethuel’s 
result on multiplicity of solutions for the Ginzburg-Landau equation. 
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RI?SUM& - On Ctudie la structure de certains ensembles de niveau de la 
fonctionnelle du type Ginzburg-Landau qui ont des topologies similaires B 
celles de l’espace de configuration. Comme application, on gCnCralise le 
rkultat d’Almeida-Bethuel sur la multiplicitC des solutions des equations 
de G-L. 0 Elsevier. Paris 

1. INTRODUCTION 

Let 12 C C be a smooth, bounded and simply connected domain. Let 
9 : X2 + C be a prescribed smooth map with /Sy(x)l = 1, for all ~1: E 80. 
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The Ginzburg-Landau functional, for any t > 0, is given by 

which is defined on the Hilbert space 

It is easy to verify that E, is a positive. C”-functional satisfying the 
Palais-Smale condition. So 

is achieved by some (li E !I; (12. C) and these minimizers satisfy the 
following Ginzburg-Landau equation: 

{ 
-au = $1 - l*f,,ly in 12 

// = f, on IX. 
(1.2) 

The Ginzburg-Landau equation (I .2) has been extensively studied by F. 
Bethuel, H. Brezis and F. Helein [BBH 1. 21 and many others. A complete 
characterization of asymptotic behavior (as c -+ O+) for minimizing 
solutions of (1.2) is given. It has been shown that the degree of ~1, denoted 
by X: = deg(g. X2), plays a crucial role in the asymptotic analysis of the 
minimizers. Without loss of generality, we will always assume k; 3 0 
throughout this paper. 

In this paper, we will study the multiplicity of the solutions for the 
Ginzburg-Landau equation (I .2). many such results have been given for 
special domains and/or boundary values (see for instance Almeida and 
Bethuel [ABI], Felmer and Del Pino [FP], F.H. Lin [Li]). The motivation 
of our paper comes from the recent work of Almeida-Bethuel [AB2, 3J 
concerning the existence of non-minimizing solutions of (1.2). They showed 
that if k: > 2, the Ginzburg-Landau equation (1.2) has at least three distinct 
solutions, among which at least one is not minimizing. Based on topological 
arguments directly inspired by Almeida-Bethuel’s work, we obtain our main 
result as follows 

THEOREM I. - Assume that k 3 2, there is some ~0 > 0 (depending 
on II and 9 only} such that if E < ~0, the equation (1.2) has at least k + 1 
distinct solutions. 



SOLUTIONS FOR THE G-L EQUATION 257 

To prove Theorem 1, we will apply the standard Ljusternik-Schnirelman 
theory to a suitable covering space of a level set 

for an n of the form 

n = pc + x (1.3) 

where X is a fixed positive constant to be determined later. The proof 
is strongly related to the topological similarities between Ei and the 
configuration space XI,(~) of k distinct points in (2. As in [AB3], we need 
to use a map 6 from E; into E,.(Q). More precisely, We may assign 
to each function ?I, in E;, a set of k distinct points {nr.. . . : (LA.}, called 
the vortices of %I,, where each vortex has the topological degree +l. The 
map 6 : Ez + Ck(0) is not continuous. However this difficulty can been 
overcome by applying the notion of r/-almost continuity given in [AB3]. 
The topological similarity between Ez and Ck(12) allows us to define a 
covering space &’ of Ez corresponding to the covering Fk.(b2) + CA.(~). 
where Fk,(f2) is the configuration space of ordered X: distinct points in It. 
Again we have topological similarity between these two spaces. and we than 
can prove that the category of J!?: is at least k. The Ljusternik-Schnirelman 
minimax theorem concludes that the functional EC on I?:, which is the 
composition of E, and the covering projection either has at least h: distinct 
critical values or the dimension of the critical set is at least 1. These 
imply that .EE has at least I? critical points on E:. Finally, the fact that 
E,” = H$.C) IS an affine space guarantee that E; has at least another 
critical point outside of E;, if X: 3 2. 

This paper is organized as follows: In the next section we will recall 
some preliminary results about the configuration space and the construction 
of the map (i, in [AB3] and Theorem 1 will been proved in Section 3. 

2. PRELIMINARIES 

Our proof of Theorem 1 relies essentially on the properties of the map 
& : Ez + Ck(0) described by Almeida and Bethuel [AB3]. With a such 
map, they showed that the fundamental group 7rl (E,“) is non trivial for some 
suitable value IL of the form (1.3) when E is sufficiently small. We review 
here some basic facts about the configuration space and the construction 
of the map G. 
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We study the configuration space and renormalized energy first. Let the 
metric on C” be defined by the following norm 

The configuration space of the ordered k distinct points in 12 

Fk.( 62) = {((I,, . . . Q.) E 62”‘; a, # (I,., for all % # ,i} C C” 

with the inherited metric (2.1) on C” is a smooth manifold. The 
cohomology ring H*(Fk(bZ)) = H*(F’h(0), Iw) of the space Fk.(62) has 
been determined by Arnol’d in 1969 (see [Ar]), which is generated by 
elements w;j E H1( Fk.(fl)), 1 6 % < j < k and subject to the following 
defining relations 

iv, ,WJ[ + W,/UJ,[ + W,liv’ij = 0. 

Arnol’d also showed that the pth Betti number n, of FL,(O) is the coefficent 
of V in the polynomial 

(1 + t)(l + 3) ” (1 + (k: - 1)f). 

In particular, BA.-~ = (X, - I )! # 0. and this concludes that 

LEMMA 2. - The cuplength qf Fk.( 12) is k: - 1. 
The cuplength of a space X is the largest integer 71 such that there are 71 

elements pj E HPJ (X). p,, > 0, 1 < ,i < II. and ~1 U . . U p7, # 0. 

The symmetric group Sk on { 1. . X:} acts isometrically on Eh.(l2) by 
permuting coordinates, i.e.. for all 0 E S,,., 

(T(fI1.. . . . Uk.) = (f1’(5(1). . . 1 f&(,;,). 

This action is free, and the quotient space Fh(l2)/5’1, is called the 
configuration space of X: distinct point in 62 and it will be denoted by 
Ck(S2). 

On C,(0), we have a natural metric such that the quotient map 7r : 
Fk(b2) + Ck(0) is a Riemannian regular covering. This metric on Ck(l2) 
is the same as the length of minimal connection introduced by Brezis, Coron 
and Lieb in [BCL], i.e., for (x. = {c~i!. . . ,(ih};n’ = {CL:, . . ;(L;.} E Cb(0), 
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We now define the renormalized energy TV, on Ck (a) which is introduced 
by Bethuel-Brezis-HClein in [BBH2] as follows, for CL = {ai, . . . j uk} E 
G(Q), 

where b is the solution of 

Here Y denotes the unit outer normal to iJl1 and T is unit tangent to X1 
oriented so that 11 x Y- = 1. And the function R is the regular part of 4, i.e., 

It is clear that IV,(u) + +oc if dist(aj,dR) i 0 for some % or if 
Iu~ - “jl + 0 for some 1; # j. It has been proved in [BBH2] that, as 
F + 0, we have 

where o( 1) + 0 as E + 0, vg is a universal constant. and (a;. . : CL:.) is 
a global minimum of the function IV,. 

Next we will turn to the construction of the map 6. We will use a 
regularization technique, that is, for any u E E,“, we can associate a map 
Us, which is a minimizer (not necessarily to be unique) of the following 
minimization problem 

where h = E* > 0. We denote (1~‘~ = T(U) where T : Hi(R,C) + 
Hi (a, C). Clearly we have u!’ E E,” and it satisfies an equation similar to 
the Ginzburg-Landau equation (1.2). One of the main observations in [AB3] 
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is that we can describe the “vortex structure” not only for the solutions 
of the Ginzburg-Landau equation. but also for such maps ~1,~. To be more 
precise, let us collect some of results of [AB3]. 

THEOREM 3 [AB3]. - Assume that IL is of the.form (1.3)for some corzstant 
X > 0. Then there is u constant 0 < E; < 1 depending only OII It, !I and 
X, such that [j’ c < E:,, then for 11. E Ep, IYL/ 6 1 on 12, there is a point 
(I = {(I,],... .o,k} in Ck(b2) such that 

where (1 satis$es E\ 6 p < c\, for some constants ,y, 2 E]O, 1[ independent 
0f E. 

deg( u/L 
> 

= +l. ,fbr all 1 < i < X.. 

Moreover, there exists some constant [j > 0 depending only on It, g and 
X such that dist((L;, X2) >, N, for all 1 6 i < k. and I(is; - (I,, j > [I. $)r 
all 1 6 i # j < k:. 

Thus we can see that the properties of maps IL” are very close to 
that of minimizers of (1.2) as in [BBH], and it allows us to define vorties 
{ ul, . all} for U” and each of the vortices has topological degree + 1. That 
defines a map X~J from Im(T(P(Ez))) to E,,(n), by 9(u”) = {(I,~. . . “,A,}, 
where the map P : Hi (12, C) + Hj (12, C) defined by 

is continuous. Composing P: T and 9, we define 6 : E4 ---$ XI,(Q); 

6(u) = @(T(Pu)) 

As already noticed in [AB3], the minimizer 1~~’ to the problem (2.2) may 
not be unique and moving slightly the points Q’S, the new positions would 
still match the requirements of Theorem 2. Hence the assignment of %I~ 
and the vortices for 7~” require some choices. so we can not expect the 
map (I! to be continuous. However the freedom in these choices are not 
too wild, and we can say that 6 is “almost” a continuous map from E,” 
to ‘XI, (0). More precisely, we have 
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PROPOSITION 4 [AB3]. - Assume that a, ~6, 2 are as in Theorem 3. Then 
,for all E < EL, u, ‘u E E,” we have 

where Cl is a constant depending only on 0 and 9. 

Remark. - In [AB3], Almeida-Bethuel studied the more general 
configuration space corresponding to the “vortices” of the map uh for 
u E E; . where a is of the form 

p, 6 u < K,(I log-El + l), 

and the map & from Ez to the configuration space. We refer reader to 
[AB3] for the details. 

Here is the notion of q-almost continuity introduced in [AB3]: A map 
CD : X + Y from a metric space X to a metric space Y is said to be 
*r/-almost continuous, if for all 2 E X and E > 0, there is a 6, such 
that for all x’ with d2v(z,x’) < 6, we have do-(Q(x), @(:c’)) < r/ + E. 
Proposition 4 says that the map d is actually q-almost equi-continuous for 
rj = C,(l log+* + EX). 

By Theorem 3, the image of 6 lies in the set 

which is compact in Ck. So we have 

PROPOSITION 5 [AB3]. - We have an 770 which only depends on ,O, such that 
for any rl 6 r10 and compact set W E Hi(fI, C), if 6 is q-almost continuous 
and 6(W) C X,,,(O), then there exists a continuous map @ : W + X,.(O) 
such that 

Ii+ - Q(~L)II < 37 for all ‘u E W. 

3. PROOF OF THEOREM 1 

In this section, we are going to prove Theorem 1 which is stated in 5 1. 

Let K c E,(O) be a compact core, i.e., K is compact and the natural 
inclusion i : K -+ CI, (Q) is a homotopy equivalence. Actually, E,,,(n) 
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is a compact core for sufficently small p. We start with a construction of 
maps .fC : K -+ E;. 

LEMMA 6. - There are constants &{{ > 0, X and C, such thatfor all E < E{:, 

we can define fE : K + Ez, where a = ,krl log ~1 + X such that 

I$ .f; - idI1 6 v 

on K, where q is given by 

,r/=C2 IlOf&* +&f 
( > 

Proof - Since K is compact, we can pick rl~ > 0 such that for any 
{Ul...., (Lk} E K, the balls B(a;! 4r/~) C Q and are pairwise disjoint. 
Now once & < 477~, we can construct a map fE : Ck(fl) 4 H,‘(O, c) as 
follows: for any a = {ai.. . .: ak} E c,(n), let 

then on Q,.,, fE(u) is defined by 

where the function (P~,(, is defined on R by the following equation 

A(P~.~(x) = 0 in (2 
k 

@?C,“(~) ~ = y on XL. 

Notice that for a given a. the map cpE,<& is uniquely defined, up to an 
integer multiple of 27r. In fact, we can choose this constant such that the 
map a i ei~~~~~ is continuous by the standard lifting argument. On each 
B(u;,E), fE(a) is defined by 

in B(a;, E) 

on dB(ai, E). 

It is then easy to check that fz is a continuous map from CI, (0) to Hi (0, C). 
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Moreover we can estimate the energy E, ( fE (a)). Using the same analysis 
as in [Section I, BBH2], we have a constant C which depends on R and 
g only, such that 

EE(.fE(U)) 6 tv,(a1,. . , Uk) + hrl log&l + c. 

Let 
A’ = “Up,Eh-W,(ar,. . . j a,+): 

it is finite by the compactness of K. So 

EE(.fE(U)) I k7rl logEl + X’ + c. 

Hence there is an ~1 > 0 such that for all E 6 Ed, fE(u) E E,“, for 
(L = bE + X provided X is chosen large enough (but independent of E). 

Now suppose that E 6 E: = min{eb, ~1,4rl~}, and denote fE(u) by f=,(, 
for simplicity. Let a = {al, . . . , uh} be given in K, and a’ = {al,, . . . ,ul,} 
be the vortices for (fE,u)h, i.e., (a(fE,a) = {a:,. . . ,a;}. According to 
Theorem 3, on QP,“t = R \ UF=, B(a:,p), we have 

I&(x)1 3 Jj, for all z E f&f, 

where ~~ < p < EX. We may therefore consider on fi = R,,,, \ 

U,“=, B(G, &>, the map F = $$, .,,’ f- . [ takes its values in S1 and satisfies 
< z 1 on da. Moreover we have 

II - 11 5 4lf& - &al. 

This yields 

for some constant C depending only on g, K and 0. 

On the other hand, for any 1 < i 6 Ic, we have 

deg(l, aB(a:, p)) = -deg(l, dB(ai, E)) = 1 

So for any regular value y E S1 of c and y # 1, [-l(y) is a connection 
between balls B( ui, E) and B( u: , p). By the definition of length of minimal 
connection L given in (2.2), we get 

L(u’, u) - iF(p + E) < 7-t1([-l(y)) for almost every y E S1 
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Let 

and take A = <-l(N), using the coarea formula of Federer-Fleming, we 
obtain 

l/2 
(meas A)li2. (3.2) 

By (3.1), we have 

(meas A 

On the other hand 

Together with (3.2) we get that 

that is the conclusion we required. 0 

For any u E K, the ball B(a. 417~) c Ck(0) with radius 4r7~, where r/r< 
is the constant in the proof of Lemma 6, is in fact isometric to a standard 
ball in C’“. To see this, let I? = r-l(K) c Fk(0), which is also a compact 
core of Fk (R), and for any zi E 7i-l (a), the condition that B(n;, 471~)'s 

are pairwise disjoint implies that the ball I?(& 4rlK) c CL is contained in 
P’k(0) entirely, and B(a,4rlK) is isometric to B(ti,4~~). 

LEMMA 7. - There is an E,, such that,for any E < E,, the map fE induces 
an injection 

fE* : n,(K) + Kl(Jy): 

where a is chosen by Lemma 6. 

Proof. - The constant ~0 < E: is chosen such that 
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where Ci is as in Proposition 4, r/o as in Proposition 5 and ~b/, CZ and 
VK as in Lemma 6. 

For each element (1 E ri(K), we can choose a closed path c : S1 --+ K 
which representing a. Now for E < ~0, if fE . (: : S1 -+ EF is null 
homotopic, we get a map f : D2 --f Ez, such that ~]L)DJ = fE . c. 
By Proposition 5, on the compact set f(D”) c EP, we can dehne a 
continuous map Q : f(O”) -+ Ck(Q.., such that for any %I, E <f(D*), 
I]+(U) - Q(U)]] < 3~~~~. The map Cp . f]a~z = @ . f? . c : S1 -+ Ck.(<2) is 
null homotopic. On the other hand, by Lemma 6, 

Then we can find a unique minimum geodesic in E,(n) connecting 
+ fc . c(t) and c(t). This implies that @ . & . (: is homotopic to c. So 
(Y is a trivial element in n,(K), and this means that fE* is injective. c3 

Since 7rTT, : 7ri(R) + r,(K) and fE* : n,(K) + T,(Q) are 
injective, so is fE* . 7rTT, : 7rTT1 (E) + 7r1 (E;). Consider a covering space 
p : E,” + Ez -corresponding to the group fE* - T,(~I(@) c Al, the 
map fE . 7r : K + E; can be lift to a map f : k + & such that the 
following diagram commutes 

It + E; 

1 1 
K ---+ E;. 

LEMMA 8. - The map f” induces maps f* : HP ( I?) --+ H,( l?,“) on the 
homology groups which are injective for all p. 

Proof. - The argument here goes in the same fashion as the proof of 
Lemma 7. Consider a singular cycle c E Z,(k) such that f* ([cl) = 0 
in HP(&). This means that we have a p + l-chain c’ E C,+i(&) and 
dc’ = .f* (c). The set W = f(k) lJ support is compact in l?:,“. Then we 
define a continues map @i : p(W) -+ Z,(n) such that for any ‘IL E p(W), 

k@l(u) - @(u)ll < 3qK. 
Notice that ]]Qi . fE - id]] < 4qK, as before, we have @i* . fE* = id. This 

implies that @i* .P*(~~I(W)) c @I?. f=* .7r,(7rl(l?)) = 7r,(?rl(k)). So we 
can lift @i p : W + &(R) to @i : W i Fk(R). 

In fact, we can make ]]&i . f - id]] < 4r/K. Since ]]+i .p. p- 7r]] < 4n1<, 
there is a homotopy Ht such that Ho = 7r and HI = ai . p . f. Lift this 
homotopy to a homotopy fi, with ]]fio - fii ]I < 47~ and fiO = id,. 
Define %2 : J(K) -+ Fk(R) by &2(.f(~)) = Hi(a). Note that 

7r. 62 = @p1 'p = 7r. Q(k). 
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62 and &i differ by a deck transformation, i.e., there is an elements 
0 E S”, such that 

Replace &i by g .+ i, which is also a lifting of Q1 . p : W -+ E,(n) and 
I]CJ . &i . f - idI1 < 4qK. The new lifting will still denoted by &i. 

Now & maps the chain c’ into a chain in CI1+i (Fk( Q)), and 
ag.,(c’) = 6,(&z’) = & . f*(c). We get that (ai . f*(c) is a boundary 
in C,(Fk (0)). On the other hand, &1 . ,f is homotopic to the natural 
inclusion Z : K + Fk(I1). So c is homologous to &i f*(c), and c is null 
homologous as well. This shows that f* is injective. rJ 

The lemma allows us to estimate the category of &. 

COROLLARY 9. - The category cat(&) of l?; is at least k. 

Proof. - By Lemma 8, the map f* : H* (J?:) + H*(K) between 
cohomology rings are surjective, and this implies that the cuplength of Ez 
is at least the cuplength of J?, which is the same as the cuplength of Fk(R). 
By Lemma 2, the cuplength of i?,” is at least k - 1. Finally, according to 
[BG], the category cat(&) of &! is at least the cuplength of l?z plus one. 
This completes the proof. •1 

Now we are in the position to complete the proof of Theorem 1. The 
Lusternik-Schnirelman minimax theorem we will use is the following 

THEOREM 10. - Suppose F is a C2 non-negative functional defined on u 
smooth Hilbert manifold M such that 

i) the backwards gradient flow is complete; 
ii) F satisfies the following weak Palais-Smale condition: if we have a 

sequence {un} in M such that F(u,,) -+ c and I]VF(U~~)II + 0 as 
n + OG, then c is a critical value; 

iii) catM = k. 
Then we have either F has at least k distinct critical values in [O. a] or 

the dimension of the critical set qf F is at least 1. 

The proof is standard, we refer reader to [Pa]. 

Proof of Theorem I. - Now we want to apply Theorem 10 to the positive 
functional EE = E, . TJ : I!?: --+ Iw. Notice that & and E, have the 
same critical values and critical sets of the two functionals have the same 
dimension. If all three conditions in the theorem hold, both conclusions 
will imply that E, has at least k critical points on Ez. 

We now check the three conditions in Theorem 10. First, the backwards 
gradient flow of I!?;, is a lift of the backwards flow of E,, so it is 
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complete. Second, let {urL} be a sequence in ,?I?: such that I!!?~(u~) + c and 
ll~w4l + 0 as r~ ---f co, then &(P(u~)) + c and IIV&(P(IU~))(I + 0. 
We know that E, satisfies Palais-Smale condition, so p(~~,) has a 
subsequence converges to a critical point. This shows that c is a critical 
value of E, and then it is a critical value of & as well. Finally, cat,!?: 3 lo 
is the conculsion of Corollary 9. So we now can conclude that E, has at 
least k critical points on Ez. 

Outside of E,“, E, has at least another critical point, since Hi(0, C) is 
contractible, but E,” is not (if k: 3 2). So totally EE will have at least Ic + 1 
critical points on Hi (a, C). 0 
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