Ann, Inst. Henri Poincaré,

Vol. 15, n° 1, 1998, p. 1-24 Analyse non linéaire

Ergodic problem for the
Hamilton-Jacobi-Bellman equation. 1I
by

Mariko ARISAWA

CEREMADE - URA CNRS 749, Université Paris-Dauphine,
Place de Lattre de Tassigny, 75775 Paris Cedex 16

ABSTRACT. — We study the ergodic problem for the first-order Hamilton-
Jacobi-Equations (HJBs), from the view point of controllabilities of
underlying controlled deterministic systems. We shall give sufficient
conditions for the ergodicity by the estimates of controllabilities.

Next, we shall give some results on the Abelian-Tauberian problem for
the solutions of HIBs. Our solutions of HIBs satisfy the equations in the
sense of viscosity solutions.
© 1998 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

RESUME. — Nous étudions le probléme ergodique pour les équations
de Hamilton-Jacobi-Bellmans (HJBs). Nous utiliserons les notions des
conirdlabilités dans les systémes déterministes contrflés pour donner des
conditions suffisantes pour la convergence ergodique.

Ensuite, nous donnons des résultats du probléme de Abel et de Tauber
pour les solutions des HIBs. Nos solutions des HIBs satisfont les équations

au sens de la solution de la viscosité.
© 1998 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

1. INTRODUCTION

The so-called ergodic problem for the Hamilton-Jacobi-Bellman
equations concerns in studying the convergence of the terms Au,(z),
%u(m,T) (as A goes to +0, T" goes to +oo respectively) in the following
equations.

(Stationary problem - infinite horizon control problem)

(1) sug{—<b(w,a),Vu,\(x)>+/\u>\(w)—f(x,a)} =0, ze€Q,
ae
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2 M. ARISAWA

(Time dependent problem - finite horizon control problem)

d
(2) 2= (z,t) + sup{— <b(z,a), Vu(z,t)>~f(z,0)} = 0,
ot At
t>0,z€2,

u(z,0) = 0, z e},

with either one of the following boundary conditions.
(Periodic B.C.)
Q) is assumed to be a n-dimensional torus

n n

™ = R/ [[(1:2) =~ [[ (0.7,

=1 =1

where T; (1 <4 < n) are real numbers, in which case b(z, a), f(z, ) are
periodic in z; (1 < ¢ < n) with the period T; (1 < i < n).
(Neumann and oblique type B.C.)

(3) <Vuy(z),y(z)> =0 , 2€0Q,
(3) <Vu(z,t),y(z)> =0 , t>0,2€0Q,

where () is a smooth vector field on 02 pointing outwards, i.e. denoting
n(zx) the unit outward normal at z € O, y(x) satisfies

(4) Jv >0 suchthat <n(z),y(z)>>v , Vzeol.
(State constraints B.C.)

(5) ux(z) , u(z,t) are viscosity supersolutions of (1), (2)
in Q, Qx(0,00) respectively.

Here, Q is a bounded, connected, open smooth subset in R™ ; uy(z)
(A > 0) and u(z,t) are real-valued unknown functions defined in €,
Q¥ x [0,00) respectively ; A is a metric set corresponding to the values
of the controls for the underlying controlled dynamical system ; b(z, )
is a continuous function on £ x A with values in R™ which is bounded,
Lipschitz continuous in z uniformly in o ; f(x, ) is bounded continuous
on Q x A with real values.

The relationship between the convergence of limy_.o Aur(x),
limr_o0 7 u(z,T) and the notion of “ergodic problem” was mentioned
in our previous paper [1]. Here, we only note that the unique viscosity
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ERGODIC PROBLEM FOR THE HAMILTON-JACOBI-BELLMAN EQUATION. I 3

solutions (for the definition of the viscosity solution, we refer M.G.
Crandall, P.L. Lions [5]) ua(z), u(z,t) of the equations (1), (2) are the
value functions of the following control problems. (See P.L. Lions [6], [7],
1. Capuzzo-Dolcetta - P.L. Lions [3], I. Capuzzo-Dolcetta - J.L. Menaldi
[4], HM. Soner [9}).

(6) wux(z) = inf /00 e flza(t),a(t))dt , A>0,7z€Q,
a() Jo

t
M) u(et) = inf [ fea(@a)ds . >0, 2€T,
where «o(-) is any measurable function “called control” from [0, 00) to
A, x4(t) is the solution of the following ordinary differential equation

corresponding to «(-) :

(Controlled deterministic system - Periodic B.C.)

%wa(t) = b(z4(t), a(t)) t>0,
(8) 7,(0) = z z €Q, Vo) control,
z.(t) € O ¥t>0, Va) control.

(Controlled deterministic system - Neumann and oblique type B.C.)

r

Zo(t) = w—f-/o b(za(s), a(s)) ds—/o Y(za(s))dBs Vi >0,

zo(0) = x Tz €%,V «acontrol,
(9) z.(t) € Q Yt>0, Vacontrol ,

Bt - /t laﬂ(xa(s)) d/Bs Vi > 0 s
0

L is continuous and nondecreasing.

(Controlled deterministic system - State constraints B.C.)

d

2 alt) = blza(t),o(t)) £>0),

24(0) = r € Q, Vo) control,
(10) To(t) € Q Yit>0, Va() control.

At any y € 99, there exists 3 € A such that
<n(y), by, B)> < 0.

Since our study in this paper is closely related to the results of our former
paper [1], we recall them here.

Vol. 15, n® 1-1998.



4 M. ARISAWA

THEOREM A. — Let f(x, ) in (1), (2) be of the following form f(z,a) =

9(z) + h(z, @), where g(x) is an arbitrary real-valued Lipschitz continuous

function on Q and h(z, ) is a bounded continuous function in Q x A. If for
any Lipschitz continuous function g(x) there is a constant d, such that

(11) /{iné)\u,\(w) =d, , forall €,

1 _
(12) (resp. Tlim TU(IL‘,T) =d, , forall z€,)

then there exists a subset Z of Q which satisfies the following properties
2), (P), (A).

(Z) Z is non-empty and z € Z if and only if for any y € Q and for any
g€ > 0 there exist T. > 0 and a control o, such that

ljff)l T. = +¢ , |z—ya.(T) <.
(P) Z is closed, connected and positively invariant, i.e.
(I) 24(t)€Z . VzeZ Nacontrol Vt>0.

(A) Z has the following time averaged attracting property, i.e. for any
open neighborhood U of Z,

/\/ XUl'a ))dt—>1,

(13) as A | 0, uniformly in a(-) , Vz € Q,
17
(resp. = / xv(za(t))dt — 1,
T Jo
(14) as T — oo, uniformly in a(-) , Y2 € Q )

where xi(U C Q) denotes the characteristic function of the set U.

THEOREM B. — Let f(x,a) in (1), (2) be in the form of f(x,a) =
g(z) + h(z, ) where g(x) is an arbitrary real-valued Lipschitz continuous
function on Q0 and h(x,«) is a bounded continuous function in Q x A.
Assume that there exists a maximal subset Qg of Q2 such that for any Lipschitz
continuous function g(x) there exists a constant number d, such that

(15) l/\illrgAqu(:c) =d, , forall x e,

1
(16) (resp. Th—I»I;o Tu(aT) =d, , forall x€ Q).
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Then, there exists a subset Zy of ) which satisfies the following properties

(Zo), (o). (Ao). i
(Zo) Zy is non-empty and z € Zy if and only if for any y € §)o and for
any € > 0 there exist T. > 0 and a control a. such that

lim 7. = +o¢ , |z—ya(T:)| <e.
€l0

(Py) Zy is closed and positively invariant, i.e.
(I 2(t)€EZy , V2z€Zy,Yacontrol Yt>0.

(Ag) For any open neighborhood U of Z,

(17) lim inf/\/ e Myxue(za(t))dt = 0 , YaeQ,
0

o a()

1 T
(18) (resp. lim inf—f/ Xve(za(t))dt = 0 |, VzeQ),
0

T—oc ()
where xuy(U C Q) denotes the characteristic function of the set U.

Roughly speaking, Theorem A (resp. B) asserts that the convergence
property (11), (12) (resp. (15), (16)) in Q (resp. in ) leads to the existence
of the ergodic attractor Z (resp. Zp). In other words, the existence of such
a subset Z (resp. Zy) is a necessary condition for the convergence property
(11), (12) (resp. (15), (16)).

Our first goal in this paper is to study the converse, i.e. does the existence
of Z leads the convergence (11), (12) ? For this, we introduce a notion of
controllability (the exact controlability and the approximate controllability).

Next, we shall study the equivalence between the averages :

liminf)\/ e M f(za(t), aft)) dt
Al0 o 0

and

T—oo «

hm lnf—/ f(za(t), at)) dt,

which can be called an Abelian-Tauberian problem. More precisely,
in the linear case, ie. b(z,a) = b(z), ¥V z € Q, f(z,a) = flx).
¥V x € Q, it is known that if for a continuous function f(z) there exists
limyjo A [ €™ fxo(t)) dt at some point .L() € Q (zo(t) denotes the
solution of (8), (9), (10)), then limy_,o T fo oft)) dt exists and

(19) Q%A/O e f(zo(t))dt = lim %/0 Flzo(t)) dt

T—o0
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6 M. ARISAWA

holds, which is called the Abelian Theorem ; on the other hand, if for
a continuous function f(z) there exists limy_o 7 fOT f(zo(t)) dt at some
point zy € €, then lim,\lo)\fooo e~ M f(zo(t)) dt exists and (19) holds,
which is called the Tauberian Theorem. We refer for instance to B. Simon
[8] for these results. Here, we generalize these relationships in a nonlinear
case when b(z, «), f(z, @) possibly depend on o € A. These results will
be given in section 3.

Finally, we shall see the relationship between the convergence property
(11) of Theorem A and the following first order partial differential equation

(20) sup{< — b(z,a), Vu(z)>} =0 , z€Q,

aEA

with the same boundary condition as for (1). We shall call the equation
(20) the equation of first integrals by analogy with the dynamical systems
case, i.e. b(z,a) = b(z), ¥V z € Q. Roughly speaking, we shall assert
that the convergence (11) implies that the unique viscosity solutions of the
equations of first integrals are the constants, and the converse is also true.
These results will be given in Proposition 9, Theorem 10 in section 4.

In the following, we use the notations R, Z, N for the sets of real,
integer, natural numbers respectively. The usual distance between two
points z,y € Q is given by |z — y| ; the usual scalar product of nxn is
denoted by <-,->. We use the letters C(C,, Cs, . ..) for positive constants.
We shall write the solution of the ordinary differential equations (8) or (9)
or (10) as z,(t),ys(t), t > 0, etc... which correspond to the initial value
z.(0) = z, y(0) = y. We denote by A the set of all measurable functions
from [0,00) to A; by A, the subsets of A such that

A ={a()e Az, (1) €Q  Vt>0)}
We shall sometimes write
H(z,p) = Sug{~<b($,a),p> - flz,0)}
e

where the right-hand side appears in (1), (2).

From the Lipschitz continuity of b(z,«) in x €  and « € A, in Periodic
B.C., and Neumann B.C. cases, we have

[2a(t) = ya(t)] < e'|z—y|,
(21)
Vz,y€Q, Vacontrol, V¢ >0 A > 0is a constant,
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ERGODIC PROBLEM FOR THE HAMILTON-JACOBI-BELLMAN EQUATION. 11 7

and in the State constraints B.C. case, we have for any =,y € €, and for
any «(-) € A, there exists 8(-) € A, such that

(21') |za(t) — ya(®)] < e'|z—yl,
Vit >0 A > 0is aconstant.

To be more specific, in the Periodic B.C. case A is given as follows (see
P.L. Lions [6])

(22) Ao = sup_{—<b(x,a)—b(1",a), r—a'>z—-z'|7*} .

z.c'€Q
a€A

For Neumann type boundary conditions, (21) is proved in P.L. Lions [5]. In
the case of State constraints boundary condition, we refer to M. Arisawa-
P.L. Lions [2]. In particular, if A\g = 0 in (22), we have respectively in
place of (21) (in Periodic and Neumann type B.C. cases)

(23) |za(t) — ya(t)] < Colz —yl,
Vaz,y€Q, Vacontrol, Vi>0,

and in place of (21°) (in State constraint B.C. case) for any z,y € Q,
a(-) € A,, there exists 3(-) € A,, such that

(23) [za(t) —ys(t)] < Colz—yl V>0

where Cj is a constant in each cases, we shall call that the system is
Lipschitz continuous.

The author is very grateful to Professeur Pierre-Louis Lions for his
constant encouragements and helpful advices.

2. CONTROLLABILITY
We recall the definitions of the exact controllability and the approximated
controllability.

DeriNiTIoN 1 (Exact controllability). — A point z € € is said to be
exactly controllable to a point y € 2 if there exist a control «(-) € A, and
T(z,y) > 0 such that x,(T(x,y)) = v.

DEFINITION 2 (Approximated controllability). — A point = € Q is said to
be approximately controllable to a point y € ) with the estimate §(¢; z,y)
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8 M. ARISAWA

if for any ¢ > 0O there exist a control @ € A, and T(e;x,y) > 0 such that
Iz (T(e52,y)) —y|l < e T(e;z,y) < 8(e;x,y).

From the above definitions, one sees that the properties (Z) and (Zg)
of the ergodic attractors Z and Z; in Theorems A,B mean that all points
in © (resp. {2o) are exactly or approximately controllable to any points in
Z (resp. Zy). That is, the convergence (11), (12) or (15), (16) implies the
controllability of the system towards Z or Z,. In the rest of this section, we
shall study the converse, i.e. does the exact or approximated controllability
imply the convergence (11), (12) or (15), (16) ? We present two results in
Theorems 1 and 2 in this direction.

THEOREM 1. — Assume that any point x € Q is either exactly controllable
or approximately controllable with some estimate §(e;x,y) to any point
y € Q, and that the controllability is satisfied in the following uniform
sense, i.e. either one of the following conditions (i), (ii), (iii) holds.

(1) (Uniform exact controllability). There exists a number T > 0 such
that any point © € Q is exactly controllable to any point y € Q with
T(x,y) < T.

(ii) (Uniform approximated controllability). There exist some v € [0,1)
and some C > 0 such that any point x € Q is approximately
controllable to any point y € Q with the estimate §(c;x,y) such
that

(24) 8(e;z,y) < C(—loge)” , Ve>0,Vua,ye.

(iii) (Uniform approximated controllability for the Lipschitz continuous
system). Let the system be Lipschitz continuous ((23)). There exists
a continuous function 6(c) defined in € > 0 such that lim. o 6(¢) =

+o00 and any point x € £ is approximately controllable to any point
y € ) with the estimate 6{¢;x,y) such that

6(e;z,y) = 6(e) , Ye>0,Vur,yel.

Let f(x,«) be Lipschitz continuous in Q x A uniformly in o € A. Then,
for any such function f(z,«), there exists a constant dy such that

(25) 1/\1{101 Aup(z) = dy , uniformlyin z€Q.
(26) lim %u(w,T) = dy , uniformlyin z€Q.

Annales de ['Institut Henri Poincaré - Analyse non linéaire



ERGODIC PROBLEM FOR THE HAMILTON-JACOBI-BELLMAN EQUATION. I 9

Next, we shall consider the situation such that any point z € Q is exactly
or approximately controlable to any point y € Z;, where Z; is strictly
contained in €.

THEOREM 2. — Assume that there exists a nonempty closed invariant subset
Z1 C Q which satisfies the following properties.
(Ao) For any point x € €, for any a(-) € A,, {z.(t)}t > 0) is
attracted to 7, in the following sense.

(i) (General case of (21) or (21’)). For any point © € Q\Zl, for any
a(-) control in A, and for any € > 0, there exist z. € Z1 and a
number T, > 0 such that

|Za(Te) — 2] < &,

T. < C(-loge)”,

where C' > 0, ~ € [0,1) are constants depending on .

(ii) (Lipschitz continuous case of (23) or (23°)). Let the system be Lipschitz
continuous. For any point x € Q\Z,, for any «(-) control in A, and
for any € > 0, there exist z. € Zy and a number T, > 0 such that

|za(Te) — 22| < e.

(C) Any point z € Q\Z, is approximately controllable to any point
z € Z; with the estimates §(¢; z, ), in each of the following cases.

(1) (General case of (21) or (21°)).
8(e;x,z) < C(—loge)?,

where C > 0, -~ € [0,1) are constants depending on z, z.
(i1) (Lipschitz continuous case of (23) or (23)).

8(e;x, z) < 8(e),

where 6(¢) is a non-increasing continuous function defined in € > 0.

(UCZ) Any point z € Z, is either exactly controllable or approximately
controllable with some estimate §(¢; z, w) to any point w € Z1, and
the controllability is satisfied in either one of the following uniform
sense: (i) uniform exact controllability, (ii) uniform approximated
controllability, or (iii) uniform approximated controllability in the
Lipschitz continuous system in Theorem 1, where in the statement
Q is replaced by Z,.

Vol. 15, n® 1-1998.
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Let f(x,a) be Lipschitz continuous in Q x A uniformly in o € A. Then,
for any such function f(x, ) there exists a constant dy such that

2 i z) = e,
(29) lﬂ% Auy(z) dy , YzeQ,

.1 =
(30) Tlggofu(]’T) =d; , Vzeq.

The followings are simple examples of the systems satisfying the
assumptions in Theorems 1 and 2.

Example 1 (for Theorem 1). — Let H(z,p) = sup,c4{—<b(z, ), p> —
f(z,a)} = |p| — f(z), where f(z) is an arbitrary Lipschitz continuous
function in x € . Consider the equation (1) with this Hamiltonian and
either one of the boundary conditions of Periodic B.C., Neumann and
oblique type B.C., or State constraints B.C. Then, this is the case of
the uniformly exact controllability in Theorem 1, (i), and we have the
convergence property (25), (26).

Example 2 (for Theorem 2). — Let Q = (~1,1) x (-=1,1) C R?, and
put H(z,p) = sup,<i{z1p1 + ap2} — f(2), where & = (21,12) € 2,
p = (p1,p2) € R?, and f(x) is an arbitrary Lipschitz continuous function
in €. Consider the equation (1) with this Hamiltonian and either one of the
boundary conditions of Periodic B.C., Neumann and oblique type B.C., or
State constraints B.C. Then, we can apply Theorem 2, because the system
satisfies (23) and Z; = {(0,z2) | =1 < @y < 1} satisfies (A), (C) and
ez).

The proof of Theorems 1, 2 are based on the following two Lemmas.

LEMMA 3. — Let d;, ds be the real numbers, and assume that uy(x), us(x)
are respectively a viscosity subsolution and a viscosity supersolution of the

bl
prootem H(z,Vu)+d; = 0, 2€Q,

where H(x,p) = sup,e4{—<b(z, ), p> — f(x, o)}, with either one of the
boundary conditions of Periodic B.C., Neumann and oblique type B.C., or
State constraints B.C. Then, d; < ds.

LemMA 4. — Let f(z, ) in (1), (2) be Lipschitz continuous in 7 € Q
uniformly in o € A. Let Ay > 0 be the number given in (21), (21°). Then,
we have the following.

@A) (In the case when Ay > 0)
31)  Jhua(@)=Aux(y)| < Cla—y|®s , YA>0,Vaz,ye,

where C > 0 is a constant.
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(ii) (In the case when Ay = 0)

(32) Mua(z)=Aua(y)] < Cle—y| , YA>0,Vz,ye,
1 —
(33) (x,T)—Tu(y,T) < Clz—y| , VI >0,Vz,ye,

IA

1
—
T
where C > 0 is a constant.

Proof of Lemma 3. — Let d; > ds, and we shall look for a contradiction. If
necessary, by adding a positive constant to u;, we can assume that u; > us.
Let ¢ > 0 be small enough such that d; —eu; > dy — eus holds in Q. Since
ug is a supersolution of the above problem, us is also a supersolution of

H(z,Vus)+eus+dy—eug 20 , z€,
with the corresponding boundary condition. Since u; is a subsolution of
H(z,Vui)+eus+dy —eu; <0, z € Q,

with the same boundary condition, the standard comparison theorems of the
viscosity solution theory (for the periodic B.C. case, see P.L. Lions [6]; for
the Neumann B.C. case, see P.L. Lions [7] ; for the state constraints B.C.
case, see H.M. Soner [9], I. Capuzzo-Dolcetta, P.L. Lions [3]), we have
u; < uy, in z € O, which is a contradiction. Therefore, d; = do.

Proof of Lemma 4. — (i) In the state constraints case, the estimate (31)
on Auy follows from I. Capuzzo-Dolcetta and P.-L. Lions [3]. In the other
cases, the proof is straightforward and we reproduce it here for the sake
of completeness. So, in order to prove (31) for Ay > 0 (for the cases of
Periodic B.C. and Neumann B.C.), first we shall prove

s () =dur(y)| < Cle—y|™ |

(34) 2

Xo— A

VA>0,Vz,yeQ suchthat |z—y|<

Let 2,y € Q be arbitrary, ¢ > 0 be an arbitrary small number, and take
a control g of y such that for any T > 0, any A > 0, the following holds

Aup(y) +e > )\/0 e (s, (£), Bo(t)) dt + Ae™>Tuy (ys, (1) -

Vol. 15, n® 1-1998.
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Then, by the dynamic programming principle we have
(35) Aur(z) — Aur(y) — ¢

< A ()-A/T M = e My (g
S AUNT € yﬁo(t)a /Bﬂ(t)) dt — Xe U (yﬂo(T)) .

0

By the continuity (21) of the system,
lxﬂo (t) - yﬂo(t)‘ < €A°t|1'—y| . Yt2>0,

and putting this into (35) we have

e——/\T
Xea(e) = dur(y) = < AC(eM N jg—y|+ ) |

A
0<VA<A, VT >0,

and since ¢ > 0, x,y € () are arbitrary, we get
(36)
[Aup(2)—Aua(y)| < ACG(T) , YA>0,Vz,yeQ, VT >0,

AT

where C > 0 is a constant, G(T') = e~ M|z — y| + £— It is easy to

see that G(T) (T > 0) takes its minimum at T = )\—10 log (mlm——m)
provided that |z — y| < &‘(,‘1‘:\ Inserting Ty in (36), we have (34).
For z,y € © such that |z — y| > ;\f;; since

el 2 ()%
x — y|*o _— s
vl 2 (%)
where the right-hand side converges to 1 as A — 0,
s (z) = Mux(y)] < C' < Cla—y|™

and (31) is proved.
(ii) The inequality (32) is proved by repeating the preceding proof by
taking T = 400 in (35). The relationship (33) is also quite similarly shown.
Now, we shall prove Theorems 1 and 2.

Proof of Theorem 1. — First, we shall prove
(37) /l\in%) Mua(z)=Aua(y)| = 0 , uniformly inz,y € Q,

for each cases of (i), (il) and (iii).
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In the case of (i), for an arbitrary pair of z,y € Q there exists 7 > 0
such that for a control @ of z, zz(T(x,y)) = y, T(z,y) < T. Thus, by
the dynamic programming principle

Aup(z) — dux(y)

T(x,y)
<A / e M f (za(t), a(t)) dt + Xe Ty, (y) — dua(y) .
0

and by the boundedness of f and Au,,
Auy(z) — dux(y) < C()\T-FE"AT— 1) , VA>0,Vzye,

where C' > 0 is a constant. Since z,y € Q are arbitrary, by letting A — 0
we get (37).

In the case of (ii), there exists a number -, 0 < v < 1 which satisfies the
statement. Let z,4 € Q be an arbitrary pair of points, ¢ > 0 be arbitrary,
and take a control @ of z such that |z5(7(¢;z,y)) — y| < e. Then, by the
dynamic programming principle

T(ex,y)
)\’U,)\(LL> - /\'U,)‘(y) S /\/0 (;’_Atf(l‘a(t),a(t)) dt+

+ )\e—AT(E:w,y)u)\ (xa_(T(g; x, y)) — )\'I,L)\(y)
C(l _ e-/\T(E;m,y))+
+ e~ AT (eicx,y) (/\’U/)\(-Ta‘(T(E; z, y))) — Auy (y)) s

IA

where C > 0 is a constant independent of the choice of z,y € Q, ¢ > 0,
A > 0. From this and Lemma 4, we have

)\’Ll,)\(a:) - A’Uz)\(y) S C(l — e‘AT(E;z,y) + 6%) ’

(38) _
YA>0,Vz,yed,Ve>0.

Now, we recall the estimate (24). Then, putting
. 1
e = exp(=A"0*)) | forsome O<w< - —1
Y

in (38), we have (37).
In the case of (iii), from the same argument as in the case of (ii), by
using Lemma 4, we have

Aup(z) — Adup(y) < C(l—e”\T(s‘z’y)-i—s),
VA>0,V2,y€Q,Ve>0,
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14 M. ARISAWA

where C' > 0 is a constant. And since T'(e;z,y) = O(6(¢e)), im0 6(e) =
+oc, we have (37).
Therefore, in each cases of (i), (ii) and (iii), we have proved (37).
Now, from (37) there are a subsequence A’ — 0 of A — 0 and a number
dy such that

(39) im MNuy(z) = d , uniformlyin z€Q.

1
A0

We shall prove the uniqueness of the number d;. For this purpose, suppose
that there are another subsequence ' — 0 of A — 0 and a number ds
such that d; # do,

(40) l,im0 pwu(z) = dy , uniformly in z € Q.
H—
Assume that d; > d,, and we shall look for a contradiction. If d; > d.

by the uniform convergence of Xwuy/, p'u, , for ¢ > 0 small enough we
can take X, small enough such that

wuy, 1S a viscosity subsolution of

H(z,Vuy)+d, < ¢ , z€§),
and a viscosity supersolution of
H{z,Vuy)+dy > —¢ z €N,

u,s 1S a viscosity subsolution of

H(z,Vuy,)+dy, < ¢ , 2€Q,
and a viscosity supersolution of

H(z,Vu,)+dy > —e , z€fl,

where H(z,p) = supye 4{—<b(z, ), p> — f(z,a)}, with the appropriate
boundary conditions. Then, by Lemma 3, since € > 0 is arbitrary we have
d, = ds. Therefore, we have proved the convergence property (25). We
do not give the proof for the convergence property (26), here. This can be
obtained from (25) by using the Theorem 5 below in §3.

Proof of Theorem 2. — First of all, we remark that from Theorem 1,
the assumption (UCZ) leads the following : for any bounded continuous
function f(z, ) in  x A, Lipschitz in = € Q uniformly in o € A, there
exists a constant dy such that

(41) 1/\1{1(} Auy(z) = dy , uniformly in z € 2y,
1
(42) Tlim T w(z,T) = d; , uniformlyin z¢€ Z;.
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In the following, we only prove the statement for the general case of (21)
or (217), for the Lipschitz case can be proved similarly. Let x € €, and
choose a(-) so that for arbitrary e > 0, T > 0,

T
(43)  Aur(z)+e> /\/ e_)‘tf(xa(t)), a(t))dt + )\e_ATuA(x(,(T)).
0

Then from the condition (Ag), (i), for any & > 0 there exist z; € Z3,
Ts > 0 such that

|26 (Ts) — 25| < 8,
Ts < C(~logd)”,

where C' > 0, + € [0,1) are constants depending on z. From Lemma 4,
by putting T' = T in (43) we have

Aux(z) — Aun(zs) + € > ~CATs + (e — 1)dua(zs) — CEN

and from the estimate of Ts, we know that the right-hand side of the above
inequality converges to 0, provided that we take

6 = eap(~A~UF),

1

for some 0 < w < vy~ — 1. Since € > 0 is arbitrary, from (41) we have

(44) lim AU)\(IL’) > df , VeeQ.
A—0

Next, we shall prove the converse relationship

(45) lim Muy(z) < df , VYzeQ.

A—0
Let x € Q, 2 € Z; be arbitrary, ¢ > 0 be arbitrary. By the assumption (C),
there exist a control e of z, T'(e; x, z) > O such that |z,(T'(¢; x, 2))— 2| < ¢,
T(e;z,2) < 6(e;x, z). Therefore, as in the proof of Theorem 1, by using
the dynamic programming principle, we have
(46)

Aun(z) — Aua(z) < C(1- e MTEE) 4 5)/\/\Ow

, YA>0,YVe>0,
here we used Lemma 4.

Then, by putting ¢ = exp(—A~1+%)), for some 0 < w < v~ ' —1 in
(46), from (41) we have (45).

Therefore from (43), (45), we have proved the convergence property
(29). The relationship (30) can be proved similarly, and we omit the proof.
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16 M. ARISAWA
3. ABELIAN-TAUBERIAN PROBLEM

In this section, we shall study the relationship between the two averages
limy_o Aux(z) and limg o 7 u(x,T). The following result (Theorem 5)
concerns the case when one of the limits exists uniformly in z € (, in
which case the two convergences are equivalent. Next, in Theorem 6 we
treat the case where the convergences hold, but not necessarily uniformly in
x € €, in which case we can show that the existence of limy_, o, % w(x,T)

implies limx_o Aux(#) = limy—o 7 u(z, T'). We shall state the Theorems.

THEOREM 5. — Let uy(«x), u(x,t) be the solutions of (1), (2) respectively
which satisfy the same boundary condition, either one of Periodic B.C.,

Neumann and oblique type B.C., or State constraints B.C. respectively.
Then, the following holds.

() If Mux(x) converges uniformly in x € Q to a real number d as A
goes to O, then %u(:l:,T) converges uniformly in @ € Q to d as
T goes to +oc.

() If % u(z, T) converges uniformly in © € Q to a real number d as
T goes to +oc, then Auy(x) converges uniformly in x € Q to d as
A goes to 0.

For the case of pointwise convergence, first we shall give the following

Lemmas.

LEMMA 6. — Let uy(x);u{x,t) be the solutions of (1), (2) respectively
which satisfy the same boundary condition, either one of Periodic B.C.,
Neumann and oblique type B.C., or State constraints B.C. respectively.
Then, the following holds.

1 _
(47) lim Auy(z) > lm = u(z,T) , VzeQ,
A—04 T—o0 T
1 —
(48) lim Aus(z) < lim = u(z,T) , VeeQ.
A—0y T—o0

LemMa 7. — Let f(x,a) in (1), (2) be in the form of f(z,a) =
f(z) + g(z, ), where f(z), g(x, @) are continuous functions defined in QQ,
Q x A respectively. Let ux(t), u(x,t) be the solutions of (1), (2) respectively
which satisfy the same boundary condition, either one of Periodic B.C.,
Neumann and oblique type B.C., or State constraints B.C. respectively. We

denote

(49) H(z,p) = sgg{—<b(:c,a),p> - g(:v,oz)} .
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And we assume

(50) H(z,p) >0, VzeQ,VpeR", H(z,0) =0, VzeQ,

(51) H(z,p) isconvexinp € R".

Then, there exists 0 < 7 < 1 such that the following holds

1
(52) Aup(z) < T uw(z,T) ,

VeeQ,VA>0 and YT >0 suchthat XT < 7.

We then obtain the following Theorem from Lemmas 6 and 7.

THEOREM 8. — Let uy(x),u(z,t) be the solutions of (1), (2) respectively
which satisfy the same boundary condition, either one of Periodic B.C.,
Neumann and oblique type B.C., or State constraints B.C. respectively.
Then, the following holds.

() Ifat a point T € Q  limp_.oo %u(f, T) exists, then limy_o Au(T)
exists and

. N
(53) /{%Aux(x) = lim Tu(z,T).

T—o00
(ii) Let f(z,a) in (1), (2) satisfy the assumptions in Lemma 7. Then,

we have

1 _
(54)  lim () = lim =u(zT) , Yeed.
A—0 T—oc T

Now, se shall prove the Theorems and Lemmas.

Proof of Theorem 5. — (i) Let M = supg, , |f(z,a)|, and let € > 0
be an arbitrary small number (which is fixed). Let = € Q be an arbitrary
point and let T > 0. We choose A = ¢ - T~!. Then, by the dynamic
programming principle

Aur(z) = igf{)\/o e M f(zo(t), a(t)) dt + Xe T u,\(:zza(T))}
(55) = igf{% /O F(za(t), alt)) dt

+ %/0 (e =1)f(za(t), a(t)) dt + /\e_E“A(“’“(T))} '
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18 M. ARISAWA

In (55),

=/ () faa0)a®) ] < M —e— e

and dividing the both hand-side of (55) by ¢, letting T — oo, by the
uniform convergence of Auy to d we get the following

lim —1nf/ f t) )dt+ —1)’ 1 —f—g E) "
(56) Tooo T N B
Tlgll —1nf/ Fza(t), alt)) dt + d(e 5—1)‘ < M(l—j-e )

Since ¢ > 0 is arbitrary, we have proved

i _
lim inf —/ flzo(t),a(t))dt = d , Ve,
Tooo a T Jo

and from the above argument it is clear that the convergence is uniform in
x € 2. And the proof of (i) is complete.

(i) Let v(x,t) = e Mu(x,t), Vo € Q, ¥V ¢ > 0. Since u(x,t) is the
viscosity solution of

o -
—ai:— +sup{~—<b(:1:,oz),Vu> - f(:z:,a)} =0, z2z€Q,t>0,

uw(z,0) =0 , z€Q,
with the appropriate boundary condition, v(z, t) is the viscosity solution of

% +sup{ —<b(z, @), Vo> — e M f(z, )} + e My(z,t) = 0,

(57) z€N,t>0.
v(z,0) = 0 e,

with the same boundary condition as wu(x,t). Therefore, by the dynamic
programming principle we can write

v(z,t) = e Mu(x,t)

(58) = igf{/o e M (f(zals), a(s)—Au(za(s),s)) ds} .
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Let M = supg, 4 |f(z, )| Since u(z,t) < Mt, we deduce
.)\/ e (f(zals), a(s))—Au(za(s), s)) dsl < Ce (141,
t

where C' > 0 is a constant.

Hence, multiplying the right-hand side of (58) by A, letting ¢ — oo,
we have

/\igf/o e (f(2a(f), at)) = Mu(za(t), 1) dt = 0,
YA>0,Vze.

(59)

Let € > 0 be an arbitrary fixed number, and let A > 0, T > 0 satisfy
e = AT. By the uniform convergence of % w(z,T) to d as T' — oo, there
exists Ty > 0 such that

1 —
(60) ‘fu(a:,T)—cH <e , YreQ, VT>T1T,.

For an arbitrary T' > T}, we rewrite (59) as follows

igf{)\ | /0 TN fa (), alt)) db — A2 | /O L N (1), alt)) de

—/\2/ e"’\tu(:ca(t),a(t))dt} =0,
T
YA>0,VzeQ, VT >T, suchthat M\ =¢.

(61)

We estimate the second and the third terms of the left hand-side of the
above equality.
T T
W/ e_’\tu(a:a(t),a(t))dt' < Me)\/ e Mdt = Me(1—e~)
Jo 0

(62)
Yz eQ, VYacontrol .

ee”f(d—1—¢) < A2 /TOO e Mu(24(t), a(t)) dt — de™®

< ee(d+1+¢) VzeQ, Vacontrol .

(63)
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From (61), (62), (63), we obtain

ii_r% inf)\/ e Mz (t), alt)) dt —de ™| < K(e)
— [e4 0

VeeQ,Ve>0,
lim inf)\/ e Mf(za(t), at)) dt —de™®| < K(e)
A—0 @ Jo

VeeQ,Ve>0,

where K(g) — 0 as ¢ — 0. Therefore, we have

lim ian/ N flza(t)alt)dt = d . Yzed,
JO

A—0 «

and from the above discussion, the convergence is uniform in z € Q.

Proof of Lemma 6. — Let M = supg, , f(z,a), and = be an arbitrary
point in ). We write

Aup(z) = mf)\/ e fza(t), at)) dt

= igf/\Q/ / F(@a(s), afs)) ds dt .

(64) Auy(z) = ir { / /fxa (s)) ds dt
+/\2/ / f(za(s )dsdt} VT >0.

By using (64), we shall prove (47), (48) in order.
First, for (47), we get the following inequality from (64)

Aup(z) > mf A2 f(zals),afs))dsdt
. =)

+ A2 / 1nf/ f(za(s),a(s))dsdt, YT >0.
JT

Denote d(z) = lim % u(z,T), and for an arbitrary e, > 0 choose T > 0

T—o0

such that
1 i
66) o ;[ feaa)ds 2 d@)-c0 | V2T,
o 0
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In the inequality (65), we set T' = Ty and we have

To
Auy(z) > 1nf)\2/ / f(zals),a(s))dsdt
+ (d(z) - €o) (/\Toe Aoy f"’\TO) X

(67)

Now, let ¢ = AT and we have the following

To
2 < _ ~p—E
) A / / J(wals) o)) dsdt| < M(1 ™Y
Y « control .
From (67), (68),
Aup(z) = d(z)(ee " +e™°) > —M(1—e “—ee™ %) —gofee “+e™°).

Since this inequality holds for any A > 0 independently of the choice of
gg > 0, Ty > 0 taken in (66), as ¢ = ATy — 0,

lim dur(e) > d(e) —eo
A—0

and we have (47), for ¢g > 0 is arbitrary.
Next, for (48), we get the following inequality from (64),

Auy(z) < 1nf)\2/ /f s),s))dsdt
+M1 e AT )\Te_’\T) , YI'>0,

(69)

here we used the same estimate as in (68). Denote d(z) =
limsupy_, —Tl— u(z,T'), and for an arbitrary number £; > 0 choose T} > 0
such that

(70) inf %/ F@als),a(s))ds < da)+e1 , YaeQ, Vi>T,.
« 0

In the inequality (69), we set T = T and by (70) we have
Aur(z) < (3(az)+51)(/\Tle—>‘T1+e_’\T‘) + M(l—e_)‘Tl—)\Tle"\Tl) .
Putting ¢ = AT}, we get
Aua(z) < (d(z)+e1)(ee™*+e) + M(1—e “~ee™°) .

By the same argument as the one used to prove (47), we get (48) from
the above inequality.
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Proof of Lemma 7. — Let vy (x,t) = Atuy(z), VA > 0,Vt >0,V 2z € Q.
Since wx(z) is the viscosity solution of

(71) H(z,Vuy(x)) + duy(2) = flz) = 0 , z€Q,
with the appropriate boundary condition, vy (z, t) is the viscosity solution of
(72)

O — — —

% + H(z, Voa)—f(z) = H(z, Vo )—H(z, Vuy), 2€Q,t>0,

ua(z,0) = 0 , zeQ,

with the same boundary condition to (71). By the assumption (50), (51),
there exists 0 < 7 < 1 with which the following holds : for any A > 0,
t > 0 such that Mt < 7 < 1,

H(z,Vuy)— H(x,Vuy) = H(x,\tVuy) — H(x,Vuy)
< {M -1} H(z,Vu,) .
Hence, from (50), (72), (73) vx(z,¢) satisfies

N __
%{—H(.’L‘,V’U}\)—f(l') <0 ZL‘ESZ,O<t<§,

ua(z,0) = 0 r €N,

(73)

with the same boundary condition to (72). Therefore, by comparison
theorem, we have

Muy(z) = va(z,t) < u(z,t) , 2€Q,0<i<

Aur(z) < %u(:z:,t) . refd, 0<t<

Proof of Theorem 8. — We have (i), directly from (47), (48) in Lemma 6.

For (ii), if f(z,«a) satisfies the assumption in Lemma 7, we can combine
(47) in Lemma 6 with (52) in Lemma 7, and we have (54).

MRS

4. FIRST-INTEGRAL EQUATION

In this section, we study the relationship between the convergence
limx—o Aua(z), for all z € Q, limr.cc %u(z,T), for all z € © and
the unique solvability (in the viscosity solutions’ sense) of the first-integral
equation

(20) sup{—<b(z,a),Vw(z)>} = 0 , z€Q,
aCA

with the same boundary condition as (1),(2). Our results are the following.
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PROPOSITION 9. — We assume that any continuous solution of (20) is
constant. Assume that for a bounded continuous function f(z,a), z € Q,
o € A, duy(x) converges to a continuous function uniformly in z € Q as
A goes to 0. Then

}l‘imox\u)\(a:) =d; , VzeQ,

where dy is a constant.

THEOREM 10. — If for any continuous function f(x) in Q, for the solution
ux(z) of (1) with f(z,a) = f(x), there exist a real-number dy and a
sequence {\,} such that lim, . A\, = 0,

(74) im Auy, (z) = df , YoeQ,

then any continuous solution of (20) is constant.

Remark. — The claim in Theorem 10 holds for more general controlled
system than stated above. In fact, let the Hamiltonian H(x,p), = € €,
p € R™ satisfy

(75) H(z,kp) = a(k)H(z,p) , VEk>0,YVzeQ,VpeR",

where a(k) # 0, V & > 0. Let us denote by uy the solution of the equation

(76) H(.’IJ,VUA)+AUA—f =0 |, V:L‘Eﬁ,

with an appropriate boundary condition of Periodic B.C., Neumann and
oblique type B.C. or State constraints B.C.

In this situation, if for any continuous function f(x) in £, there exist a
real number d; and a sequence {\,} such that lim,,_,, A, =0,

(74) lim Muy (z) =df , YVzeQ,
then any continuous solution of
(77) H(z,Vw) =0 , YzeQ,

with the same boundary condition to (76), is constant. An example of such
Hamiltonian H(z,p) is [p|™ (m > 1).
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Proof of Proposition 9. — Let Auy(x) converge to a continuous function
d(x) uniformly in €. By the dynamic programming principle

Auy(z) = igf{z\ /T e M F(ao(t), at)) dt + Ae_’\Tu,\(ma(T))} ,
V'/\O>0, VeeQ VT >0.
Since f(z, ) is bounded, by letting A | 0 in the above, we have
d(z) = il(if {d(xo(T)} , Y2eQ, VT >0.

This implies that d(z) is a solution of (20), and thus d(z) is a constant.

Proof of Theorem 10 and Remark. — Theorem 10 is a special case
of Remark, where a(k) = k in (75). So we shall prove the claim in
Remark. Let w(x) be a continuous viscosity solution of (77). Then, for
ux(z) = A7'w(x), ux(x) is the unique viscosity solution of

H(z,Vuy) +duy —w = aAHYH(z,Vw) = 0 , z€Q,

with the same boundary condition as (77). From the statement, there exist
a real number d, and a sequence {\,},e such that lim, ... A, = 0,
lim, oo Apuy, (2) = d, = w(x), V 2 € Q. Therefore, w(zx) is constant.
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