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ABSTRACT. - We study the ergodic problem for the first-order Hamilton- 
Jacobi-Equations (HJBs), from the view point of controllabilities of 
underlying controlled deterministic systems. We shall give sufficient 
conditions for the ergodicity by the estimates of controllabilities. 

Next, we shall give some results on the Abelian-Tauberian problem for 
the solutions of HJBs. Our solutions of HJBs satisfy the equations in the 
sense of viscosity solutions. 0 Elsevier, Paris 

R&XJMl? - Nous Ctudions le probkme ergodique pour les Cquations 
de Hamilton-Jacobi-Bellmans (HJBs). Nous utiliserons les notions des 
contr8labilitCs dans les systkmes dkterministes contr6lks pour donner des 
conditions suffisantes pour la convergende ergodique. 

Ensuite, nous donnons des rksultats du problkme de Abel et de Tauber 
pour les solutions des HJBs. Nos solutions des HJBs satisfont les equations 
au sens de la solution de la viscositk 0 Elsevier, Paris 

1. INTRODUCTION 

The so-called ergodic problem for the Hamilton-Jacobi-Bellman 
equations concerns in studying the convergence of the terms Xux(z), 
+ U(X, T) (as X goes to +O, T goes to +oo respectively) in the following 
equations. 

(Stationary problem - infinite horizon control problem) 

(1) t;;<- < b( Ic,a),Vu~(z)>+Xu&) - f(~,cf)} = 0 ) 1c E 0 ( 
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2 M. ARISAWA 

(Time dependent problem - finite horizon control problem) 

(2) ~(x,t)+~~~{-<b(r,n).v1L(x,t)>--S(;(I)} = 0 1 

t>o, XER, 

u(z,O) = 0 ) XEO, 

with either one of the following boundary conditions. 
(Periodic B.C.) 
a is assumed to be a n-dimensional torus 

T” = R’“, fi(T,Z) M fj[O,T,], 
i=l i=l 

where Ti (1 5 i 5 n) are real numbers, in which case b(z, a), f(z, a) are 
periodic in pi (1 5 i < n) with the period Ti (1 5 i 5 n). 

(Neumann and oblique type B.C.) 

(3) <vu~(x),y(x)> = 0 , x E m, 
(3’) <Vu(x,t),y(x)> = 0 ) t>O,zEaR, 

where y(z) is a smooth vector field on afl pointing outwards, i.e. denoting 
n(z) the unit outward normal at x E 80, y(x) satisfies 

(4) 3 v > 0 such that <n(z),y(x)> > v , Vx E dR. 

(State constraints B.C.) 

(5) UX(X) , u(z, t) are viscosity supersolutions of (l), (2) 
in 2 ! R x (0, W) respectively. 

Here, R is a bounded, connected, open smooth subset in R” ; IAX 
(A > 0) and u(x,t) are real-valued unknown functions defined in 32, 
I? x [0, o0) respectively ; A is a metric set corresponding to the values 
of the controls for the underlying controlled dynamical system ; b(z, CX) 
is a continuous function on n x A with values in R” which is bounded, 
Lipschitz continuous in 2 uniformly in a ; f(~, a) is bounded continuous 
on n x A with real values. 

The relationship between the convergence of limx-0 Xux(z), 
lirnTdoo + u(x,T) and the notion of “ergodic problem” was mentioned 
in our previous paper [I]. Here, we only note that the unique viscosity 
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solutions (for the definition of the viscosity solution, we refer M.G. 
Crandall, P.L. Lions [5]) W,(Z), u(x:,~) of the equations (l), (2) are the 
value functions of the following control problems. (See P.L. Lions [6], [7], 
I. Capuzzo-Dolcetta - P.L. Lions [3], I. Capuzzo-Dolcetta - J.L. Menaldi 
[4], H.M. Soner [9]). 

(6) UX(X) = inf 
SW 

e-xt f(xc,(t),a(t)) dt , 
4.1 0 

X > 0 , z E a , 

(7) +,t> = 5; It f(xa(444) ds > t>o, xdl, 

where CY(.) is any measurable function “called control” from [0, 00) to 
A, x,(t) is the solution of the following ordinary differential equation 
corresponding to a(.) : 

(Controlled deterministic system - Periodic B.C.) 

{ 

g xc&> = qG&)> a(t)) t20, 
(8) xa(0) = x z E T? , V a( .) control, 

Ice(t) E II V t 2 0 , V a(.) control. 

(Controlled deterministic system - Neumann and oblique type B.C.) 

/ 

J 

t 
xa(t) = x+ +a(4 ~(4) dS-/tr(x&,) @s V t 2 0 , 

0 0 

xa(0) = x x E 2 , V (Y control, 

(9) ( TX(t) E n V t 1 0 , V (Y control , 

.I 

t 
Bt = bm(x&>) @s vt>o, 

0 

\ is continuous and nondecreasing. 

(Controlled deterministic system - State constraints B.C.) 

L 

$ xa(t) = q&(t), a(t)) t>o, 

(10) 
xa(0) = x x E 2 , V a(.) control, 
xa(t) E i=i V t 2 0 , V CX(.) control. 
At any y E 8?, there exists ,B E A such that 

<n(y), b(Y, P)> < 0. 

Since our study in this paper is closely related to the results of our former 
paper [l], we recall them here. 

Vol. 15, no I-1998 



4 M. ARISAWA 

THEOREM A.- Let f( x, o) in (I), (2) be of the following form f (x, a!) = 
g(x) + h(x, a), where g(x) is an arbitrary real-valued Lipschitz continuous 
function on a and h(x, o) is a bounded continuous function in G x A. rffor 
any Lipschitz continuous function g(x) there is a constant d, such that 

(11) lim Xux(x) = C$ , for all x E 2 . 
X-0 

(12) (resp. ,“n& $ u(x, T) = d, , for all x E ;2 . ) 

then there exists a subset Z of 2 which satisfies the following properties 
C-Q, (Ph (A). 
(Z) Z is non-empty and z E Z if and only if for any y E n and for any 
E > 0 there exist T, > 0 and a control ~1~ such that 

‘:1i T, = +m , 12 - ~cy,(Te)I < E. 

(P) Z is closed, connected and positively invariant, i.e. 

(1) z,(t)EZ . V z E Z ! V (I control ! V t 2 0 . 

(A) 2 has the following time averaged attracting property, i.e. for any 
open neighborhood U of 2, 

#CT 
x 

I 
e?~~r(x,(t))dt + 1 . 

* 0 

(13) as X 1 0, uniformly in Q( .) : V x E XI , 
1 

.I’ 

? 
(resp. 

TO 
xu(x&))dt + 1 > 

(14) as T + co, uniformly in a(.) > V II; E a ) 

where xc(U c 0) denotes the characteristic function of the set U. 

THEOREM B. - Let f(x, o) in (I), (2) be in the form of f(:cT (1) = 
g(x) + h,(x, o) where g(x) is an arbitrary real-valued Lipschitz continuous 
function on n and h(x, a) is a bounded continuous function in 0 x A. 
Assume that there exists a maximal subset Ro of 0 such that for any Lipschitz 
continuous function g(x) there exists a constant number d, such that 

(15) 

(16) 

lig XU~(X) = d, , for all x E Ro , 

(resp. +I& +, u(x.T) = d, , forall xE 0,). 
i 

Ann&s dr l’hsrirur Henri PoincurC Analyse non h&me 
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Then, there exists a subset Z0 of a which satis$es the following properties 
(zo), (PO), (Ao). 
(20) 20 is non-empty and z E 20 if and only iffor any y E a~, and for 
any E > 0 there exist T, > 0 and a control Q, such that 

;i T, = +cc , Iz-ya,(T,)( <E. 

(PO) 20 is closed and positively invariant, i.e. 

(1) 2, (t) E 20 ! V x E 20 , V a control , V t > 0 . 

(Ao) For any open neighborhood U of 20, 

(17) p$ in!A J Yt xv+,(t)) dt = 0 . V I% E R,, , 
0 

1 T 
(18) (resp. lim inf - 

J 
xuc(z,(t)) dt = 0 , V z E Ro ): 

T+CX a(.) T ,, 

where x,(U c 2) d enotes the characteristic function of the set U. 
Roughly speaking, Theorem A (resp. B) asserts that the convergence 

property (II), (12) (resp. (15), (16))in2( res . in 0,) leads to the existence p 
of the ergodic attractor 2 (resp. 2,). In other words, the existence of such 
a subset 2 (resp. 2,) is a necessary condition for the convergence property 
(ll), (12) (resp. (1% (16)). 

Our first goal in this paper is to study the converse, i.e. does the existence 
of 2 leads the convergence (1 l), (12) ? For this, we introduce a notion of 
controllability (the exact controlability and the approximate controllability). 

Next, we shall study the equivalence between the averages : 

and 

Iii inf X 
I‘ 

epxt f(xa(t), a(t)) dt n 
0 

lim inf 1 J 
T 

T-co o( T o 
f(4~), a(t)) d4 

which can be called an Abelian-Tauberian problem. More precisely, 
in the linear case, i.e. b(z,a) = b(z), V z E D, f(x,a) = f(x), 
V x E 2, it is known that if for a continuous function f(z) there exists 
lirnxlo X ,&” ewxt f(zo(t)) dt at s ome point z. E fi (%0(t) denotes the 
solution of (S), (9), (lo)), then limT-m $ .Ib’ f(zo(t)) dt exists and 

(19) liix 
J 0 

M epxt f(zo(t)) dt = $%a $ IT f(zo(t)) dt 

Vol. 15. no l-1998 



6 M. ARISAWA 

holds, which is called the Abelian Theorem ; on the other hand, if for 
a continuous function f(x) there exists lirnr,u $ JT f(zo(t)) dt at some 
point x0 E R, then limAlo A sOOo emxt f(za(t)) dt exists and (19) holds, 
which is called the Tauberian Theorem. We refer for instance to B. Simon 
[8] for these results. Here, we generalize these relationships in a nonlinear 
case when b(z,a), f( 2, o) possibly depend on ~1: E A. These results will 
be given in section 3. 

Finally, we shall see the relationship between the convergence property 
(11) of Theorem A and the following first order partial differential equation 

(20) sup{<-b(z,a),Vw(z)>} = 0 , :L.Ei=i. 
NE‘4 

with the same boundary condition as for (1). We shall call the equation 
(20) the equation of first integrals by analogy with the dynamical systems 
case, i.e. b(z,o) = b(z), V z E a. Roughly speaking, we shall assert 
that the convergence (11) implies that the unique viscosity solutions of the 
equations of first integrals are the constants, and the converse is also true. 
These results will be given in Proposition 9, Theorem 10 in section 4. 

In the following, we use the notations W, 7, N for the sets of real, 
integer, natural numbers respectively. The usual distance between two 
points 2, y E R is given by IZ - y] ; the usual scalar product of nxn is 
denoted by <., .>. We use the letters C(Ci, Cz, . . .) for positive constants. 
We shall write the solution of the ordinary differential equations (8) or (9) 
or (10) as ~~(t),yp(t), t > 0, etc... which correspond to the initial value 
X,(O) = X, yip(0) = y. We denote by A the set of all measurable functions 
from [0, oo) to A; by A, the subsets of A such that 

d, = {a(.) E A 1 xa(t) E i? Qt > 0.) 

We shall sometimes write 

H(X>P) = :‘,:‘w{ -4(x, a),p> - f(x, a)> , 

where the right-hand side appears in (l), (2). 
From the Lipschitz continuity of b(z, (Y) in x E n and a E A, in Periodic 

B.C., and Neumann B.C. cases, we have 

(21) 
h(t) - ya(t)l 5 eXotl=yl , 

Annales de I’fnsritur Henri PoincartS - hlyse non h&ire 



ERGODIC PROBLEM FOR THE HAMILTON-JACOBI-BELLMAN EQUATION. II 7 

and in the State constraints B.C. case, we have for any 5, y E 2, and for 
any (Y( .) E A,, there exists p( .) E d, such that 

(21’) I&(t) - Yp(t)l F f+tlx-Yl , 
V t 2 0 X0 2 0 is a constant. 

To be more specific, in the Periodic B.C. case Xa is given as follows (see 
P.L. Lions [6]) 

(22) x0 = sup {-<b( x,a)--b(x’, a) ) x-x’>Ix-x’~-2} . 
Z,l’ETi L1 t n 

For Neumann type boundary conditions, (21) is proved in P.L. Lions [5]. In 
the case of State constraints boundary condition, we refer to M. Arisawa- 
P.L. Lions [2]. In particular, if Xa = 0 in (22), we have respectively in 
place of (21) (in Periodic and Neumann type B.C. cases) 

(24 Ix&) - Y&l I Cob - Yl > 
V 2, y E m , V ck control , V t 2 0 , 

and in place of (21’) (in State constraint B.C. case) for any x, y E n, 
o( .) E d,, there exists p( .) E d,, such that 

(23’) lx&) - Y&)l L Cob-Y1 vt>o 

where CO is a constant in each cases, we shall call that the system is 
Lipschitz continuous. 

The author is very grateful to Professeur Pierre-Louis Lions for his 
constant encouragements and helpful advices. 

2. CONTROLLABILITY 

We recall the definitions of the exact controllability and the approximated 
controllability. 

DEFINITION 1 (Exact controllability). - A point x E R is said to be 
exactly controllable to a point y E fi if there exist a control CY( ‘) E A, and 
T(x, y) > 0 such that x,(T(z, y)) = y. 

DEFINITION 2 (Approximated controllability). - A point x E 2 is said to 
be approximately controllable to a point y E a with the estimate b‘(~; x7 y) 

Vol. 15. no I-1998. 



8 M. ARISAWA 

if for any E > 0 there exist a control cl E A, and T(E; z, y) 2 0 such that 
Ix,(T(~;x,y)) - Y/I < E, T(E; x; y) 2 q&;x, y). 

From the above definitions, one sees that the properties (Z) and (20) 
of the ergodic attractors 2 and 20 in Theorems A,B mean that all points 
in 0 (resp. GO) are exactly or approximately controllable to any points in 
2 (resp. 2,). That is, the convergence (1 l), (12) or (15), (16) implies the 
controllability of the system towards 2 or 2,. In the rest of this section, we 
shall study the converse, i.e. does the exact or approximated controllability 
imply the convergence (11) (12) or (15) (16) ? We present two results in 
Theorems 1 and 2 in this direction. 

THEOREM 1. - Assume that any point x E G is either exactly controllable 
or approximately controllable with some estimate S(E;S, y) to any point 
y E 2, and that the controllability is satisfied in the following uniform 
sense, i.e. either one of the following conditions (i), (ii), (iii) holds. 

(i) (Uniform exact controllability). There exists a number T > 0 such 
that any point :I: E fi is exactly controllable to any point y E 2 with 
T(:c, y) 5 T. 

(ii) (Uniform approximated controllability). There exist some y E [0, 1) 
and some C > 0 such that any point IC E 2 is approximately 
controllable to any point :y E 2 with the estimate S(E; X, :y) such 
that 

(24) S(qx,y) 2 C(-log&)? ) v&>>..X,yEE. 

(iii) (Uniform approximated controllability for the Lipschitz continuous 
system). Let the system be Lipschitz continuous ((23)). There exists 
a continuous function 6(e) defined in E > 0 such that lim,la 6(c) = 
+co and any point ic E 2 is approximately controllable to any point 
y E 0 with the estimate S(E; 2, y) such that 

S(qx,y) = S(E) , v&>O,vx,ylE2. 

Let f (x, o) be Lipschitz continuous in a x A uniformly in u E A. Then, 
for any such function f(x, a), there exists a constant d, such that 

(25) ljrrr Xux(x) = d, , uniformly in x E 2. 

(26) lim 4 u(x,T) = d, , 
T-CC 

uniformly in 2 E 2 . 

Annales de l’lnstitut Henri P&cart? Analyse non linkaire 
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Next, we shall consider the situation such that any point z E a is exactly 
or approximately controlable to any point y E 21, where 21 is strictly 
contained in 32. 

THEOREM 2. -Assume that there exists a nonempty closed invariant subset 
Z1 c a which sat@es the following properties. 

(A,) For any point z E D, for any a(.) E A,, {xa(t)}(t > 0) is 
attracted to 21 in the following sense. 

(i) (General case of (21) or (21’)). For any point z E a\&, for any 
a(.) control in A,, and for any E > 0, there exist z, E 21 and a 
number T, > 0 such that 

Ix&“,) - 4 < E, 

T, 5 C(-Zoge)Y, 

where C > 0, y E [0, 1) are constants depending on x. 

(ii) (Lipschitz continuous case of (23) or (23’)). Let the system be Lipschitz 
continuous. For any point x E n\Zl, for any a(.) control in A,, and 
for any E > 0, there exist z, E 21 and a number T, > 0 such that 

(C) Any point x E G\Zr is approximately controllable to any point 
z E Zr with the estimates a(~; 2, z), in each of the following cases. 

(i) (General case of (21) or (21’)). 

a(&; x, z) 2 C(-log&)y, 

where C > 0, y E [0, 1) are constants depending on x, Z. 
(ii) (Lipschitz continuous case of (23) or (23’)). 

where S(E) is a non-increasing continuous function dejned in E > 0. 

(UCZ) Any point z E 21 is either exactly controllable or approximately 
controllable with some estimate 6(~; z, w) to any point w E 21, and 
the controllability is satisfied in either one of the following uniform 
sense.. (i) uniform exact controllability, (ii) uniform approximated 
controllability, or (iii} uniform approximated controllability in the 
Lipschitz continuous system in Theorem I, where in the statement 
a is replaced by 21. 

Vol. IS, no l-1998 
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Let f (x, o) be Lipschitz continuous in t x A uniformly in Q E A. Then, 
fir any such function f( x, o) there exists a constant df such that 

(29) 1x”,:: XuA (x) = d, , Y :I; E 2 > 

The followings are simple examples of the systems satisfying the 
assumptions in Theorems I and 2. 

ExampEe 1 (for Theorem 1). - Let H(x,p) = SU~,,~{-<~(x,N),JI> - 
f(x, a>) = IPI - f(z), where f( x is an arbitrary Lipschitz continuous ) 
function in x E 2. Consider the equation (1) with this Hamiltonian and 
either one of the boundary conditions of Periodic B.C., Neumann and 
oblique type B.C., or State constraints B.C. Then, this is the case of 
the uniformly exact controllability in Theorem 1, (i), and we have the 
convergence property (259, (26). 

Example 2 (for Theorem 2). - Let R = (- 1,l) x (- 1: 1) c R2, and 
put H(z,p) = s~p,~,~~{~:ri~)~ + op2) - f(~;), where x = (2r,:c2) E (1, 
P = (PI,PZ) E R2, and f(,.) L is an arbitrary Lipschitz continuous function 
in n. Consider the equation (I) with this Hamiltonian and either one of the 
boundary conditions of Periodic B.C., Neumann and oblique type B.C., or 
State constraints B.C. Then, we can apply Theorem 2, because the system 
satisfies (23) and Z1 = ((0, x2) 1 -1 5 :c2 < 1) satisfies (A), (C) and 
(UCZ). 

The proof of Theorems 1, 2 are based on the following two Lemmas. 

LEMMA 3. - Let dl, dp be the real numbers, and assume that Us. U:!(X) 
are respectively a viscosity subsolution and a viscosity supersolution qf the 
problem 

H(x, VUi) + d, = 0 ~ 3: E f2 ( 

where H(z,p) = supaEA {-<b(x, ~),p> - f(z, a)}, with either one ofthe 
boundary conditions of Periodic B.C., Neumann and oblique type B.C., or 
State constraints B.C. Then, dl < dz. 

LEMMA 4. - Let f( x, CK) in (I), (2) be Lipschitz continuous in z E !? 
uniformly in a E A. Let X0 > 0 be the number given in (21), (21’). Then, 
we have the following. 

(i) (Zn the case when X0 > 0) 

(31) pu~(x)-xu~(y)l 5 Clx-y@- , v x > 0, vx,y E 2, 

where C > 0 is a constant. 
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(ii) (In the case when X0 = 0) 

where C > 0 is a constant. 

Proof of Lemma 3. - Let di > da, and we shall look for a contradiction. If 
necessary, by adding a positive constant to ul, we can assume that ‘ZL~ > 2~~. 
Let E > 0 be small enough such that dl - EU~ > d2 - eu2 holds in G. Since 
UQ is a supersolution of the above problem, uz is also a supersolution of 

with the corresponding boundary condition. Since u1 is a subsolution of 

H(.z, VW) + EUI + d, - cul 5 0, 5 E Q> 

with the same boundary condition, the standard comparison theorems of the 
viscosity solution theory (for the periodic B.C. case, see P.L. Lions [6]; for 
the Neumann B.C. case, see P.L. Lions [7] ; for the state constraints B.C. 
case, see H.M. Soner [9], I. Capuzzo-Dolcetta, P.L. Lions [3]), we have 
~1 < u2, in 11: E 2, which is a contradiction. Therefore, dl = d2. 

Proof of Lemma 4. - (i) In the state constraints case, the estimate (31) 
on Au,, follows from I. Capuzzo-Dolcetta and P.-L. Lions [3]. In the other 
cases, the proof is straightforward and we reproduce it here for the sake 
of completeness. So, in order to prove (31) for X0 > 0 (for the cases of 
Periodic B.C. and Neumann B.C.), first we shall prove 

Jh(+h(Y)I I Clw& , 
(34) 

VA > 0, Vz,y EG such that Ix-y] < & 
0 

Let x, y E n be arbitrary, E > 0 be an arbitrary small number, and take 
a control /3e of y such that for any T 2 0, any X > 0, the following holds 

J 
T 

h(Y)+& 2 x ewxt f (~0, (t), DO(~)) dt + XeeXTux (YP, CT)) . 
0 

Vol. 15, no l-1998. 
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Then, by the dynamic programming principle we have 

(35) h(x)- h(Y)-E 

s 

T 

5 AUX(X) - x e-xtf(w, (t), PO(~)) dt - XevXTw (:vpo G”)) 
0 

By the continuity (21) of the system, 

and putting this into (35) we have 

XUX(X) - Xu~(y) - E < XC(e(“Up”)T~x-y~ + 7) , 

O<V’X<X,>‘dT>O. 

and since E > 0, :c, y E 2 are arbitrary, we get 
(36) 

l~w(+h(~)I I: ACGP') > VX>O,VX,~E~,VT>O, 

where C > 0 is a constant, G(T) = e(Xo--X)T(x - y( + c. It is easy to 
see that G(T) (2’ 2 0) takes its minimum at To = & Ag ( (Xa-~),z-V,) 
provided that Ix - yI < A. Inserting To in (36), we have (34). 

For 2, y E R such that 12 - y J > &, since 

where the right-hand side converges to 1 as X + 0, 

pub - xu~(y)I < C’ < clx-yI+ ) 

and (31) is proved. 
(ii) The inequality (32) is proved by repeating the preceding proof by 

taking T = +cc in (35). The relationship (33) is also quite similarly shown. 
Now, we shall prove Theorems 1 and 2. 

Proof of Theorem 1. - First, we shall prove 

(37) !I~ IXU~(Z)--X’LL~(~)J = 0 ! uniformly in 2, y E a . 

for each cases of (i), (ii) and (iii). 

Ann&s de l’hstitut Henri PoincarP Analyse non h&ire 
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In the case of (i), for an arbitrary pair of 2, y E a there exists T > 0 
such that for a control E of z, z,(T(z, y)) = 9, T(z! y) < T. Thus, by 
the dynamic programming principle 

h(x) - h(Y) 

.I 

T(~,Y) 

IX e-x”f(xz(t),~(t)) dt + Xe-XT(“,“)uA(y) - XuA(y) , 
0 

and by the boundedness of f and XUA, 

Xux(x) - Xux(y) < C(XT + e-AT - 1) , V X > 0 , ‘d z,y E i?, 

where C > 0 is a constant. Since 2, y E 2 are arbitrary, by letting X -+ 0 
we get (37). 

In the case of (ii), there exists a number y, 0 < y < 1 which satisfies the 
statement. Let 2,~ E D be an arbitrary pair of points, E > 0 be arbitrary, 
and take a control E of 2 such that IzT;-(T(E; 2, y)) - yj < E. Then, by the 
dynamic programming principle 

s 

T(E;J:,Y) 

h(x) - h(Y) I x e-““f(xz(t),fi(t)) dt+ 
0 

+ XC-~~(~;~‘,~)U~ (~&T(E; x, y)) - Xux(y) 

5 C(l-e -WV,Y) + 
> 

+ ,-XT(E;c~c,y)(X~~(2,(T(~; 5; y))) - Xux(y)) , 

where C > 0 is a constant independent of the choice of 5, y E 2, E > 0, 
X > 0. From this and Lemma 4, we have 

(38) 
XU~(X) - xu~(y) 5 c(1 - e-XT(E;z,y) + E”;) , 

VX>O,VX,~E~,QE>O. 

Now, we recall the estimate (24). Then, putting 

E = exp(-X-(l+“)) ) for some 0 < w < 1 - 1 
Y 

in (38), we have (37). 
In the case of (iii), from the same argument as in the case of (ii), by 

using Lemma 4, we have 

Xu~(x) - Xu~(y) 5 C(1 - e-XT(E;zly) + E) , 

VX>O, Qx,y~i?, V)E>O, 
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where C > 0 is a constant. And since T(E; Z, ‘y) = 0(6(~)), lirn,+o 6(e) = 
fcq we have (37). 

Therefore, in each cases of (i), (ii) and (iii), we have proved (37). 
Now, from (37) there are a subsequence X’ --+ 0 of X + 0 and a number 

dr such that 

(39) jlma A’u,j~(s) = dr ( uniformly in :1: E R . 

We shall prove the uniqueness of the number dr. For this purpose, suppose 
that there are another subsequence p’ + 0 of X + 0 and a number d2 
such that dl # d2, 

(40) l;‘_m&u~~/ (x) = d2 , uniformly in :c E 0. 

Assume that dl > d2, and we shall look for a contradiction. If dl > dz, 
by the uniform convergence of X’UX,, p’u@,, for E > 0 small enough we 
can take X’, IC’ small enough such that 

‘LLA’ is a viscosity subsolution of 
H(z. V,ux,) + dl 5 E , XEfl, 

and a viscosity supersolution of 
H(z, VQ/) + dl > --E , :c E 62 . 

up, is a viscosity subsolution of 
H(z, Or+) + d2 5 E . II: E 0 . 

and a viscosity supersolution of 
H(x, Vu/,) + d2 > --E , n: E R > 

where H(z,p) = supQEA { -<b(~, a),~> - f(~:, Q)}, with the appropriate 
boundary conditions. Then, by Lemma 3, since E > 0 is arbitrary we have 
dl = d2. Therefore, we have proved the convergence property (25). We 
do not give the proof for the convergence property (26), here. This can be 
obtained from (25) by using the Theorem 5 below in $3. 

Proof of Theorem 2. - First of all, we remark that from Theorem 1, 
the assumption (UCZ) leads the following : for any bounded continuous 
function f(z, a) in 2 x A, Lipschitz in :L E D uniformly in cy E A, there 
exists a constant df such that 

(41) !iy; XUX(Z) = df , uniformly in z E 21 , 

(42) .+ ,“ma $ U(X, T) = df ! uniformly in z E 21 . 
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In the following, we only prove the statement for the general case of (21) 
or (21’), for the Lipschitz case can be proved similarly. Let z E R, and 
choose a(.) so that for arbitrary E > 0, T > 0, 

T 

(43) XUA(Z) + E 2 x 
J 

epxtf(Za(t)), a(f))dt + AepXTuA(&(T)). 
0 

Then from the condition (Ao), (i), for any S > 0 there exist xg E 21, 
Tb > 0 such that 

IG(%) - 4 < 4 

Ta < C(-logS)y, 

where C > 0, y E [0, 1) are constants depending on Z. From Lemma 4, 
by putting T = TJ in (43) we have 

Xux(x) - Aux(xa) + E 2 -CAT& + (epXT6 - l)Xu~(z~) - CGxx;l, 

and from the estimate of Ts, we know that the right-hand side of the above 
inequality converges to 0, provided that we take 

6 = ezp(-X-(l+“))T 

for some 0 < w < y-l - 1. Since E > 0 is arbitrary, from (41) we have 

(44) h Au&) > df ) v z E 52 
X-O 

Next, we shall prove the converse relationship 

(45) lim Xux(z) 5 d, ) vz E 2. 
X-0 

Let x E n, z E 21 be arbitrary, E > 0 be arbitrary. By the assumption (C), 
there exist a control o of %, T(E; 2,~) > 0 such that Ix~(T(E; LC, z))-,zI < E, 
T(E; X, 2) < S(E; 5,~). Therefore, as in the proof of Theorem 1, by using 
the dynamic programming principle, we have 
(46) 
Xux(z) - Xu~(z) 5 C( 1 - e-XT(E;Z,z) + E) %’ , VA>O,V&>O, 

here we used Lemma 4. 
Then, by putting E = ezp(--A-(I+“)), for some 0 < w < y-l - 1 in 

(46), from (41) we have (45). 
Therefore from (43), (45), we have proved the convergence property 

(29). The relationship (30) can be proved similarly, and we omit the proof. 
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3. ABELIAN-TAUBERIAN PROBLEM 

In this section, we shall study the relationship between the two averages 
lim~,O X’IL~ (2) and limT,m $ U(IC, T). The following result (Theorem 5) 
concerns the case when one of the limits exists uniformly in 1c E 2, in 
which case the two convergences are equivalent. Next, in Theorem 6 we 
treat the case where the convergences hold, but not necessarily uniformly in 
II: E !?, in which case we can show that the existence of limT+m $ U(Z, 7’) 
implies lim~,a XU,X ( X) = limT,, $ u(:I:; T). We shall state the Theorems. 

THEOREM 5. - Let ,ux(:c), U( II:, t) be the solutions of (I), (2) respectively 
which satisfy the same boundary condition, either one of Periodic B.C., 
Neumann and oblique type B.C., or State constraints B.C. respectively. 
Then, the ,following holds. 

(i) [f XUX(II:) converges uniformly in :I; E 2 to a real number d as X 
goes to 0+, then $ U(X. T) converges uniformly in :I: E 2 to rl as 
T goes to +x. 

(ii) If + u(:c, T) converges uniformly in z E 2 to a real number d as 
T goes to +x, then Xu~(z) converges uniformly in n: E fi to d as 
X goes to 0,. 

For the case of pointwise convergence, first we shall give the following 
Lemmas. 

LEMMA 6. - Let UX(X); ~(5, t) be the solutions of (I), (2) respectively 
which satisfy the same boundary condition, either one of Periodic B.C., 
Neumann and oblique type B.C., or State constraints B.C. respectively. 
Then, the following holds. 

(47) lirn Xux(x) > b 
X-+0+ T-CC 

f ,u(x,T) , vx,i=i, 

LEMMA 7. - Let f(z,o) in (I), (2) be in the form of f(x,cy) = 

f(x) + 9(x, Q), where f(x), d. ‘G Q are continuous functions defined in fl, , ) 
n x A respectively. Let ux(t), u(x, t) be the solutions of (I), (2) respectively 
which satisfy the same boundary condition, either one of Periodic B.C., 
Neumann and oblique type B.C., or State constraints B.C. respectively. We 
denote 

(49) md = z;;{ --<b(x, a),w - 9(x, a,} . 

Annules de I’htitut Henri PuincurP - Analyse non h&tire 
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And we assume 

(50) H(x,p) > 0, V x E 2, Vp E R”, H(z,O) = 0, V z E i?, 

(51) mx> P) is convex in p E R” . 

Then, there exists 0 < r 5 1 such that the following holds 

(52) 
Q x E 2 , V X > 0 and V T > 0 such that XT < r . 

We then obtain the following Theorem from Lemmas 6 and 7. 

THEOREM 8. - Let UX(X), U(X, t) be the solutions of (I), (2) respectively 
which satisfy the same boundary condition, either one of Periodic B.C., 
Neumann and oblique type B.C., or State constraints B.C. respectively. 
Then, the following holds. 

(i) Zfat a point Z E II limT_,oo + ‘IL@, T) exists, then lim~-+O Xux(E) 
exists and 

(53) lim Xux(Z) = Jirnm T 
X-0 

1 u(z, T) . 

(ii) Let f(x, CI) in (l), (2) satisfy the assumptions in Lemma 7. Then, 
we have 

(54) 
1 

lim Xux(x) = lim - u(z,T) : VXEi=i. 
X-O T+CXT T 

Now, se shall prove the Theorems and Lemmas. 

Proof of Theorem 5. - (i) Let A4 = supEXA I~(x,cI)[, and let E > 0 
be an arbitrary small number (which is fixed). Let z E a be an arbitrary 
point and let T > 0. We choose X = E . T-l. Then, by the dynamic 
programming principle 

eCxtf(x,(t), a(t)) dt + XeWXT UA(X~(T)) 

(55) 
T 

f(xa.(t)> a(t)> dt 

+; I T(e-‘“-l).f(xa(t), a(t)) dt + xeFEux(x,(T)) . 
0 
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In (551, 

E 
1 I To T(e-At-l) f(x&t), a!@)) dtl 5 M(1 - E - eC) . 

and dividing the both hand-side of (55) by E, letting T + 00, by the 
uniform convergence of XUJ, to d we get the following 

lim i! irif 
.I 

T 

(56) 
~+ooT N o 

f(za(t), +)) dt + d(e-;-l) 1 2 M(l---c’) . 

T 

,f(xN(t)> a(t)) dt + d(e-;-l) 1 L M’1-:-e-‘) 

Since E > 0 is arbitrary, we have proved 

f(qJt)> m(t)) dt = d , t/ 3; E 2. 

and from the above argument it is clear that the convergence is uniform in 
:I: E 0. And the proof of (i) is complete. 

(ii) Let 71(x, t) = c -Xtu(~, t), V z E 2, V t > 0. Since w,(z, t) is the 
viscosity solution of 

g + sup{ -<b(z, a). vu> - j-(x, a)} = 0 . XEl: t>o: 
<Y 

u(z,O) = 0 , :c E 2. 

with the appropriate boundary condition, U(Z; t) is the viscosity solution of 

dv 
dt + sup{ -<b(z, a), Vu> - e -Xtf(2, a)} + Xepxtu(z, t) = 0 . 

(57) Oz .XE2! t>o. 

v(x,O) = 0 . Ir;.EZ, 

with the same boundary condition as ~(5, t). Therefore, by the dynamic 
programming principle we can write 

w(z, t) = eCxt u(5., t) 

(58) = inf 
oi {I t emXs(f(za(s), a(s))---Xu(z,(s), s)) ds} . 

0 
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Let M = supfiXA jf(z,a)j. S ince u(z, t) 2 Mt, we deduce 

IS 
x 

t 
O3 e-yf(x,(s), Q(S))--XU(X,(S), s)) d*l 5 ce-yl+Xt) ) 

where C > 0 is a constant. 
Hence, multiplying the right-hand side of (58) by A, letting t + co, 

we have 

X inf 
r (59) N 0 

e-yf(xa(t), a(t))-hL(x,(t), t,) dt = 0 ) 

v’X>O,vxEt. 

Let E > 0 be an arbitrary fixed number, and let X > 0, 2’ > 0 satisfy 
E = XT. By the uniform convergence of $ U(X, T) to d as T --+ CQ, there 
exists To > 0 such that 

(60) ;u(x,T)-$1 < E , tlx~n,VT>T~. 

For an arbitrary T > To, we rewrite (59) as follows 

inf X 
{ r 

cxt f(xm(t), <r(t)) dt - x2 T e-%(x,(t), a(t)) dt L-t . 0 I’ * 0 
(61) - x2 r eCxtu(x,(t), a(t)) dt = 0 , 

T I 

‘d X > 0 , V x E 2 , V T > To such that XT = E . 

We estimate the second and the third terms of the left hand-side of the 
above equality. 

u(x,(t),n(t))dtl 5 M~h/~e-~~dt = M&(1-e-“) ~ 
0 

(62) 
V x E XI , V a! control . 

(63) 
ee-‘(d-l--E) 5 X2 

I 
Oc) e-xtu(x,(t), a(t)) dt - de-’ 

T 

2 ceP(d+l+c) , V x E II , V ck control . 
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From (61), (62), (63) we obtain 

lim inf X 
x-0 01 .i” 

emxtf(x,,(t), a(t)) dt - de-’ < K(E) , 
0 

e-‘“f(xccn(t), a(t)) dt - de-‘1 L K(E) , 

where K(E) --+ 0 as E --f 0. Therefore, we have 

lim inf X 
e x+0 o( 

--Xt f(xcy(t)>ci(t)) dt = d , V x E 2, 

and from the above discussion, the convergence is uniform in IC E 2. 

Proof of Lemma 6. - Let M = ~ttp~~~~ f(z; o), and z be an arbitrary 
point in 2. We write 

XUX(X) = infX CAt f(xCCY(t)> a(t)) dt 
(I 

j-(x,(s): N(S)) ds dt . 

(64) Xu~(x) = 

+h2LmeeAtl } f(xa(s),cx(s))dsdt ,VT > 0. 

By using (64), we shall prove (47), (48) in order. 
First, for (47), we get the following inequality from (64) 

Xux(x) 2 inf X2 

(65) 
br I’ 

emAt, of f(xa(s), a(s)) ds dt 

-i’/l‘e-~ti~i~‘ii~~(s),~(sj)dsdt, b’T > 0. 

Denote d(x) = b 
T+az 

$ u(x, T), and for an arbitrary e. > 0 choose To > 0 

such that 

(66) 
1 t 

i;f t 
s 

f(xcr(s),a(s)) ds 2 d(z) - &o , t/t 2 To . 
0 
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In the inequality (65), we set T = To and we have 

(‘37) 
XUA(Z) 2 infX2 f(z,(s), o!(s)) ds dt 

0 

+ (d(z) - eo) (XToepXTo + CAT”) . 

Now, let E = XT0 and we have the following 

(6s) IX2 iT” epxt it f(z,,(s), a(s)) ds dtl 5 A4(1-e-‘--Ee-E) , 

V Q control . 

From (67), (68), 

Xu~(z) - ci(x)(eeC +eP) 2 -A4(l-e-E--Ee-E) - cc(eeC+eC) . 

Since this inequality holds for any X > 0 independently of the choice of 
e. > 0, To > 0 taken in (66) as E = XT0 + 0, 

and we have (47), for co > 0 is arbitrary. 
Next, for (48), we get the following inequality from (64), 

(69) 
X’ILA(~Y) 5 infX2 f(z,(s), a(s)) ds dt a 

+ M(l-e-XT-XTe-XT) , VT > 0, 

here we used the same estimate as in (68). Denote z(z) = 
lim SUP~+~ + ~(2, T), and for an arbitrary number cl > 0 choose Tl > 0 
such that 

(70) i;f i It f(xa(s),a(s))ds < &X)+&I , VZE~?, Vt>T,. 
0 

In the inequality (69), we set T = Tl and by (70) we have 

Xux(z) 5 (Ti(z)+El)(XT~e-XT1+e-XT1) + M(l-e-XT1-XTie-XT1) . 

Putting E = XT,, we get 

flux(z) 5 (l(ci7)+e1)(eeCE+eE) + M(l-e-E-ce-E) . 

By the same argument as the one used to prove (47), we get (48) from 
the above inequality. 
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Proof of Lemma 7. - Let ‘UX(X, t) = Xtu~(~), V X > 0, V t > 0, V z E a. 
Since UA(X) is the viscosity solution of 

with the appropriate boundary condition, VJ,(X, t) is the viscosity solution of 
cy 

2 + H(z, Vvx)-f(z) = H(x, V~u+H(~, Vux). XEi-2, t>o, 

?J&;O) = 0 . c?xt, 

with the same boundary condition to (71). By the assumption (50), (51), 
there exists 0 < r 5 1 with which the following holds : for any X > 0, 
t > 0 such that At < 7 5 1, 

(73) 
R(z, Vvx) - zqz, Vux) = H(z, XtVu,) - H(z, Vux) 

5 {At - l} H(X,VU~) . 

Hence, from (50), (72), (73) vx(z:,t) satisfies 

vx(z.0) = 0 1 2: E 2 ( 

with the same boundary condition to (72). Therefore, by comparison 
theorem, we have 

Xtux(x) = vx(z, t) 5 ?L(Ic, t) ) II’ E 0 ( 0 < t < ; : 
Xu&7T) < f ‘U(X, t) , 3: E f2 , 0 < t < : . 

Proof of Theorem 8. - We have (i), directly from (47), (48) in Lemma 6. 
For (ii), if f(z, o) satisfies the assumption in Lemma 7, we can combine 
(47) in Lemma 6 with (52) in Lemma 7, and we have (54). 

4. FIRST-INTEGRAL EQUATION 

In this section, we study the relationship between the convergence 
limx+e XU~(X), for all z E a, limT-,oo $ u(x;T), for all z ‘E n and 
the unique solvability (in the viscosity solutions’ sense) of the first-integral 
equation 

(20) sup{-<b(x,tr), VW(Z)>} = 0 ) :c E 0 , 
aEA 

with the same boundary condition as (l),(2). Our results are the following. 
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PROPOSITION 9. - We assume that any continuous solution of (20) is 
constant. Assume that for a bounded continuous function f(x, CX), z E n, 
a: E A, Xux(x) converges to a continuous function uniformly in x E 3;i as 
X goes to 0. Then 

where df is a constant. 

THEOREM 10. - Zf for any continuous function f(x) in R, for the solution 
uA(x) of (I) with f(z,a) = f(x), there exist a real-number d, and a 
sequence {X,} such that limn+m X, = 0, 

(74 lim &uA,(x) = d, , VXE~, 
77.-C% 

then any continuous solution of (20) is constant. 

Remark. - The claim in Theorem 10 holds for more general controlled 
system than stated above. In fact, let the Hamiltonian g(x,p), x E 2, 
p E !R” satisfy 

(75) H(x, kp) = a(k)H(x,p) ) v k > 0, v x E 2 ) vp E R” , 

where a(k) # 0, V k > 0. Let us denote by ux the solution of the equation 

vf3 Jqx,Vux)+Xux-f = 0 ) VXE~, 

with an appropriate boundary condition of Periodic B.C., Neumann and 
oblique type B.C. or State constraints B.C. 

In this situation, if for any continuous function f(x) in 2, there exist a 
real number d, and a sequence {X,} such that lim,,, X, = 0, 

(74) &I& &UA, (x) = df , V x E i=l, 

then any continuous solution of 

(77) qx,vw) = 0 , VXEE, 

with the same boundary condition to (76), is constant. An example of such 
Hamiltonian p(x,p) is lplm (m > 1). 
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Proof of Proposition 9. - Let AUX(X) converge to a continuous function 
d(z) uniformly in n. By the dynamic programming principle 

(i 
T 

X26x(z) = inf X e-y(Z,,(t), a(t)) dt + xe-ATu&,(T)) , (Y . 0 1 

Since f(z, a) is bounded, by letting X 1 0 in the above, we have 

d(z) = i;tf {d(x,(T))} , V’z E 0) VT > 0. 

This implies that d(z) is a solution of (20), and thus d(z) is a constant. 

Proof of Theorem 10 and Remark. - Theorem 10 is a special case 
of Remark, where a(!~) = IG in (75). So we shall prove the claim in 
Remark. Let W(X) be a continuous viscosity solution of (77). Then, for 
lLX(X) = A-lw(rc), A(,.) u L is the unique viscosity solution of 

H(x,Vux) + XILX - w = u(X-‘) H(z, VW) = 0 , :I’ E 12 , 

with the same boundary condition as (77). From the statement, there exist 
a real number d, and a sequence {Xn}71E such that limn--tcu A,, = 0, 
lim,,,, Xn~~,, (x) = d, = w(z), V :c E 62. Therefore, w(z) is constant. 
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